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Abstract

We use symmetry to study two central pattern generator (CPG) models for biped
locomotion. The first one is a coupled four-cell network, proposed by Golubitsky, Stew-
art, Buono, and Collins, that models rhythms associated to legs. A classification based
on symmetry shows that this network can produce periodic solutions with rhythms
corresponding to the standard bipedal gaits of run, walk, hop, gallop, and skip, among
others. Moreover, the four-cell model can produce two types of hop, two types of gallop,
and three additional symmetry types of periodic solutions that have yet to be iden-
tified with the rhythms of known bipedal gaits. The second locomotor CPG network
models interlimb coordination in bipeds (arms+legs). It is obtained by breaking the
symmetry between fore and hind legs in an eight-cell CPG network for quadruped gaits,
also proposed by Golubitsky et al. We match the rhythms of perturbed periodic solu-
tions found in this eight-cell network with legs rhythms produced by the four-cell CPG
model. We also compare patterns of oscillation of gaits of the eight-cell model with
results on bipedal interlimb coordination in the literature, showing that the eight-cell
model is a plausible network for modeling human interlimb coordination.

We show numerical simulations of periodic solutions corresponding to the bipedal
gaits in the two CPG models. These simulations use clamped Hodgkin-Huxley equa-
tions to model cell internal dynamics and partial linear coupling (where only the elec-
trical potentials of different cells are coupled). We use synaptic coupling in the four-cell
model and diffusive coupling in the eight-cell model.

1 Introduction

Animal locomotion is controlled by a central pattern generator (CPG) capable of producing
the rhythms associated to each gait. A CPG is commonly modeled as a network of identical
systems of differential equations, also described as neurons or cells. We adopt the term
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cells. Golubitsky et al. [15, 16] use symmetry to infer plausible classes of CPG network
architectures from observed patterns of animal gaits. Their CPG network has twice as many
cells as the animal has legs. The physiological interpretation is that the motion of each
leg is controlled by joints, and each joint is controlled by two muscle groups (flexors and
extensors). Therefore, a locomotor CPG should be capable of independently controlling
each muscle group.

In this paper, we consider two CPG models for bipeds. The first is a four-cell network
proposed in [15, 16] that models leg rhythms. See Figure 1. The second is a CPG model for
bipedal interlimb coordination (arms+legs) that is obtained from an eight-cell CPG network
model for legs in quadrupeds, also proposed in [15, 16], by breaking symmetry between the
fore and hind legs. See Figure 2 (right).
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Figure 1: CPG network for bipeds controlling legs. Cells 1 and 3 send signals to the left leg,
cells 2 and 4 send signals to the right leg.
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Figure 2: Eight-cell CPGs. See text for explanation. Note: LF = left fore leg and LH = left
hind leg in CPG-Quad and LA = left arm and LL = left leg in CPG-Biped.

In the four-cell model, the muscle groups in the left leg are controlled by cells 1 and 3
and those in the right leg by cells 2 and 4, with cells 1 and 2 controlling one type of muscle
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group and cells 3 and 4 the other muscle group. The four-cell model is capable of producing
the rhythms of the standard bipedal gaits of walk, run, hop, gallop, and skip, among other
gaits. Moreover, we have potentially two types of hop, two types of gallop, which we define
as gallop-walk and gallop-run, and three additional symmetry types of periodic solutions not
yet identified with known biped gaits.

Figure 2 shows two eight-cell CPG models. The one on the left is the CPG model for
quadruped gaits (CPG-Quad) and the one on the right is the CPG model for biped interlimb
coordination (CPG-Biped) obtained by breaking symmetry between fore and hind legs. It is
argued in [15, 5] that the correspondence between signals from cells to limbs in CPG-Quad
is the one given in Figure 2 (left). It follows that the correspondence between cells and limbs
in CPG-Biped is the one given in Figure 2 (right).

CPG-Biped represents the attempt to include arm rhythms in our analysis of biped gaits.
The reason for this attempt is an observed relationship between arm and leg movements
in biped locomotion [11, 33, 34, 10]. We match periodic solutions of the eight-cell CPG-
Biped with leg rhythms produced by the four-cell CPG model, and we compare patterns of
oscillation of gaits of CPG-Biped with results in the literature concerning biped interlimb
coordination. Interestingly, the biped walk is not found by perturbing any of the standard
quadrupedal gaits in CPG-Quad and this observation is consistent with those of Schmidt [32].

There are three reasons why the assumption of symmetry in a locomotor CPG network is
natural. First, there is clear evidence of bilateral symmetry in animals. Second, although the
physiology of limbs may be different (say between fore and hind legs in a quadruped), these
differences need not extend to the underlying CPG. Moreover, the physiological difference
between pairs of limbs is negligible when considering arthropods with six or more legs.
Indeed, the evolutionary history of these creatures relies on developing large numbers of
more or less identical segments. Third, the role of CPGs is to send signals to limbs; so what
we study are the signals sent to each limb and the phase relations between them. Exact
phase relations are normal in symmetric networks and unusual in asymmetric ones. Finally,
we note that the dynamics of a system that is close to symmetric often resembles that of
an ideal symmetric system far more closely than it resembles the dynamics of a ’generic’
asymmetric system. Thus, we consider symmetry to be a reasonable modeling assumption.

2 Central pattern generator for legs rhythms

The general system of ODEs corresponding to the four-cell CPG network in Figure 1 has
the form:

ẋ1 = F (x1, x2, x3, x4)
ẋ2 = F (x2, x1, x4, x3)
ẋ3 = F (x3, x4, x1, x2)
ẋ4 = F (x4, x3, x2, x1)

(2.1)

where xi ∈ Rk and F : (Rk)4 → Rk. The symmetry group of this four-cell CPG model is
D2. It consists of the transpositions ρ = (12)(34), τ = (13)(24), and ρτ = (14)(23).
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This section is divided into four parts. The classification of symmetry types of periodic
solutions to equations (2.1) is given in the first part. In the second subsection we show
periodic solutions for each of these symmetry types. These solutions were found using
simulations with coupled Hodgkin-Huxley equations. The third subsection discusses the
relationship between symmetry types and known bipedal gaits. The last subsection outlines
the equivariant bifurcation theory of periodic solutions that provided the strategy for finding
the different periodic solutions by numerical simulation.

