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Abstract

We consider the set Z§ of non-negative integers together with a
distance d defined as follows: given two integers z,y € Z(J{ , d(z,y)
is, in binary notation, the result of performing, digit by digit, the
“XOR” operation on (the binary notations of) z and y. Dawson, in [1],
considers this geometry and suggests the following construction: given
k different integers x1,...,xx € Z(T , let V; be the set of integers closer
to x; than to any z; with j #4,ford,j=1,...,k. Let V = (V1,..., V)
and X = (z1,...,2x). V is a partition of {0,2,...,2" — 1} which, in
general, does not determine X.

In this paper, we characterize the convex sets of this geometry:
they are exactly the line segments. Given X and the partition V de-
termined by X, we also characterize in easy terms the ordered sets
Y = (y1,--.,yr) that determine the same partition V. This, in partic-
ular, extends one of the main results of [1].

1 Introduction

Let us take two non-negative integers in binary form and consider the re-
sult of performing with them the typical computer “bitwise XOR operator”.
Dawson, in [1], regards this function, (i,j) + i"j as denoted in “C”, geo-
metrically, as a distance between the two integers.
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He considers also, given an ordered set X = (z1,z2,...,z) of such inte-
gers, the Voronoy cells determined by them, that is, the sets V; of elements
closer to z; than to any x; with j # 1, for every 7,5 = 1,2,..., k. In partic-
ular, he proves that there exist sets A; C B; such that an integer = belongs
to V; if and only if the set Q(z) of the positions of the digits 1 (or 1-bits) of
x verifies

Ai € Q(z) C B;. (1.1)

Set X; := Q(z;) and let m; and M; be such that Q(m;) = A; and Q(M;) =
B;. Condition 1.1, in its turn, is true if and only if the 1-bits of  match those
of m; and the 0-bits match the 0-bits of M;. Hence, Dawson’s statement
can be rephrased, in computer slang, in a sentence like:

z €V; <= x matches, as a string, __01_001 _11 _.

In [1], a certain duality is also considered: Let Y; := X; A A; A B;, where
by A we denote the symmetric difference of two sets, and let y; be such
that Y; = Q(y;); then, in particular, 4; = X; NY; and B; = X; UY,.
Let us call initial k-tuple to X = (z1,x2,...,2x) and final k-tuple to Y =
(y1,Y2,---,Yk)- [1, Lemma 1.3] asserts that these roles are interchangeable:
if we use instead Y as the initial k-tuple, we end up with X as the final one,
and the Voronoy cells are exactly the same.

In this paper, we proceed further into the study of this particular geom-
etry:

First, we characterize the line segments, i.e. the sets of form

[zy] = {z €ZJ: d(z,2) +d(z,y) = d(:c,y)};

they are the intervals, as we call the sets of the solutions of a condition like
1.1 above.
We also prove that, given z,y € ZO+, the set

S(z,y) ::{ZEZS': z\7w<z\7y}

is convez, in the sense that if it contains both points £ and y then it contains
all the segment [zy]. And we prove that any convex set is in fact a line
segment (and vice versa).

As the main result, we characterize, given X = (z1,..., ), the ordered
sets Z = (z1,...,2,) with the same partition as X. More precisely (Cf.
Corollary 4.7), let P(X) = (V4,..., Vi) (P(X) is then the Voronoy diagram
determined by X); we prove that P(Z) = P(X) if and only if:

Vi=1,2,....k, Vj=12,...0k j#i = zVz;,z;Vz>zVaz.

Dawson’s duality, referred above, can be obtained from here.

Finally, we also prove that taking (mq,mo,...,mg) or (M1, M, ..., My)
as the initial k-tuple leads to the same Voronoy diagrams, whence making
it easy to reverse Dawson’s construction.



1.1 Notation and examples

Definition 1.1. Let ZS’ be the set of non-negative integers, and fix an in-
teger n > 0. Let U be the bijective function defined, for A C {1,2,...,n},

by:
B(A) =) 2!

i€EA
and let Q = UL

Denote by z V y the integer for which the binary representation has the
i.th digit (from right to left) equal to 1 if the .th digits of z and y are
different, and equal to O if they are equal, for = 1,2,...,n. This is the
result of the “bitwise XOR operator”, which is used, for example, for finding
a winning strategy of the “celebrated game of Nim” [2, p. 44]. We note this
game was proved to contain “implicitly the additive theory of all impartial
games” (for playing on-line with a lesson on the strategy, see [4]). More
precisely:

Definition 1.2. Leta = Y7 a; 2% and b= Y7 B; 2* be such that o, 5; €
{0,1} for alli =0,...,n—1. Then

n—1
aVb:= Z(ai VB2,

=0

where 0 V0O =1V 1=0and 0V 1=1VO0=1 1In other words,
aVb="0(Qa)AQDb)).

