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Abstract

Let R be a commutative Noetherian ring and α an automorphism of R. This paper
addresses the question: when does the skew polynomial ring S = R[θ;α] satisfy the property
(⋄), that for every simple S-module V the injective hullES(V ) of V has all its finitely generated
submodules Artinian. The question is largely reduced to the special case where S is primitive,
for which necessary and sufficient conditions are found, which however do not between them
cover all possibilities. Nevertheless a complete characterisation is found when R is an affine
algebra over a field k and α is a k-algebra automorphism - in this case (⋄) holds if and only if
all simple S-modules are finite dimensional over k. This leads to a discussion, involving close
study of some families of examples, of when this latter condition holds for affine k-algebras
S = R[θ;α]. The paper ends with a number of open questions.
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1 Introduction

A Noetherian ring S whose simple modules have the property that their finitely generated essential
extensions are Artinian is said to satisfy property (⋄). For commutative rings S the validity of
(⋄) is due to Matlis, proved in his famous 1958 paper [26]; a brief survey of work on this topic in
the years since then is given below, in §1.3. This paper focusses on (⋄) for the skew polynomial
rings S = R[θ;α], where R is a commutative Noetherian ring and α is an automorphism of R,
with the indeterminate θ satisfying the relations θr = α(r)θ for all r ∈ R. When such a skew
polynomial ring S satisfies (⋄) turns out to be a surprisingly subtle question, which we do not
completely settle here, and which leads naturally to other fundamental representation-theoretic
questions concerning these rings.

We are led to pay particular attention to two separate but overlapping cases - first, when S is
a primitive ring; and second, when R is an affine algebra over a field. We outline our main results
for these two settings in §1.1 and §1.2 respectively. Here and throughout, given a ring R and an
R-module V , ER(V ) will denote the R-injective hull of V .

1.1 When S is primitive

Using relatively standard methods involving the second layer condition we show that, for every
commutative Noetherian ring R, S = R[θ;α] satisfies (⋄) if and only if ES(V ) is locally Artinian
for every simple S-module V whose annihilator Q is induced from R. Here, “induced from R”
means that Q = (Q∩R)S. This reduction is achieved in Corollary 3.5, thereby focussing attention
on the case where S = R[θ;α] is primitive, since S/(Q ∩R)S ∼= R[θ;α], where R = R/Q ∩R and
α denotes the automorphism of R induced by α.

Making heavy use of the characterisation of primitive skew polynomial rings [25], we prove:

1

http://arxiv.org/abs/1705.06596v1


Theorem 1.1. Let R be a commutative Noetherian ring, let α be an automorphism of R, and let
S = R[θ;α]. Suppose that S is primitive.

(a) If R has Krull dimension 0 then S satisfies (⋄).

(b) Suppose that R contains an uncountable field. Suppose also that either R has Krull dimension
at least 2, or Spec(R) is uncountable. Then S does not satisfy (⋄).

The above is Theorem 5.4; its proof occupies §§4, 5. Clearly, the above necessary and sufficient
conditions don’t exhaust all possibilities, and we leave the closure of the gap between (a) and (b)
as one of a number of open questions raised by the paper.

1.2 When R is affine

Theorem 1.1 is however sufficient to settle the case where R is a finitely generated algebra over an
uncountable field k, with α a k-algebra automorphism:

Theorem 1.2. Let k be an uncountable field and R an affine k-algebra, and let α be a k-algebra
automorphism of R. Let S = R[θ;α]. Then the following are equivalent:

(a) S satisfies (⋄);

(b) all simple S-modules are finite dimensional k-vector spaces.

This is Theorem 6.1. The direction (b) ⇒ (a) follows from known considerations based on the
second layer condition, and doesn’t require the cardinality hypothesis on k. There is thus a further
obvious question: is (a) ⇒ (b) true when k is countable? Although we don’t know the answer to
this question in general, we can at least answer it in the most obvious special case, namely when
R is a polynomial algebra and α is a linear automorphism:

Theorem 1.3. Let k be a field, t a positive integer, V a vector space over k with basis {x1, . . . , xt}
and α ∈ GL(t, k) an automorphism of V . Let R = k[x1, . . . , xt], so that α induces a k-algebra
automorphism of R, also denoted by α. Then S := R[θ;α] satisfies (⋄) if and only if |α| < ∞.