2.1 Symmetries of periodic solutions in (2.1)

In this subsection we give a precise definition of spatio-temporal symmetries of time-periodic
solutions and then, following [15, 16], we identify the symmetry types of periodic solutions
to (2.1) with gait types. See [17, 18] for more details.

In general, let ẋ = g(x) be a system of differential equations, where x ∈ Rn. Assume
g is Γ-equivariant, that is, g(γx) = γg(x) for all γ ∈ Γ. Equivariance is equivalent to the
statement that symmetries of differential equations take solutions to solutions. Suppose x(t)
is a periodic solution. Define

K = {γ ∈ Γ : γx(t) = x(t)}
H = {γ ∈ Γ : γ{x(t)} = {x(t)}} (2.2)

where H consists of symmetries that preserve the trajectory x(t) setwise and K consists of
symmetries that fix the trajectory pointwise. Symmetries in K are called spatial symmetries
and symmetries in H are called spatio-temporal symmetries.

The uniqueness theorem for solutions of initial value problems is used to relate H sym-
metries to well-defined phase shifts and to justify the terminology. Let h ∈ H. Because of
equivariance, hx(t) is also a periodic solution of ẋ = g(x). Uniqueness of solutions implies
that there exists a phase shift θ ∈ S1 such that hx(t + θ) = x(t). The pair (h, θ) ∈ H × S1

is also called a spatio-temporal symmetry of x(t).
In order for (H,K) defined in (2.2) to correspond to symmetries of a periodic solution

in a general Γ-equivariant system, some algebraic conditions must be satisfied. See [17].
However, these conditions simplify for the coupled cell system (2.1).

Theorem 2.1 ([17]) Consider the coupled cell system (2.1) where k ≥ 2. Let H ⊃ K be
subgroups of D2. Then there is a periodic solution x(t) to (2.1) for some function F if and
only if H/K is cyclic. Moreover, when such a periodic solution exists, F can be chosen so
that x(t) is asymptotically stable.

Theorem 2.1 gives a method for classifying all possible symmetry types of periodic so-
lutions to a given coupled cell network. This theorem does not assert that every coupled
cell system has stable periodic solutions of symmetry type (H,K). In a given system, other
methods, such as numerical simulation or Hopf bifurcation, must be used to verify the exis-
tence of periodic solutions with prescribed spatiotemporal symmetries.
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It is a straightforward calculation to enumerate all pairs of subgroups H ⊃ K of D2 that
satisfy H/K is cyclic. There are ten such pairs of subgroups and they are

(D2,D2) (D2, ρτ) (D2, ρ) (D2, τ)
(ρτ, ρτ) (ρτ,1) (ρ, ρ) (ρ,1)
(τ, τ) (τ,1)

(2.3)

We call gait types primary when H = D2 and secondary when H ' Z2.
Let X(t) = (x1(t), x2(t), x3(t), x4(t)) be a periodic solution with period (normalized to)

1. Then these symmetries force the periodic solutions to have the form shown in Table 1.
Note that primary gaits are ones whose signals to the legs are identical (up to phase-shift)
and secondary gaits appear in conjugate pairs, where the conjugacy is given by a symmetry
not in H. The conjugate pairs of gallops may be interpreted as a choice of lead leg. It is
presently unclear how to interpret the conjugacy pairs in the other secondary gaits.

H K Left leg Right leg Name

D2 D2 (x1, x1) (x1, x1) slow hop
D2 ρτ (x1, x

S
1 ) (xS1 , x1) walk

D2 ρ (x1, x
S
1 ) (x1, x

S
1 ) fast hop

D2 τ (x1, x1) (xS1 , x
S
1 ) run

ρτ ρτ (x1, x2) (x2, x1)
ρτ 1 (x1, x

S
2 ) (x2, x

S
1 )

ρ ρ (x1, x2) (x1, x2)
ρ 1 (x1, x2) (xS1 , x

S
2 ) skip

τ τ (x1, x1) (x2, x2) gallop-run
τ 1 (x1, x

S
1 ) (x2, x

S
2 ) gallop-walk

1 1 (x1, x2) (x3, x4)

Table 1: Patterns of oscillation in the CPG for bipedal locomotion, where S indicates time
shift by one-half period. The symmetry ρ swaps the signals sent to the two legs; the symmetry
τ swaps the two signals sent to each leg.

2.2 Numerical simulations

The space-clamped Hodgkin-Huxley equations [20] are a system of four nonlinear ODEs that
model the membrane potential of a cell v in the giant axon of a squid subjected to three ionic
currents (sodium, potassium, and leakage). In our CPG model, we assume that the internal
cell dynamics is the space-clamped HH equations and compute periodic solutions with the
spatio-temporal symmetries given in Table 1. Numerical simulations of CPG (2.1) are done
using Matlab. We plot only the first variable from the signal of each cell, vi(t), i = 1, 2, 3, 4.

5



In our simulations the coupling is linear synaptic and only membrane potentials in each cell
are coupled.