It turns out that (Zar, V) is indeed a metric space, with a number of
surprising geometric properties. As an example, consider 3 = 11() = 011(9),
6 = 110(2) and note that 1019y = 5; hence, the distance between 3 and 6 is
5, d(3,6) = 5. But also d(3,5) = 6 and d(5,6) = 3. The same happens in
general. In particular, d(a,-) : Z§ — Z§ : = — d(a,z) is a bijection (it is
even auto-inverse, Cf. 2.3).

Following Dawson, we fix a set {z1,...,zx} C ZJ of k > 0 distinct
integers smaller than 2", and define a: {0,1,...,2" — 1} = {z1,...,2%} so
that z V a(z), for each z, is as small as possible. We look at the sets of form
V; = o }(z;). Then

Wz{zEZS’:ijl,...,k(j#i)’ z\ij>z\7xi}, 1=1,...,k.

Note that V = {Vi,...,Vix} = {a }(z1),...,a"(z})} is a partition of
{0,...,2™ — 1}, i.e., the latter set is the union of the elements of V, that
are non-empty and pairwise disjoint. We call it the partition determined by
X = (z1,...,z) and also denote the set V; by P(X,) and (V3,..., V) by
P(X) for emphasizing its origin.



Bitwise AND and OR are defined similarly to 1.2, and will also be de-
noted simply by A and V. We note they correspond to intersection and
union of sets in the following sense: given a,b € Zg, a Ab= U (Q(a) N Q(b))
and a Vb= U (Qa) UQ(Db)).

Definition 1.3. Given non-negative integers a,b € Zg’, we say a s strongly
less than b, written a < b, ifa Ab=a and aVb=0b.

This is what we could call “bitwise less or equal to” since, clearly, a < b
if and only if, for every i = 1,2,...,n, the i.th bit of a is less or equal to the
1.th bit of b. Hence,

a<b <= Qa)CQb)( = a<b).
We also call an interval a subset of Z{ of form:
(a,b) :={c€Z{: a<c=<b}.

Note that z verifies condition 1.1 if and only if z € (U(4;),5(B;)). Let us
consider an example:

Take n = 12, A; = {2,3,5,9} = Q(m;), B; = {1,2,3,4,5,8,9,11,12} =
Q(MZ) and Vl = <m,‘, M1> Then,

m; = 278 = 0001 0 001 0 11 Oy,
M; = 3487 = 11 01 1 001 1 11 1(o

and the elements of V; are exactly the integers whose binary representations
match the pattern:
__ 01 _ 001 _ 11 _.
2 Triangular (in)equality
We start this section by introducing some basic technical results.
Lemma 2.1. Let a,b,c € ZBL be any non-negative integers. Then
(@aVb)Ve=aV (bVec),aVb=bVa,0Va=aandaVa=0; (2.2)
b = aV(aVb); (2.3)
aVb < aVb, or, equivalently,

(@aVb)A(aVb)=aVb and (aVb)V(aVb) =aVb (2.4)
(@Vb)A(aAb)=0 and (aVb)V(aAb)=aV b (2.5)
a+b = aVb+2aAb); (2.6)

aVb < (aVe)+(cVb) (2.7)

Proof. Equations in 2.2 reflect the obvious fact that (Z§, V) may be natu-
rally identified with Z /27, and 2.3 is a clear consequence of them. Equations
in 2.4 and 2.5 have trivial bitwise verification.