The finiteness of |α| featuring in the above result is known to be equivalent, for an arbitrary
semiprime commutative coefficient ring R, to S = R[θ;α] satisfying a polynomial identity (PI),
[31]. This might lead us to suspect that a third equivalent condition, “S satisfies a PI ”, could be
added to Theorem 1.2 also. This is not the case, however, as we show by Example 7.3.

The existence of this and other examples provokes the obvious question: for which k-affine
Noetherian skew polynomial algebras S = R[θ;α] are all the simple S-modules finite dimensional
k-spaces? Our contribution to this question is chiefly to demonstrate its complexity, by means
of detailed analysis of some families of examples in §7. Most notably, we undertake a detailed
study of the algebras SC,t,α = C[x1, . . . , xt][θ;α] when t = 1 or 2 and α is an arbitrary C-algebra
automorphism. But even for t = 2 our analysis is incomplete, and leads to delicate issues having
connections to dynamical systems and to algebraic geometry.

1.3 Historical background

For commutative Noetherian rings (⋄) is an immediate consequence of the Artin-Rees property,
formally recorded as part of Matlis’s seminal 1958 paper [26] on injective modules over such
rings. In 1959 Philip Hall proved (⋄) for group rings RG of finitely generated nilpotent groups G,
provided R is either Z or a locally finite field. In 1974 this result was extended, independently by
Jategaonkar [19] and Roseblade [35], to polycyclic-by-finite groupsG, building on earlier celebrated
work of Roseblade [34] on the finite dimensionality of the simple RG-modules for these group rings.
Hall and Roseblade were motivated by applications to the structure of finitely generated soluble
groups.

Motivated by applications to Jacobson’s conjecture, Jategaonkar proved in 1974 [18] that (⋄)
is satisfied by fully bounded Noetherian rings, thus incorporating Noetherian rings satisfying a
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polynomial identity (PI) and so generalising the commutative case. Musson [28] gave the first
examples of Noetherian rings for which (⋄) fails, by showing that the group algebra kG of a
polycyclic-by-finite group G over a field k which is not locally finite satisfies (⋄) only if G is
abelian-by-finite, that is only if kG satisfies a PI. In so doing he thus delineated the limits of the
earlier results of Hall and Roseblade.

More recent work has discussed (⋄) for differential operator rings [5], [36], down-up algebras
[4] and quantised Weyl algebras [6]. [30] gives a brief survey of results on property (⋄) up to 2010.

1.4 Layout

Preliminary observations and notation regarding property (⋄) and skew polynomial rings are in
§2. §3 contains a summary of the necessary background on the second layer condition, leading up
to Corollary 3.5, which essentially allows us to focus on the case where S = R[θ;α] is a primitive
ring. The analysis of primitive skew polynomial rings is contained in §§4 and 5: the key result
of §4 is the construction of a faithful simple S-module whose injective hull is not locally Artinian
when R is an α-simple domain which is not a field. This is Proposition 4.10, which then allows
us to deduce Theorem 1.1 (= Theorem 5.4). In §6 Theorem 1.1 is applied in the setting where R
is an affine algebra over the field k and α is an algebra automorphism, to deduce Theorems 1.2
and 1.3 (= Theorems 6.1 and 6.2). §7 is devoted to a careful analysis of the simple modules and
the prime spectra of a number of examples, and families of examples, of skew polynomial algebras
over a commutative affine Noetherian domain R. These examples may well have interest beyond
the immediate question at hand, namely the validity of (⋄). Finally, in §8 we gather together and
briefly discuss the open questions which have arisen in the course of this work.

All rings considered are associative with identity and all modules are unitary and are right
modules unless stated otherwise.

2 Preliminaries

2.1 Formulation and preservation of (⋄)

Recall that a module M is a subdirect product of a family of modules {Fλ} if there exists an
embedding ι : M →

∏
λ∈Λ Fλ into the product of the modules Fλ such that, for each projection

πµ :
∏

λ∈Λ Fλ → Fµ, the composition πµι is surjective. The following lemma is due to Hatipog̈lu
and Lomp, [14].