The uncoupled system of ODEs is as follows:

HH =























dv

dt
= f(v, y)− I

dyj
dt

= Φ (γj(v)− yj) τj(v)

(2.4)

where v is the difference of electrical potential across the cell membrane, I is the intensity
of an external current stimulus and Φ = 3

T−6.3
10 is the temperature compensating factor. The

function f is defined as

f(v, y) = −g0(v − V0)−
2
∑

i=1

giϕi(y)(v − Vi)

The functions τj(v) and γj(v) are given by

τj(v) = αj(v) + βj(v)γj(v) =
αj(v)

αj(v) + βj(v)

Each term giϕi(y)(v − Vi) models an ionic channel that regulates the voltage along the
membrane of the axon. The variables y = (y1, y2, y3) and the functions ϕ, with ϕ1 = y3

1y3,
ϕ2 = y4

2, are considered probabilities and, when all yj ∈ [0, 1], they assume values in the
interval [0, 1].

The functions α(v) and β(v) are defined by Hodgkin and Huxley in [20], to be:

αy1(v) = Ψ(v+25
10

) βy1(v) = 4 exp( v
18

)

αy2(v) = 0.1Ψ(v+10
10

) βy2(v) = 1
8

exp( v
80

)

αy3(v) = 0.07 exp( v
20

) βy3(v) = (1 + exp((v + 30)/10))−1

where Ψ is the analytic function

Ψ(x) =







x

exp(x)− 1
x 6= 0

1 x = 0

In this work we use the parameter values of [20], namely V0 = −10.599, V1 = −115.0,
V2 = 12.0, g0 = 0.3, g1 = 120.0, g2 = 36.0.

Examples of periodic solutions with the ten different primary and secondary gait rhythms
are given in Tables 2-4. The initial conditions for these examples are given in Table 5.
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Table 2: Bipedal primary gaits.
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Table 3: Named bipedal secondary gaits.

2.3 Gaits: literature vs predictions by the model

In this subsection we compare bipedal gaits studied in the literature with the gait types
predicted by the four-cell CPG model. Walk, run, hop, skip, and gallop are standard (human)
bipedal gaits. The four-cell network CPG model for legs rhythms can produce the rhythms
associated with walk, run, skip, two types of hop, and two types of gallop, in ways that we
explain below. According to the four-cell network, bipedal gait types are either primary or
secondary. Indeed, this model can produce four primary gait types (walk, run, slow hop, and
fast hop) and six secondary gait types. Examples of secondary gaits are skip and gallop. Our
discussion proceeds by category.

Primary gaits. Physiologically, walk and run share the symmetry property that swapping
legs leads to a half-period phase shift in the gait cycle. Nevertheless, these are different gaits.
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(H,K) = (ρτ, ρτ) (H,K) = (ρτ,1) (H,K) = (ρ, ρ)
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Table 4: The three unidentified bipedal secondary gaits.

Gait Initial conditions T, I k1, k2, k3

slow hop [1.0, 0.1, 0.1, 0.9], [1.0, 0.8, 0.9, 0.9] 6.3, 100 0.4, 0.2, −0.8
[1.0, 0.8, 0.9, 0.9], [1.0, 0.1, 0.1, 0.9]

walk [1.0, 0.1, 0.1, 0.9], [1.0, 0.8, 0.9, 0.9] 6.3, 100 1.4, −0.2, −0.8
[1.0, 0.8, 0.9, 0.9], [1.0, 0.1, 0.1, 0.9]

fast hop [1.0, 0.1, 0.1, 0.9], [1.0, 0.1, 0.1, 0.9] 6.3, 100 0.4, 0.2, −0.8
[1.0, 0.8, 0.9, 0.9], [1.0, 0.8, 0.9, 0.9]

run [1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] 6.3, 100 0.3, 0.2, −0.1
[1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1]
[1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] 26.0, 20 0.1, 0.0, −0.15
[−1.0, 0.9, 0.5, 0.1], [1.0, 0.5, 0.2, 0.8]
[19.6, 0.001, 0.6, 0.3], [0.8, 0.3, 0.7, 0.1] 26.0, 20 0.14, 0.6, 0.1
[−66.4, 0.9, 0.7, 0.1], [−12.6, 0.1, 0.5, 0.4]
[1.0, 0.1, 0.1, 0.9], [1.0, 0.1, 0.1, 0.9] 26.0, 11 0.4, 0.2, −0.8
[1.0, 0.8, 0.9, 0.9], [1.0, 0.8, 0.9, 0.9]

skip [−13.9, 0.3, 0.6, 0.1], [−20.2, 0.3, 0.6, 0.1] 26.0, 20 0.8, 0.6, 1.0
[1.0, 0.1, 0.1, 0.9], [1.0, 0.8, 0.9, 0.9]

gallop-run [1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] 26.0, 11 −0.6, 0.5, −0.2
[1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1]

gallop-walk [−0.2, 0.1, 0.7, 0.1], [−54.1, 0.9, 0.7, 0.1] 22.0, 12 1.4, −0.1, −0.2
[−17.3, 0.2, 0.6, 0.2], [−4.3, 0.1, 0.6, 0.2]

Table 5: Initial conditions, temperature, intensity of external input, and coupling constants
for figures in Tables 2-4.

To first order the legs move as pendula in the walk and in a pogo stick like motion in the run.
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The difference between these gaits can be detected in electromyographic signals taken from
the flexor and extensor muscles of the ankle joint, see Mann et al. [23, 24]. These muscle
groups are coactivated in the run and not coactivated in the walk. The CPG network models
the run by a primary periodic state in which the two signals sent to one leg are in phase and
the walk by a state in which the two signals sent to one leg are a half-period out of phase.

The walk-run transition has been discussed by many authors. These authors often focus
on either the energetics (for example, see Alexander [2, 1] and Minetti [29]) or the biome-
chanics of the two gaits (for example, see [7, 4, 5]). Diedrich et al. [8, 9] study locomotion
through the time evolution of the relative phase of the segments within a limb. In their model
gaits are viewed as attractors and the walk-run transition is seen as a transition between
attractors. Transition from walking to running has also been studied in children as part of
a developmental research on locomotor skills (see Whitall and Getchell [36] and Forrester et
al. [12]).

