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Abstract. Let f : M → M be a C1 diffeomorphism of a compact manifold M
admitting a dominated splitting TM = Ecs ⊕ Ecu. We show that if the Lyapunov

exponents of f are nonzero and have the same sign along the Ecs and Ecu direc-
tions on a total probability set (a set with probability one with respect to every
f -invariant measure), then f is Axiom A. We also show that a f -ergodic measure

whose Lyapunov exponents are all negative must be concentrated on the orbit of a
sink (without using Hölder continuity on the derivative Df).

1. Introduction

Let f : M →M be a C1 diffeomorphism of a compact finite dimensional
manifold M endowed with a Riemannian metric which induces a norm ‖ · ‖
on the tangent bundle of M , a distance dist on M and a volume form m
that we call Lebesgue measure.

We will assume that f admits a dominated splitting TM = Ecs ⊕ Ecu,
that is, there exists λ ∈ (0, 1) such that

‖Df | Ecs(x)‖ · ‖(Df | Ecu(f(x)))−1‖ ≤ λ. (1.1)

This will prevent expansion (respectively contraction) along the Ecs (resp.
Ecu) direction to overcome expansion (resp. contraction) along the Ecu

(resp. Ecs) direction. The names center-stable bundle for Ecs and center-
unstable bundle for Ecu are commonly used [4, 6]. We let the dimensions
of these subbundles to be written u = dimEcu and s = dimEcs, which are
constant on M because dominated splittings are continuous[5].

A large theory has been build around systems admitting invariant mea-
sures without zero Lyapunov exponents [19, 18, 21], also called non-uniformly
hyperbolic measures [12, Addendum].

It is well known that for uniquely ergodic systems the behavior of time
averages is rather rigid [24]. Some of this rigidity has been extended in
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similar settings for systems with non-uniform expansion and positive Lya-
punov exponents or negative Lyapunov exponents along prescribed direc-
tions [23, 3, 9, 10] on total probability sets: subsets of M with measure one
with respect to every f -invariant probability measure. Here we refine these
results assuming only non-zero extreme (maximum and minimum) Lyapunov
exponents along the two subbundles Ecs and Ecu on a total probability set,
obtaining a characterization for the global dynamics of f .

1.1. Statements of results. The Multiplicative Ergodic Theorem of Os-
eledets [16] ensures that the following asymptotic growth rates exist on a
total probability subset

χ∗± = lim
n→+∞

1
n

log ‖(Dfn | E∗)±1‖ (∗ = cs or cu). (1.2)

If for some x we have χ∗−(x) · χ∗+(x) < 0, then this means that either every
Lyapunov exponent is positive or every Lyapunov exponent is negative along
the E∗ direction at x. Another way of stating this is to say that there are no
zero Lyapunov exponents and there are no changes of sign for the Lyapunov
exponents along a given subbundle.

We recall that a f -invariant compact set Λ with a continuous Df -invariant
splitting TΛM = Ecs ⊕ Ecu is said to be (uniformly) hyperbolic if there
exist constants C > 0 and σ > 1 such that ‖Dfn | Ecs(x)‖ ≤ Cσ−n and
‖(Dfn | Ecu(x))−1‖ ≤ Cσ−n for every x ∈ Λ and every n ≥ 1. Also a
diffeomorphism f is Axiom A if the set Per(f) of periodic points of f is
hyperbolic and Ω(f) = closure(Per(f)) — see e.g. [22].

Axiom A systems have been thoroughly studied both in their geometric
and ergodic aspects [7, 8, 17, 22]. We show that in our setting the diffeo-
morphism f must be Axiom A.

Theorem 1.1. Let f be a C1 diffeomorphism of a compact manifold M
admitting a Df-invariant dominated splitting on M : TM = Ecs ⊕ Ecu.

If we have both χcs+ · χcs− < 0 and χcu+ · χcu− < 0 on a total probability set,
then f is Axiom A.

Since the support suppµ or every f -invariant probability measure µ is
contained in the non-wandering set Ω(f) of f , we obtain the following char-
acterization: a diffeomorphism with a dominated splitting is Axiom A if,
and only if, it has non-zero Lyapunov exponents on a total probability set
and these exponents do not change sign along the subbundles of the splitting
on the hyperbolic subsets.