Lemma 2.1. [14, Lemma 2.1] Given a ring R, the following conditions are equivalent:

(a) R satisfies (⋄);

(b) every right R-module is a subdirect product of locally Artinian modules;

(c) every finitely generated right R-module is a subdirect product of Artinian modules.

Recall that a ring extension T ⊆ S is called a finite normalizing extension if there exists a finite
set {s1, . . . , sn} of elements of S such that S =

∑n
i=0 siT , with siT = Tsi, for i = 1, . . . , n. Part

(a) of the next result is due to Hatipog̈lu and Lomp, [14, Proposition 2.2], while (b) is adapted
from the work of Hirano [16, Theorems 1.8, 1.11].

Proposition 2.2. Let S be a finite normalizing extension of a ring T .

(a) If T satisfies (⋄), then so does S.

(b) Assume also that T is Noetherian and a direct summand of S as a left T -module. If S
satisfies (⋄), then so does T .

(c) If I is an ideal of S and S satisfies (⋄), then so does S/I.
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Proof. (a) See [14, Proposition 2.2].
(b) Let M be a finitely generated right T -module, so M ⊗T S is a finitely generated right

S-module. By hypothesis and Lemma 2.1 there exists a family {Mλ} of S-submodules of M ⊗T S
such that each (M ⊗T S)/Mλ is Artinian and

⋂
λ Mλ = 0. Since T is a direct summand of S as a

left T -module, M can be identified with a right T -submodule ofM⊗T S. Fix λ. ThenM/(M∩Mλ)
is isomorphic to a T -submodule of (M ⊗T S)/Mλ. By [10, Theorem 4], (M ⊗T S)/Mλ is Artinian
as an S-module if and only if it is Artinian as a T -module. Now, note that

⋂
λ(M ∩Mλ) = 0, so

the result follows from Lemma 2.1(c).
(c) This is trivial, since ES/I(V ) ⊆ ES(V ) for any S/I-module V .

2.2 Skew polynomial algebras of automorphism type

Let R be a ring and let α be an automorphism of R. The skew polynomial ring of automorphism
type, S := R[θ;α], is the ring of polynomials in θ with coefficients in R subject to the relation
θr = α(r)θ for all r ∈ R.

We shall maintain the notation S,R, θ, α throughout the paper.

Often, R will in addition be commutative or Noetherian, but we will nevertheless state these
hypotheses as required in our results, for emphasis. A right ideal I of R is said to be α-stable if
α(I) = I. We say that R is α-simple if (0) and R are the only α-stable ideals of R. An α-stable
ideal P of R is α-prime if, for all α-stable ideals I and J of R, IJ ⊆ P implies that I ⊆ P or
J ⊆ P . The ring R is said to be α-prime if its ideal (0) is α-prime, and is called α-simple if its
only α-stable ideals are (0) and R.

The following well known facts can be found in [27, §10.6].

Lemma 2.3. Let R be a right Noetherian ring, α an automorphism of R and S = R[θ;α].

(a) A right ideal I of R is α-stable if and only if α(I) ⊆ I.

(b) If I is an α-stable ideal of R, then IS is an ideal of S and the ring S/IS is isomorphic to
(R/I)[θ;α], where α is the automorphism of R/I induced by α. The ideal IS is prime if and
only if I is α-prime.

(c) If P is a prime ideal of S such that θ /∈ P then P ∩R is an α-prime ideal of R.

(d) If P is an α-prime ideal of R, then there exists n ∈ N and a minimal prime Q over P such
that P =

⋂n
i=0 α

i(Q).

A convenient mechanism to construct interesting simple S-modules is as follows.

Lemma 2.4. Suppose that u is a central unit of a right Noetherian ring R and S = R[θ;α].

(a) The lattice of right α-ideals of R is isomorphic to the lattice of S-submodules of S/(u− θ)S.

Suppose additionally in (b) and (c) that R is commutative.

(b) The right S-module S/(u− θ)S is simple if and only if R is α-simple.

(c) Suppose that R is also a domain with no proper idempotent ideals; for example, R could be
a Noetherian domain. Then S/(u − θ)S is an Artinian right S-module if and only if R is
α-simple.