Similarly, the four-cell CPG model can produce two primary gaits in which the signals
corresponding to the same muscle groups in each leg are in phase; these gaits are called slow
hop and fast hop. In the fast hop the signals sent to muscles in each leg are a half-period out
of phase while in the slow hop they are in phase. In this sense, the run and the slow hop are
run-like gaits, and the walk and the fast hop are walk-like gaits.

Secondary gaits. Just two secondary gaits skip and gallop have been well studied in the
literature. By contrast, up to spatio-temporal symmetry, the four-cell model can produce
six different secondary gait types.

Like walk and run, the skip is a gait in which interchanging the two legs leads to a half-
period phase shift, see Minetti [28]. The skip differs from the walk because it has a significant
flight phase, and from the run because it often has a double support period. The skip is
displayed by young children; when adults perform the skip, a sense of high speed is perceived.
In addition, the skip is performed by other bipeds, such as some birds [19] and lemurs [3].
The coupled four-cell model predicts only one gait that has the property that interchanging
legs leads to a half-period phase shift. As noted previously, secondary gait types come in
conjugate pairs. For the skip the conjugate is obtained by interchanging the two signals sent
to the same leg. We call this pair of gait types a skip.

The gallop [31, 6, 33] is also a prevalent gait in children, readily reproduced by adults,
and commonly used by Lemur for ground locomotion [21]. In the bipedal gallop there is a
lead leg throughout the gait cycle, see Whitall [33]. The interlimb phasing of the gallop,
measured as a portion of a limb cycle that has elapsed when the footstrike occurs on the
contralateral limb, is approximately 0.66, as contrasted with 0.50 in the walk and run, see
Caldwell and Whitall [6, 33]. Nevertheless the gallop displays aspects of both run and walk.
Energetics of the lead leg closely resembles a run, whereas, the contrasting thrusts of the
leading and trailing legs produce an anti-phase relation between the total body kinetic and
potential energies similar to that of the walk [6]. The fact that the bipedal gallop has a lead
leg (that is, the motions of the two legs are different), suggests that the signals to the left
and right legs are different. In two of our secondary gait types, the pair of signals sent to
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the left leg is different from the pair sent to the right leg. For this reason we identify these
periodic states with gallops. These gallops differ from each other in that the two signals sent
to one leg are either in phase or a half-period out of phase. In analogy with the primary gaits
we call the in phase gait a gallop-run and the out of phase one a gallop-walk. From our own
observation, it seems that the gallop-walk is slower than the gallop-run. This observation is
consistent with the fact that the run is a gait used when bipeds increase velocity, whereas
the walk is used at lower velocities. In conjugate gallops the signals sent to the two legs are
swapped. For this reason, we interpret the choice of lead leg in the gallop with conjugate
solutions. Electromyographic data is needed to test the prediction that there are two types
of gallop.

Margaria and Cavagna [25] note that generic jumping (our gallop) could be the gait of
choice under low gravity conditions such as those on the moon. This observation is also
made by Minetti [28] (under the name unilateral skip).

The four-cell CPG model predicts three other secondary gait types, see Table 1. In one
of these, the pair of signals to the left leg is the same as the pair sent to the right leg. In
the two remaining secondary gaits, the pair of signals sent to the left leg is the same (up to
exact half-period phase shifts) as the ones sent to the right leg, but in reverse order. So far,
we have not been able to associate these three secondary gait types to known bipedal gaits.

Predictions. We summarize our discussion of the relationship between the four-cell loco-
motor CPG model (2.1) and bipedal gaits by listing the several predictions made by this
model. First, as noted previously in [16], this model predicts that there are two kinds of
primary biped gaits in which the left and right legs are a half-period out of phase. These
gaits were identified with walk and run. Similarly, the model also predicts two kinds of hop
(slow hop and fast hop) and two kinds of gallop (gallop-run and gallop-walk). Second, this
CPG model predicts that secondary gaits will appear in conjugate pairs and that there are
two such gaits associated with the skip. Finally, the model suggests that there are three
kinds of secondary gait types that have not yet been identified in biped locomotion.

2.4 Bifurcation of gaits

In Section 2.1 we used Theorem 2.1 to identify the primary and secondary gait types in the
CPG model for legs rhythms. In this subsection we use bifurcation theory to explain how
we found the examples of different gaits rhythms in (2.1) using coupled Hodgkin-Huxley
equations. Primary gaits are obtained by bifurcation from a D2-invariant equilibrium, the
stand, whereas secondary gaits are symmetry-breaking bifurcations of primary gaits.

Primary gaits. In order to study bifurcation and stability of primary gaits we need to
compute the eigenvalues of the linearization L of (2.1) at an equilibrium X = (x, x, x, x).
The D2-equivariance of (2.1) implies that L commutes with D2 and hence simplifies the form
of L.
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We can decompose (Rk)4 into a direct sum of D2-irreducible subspaces. In general this
decomposition is not unique, but if we use isotypic components that combine together all
isomorphic D2-irreducible subspaces, we obtain a decomposition that is unique. Moreover,
this decomposition is L-invariant. Let Vσ be the sum of all irreducible subspaces that are
isomorphic to a representation σ of D2.

There are four distinct one-dimensional irreducible representations of D2. These repre-
sentations are distinguished by their kernels and are denoted by such. See Table 6 for a list
of the isotypic components. The isotypic decomposition can be used to block-diagonalize L,
see Theorem 2.12 in [17]. Define the k × k matrices

A =
∂F

∂x1

(X) B =
∂F

∂x2

(X) C =
∂F

∂x3

(X) D =
∂F

∂x4

(X)

It follows from Table 6 that eigenvalues of L are the eigenvalues of the matrices

LD2 = A+B + C +D
Lτ = A+B − C −D
Lρ = A−B + C −D
Lρτ = A−B − C +D

(2.5)

ker(σ) Vσ

D2 {(x, x, x, x) : x ∈ Rk}
ρτ {(x,−x,−x, x) : x ∈ Rk}
ρ {(x,−x, x,−x) : x ∈ Rk}
τ {(x, x,−x,−x) : x ∈ Rk}

Table 6: Isotypic components of (Rk)4 for a CPG with D2 symmetry.