The arguments proving this statement provide also the following essential
result for our characterization.

Theorem 1.2. Let µ be an ergodic probability measure with respect to a
C1-diffeomorphism f : M →M having all its Lyapunov exponents negative.
Then µ is concentrated on the orbit of a periodic attractor (sink).

We stress that we do not need Hölder continuity of the derivative in the
arguments proving Theorem 1.2 — compare with Corollary S.5.2 of [12,
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Supplement] where the usual Hölder condition on the derivative in Pesin’s
Theory, or non-uniform hyperbolic theory, is used to construct hyperbolic
blocks. Obviously by exchanging f with f−1 we obtain that every ergodic
probability measure whose Lyapunov exponents are all positive must be con-
centrated on the orbit of a periodic repeller (source).

First in the following subsection we present preliminary results already
known needed for the arguments proving Theorem 1.2, in Section 2. Then
we show how to obtain Theorem 1.1 in Section 3.

1.2. Preliminary results. This standard result, the Ergodic Decomposi-
tion Theorem, will be repeatedly used.

Proposition 1.3. Let f : X → X be a measurable (Borelean) invert-
ible transformation on the compact metric space X such that the set of f-
invariant probability measures M(f,X) is non-empty. Then there exists a
total probability subset Σ such that
• for every x ∈ Σ the weak∗ limit of |n|−1

∑n−1
j=0 δfj(x) when n → ±∞

exists and equals an f-ergodic probability measure µx;
• for every µ ∈ M(f,X) and every µ-integrable ϕ : X → R, ϕ is µx-

integrable for µ-almost every x and∫
ϕdµ =

∫ (∫
ϕdµx

)
dµ(x).

Proof. See Chapter 2 of Mañé [15].

In what follows we use the notation and definitions of the previous section.

Lemma 1.4. Letting ∗ = cs or cu, then χ∗+ + χ∗− ≥ 0 on a total probability
set.

Proof. Clearly ‖Dfn | E∗‖ · ‖(Dfn | E∗)−1‖ ≥ ‖Id‖ = 1 for every x ∈ M
and all n ∈ N.

Lemma 1.5. If the splitting TM = Ecs⊕Ecu is dominated, then χcs+ +χcu− <
− log λ < 0 on a total probability set.

Proof. Clearly ‖Dfn | Ecs‖ · ‖(Dfn | Ecu)−1‖ ≤ λn for every x ∈M and all
n ∈ N from (1.1).

These inequalities will be very useful to study several cases in what fol-
lows.

2. Negative Lyapunov exponents and sinks

Here we prove Theorem 1.2. Let f be a C1 diffeomorphism of a compact
closed manifold M and µ an f -ergodic probability measure such that all
Lyapunov exponents are negative µ-almost everywhere:

lim
n→∞

1
n

log ‖Dfn(x)‖ < 0 µ− a.e.x ∈M.
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Since f is invertible the Lyapunov exponents for g = f−1 are all positive
µ-almost everywhere (see e.g. [12, Supplement]). By Kingman’s Subaddi-
tive Ergodic Theorem [14, 13] and a corollary obtained by Furstenberg-
Kesten [11] (see [24] for statements in the setting of Differentiable Ergodic
Theory) we know that

inf
n≥1

1
n

∫
log ‖(Dgn)−1‖ dµ =

∫
lim
n→∞

1
n

log ‖(Dgn)−1‖ dµ < 0.

Hence for some k ≥ 1 we have
∫

log ‖(Dg)−1‖ dµ < 0 and µ is gk-invariant.
From now on we write g for gk to simplify indexes in what follows. This
ensures that∫

lim
n→∞

1
n

n−1∑
j=0

log ‖Dg(gj(x))−1‖ dµ(x) =
∫

log ‖(Dg)−1‖ dµ < 0.

Thus there exists a positive µ-measure subset E of M such that

lim
n→∞

1
n

n−1∑
j=0

log ‖Dg(gj(x))−1‖ < 1
2

∫
log ‖(Dg)−1‖ dµ < 0 for all x ∈ E.