In 2.6, it is used the fact that addition in binary or in any other base
can be performed recursively in two steps: in a first one, the remainders are
not considered; in a second one, the remainders are added up. Considered
bitwise, in the first step it is performed the operation XOR; in the second
(which gives either 0 or 1, and 1 exactly when both bits are equal to 1) it is
AND that is performed, but the result is shifted leftwise. More precisely:

n—1 n—1
Y w2+ B2 Yo (mt+p2+ ) 2.2
=0 =0

(a,8;)#(1,1) a;=B;=1
0<i<n—1 0<:<n—1
n—1 ) n—1 )

= > (@ VB)2+2) (i AB)2.
1=0 1=0

Finally, for 2.7, we have a Vb= (a V¢c) V (cV b) (by 2.2) <aVc+cVb
(by 2.6). O

Remark 2.2. By 2.2 and 2.7, (a,b) — a V b defines indeed a distance in
Zg.

We remember the definition of line segment:
[zyl:={2€Z{: zVz+2Vy=aVy}, for 7,y € Z§.
Proposition 2.3. Seta =" 0; 2, b=Y" 152 and c = 37, 1 2,

with a;, Bi,vi € {0,1} for alli = 0,1,...,n — 1. The following conditions
are equivalent:

c€ [ab] (2.8)
Vi=0,1,...,n—1, v, = a; orv; = B; (2.9)
aANb<c<aVb (2.10)
Proof.
28 & GVb=aVeteVh
Z4 (aVe)V(cVb) =(aVe)+(cVb)
ES% @V A(cVb) =0
— Vi=0,1,....n—1, ;Vy=0o0rv VB =0
— 29
— Vi=0,1,....n—1, o ABi <7 <y VG
— 2.10



Remark 2.4. By definition of line segment (and since e.g. (¢ V a) V (¢ V
b) =a Vb):
{zVe: celabl} = [zVaz V. (2.11)

The ends of the interval [zy] = (z A y,z V y) are not uniquely defined; in
fact, if b € (a,c) and d =a V bV c, then [bd] = (a,c).

(This can be seen with a Venn’s diagram or with the following table, where
a, B, v and § represent the possible values of a generic bit of a, b, ¢ and d,

a B vy|d=aVBV~y|BAS|BVS

0 0 O 0 0 0
respectively, witha < <~y |0 0 1 1 0 1 )

0 1 1 0 0 1

1 1 1 1 1 1

3 The convex sets
Proposition 3.1. Let z,y € Z(}L, x # vy, and consider
S(z,y):={2€Z{: zVz<zVy}

If a,b € S(z,y), then [ab] C S(z,y). Le., S(z,y) is convex. V; is convex
too for everyi=1,2,...,k,

Proof. Let m be the biggest element of the set Q(z V y) = Q(z) A Q(y).
Since m is, by definition, the leftmost position of all bits where = and y

differ, z < y holds if and only if m ¢ Q(z) (or equivalently, if and only if
m € Q(y)). Now, since Q(z V z) A Q(z Vy) = Qz) A Q(y),

z € S(z,y) if and only if m ¢ Q(z V z). (3.12)

Hence, if a,b € S(x,y) then m ¢ Q(a V z),Q(b V z). In order to prove that
also m ¢ Q(c V z) for every ¢ € [ab], it is sufficient to show that:

U(cV 1)

C\./.I

C UaVz)u(bVz) <
< (avz)V (V). (3.13)

But this condition holds, by 2.11. Finally, V; is also convex because V; =
NS (i, j)- O
Vi is in fact a line segment (Cf. [1, Lemma 1.3]). More precisely, we

have:

Proposition 3.2. Let, fori=1,2,...,k, y; € ZE)" be the element of V; at
greatest distance from x;, i.e., such that, for all0 < z < 2", if x; V 2 > z; V
y; then z ¢ V;. Then V; = [z; y;].



Proof. [z;y;] C V; because the latter is convex. Assume, by contradiction,
that there exists z € V; \ [z; y;]. By Proposition 2.3 (2.9 fails), for some j
with 1 < j < k the j.th bit of z is different from the j.th bit of both z; and
y; (that are equal, consequently).

For clearness sake, set £ = z;, y = y; and y' = y V 2771, Then 9’s s.th
bit is equal to y’s s.th bit for all s # j, and is equal to z’s s.th bit (and hence
different from the s.th bit of both z and y) for s = j. Again by condition 2.9
of Proposition 2.3, y' € [zy]. But then 3’ € V;, by convexity, which, since
z Vy' >z Vy, is in contradiction with the definition of y;. O

Let K be any convex set, x € K and y be the element of K farthest
from z, as before. With the same proof, we obtain that I is a line segment,
exactly [zy] (Cf. Remark 2.4). The converse is also true, by Proposition
2.3. Hence, we have:

Theorem 3.3. Let K be a subset of {0,2,...,2" —1}. Then:

K is conver <= K is a line segment. []

4 Explicit calculation of Voronoy diagrams

Let us proceed a little further in the direction of the last result. As usual,
by |a] for a real number a we mean the biggest integer not bigger than a.