As D2 is an abelian group, generically Hopf bifurcation occurs with pairs of simple
purely imaginary eigenvalues. Assuming this, we may compute Hopf bifurcation points
for each matrix Lσ and stability of the corresponding periodic orbits. See Table 7 for the
correspondence between periodic solutions obtained from Lσ and primary bipedal gaits. See
also Example 2.2 .

Example 2.2 We consider Hodgkin-Huxley equations [20] as the internal dynamics in each
cell in CPG 2.1 and give a preview of how to compute stability of primary gaits. For
i = 1, . . . , 4 let xi = (vi, y

i) and define the function F in (2.1) by

F (x1, x2, x3, x4) =















dv1

dt
= f(v1, y

1)− I − k1v3 − k3v2 − k2v4

dy1
j

dt
= Φ

(

γj(v1)− y1
j

)

τj(v1)

(2.6)
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Lσ Primary gait

LD2 slow hop
Lτ run
Lρ fast hop
Lρτ walk

Table 7: Primary gaits

Let H be the matrix of the linearization of the uncoupled Hodgkin-Huxley equations and let

J =











1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











Matrices (2.5) can be written in the following form

LD2 = H − (k3 + k1 + k2)J
Lτ = H − (k3 − k1 − k2)J
Lρ = H − (−k3 + k1 − k2)J
Lρτ = H − (−k3 − k1 + k2)J

(2.7)

where A = H, B = −k3J , C = −k1J and D = −k2J .
The eigenvalues of H − (ki + kj + kl), i 6= j 6= l have been computed in [22] for different

values of I. This computation was used to obtain bifurcation to the four primary gaits. For
instance, the slow hop appears when k = k1 + k2 + k3 crosses a bifurcation value, whereas
bifurcation into the fast hop is controlled by k = k1 − k2 − k3.

Secondary gaits. In principle, smooth transitions in gaits can be associated with sym-
metry-breaking bifurcations from one stable periodic solution to another. In fact, in (2.1)
secondary gaits are symmetry-breaking bifurcations of primary gaits. The four-cell CPG
model produces the gait transitions shown in Table 8. For example, gallop-walk bifurcates
from either walk or fast hop, and skip from either walk or run. We use properties of the
Poincaré map to find symmetry-breaking bifurcations of the group D2. The list of possible
symmetry-breaking bifurcations from primary gaits is found in Table 8. Note that slow hop
has only spatial symmetries.

By Theorem 1 [4], each bifurcation listed in Table 8 can occur if the cell dynamics and
coupling architecture are general enough. In particular, all secondary gaits may be obtained
by symmetry-breaking bifurcation from primary gaits. In our numerical simulations we have
found the secondary gait types by following primary gait branches until they lose stability at
a symmetry-breaking bifurcation. We have shown that (2.1) with Hodgkin-Huxley equations
as internal dynamics and linear coupling of the cells through the voltage variables provides
a sufficiently general model to exhibit stable periodic solutions corresponding to all primary
and secondary gaits.
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K Primary Gait Secondary Gait (H,K)

ρτ walk gallop-walk (τ,1)
skip (ρ,1)

τ run skip (ρ,1)
(ρτ,1)

ρ fast hop gallop-walk (τ,1)
(ρτ,1)

D2 slow hop (ρ, ρ)
gallop-run (τ, τ)

(ρτ, ρτ)

Table 8: Possible bifurcations from primary to secondary bipedal gaits.

3 Central pattern generator for interlimb coordination

Relationships between arm and leg movements have been observed in bipeds [11, 33, 34, 10];
for this reason we attempt to include arm rhythms in a model CPG network for bipeds. CPG-
Biped, our CPG model for biped interlimb coordination (arms+legs) pictured in Figure 2,
is derived by breaking symmetry between fore and hind legs in CPG-Quad, the eight-cell
quadruped locomotor CPG model studied in [15, 16, 5, 4].

The general system of ODEs associated to CPG-Biped has the form

ẋ1 = F1(x1, x2, x7, x5)
ẋ2 = F1(x2, x1, x8, x6)
ẋ3 = F2(x3, x4, x1, x7)
ẋ4 = F2(x4, x3, x2, x8)
ẋ5 = F1(x5, x6, x3, x1)
ẋ6 = F1(x6, x5, x4, x2)
ẋ7 = F2(x7, x8, x5, x3)
ẋ8 = F2(x8, x7, x6, x4)

(3.1)

where Fi : (Rk)4 → Rk, i = 1, 2. To derive this model we reason that quadrupeds have
four limbs striking the ground during locomotion so the similarity between arms and legs is
strong, whereas bipeds have only two limbs (the legs) striking the ground; so the similarity
between legs and arms is less strong. Hence, we model the rhythms of the lower limbs (legs)
by one function F1 and the rhythms of the upper limbs (arms) by another function F2.

CPG-Biped (3.1) is a perturbation of CPG-Quad, so we assume that F1 ≈ F2. Since
CPG-Biped is a symmetry-breaking perturbation of CPG-Quad, we must discuss how the
symmetries of CPG-Biped are related to the symmetries of CPG-Quad. Observe that CPG-
Quad has symmetry group ΓQ = Z4(w) × Z2(κ), where w cyclicly permutes the four cells
in both the left and right rings and κ interchanges cells on the left with cells on the right.
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More precisely,

w = (1 3 5 7)(2 4 6 8) and κ = (1 2)(3 4)(5 6)(7 8)

Note that CPG-Biped has symmetry group ΓB = D2(κ,w2), where

w2 = (1 5)(3 7)(2 6)(4 8)

permutes the muscle groups within a limb. Thus, the eight-cell network CPG-Biped has
the same symmetry group as the four-cell network described in Section 2. This observation
coupled with the assumption that F1 ≈ F2 will enable us to speculate on how standard
quadrupedal gait rhythms have evolved into bipedal gait rhythms. There is one surprise —
when one takes into account the rhythms of both arms and legs, it appears that the bipedal
walk cannot be obtained by a small perturbation of any of the standard quadrupedal gaits.
This remark is consistent with Schmidt [32] who argues that bipedalism involves complex
transitions originating with a compliant form of quadrupedalism.