The following result from Pliss will be very useful together with the last
inequality above.

Lemma 2.1. Let H ≥ c2 > c1 > 0 and ζ = (c2 − c1)/(H − c1). Given real
numbers a1, . . . , aN satisfying

N∑
j=1

aj ≥ c2N and aj ≤ H for all 1 ≤ j ≤ N,

there are ` > ζN and 1 < n1 < . . . < n` ≤ N such that
ni∑

j=n+1

aj ≥ c1 · (ni − n) for each 0 ≤ n < ni, i = 1, . . . , `.

Proof. See [20] or [15, Chapter IV.11].

Now we set

H = − log inf
x∈M
‖Dg(x)−1‖, c2 = −

∫
log ‖(Dg)−1‖ dµ and c1 = c2/2,

and also for fixed x ∈ E we let aj = − log ‖Dg(gj(x))‖ for all j ≥ 1. Then
for ζ = c2/(2H − c2) > 0 and for big enough N Pliss’ result above ensures
that there are ` > ζN and 1 < n1 < · · · < n` ≤ N such that for each
0 ≤ n < ni and i = 1, . . . , `

ni∏
j=n+1

‖Dg(gj(x))−1‖ ≤ e−c1(ni−n). (2.3)

We call these times ni hyperbolic times for the g-orbit of x — see [4, 2,
1] for definitions, properties and examples of application of this notion.
Polis’ Lemma above ensures that for every x ∈ E there are infinitely many



NON-ZERO LYAPUNOV EXPONENTS AND AXIOM A 5

hyperbolic times with positive density at infinity (bigger than ζ). It is worth
noting thatN above must be taken sufficiently large depending on the chosen
x ∈ E but ζ depends only on the minimum value of ‖Dg(z)−1‖ for z ∈ M
and on

∫
log ‖(Dg)−1‖ dµ. Now (2.3) shows that

‖Dgni−n(gn+1(x))‖ ≤ λni−n with λ = exp
(
− 1

2

∫
log ‖(Dg)−1‖ dµ

)
(2.4)

for all i = 1, . . . , ` and 0 ≤ n < ni. This uniform contractive property
together with the diffeomorphism character of g are enough for the following
result.

Lemma 2.2. There exist δ1 > 0 (depending only on g and c1) and λ1 =√
λ ∈ (0, 1) such that if n is a hyperbolic time for x ∈ M , then for every

0 ≤ j < n there are neighborhoods Vn−j of gn−j(x) such that gn−j(Vn−j) =
B(gn(x), δ1) and for all y, z ∈ B(gn(x), δ1) we have

dist(gn−j(y), gn−j(z)) ≤ λj1 dist(y, z).

Proof. See Lemma 5.2 and Corollary 5.3 of [4].

Now we use the compactness of M together with the fact that x ∈ E has
infinitely many hyperbolic times n1 < n2 < . . . to obtain two such times
m > n satisfying dist(gm(x), gn(x)) < (1− λ1)δ1/2. By Lemma 2.2 we have
a neighborhood Vn of gn(x) such that

gm−n(Vn) = B(gm(x), δ1) and Vn ⊂ B(gn(x), λm−n1 δ1) ⊂ B(gm(x), δ1),

where the last inclusion comes from the choice ofm,n and becausem−n ≥ 1.
This shows that gn−m sends the ball B(gm(x), δ1) strictly inside itself.

Thus every point in the ball belongs to the basin of attraction of a periodic
sink for g−1, which will be also a sink for f . In particular gn(x) and also x
are in the basin of attraction of this periodic attracting orbit of f .

The point x ∈ E may be taken µ-generic since µ(E) > 0. Since the
positive f -orbit of x tends to the orbit of a sink, µ = limn n

−1
∑n−1

j=0 δfj(x)

must equal the Dirac mass concentrated on the orbit of the sink. This
concludes the proof of Theorem 1.2.

2.1. Negative upper Lyapunov exponents and sinks. The following
result, obtained as a consequence of Theorem 1.2, will be used in the proof
of Theorem 1.1 in the next section.