Definition 4.1. Set, for X = (z1,2z9,...,2¢) and i,j =1,2,...,k, i # J,

mp = [logo(zi V 25)] +1 (= max (Q(z:) A Q(z5));
Sm¥ ={mk: j=1,2,....k j#i}
af =0(Sm)); b :=0{1,...,k}\Sm));

X Y X, X . . X. X . . X
y; =z Vb mp i=xziNa;; M) :=x;Vb.

(We drop the symbol X whenever not necessary.)
Remark 4.2. Denote by Z the bitwise complement of z € Zg,z = (2" —M
z. Then bY = a, and a;° = (z;VT;)Aa)} = (z;Aa))V (TiAa)) = mIV M.
We have the following theorem:
Theorem 4.3. For every X = (z1,2,...,x) and every i = 1,2,...,k,

Vi =P(X,i) = [ziy7 | = (mg", M;Y). (4.14)

Proof. We have seen before (3.12) that the condition z € S(z;, ;) is equiv-
alent to m;; ¢ Q(z; V 2), or, in other words, to 2™~ A (z; V z) = 0.
Hence,
zeV, = ﬂS(xi,xj) < a; A (z; V2)=0.
J#i



By Proposition 3.2, however, V; = [z; y;] where y; is the element z € V; for
which the value of z; V z is maximum. But the maximum value of w for
which a; Aw = 0 is clearly b; = a; V (2" — 1), the complement of a;. Thus,
the maximum is attained for z such that z; V 2 = b; < 2z = z; V b;.
Hence, this is this is the value of y;. It is now easy to see, bitwise, that
m; = x; N (x5 v b;) = x; A a; and that M; = z; V (z; v b)) = x; Vb; (e.g.
xi A (z; V b;) is 1 exactly when z; = 1 and b; = 0).

O

Theorem 4.4. Let X = (z1,z2,...,zx) for a subset {z1,z2,...,2} of
{0,1,...,2" — 1} with k (distinct) elements and X' = (2}, ),...,x}) for
another subset {z',z5,..., 2} of the same set. Then P(X') =P(X) if and
only if, for every i =1,2,...,k,

z; € P(X,4); (4.15)
SmX = SmX'. (4.16)

Proof. Suppose first P(X’) = P(X). Then z; € P(X',4) = P(X,7) and,
by Theorem 4.3, m¥ = mX" and M = M. Moreover, by Remark 4.2,
af’ = mf" V MZ-X' = g;. This implies condition 4.16.

Conversely, suppose that z; A ¢} = m} < 2, < M} = z; V b} and
af = aX. Then z; Aaf < 2} AaX < (x’, VbX) AaX. But (z; VbS) ANaf =

7

(zinaX)V (bF Aaf) = z;Aa, and so m¥ = m¥. The proof that MX' = M

7
proceeds in a similar way. O

Corollary 4.5. Let X be as in Theorem 4.4. Then the Voronoy diagram
determined by X, P(X), equals the Voronoy diagram determined by any of
the collections Y, A or B defined below:

Y = (y{(’yQX"" ’ka);
A = (m¥,m3,...,mp);
B = (M¥MF,...,MX).

Proof. We prove that in all three cases s := m;; equals m%’ for all i,5 =
1,2,...,k such that ¢ # j. First, note that, for every s’ > s, s’ € Sm} if
and only if s’ € Sm;‘ since the s'.th bits of z; and z; are equal, and thus the
s'.th bits of ¢ and af are also equal. Denote, for z € Z(")' and s such that
1 < s <k, the s.th bit of z by ,z, and note that yy; = yy; exactly when
§T; = T, since y; = x; V b and y; = z; V bY. This proves that m%’ <s
for X' = (y,v5,---,y; ). The same happens for the other definitions of
X', by the same reasons.