In this section we will explore the relationships between gaits produced by the three
different locomotor CPGs under discussion. In Subsection 3.1, we relate periodic solutions
associated to standard rhythms of CPG-Quad with periodic solutions of CPG-Biped. We
also interpret patterns of oscillation of gaits in the CPG-Biped model in terms of biped
interlimb coordination. In Subsection 3.2 we explain why CPG-Biped is a plausible model for
understanding human interlimb coordination. Finally, in Subsection 3.3 we show numerical
simulations of CPG-Biped using Hodgkin-Huxley equations as internal cell dynamics.

3.1 Periodic solutions in CPG-Quad and CPG-Biped

CPG-Biped was introduced as a forced symmetry-breaking of CPG-Quad. We now show how
the rhythms of periodic solutions, corresponding to standard quadruped gaits, in CPG-Quad
perturb to standard bipedal leg rhythms (except the skip).

The basic idea is straightforward. Suppose that X(t) is a hyperbolic periodic solution
to CPG-Quad corresponding to a gait with spatio-temporal symmetries H and spatial sym-
metries K, where K ⊂ H ⊂ ΓQ are an admissible pair of subgroups. See Subsection 2.1.
Suppose that we consider a small forced symmetry-breaking of the equations so that F1 ≈ F2.
Hyperbolicity implies that X(t) perturbs to a periodic solution of CPG-Biped whose sym-
metry groups are H ′ = H ∩ ΓB and K ′ = K ∩ ΓB. These points are verified as follows.
Uniqueness of the perturbed periodic solution implies that all symmetries in K ∩ ΓB fix
the perturbed trajectory pointwise since the perturbed equations have ΓB-equivariance. So
K ∩ΓB ⊂ K ′. Conversely, any symmetry in K ′ ⊂ ΓB must be in K again by the uniqueness
of hyperbolic periodic solutions in a small neighborhood. An analogous argument is valid for
H ′. So, the unperturbed periodic solutions with symmetry groups in ΓQ and those solutions
are perturbed to ones with symmetry groups in ΓB.

In Table 9 we list the spatio-temporal symmetry types of standard quadrupedal gaits in
CPG-Quad computed in [15]. Then, we perturb periodic solutions of quadrupeds to have
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symmetry groups in ΓB and match the perturbed solutions with leg rhythms in bipeds, see
Table 9. Note that all of the spatio-temporal symmetry groups of standard biped gait leg
rhythms (except the skip) can be obtained as symmetry groups of perturbed symmetric solu-
tions of CPG-Quad. In addition, every symmetry type of periodic solution (corresponding to
the standard biped gaits, except the skip) in the four-cell biped model analyzed in Section 2.1
can be identified with a symmetry type corresponding to a gait in the CPG-Biped.

Quadrupeds — CPG-Quad Bipeds — CPG-Biped

Name H K Name H ′ = H ∩ ΓB K ′ = K ∩ ΓB

pronk ΓQ ΓQ slow hop ΓB ΓB
pace ΓQ Z4(w) run ΓB Z2(w2)
bound ΓQ ΓB slow hop ΓB ΓB
trot ΓQ Z4(κw2) run ΓB Z2(w2)
jump ΓQ Z2(κ) fast hop ΓB Z2(κ)
walk ΓQ Z2(κw2) walk ΓB Z2(κw2)
rotary gallop Z4(κw) Z2(w2) gallop-run Z2(w2) Z2(w2)
transverse gallop Z4(w) Z2(w2) gallop-run Z2(w2) Z2(w2)

Table 9: Symmetry groups of standard gaits of the eight-cell CPGs. Symmetry pairs (H,K)
of standard quadrupeds gaits (CPG-Quad) and symmetry pairs (H ′, K ′) of bipeds gaits
(CPG-Biped). The identification of bipedal gaits can be found in Section 2.1.

In Table 10 we show patterns of oscillation of gaits of the CPG-Biped model and compare
our results with biped interlimb coordination results in the literature. In this derivation we
use the perturbation assumption F1 ≈ F2.

We begin with the slow hop. Observe there are two types of slow hop that appear from
perturbed quadruped gaits: one from the pronk and the other from the bound. These two
slow hops have the same symmetry type but differ in the rhythm patterns of the arms. The
slow hop obtained from perturbing the pronk has limbs on each side almost in-phase, whereas
the slow hop perturbed from the bound has each diagonal pair of limbs (for example, the
left arm and right leg) almost in-phase. The human slow hop appears to be the perturbed
pronk; see Figure 7 in [26].

Similarly there are two types of run. One is a perturbation of pace, which we call in-phase
march, and the other is a perturbation from trot, which we call a usual run. These two runs
differ again in the rhythms of the arms. In the in-phase run left (respectively right) limbs
are almost in-phase while in the usual run diagonal limbs are almost in-phase. The human
run appears to be the perturbed trot; see Figure 1 in [33].

The leg rhythm of a fast hop is a perturbed jump since both arms and legs are in-phase.
However, there is an approximate quarter-period phase shift between corresponding muscle
groups in ipsilateral arms and legs. This is not a usual phase-shift in humans, see Section 2.