Proof. (a) Notice that, for any element r ∈ R,

rθ = θα−1(r) = −(u− θ)α−1(r) + uα−1(r). (1)

Let N be an α-stable right ideal of R. Then (1) and the centrality of u in R yield that J :=
(u− θ)S +N is a right ideal of S.
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Let J be a right ideal of S with (u − θ)S ⊆ J . Let w ∈ J . Using division by the monic
polynomial u− θ we can find h ∈ S and r ∈ R such that w = (u− θ)h+ r and J = (u− θ)S +N
follows for N := J ∩ R. Moreover, applying (1) with r ∈ N and using our assumptions on u, it
follows that α−1(N) ⊆ N . By Lemma 2.3(a), N is an α-stable right ideal of R. This completes
the proof of (a).

(b) This is a direct consequence of (a).
(c) Suppose that S/(u− θ)S is Artinian as a right S-module. Let I be a proper α-stable ideal

of R. It follows from (a) that there exists n ∈ N such that In = I2n. The stated hypotheses force
I to be (0), so R is α-simple. The converse is given by (b). The Krull Intersection Theorem [8,
Corollary 5.4] ensures that Noetherian domains satisfy the stated hypothesis.

3 Reduction to the primitive case

3.1 The second layer condition

Given a non-zero module M over a right Noetherian ring T , an affiliated submodule of M is a
submodule of the form AnnM (P ) = {m ∈ M : mP = 0}, where P is an ideal of T which is
maximal amongst the annihilators of non-zero submodules of M . It is easy to see that such
an ideal P is a prime ideal of T , [13, Proposition 3.12]. An affiliated series for M is a series
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M of submodules of M , such that for each i ∈ {1, . . . , n}, Mi/Mi−1

is an affiliated submodule of M/Mi−1. The ideals Pi := AnnT (Mi/Mi−1) are called the affiliated
primes of M with respect to the given series. Full details are in [13, Chapter 8], for example.

We briefly recall here the key ideas we need from the theory of prime links for Noetherian
rings. For more details, see for example [13, Chapter 12], [20]. Let T be a Noetherian ring and M
a finitely generated right T -module. Suppose that

0 ⊂ U ⊂ M (2)

is an affiliated series of M , and suppose that U is an essential submodule of M , with corresponding
affiliated prime ideals Q and P , so that UQ = 0 = (M/U)P . To understand the possible relations
between the modules U and M/U , normalise (2) by replacing M if necessary with a submodule
M ′ of M properly containing U such that I := AnnT (M

′) is maximal amongst the annihilators of
those submodules of M which properly contain U . Notice that PQ ⊆ I. With this normalisation,
we continue to write M for the replacement module.

Then, by Jategaonkar’s so-called Main Lemma, [13, Theorem 12.1], [20], there are two possi-
bilities: either

(a) PQ ⊆ I ⊂ P ∩ Q, and (P ∩ Q)/I is torsion-free as a left T/P -module and as a right
T/Q-module; or

(b) P ⊂ Q and MP = 0.
In partial converse, if (a) holds for primes P and Q of T , then a right T -module M exists as

above, with U [resp. M/U ] being T/Q [resp. T/P ] - torsion-free, [13, Theorem 12.2]. If case (a)
holds, we say that there is a link from P to Q, and we write P  Q. If case (a) holds and U is
T/Q-torsion-free, then M/U is T/P -torsion-free. On the other hand, if (b) holds, then both M
and M/U are T/P -torsion.

A Noetherian ring T is said to satisfy the (right) strong second layer condition (s.s.l.c.) if, for
every prime ideal Q of T , only case (a) can occur in the setting of (2). The formally weaker (right)
second layer condition (s.l.c.) holds for T if, for all primes Q, only case (a) occurs when U is in
addition required to be T/Q-torsion-free.

Those Noetherian rings satisfying the s.s.l.c. form an important and large subclass. For our
purposes, the key result in this direction is the following proposition. Recall (for example, from
[13, page 224]) that a Noetherian ring T is AR-separated if, for every prime ideal Q of T and ideal
I with Q ⊂ I ⊂ T , there is an ideal J of T with Q ⊂ J ⊆ I such that J/Q has the Artin-Rees
property in T/Q.
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Proposition 3.1. [13, Theorem 13.4] If the Noetherian ring T is AR-separated, then it satisfies
the s.s.l.c.