Lemma 2.3. Let f be a C1 diffeomorphism of a compact manifold M ad-
mitting a Df-invariant dominated splitting on M : TM = Ecs ⊕ Ecu. We
assume also that we have χcu+ · χcu− < 0 on a total probability set.

Let x ∈ M be such that the upper Lyapunov exponents along the center-
unstable direction are negative

χcu+ (x) = lim sup
n→+∞

1
n

log ‖Dfn | E∗(x)‖ < 0. (2.5)

Then there exists a sink s ∈M such that x ∈ B({s}).
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Here B({s}) = {x ∈ M : dist(fn(x),O(s)) → 0 when n → ∞} is the
topological basin of the sink s ∈ S.

Proof. Let f and x be as in the statement. Since |detDfn | Ecu(x)| ≤
u · ‖Dfn(x)‖ we see that

lim sup
n→∞

1
n

log |detDfn | Ecu(x)| = lim sup
n→∞

1
n

n−1∑
j=0

log |detDf | Ecu(f j(x))|

is also negative. Then for every given weak∗ accumulation point µ of µn =
n−1

∑n−1
j=0 δfj(x) we must have µ(log |detDf | Ecu(x)|) < 0.

The Ergodic Decomposition Theorem ensures that there exists some µ-
generic point y such that ergodic component µy of µ satisfies

µy(log |detDf | Ecu(x)|) < 0.

Moreover we can assume without loss that y belongs to the support of µ
since µ(suppµ) = 1.

The Multiplicative Ergodic Theorem now assures that there exists some
negative Lyapunov exponent along the Ecu direction µy-almost everywhere.
The domination condition ensures (Lemma 1.5) that all Lyapunov expo-
nents along the Ecs direction are negative µy-almost everywhere, and the
total probability condition (χcu+ · χcu− < 0) guarantees that every Lyapunov
exponent along the Ecu direction is negative as well.

According to Theorem 1.2 the measure µy must be a Dirac mass concen-
trated on the orbit of a sink s for f . Since µ(B(y, ε)) > 0 for all ε > 0 and
µ(∂B(y, ε)) = 0 and also B(y, ε) ⊂ B({s}) for arbitrarily small values of
ε, there must exist n > 1 such that µn(B(y, ε)) > 0. Hence x ∈ B({s}),
finishing the proof of the lemma.

3. Proof of Theorem 1.1

In the setting of the statement of Theorem 1.1, we have the following
cases. Let x be a point in a total probability subset Σ of M with respect to
f .

Case A: χcs+ (x) < 0 and χcu+ (x) < 0.
According to Lemma 2.3, this x must be in the topological basin of

some periodic attracting orbit (sink).
Case B: χcs− (x) < 0 and χcu+ (x) < 0.

Since χcs− (x) < 0, Lemma 1.4 ensures that χcs+ (x) > 0 and thus
χcu− (x) < 0 by Lemma 1.5. Hence χcu+ (x) < 0 is impossible again by
Lemma 1.4. This case is excluded in the present setting.

Case C: χcs− (x) < 0 and χcu− (x) < 0.
Now x has positive exponents in every direction and x ∈ Σ. Then

there exists a f -ergodic probability measure µ such that µ = µx as in
Proposition 1.3. Since f is a diffeomorphism, the Lyapunov exponents
also exist when n→ −∞ and have the opposite sign of the exponents
calculated when n → +∞. Hence we are in Case A for f−1. Thus x
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belongs to the basin of a sink s for f−1 and so µ is the Dirac mass
concentrated on this sink. But the only way for µ = µx is for x to
belong to the same periodic orbit, thus x belongs to the orbit of a
periodic repeller (source) for f .

The set A of points in Case A forms an open subset of M : it is the union
of the topological basins of attraction of an at most denumerable family
of sinks. The set C of points in Case C is a denumerable subset. Both
these subsets are f -invariant, hence every f -ergodic probability measure
gives weight zero or one to each of them.