The most surprisingly conclusion from CPG-Biped concerns the walk. Table 10 shows
that the leg rhythm of the walk is a small perturbation from the quadrupedal walk. However,
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Leg/Arm Rhythms of Gaits of CPG-Biped
Quad Biped Legs Arms Signals
Name Name Left Right Left Right

pronk x3 ≈ x1

slow hop (x1, x1) (x1, x1) (x3, x3) (x3, x3)
bound x3 ≈ xS1
pace in-phase march (x1, x1) (xS1 , x

S
1 ) (x3, x3) (xS3 , x

S
3 ) x3 ≈ x1

trot usual run (x1, x1) (xS1 , x
S
1 ) (x3, x3) (xS3 , x

S
3 ) x3 ≈ xS1

jump fast hop (x1, x
S
1 ) (x1, x

S
1 ) (x3, x

S
3 ) (x3, x

S
3 ) x3 ≈ xSS1

walk walk (x1, x
S
1 ) (xS1 , x1) (x3, x

S
3 ) (xS3 , x3) x3 ≈ xSS1

rotary gallop-run (x1, x1) (x2, x2) (x3, x3) (x4, x4) x3 ≈ xS2
gallop x4 ≈ xS1
transverse gallop-run (x1, x1) (x2, x2) (x3, x3) (x4, x4) x3 ≈ xS1
gallop x4 ≈ xS2

Table 10: Patterns of oscillation for bipedal locomotion using both legs and arms where S

indicates a time shift by one-half period and SS indicates a time shift of a quarter period.

in this case too, there is an approximate quarter-period phase shift between corresponding
muscle groups in ipsilateral arms and legs. Like the fast hop, the quarter-period phase-shift
is not usual in an adult walk. Indeed, none of the standard quadruped gaits (in CPG-Quad)
evolve by small perturbations into a bipedal walk.

Finally, both rotary and transverse gallops perturb to a gallop-run. However, these
perturbed gaits do differ in the arm rhythms. In the perturbed rotary gallop diagonal limbs
(for example, left arm and right leg) are approximately one half-period out of phase. In
the perturbed transverse gallop there is an approximate half-period phase shift between
ipsilateral limbs. Whitall et al. [34] (Figure 2) suggest that the gallop-run is the perturbed
transverse gallop, though they emphasize that for the gallop there is variability in the way
subjects move their arms. That variability may be due to the lack of mechanical constraints
on the arms as compared with the legs (which are in touch with the ground).

Whitall et al. analyzed data taken from subjects galloping by focusing on kinematic
variables. We mention briefly their results on the temporal phasing relationships between
feet and between arms. They found that the left foot hit the ground approximately two-
thirds of the gait cycle after the right foot hit the ground. By contrast, the arm relationship
was inconsistent. Many subjects performed an approximately symmetric pattern where the
left arm reversal occurred approximately halfway through the gait cycle after the right arm
reversal, whereas other subjects showed a definite asymmetric pattern similar to their feet
phasing (see Muzzi et al. [30] for additional information).

Our CPG-Biped model predicts that a perturbed transverse gallop has an asymmetric
arm pattern, since signals sent to ipsilateral limbs are almost a half period out-of-phase and
signals sent to contralateral limbs are different.
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The symmetric arm pattern is not a small perturbation of any standard quadruped gait.
Subjects often choose this arm pattern because it is familiar to them in common gaits like
walk, run, and hop. This choice involves cognition and may, from an evolutionary point of
view, require a more complex set of transitions from a quadruped gait. Our CPG-Biped
model suggests that bipeds first performed a gallop with asymmetric arm phasing.

3.2 CPG-Biped network: Is it plausible?

In this subsection we discuss results in the literature concerning biped interlimb coordination
and evolution of human bipedalism, to explain why we believe that the CPG-Biped is a
plausible network model for understanding human interlimb coordination.

From Subsection 3.1 we saw that there are three standard biped gaits that can be obtained
by small perturbations from quadruped gaits; they are slow hop (perturbed pronk), run (per-
turbed trot), and gallop-run (perturbed transverse gallop). The two standard biped gaits,
fast hop and walk, cannot be obtained by small perturbations of quadruped gaits because of
the unusual quarter-period phase-shift. So, from the point of view of small perturbations,
our CPG-Biped model seems inadequate to explain human interlimb coordination.

From an evolutionary point of view we ask: Could the two gaits of walk and fast hop have
evolved from quadruped gaits using a sequence of perturbations? We try to give a possible
answer of this question, using the perturbed quadruped walk as an example. When chil-
dren learn to walk, they usually begin with the crawl. Crawling has been studied by many
people. From a neuromuscular maturation point of view, Gesell [13] studies 22 stages of de-
velopmental crawling and McGraw [27] describes seven primary stages in the development of
walking. From a dynamical systems point of view, Whitall et al. [35] study interlimb coordi-
nation patterns of human quadrupedal crawling. One of their main conclusions is that, when
crawling forward on a treadmill, human adults adopt a lateral sequence of limb touchdowns:
left foot, left hand, right foot, right hand. The relative phasing between ipsilateral limbs is
' 20-30%. It seems the approximate quarter period phase shift (for the same muscle group)
between left limbs (respectively, right limbs) is well accepted if a perturbed quadruped walk
is a crawl and not a walk. So, a small perturbation of the quadruped walk occurs in an early
developmental stage of the biped walk. In any case, CPG-Biped suggests that transition
from the quadruped walk to walk is more complex than a small perturbation might suggest
and this conclusion is in agreement with Schmidt [32]. Indeed, experimental data on humans
and nonhuman primates suggest that the evolution of bipedalism is a complicated process
that cannot involve a simple transition between quadrupeds and bipeds.