Now, in order to show that also m%’ > s, it is sufficient to prove that gy;
and sy; (respectively, sm; and ¢m;, and sM; and ;M) are different. But by
definition of s = m;j, sx; and ;x; are indeed different, and s € Sm; N Sm;.



It follows that sa; = 1 = sa; and so sb; = 0 = sb;. Finally, sy; = s; V0=
11—z, smi = sx; N1 = gz, {M; = s2; VO = gz;, and a similar situation
occurs when we replace ¢ by j. U

Remark 4.6. By the definition of yX, we obtain in the first case [1, Corol-
lary 1.6]: when X = (zi,...,zy) is replaced in Dawson’s construction by
Y = (y1,.-.,Yk), as defined above, we also find Y replaced by X. This is so
because b = b}, by Theorem 4.4.

Corollary 4.7. Let X = (z1,z2,...,x) for a subset {z1,z2,...,x%} of
{0,1,...,2" — 1} with k (distinct) elements and X' = (z},5,...,x}) for
another subset {z!,z5,...,x}} of the same set. Then P(X') =P(X) if and
only if, for every i =1,2,...,k,

z € P(X,14) (4.15)
and
z; € P(X',4) (4.17)
or, equivalently, if and only if
Vi,j=1,2,....k, j#1 = z,Vuzjuz \'/x;- >zh V. (4.18)

Proof. By symmetry, all we have to prove is that condition 4.17 (together
with condition 4.15) implies condition 4.16. Let us fix 7 = 1,2,...,n and
set more simply = := z;, #' 1=z}, a := a¥, b:= b}, a’ := o and V' := b} .
Since Condition 4.15 reads z Aa < z' < z Vb, if, for s = 1,2,... k, we
denote again by sa the s.th bit of a and suppose ;a = 1 (and hence ;b = 0),
then ;o = ;o A1 < 2’ < ,2V 0=z, and so ;2 = ;z'. In the same way, by
Condition 4.17, sa’ = 1 also implies ;o = 3z'. Coming back to our former
notation, what we have shown is that z; and z} coincide in all the 1-bits of
af and in all the 1-bits of @', which are the elements of SmX and Sm}’,
respectively.

Now, suppose, for a contradiction, that Condition 4.16 fails. Without
loss of generality we may then suppose that there exist 4,j (¢ # j) such that
ri=mp < 8= mj;' Then s € SmX N Sm;", and s ¢ Q(z; V z;), but
s € Q(z; V }), which means that z; and z; have equal s.th bits but the s.th
bits of z} and x; are different. But this is impossible since by our previous
argument the s.th bits of z; and z are equal, and the same happens with
the s.th bits of z; and . O

An interesting question arises as to whether all partitions of the set
{0,1,...,2" — 1} in k intervals can be constructed this way in this way from
a set {z1,z2,...,Zk}, when reorderings of {1,2,...,n} are considered. We
finish this section by showing through three small examples that the answer
to this question is negative, and that conditions 4.15 and 4.16, separately,
are not sufficient for forcing P(X) = P(Y):



Example 4.8. Consider the partition of {0=000(y),...,7=111(3)} repre-

sented below.
111
011 (101) @
@

Suppose that the elements of form z; are those that we have underlined
and, for a certain order, they determine the partition. Then, we find a
contradiction:

e 1 < 2since 2 =010y is closer to 3 = 011(y) than to 0 = 000y);

e 2 <1 since 5 = 101y is closer to 7 = 111(9) than to 4 = 100y);

The other three possible choices of elements of X = (x1,...,z4) that could
generate this partition can be discarded in a similar way.

Example 4.9. Consider X = (z1,22) := (2=10(y), 3=11(3)) and X' =

(z1,25) = (2 = 10(y), 1 = 01(3)) and the partitions they determine in
{0,1,2,3}. Then z} = z; and z}, € P(X,2) but P(X) # P(X").

Example 4.10. Finally, consider X = (0=00(), 1=01(2), 2=10(9)) and
X' = (2=10¢), 3=11(3), 0=00(y)) and the partitions they determine in
{0,1,2,3}. Although they have the same m;; for every i # j (in fact, as
shown below, z; V z; = z} V x}), the partitions are different.

AN ©

v]00 01 10 v]10 11 00

00|00 01 10 101 00 01 10

01|01 00 11 1101 00 11

10|10 11 00 00|10 11 00
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