In addition, the set C is forward isolated, that is, for every orbit O(r) of a
repeller r in C there exists a neighborhood U of O(r) such that every point
z ∈ U \ O(r) eventually leaves U : fk(z) ∈ M \ U for some k ≥ 1. Hence
there exists an open neighborhood U of C whose complement is closed, thus
compact, and forward invariant: f(M \ U) ⊂M \ U .

Case D: χcs+ (x) < 0 and χcu− (x) < 0.
Now we have positive Lyapunov exponents in the Ecu direction and

negative Lyapunov exponents in the Ecs direction.

Let D be the set of points satisfying the properties of Case D above. This
set is also f -invariant and every f -ergodic measure µ supported in D is such
that µ-almost every point x has positive Lyapunov exponents in the Ecu

direction and negative Lyapunov exponents in the Ecs direction. Hence D
does not intersect A nor C and so is contained in the closed forward invariant
set F = M \ (U ∪A). Thus D ⊂ Λ = ∩j≥1f

j(F ) where Λ is compact.
We claim that D is a total probability subset of Λ. For if µ is a f -invariant

probability measure supported in Λ, then every Lyapunov exponent of µ
must be as in Case D. Otherwise there would exist an ergodic component
of µ having Lyapunov exponents as in Cases A or C, which is not possible
since Λ is disjoint from A ∪ C.

We have shown that on a total probability subset of Λ the Lyapunov ex-
ponents along Ecu are positive and the Lyapunov exponents along Ecs are
negative, thus by the results in [23, 9] Λ must be a uniformly hyperbolic set
for f .

3.1. Finiteness of sinks and sources. Now we show that the number of
sinks and sources must be finite.

We argue by contradiction, assuming that there are infinitely many orbits
of sinks and letting µn be the normalized Dirac masses concentrated on these
orbits, n ≥ 1. These are f -ergodic probability measures and µn 6= µn for
all m 6= n. Now we let µ be any weak∗ accumulation point of the sequence
(µn)n, which is a f -invariant probability measure.

We have that both µn(log |detDf | Ecs|) and µn(log |detDf | Ecu|)
are strictly negative for every n ≥ 1, since these integrals equal the inte-
grated sum of the Lyapunov exponents along the respective directions (this
follows from Oseledets’ Multiplicative Ergodic Theorem [16]). Hence both
µ(log |detDf | Ecs|) and µ(log |detDf | Ecu|) are non-positive. Therefore
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there exists x ∈ suppµ such that the minimum of the Lyapunov exponents
along Ecu over O(x) is non-positive, i.e., the Lyapunov exponents along
O(x) are well defined and χcu− ≥ 0.

The standing hypothesis about the Lyapunov exponents forces χcu+ (x) < 0
and the dominated decomposition implies χcs+ (x) < 0 also.

Now Lemma 2.3 shows that x is in the basin of some sink. Since x ∈
suppµ we have µ(B(x, ε)) > 0 and µ(∂B(x, ε)) = 0 for values of ε > 0
arbitrarily close to zero. Thus for a fixed small ε > 0 we can assume that
B(x, ε) is contained in the basin of a sink and µn(B(x, ε)) > 0 for all n big
enough. This shows that for big n the f -ergodic measures µn must coincide
with the Dirac masses along the orbit of a fixed sink, contradicting the initial
assumption that the µn where pairwise distinct.

We conclude that there can only be finitely many sinks for f in this
setting. Since source are sinks for f−1, the same arguments apply dually to
conclude that there are finitely many sources also.

3.2. Hyperbolicity of the chain recurrent set. To finish the proof of
Theorem 1.1 we study the chain recurrent set for f .

Let x ∈ M be chain recurrent for f . Then either x is a sink or a source,
or x belongs to Λ. Indeed, every chain recurrent point that does not belong
either to the orbit of a sink or to the orbit of a source, must be in M \(U∪A)
— recall that A is the union of the basins of the sinks of f and U is an
isolating neighborhood of the set C of sources.

This shows that R(f) = S ∪ C ∪ Λ where S is the set of orbits of sinks.
Hence R(f) is hyperbolic, thus R(f) = closure(Per(f)) and consequently f
is Axiom A, see [22].
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