There is another point concerning slow hop, run, and gallop-run that we believe may
be relevant to evolution theory. Table 10 shows that the perturbed bound (slow hop), the
perturbed pace (run), and the perturbed rotary gallop (gallop-run) are not usual biped gaits.
This fact may be due to the mechanical stability of these gaits in bipeds. It seems to us
that a person performing any of these three gaits must work hard to keep his or her balance.
This point could be worth studying.
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3.3 Numerical results for CPG-Biped

Numerical simulations are done using the space-clamped Hodgkin-Huxley equations to model
cells internal dynamics [20]. The coupling is linearly diffusive. The dynamics of the bipedal
network for interlimb coordination is given by:

v̇i = f(vi, y
i)− I − k3(vi − vi+εi)− k4(vi − vi+4)−K

ẏij = Φ
(

γj(vi)− yij
)

τj(vi)
(3.2)

where i = 1, . . . , 8, j = 1, 2, 3, addition of indices i is taken modulo 8, εi = (−1)i+1, yi = y(vi),
and

K =

{

k1(vi − vi−2) i = 3, 4, 7, 8
k2(vi − vi+6) i = 1, 2, 5, 6

In the figures, we only plot the membrane potential from the signal of each cell. See Figure 2
for the correspondence between signals and limbs.
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Table 11: Primary gaits of CPG-Biped (interlimb coordination).

4 Conclusions

We study two CPG models for biped locomotion. We use results by Golubitsky et al. [15, 16]
to infer plausible classes of CPG architectures from the observed phase relationships of
bipedal gaits. Symmetry is shown to perform a major role in this study of gaits.

We begin by studying a CPG model for legs rhythms. We use symmetry to classify
the rhythms of periodic solutions that can be produced in this model and associate these
rhythms with the standard bipedal gaits of walk, run, hop, gallop, and skip, and other gaits.
We observe that there are potentially two types of hop and two types of gallop, one skip and
three additional as yet unidentified symmetry types. We also observe that the secondary
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(H,K) = (Z2(κ),Z2(κ)) gallop-walk gallop-run
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Table 12: Secondary gaits of CPG-Biped (interlimb coordination).

gaits appear in conjugate pairs, but we do not yet understand how this observation applies
to the skip.

Our second (eight-cell) CPG model represents an attempt to include arm movements in
bipedal locomotion. This model is obtained from a model for quadrupedal locomotion by
breaking symmetry between the fore and hind legs. We discuss how standard bipedal gaits
(except the skip) may be obtained by forced symmetry-breaking perturbations of standard
quadrupedal gaits. Our results seem to be in accord with the literature on interlimb coor-
dination and on evolution of human bipedalism. However, we emphasize that more study is
needed to compare bipedal gaits to the periodic solutions produced by our theoretical model.

All numerical simulations have been done using Hodgkin-Huxley equations to model cell
dynamics. We verify that the different types of periodic solutions do actually occur in these
models.
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guest of the Department of Mathematics, University of Houston, whose hospitality is grate-
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Gait Initial conditions T, I k1, k2, k3, k4

slow hop [−13.9, 0.3, 0.6, 0.1], [−20.2, 0.3, 0.6, 0.1] 6.3, 8.0 −0.1, −0.01
[1.0, 0.1, 0.1, 0.9], [1.0, 0.8, 0.9, 0.9] 0.5, 3.5
[1.0, 0.1, 0.1, 0.9], [1.0, 0.1, 0.1, 0.9]
[1.0, 0.1, 0.1, 0.9], [1.0, 0.1, 0.1, 0.9]

fast hop [8.57, 0.02, 0.63, 0.16], [8.57, 0.02, 0.63, 0.16] 6.3, 100 −0.5, −0.15
[0.57, 0.08, 0.67, 0.09], [0.57, 0.08, 0.67, 0.09] 3.5, −0.8
[−77.01, 0.96, 0.69, 0.12], [−77.01, 0.96, 0.69, 0.12]
[−27.17, 0.34, 0.57, 0.18], [−27.17, 0.34, 0.57, 0.18]

walk [1.0, 0.1, 0.1, 0.9], [1.0, 0.8, 0.9, 0.9] 6.3, 100 −0.5, 0.6
[1.0, 0.8, 0.9, 0.9], [1.0, 0.1, 0.1, 0.9] −0.8, 0.3
[1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1]
[−1.0, 0.9, 0.5, 0.1], [1.0, 0.5, 0.2, 0.8]

run [1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] 6.3, 100 −0.05, −0.5
[1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] −0.4, 1.0
[−13.9, 0.3, 0.6, 0.1], [−20.2, 0.3, 0.6, 0.1]
[−13.9, 0.3, 0.6, 0.1], [−20.2, 0.3, 0.6, 0.1]
[1.0, 0.1, 0.1, 0.9], [1.0, 0.1, 0.1, 0.9] 6.3, 8.0 −0.15, −0.01
[1.0, 0.1, 0.1, 0.9], [1.0, 0.1, 0.1, 0.9] 2.0, −0.05
[1.0, 0.5, 0.2, 0.8], [1.0, 0.5, 0.2, 0.8]
[1.0, 0.5, 0.2, 0.8], [1.0, 0.5, 0.2, 0.8]

gallop-walk [1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] 26.0, 10.5 −0.1, 0.15
[1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] −0.1, −0.18
[1.0, 0.1, 0.1, 0.9], [1.0, 0.1, 0.1, 0.9]
[1.0, 0.8, 0.9, 0.9],[1.0, 0.8, 0.9, 0.9]

gallop-run [1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] 22.0, 12 −0.2, −0.15
[1.0, 0.5, 0.2, 0.8], [−1.0, 0.9, 0.5, 0.1] −0.5, 0.6
[1.0, 0.1, 0.1, 0.9], [1.0, 0.8, 0.9, 0.9]
[1.0, 0.1, 0.1, 0.9],[1.0, 0.8, 0.9, 0.9]

Table 13: Initial conditions, temperature, intensity of external input, coupling constants of
Figures in Tables 11-12.
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