For example, Noetherian rings satisfying a polynomial identity and enveloping algebras of finite
dimensional solvable Lie algebras are AR-separated, [20]. Of more relevance for us, however, is:

Proposition 3.2. [32] Let R be a commutative Noetherian ring, α ∈ Aut(R) and S = R[θ;α].

(a) Then S is AR-separated, and hence satisfies s.s.l.c.

(b) Let P be a prime ideal of S such that (P ∩R)S = P . Then P has the Artin-Rees property.
In particular, if P  Q or Q P , then Q = P .

3.2 The second layer condition and (⋄)

Lenagan’s Lemma, [13, Theorem 7.11], guarantees that if T is a Noetherian ring and P and Q are
prime ideals of T with P  Q, then T/P is Artinian if and only if T/Q is Artinian. From this
and Jategaonkar’s Main Lemma the following well-known consequence follows easily:

Proposition 3.3. Let T be a Noetherian ring satisfying the s.l.c. and let V be a simple right
T -module with Q := AnnT (V ). Suppose that T/Q is Artinian. Then every finitely generated
essential extension of V is Artinian.

We are now in a position to deal with property (⋄) for many simple modules over skew poly-
nomial rings.

Theorem 3.4. Let R be a commutative Noetherian ring, α ∈ Aut(R) and S = R[θ;α]. Let V
be a simple right S-module and let Q = annS(V ). If (Q ∩ R)S ⊂ Q, then S/Q is Artinian and
(hence) every finitely generated essential extension of V is Artinian.

Proof. Suppose first that θ ∈ Q. Then Q/θS is a primitive ideal of the commutative ring S/θS ≃
R, so S/Q is a field. Therefore the desired property of V follows from Propositions 3.2(a) and 3.3.

Suppose now that θ /∈ Q and (Q ∩ R)S ⊂ Q. Then Q ∩ R is α-prime by Lemma 2.3(c). By
[17, Theorem 4.3] the order of the automorphism of R/(Q ∩ R) induced by α is finite. Hence,
by [7, Corollary 10], S/(Q ∩ R)S ≃ (R/(Q ∩ R))[θ;α|R/(Q∩R)] is a ring satisfying a polynomial
identity. By Kaplansky’s Theorem [2, Theorem I.13.3] applied to the primitive ideal Q/(Q∩R)S
of S/(Q∩R)S, we deduce once again that S/Q is Artinian. Thus, again, ES(V ) is locally Artinian
by Propositions 3.2(a) and 3.3.

The following corollary of Theorem 3.4 in large part reduces the analysis of (⋄), for skew
polynomial rings S of automorphism type, to the case where S is a primitive ring. Recall that a
Noetherian ring T is polynormal if for every pair of distinct ideals I and J of T with I ⊂ J , there
is an element a ∈ J \ I such that aS + I = Sa+ I.

Corollary 3.5. Let R be a commutative Noetherian ring, α ∈ Aut(R) and S = R[θ;α]. Consider
the following statements:

(a) S satisfies (⋄);

(b) ES(V ) is locally Artinian for every simple right S-module V whose annihilator Q satisfies
Q = (Q ∩R)S;

(c) every primitive factor of S of the form S/(P ∩R)S satisfies (⋄).

Then (a) and (b) are equivalent and imply (c). If additionally either S is polynormal or every
primitive ideal P of S of the form P = (P ∩ R)S is generated by a normal element, then all the
above statements are equivalent.

Proof. (a)⇔(b) is a consequence of Theorem 3.4. That (a)⇒(c) follows from Proposition 2.2(c).
If S satisfies one of the additional hypotheses then (c)⇒(a) follows from Theorem 3.4 combined

with [20, Theorem 9.3.4]; see also [3, Lemma 6.1 and Lemma 6.3].
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4 The primitive case

4.1 Primitive skew polynomial rings

We begin by recalling the results of [25], where Leroy and Matczuk presented necessary and
sufficient conditions for the primitivity of S = R[θ;α]; see also [21].

Definition 4.1. Given a ring T and α ∈ Aut(T ), T is α-special if there is an element a of T such
that the following conditions are satisfied.

(a) For all n ≥ 1, Nα
n (a) := aα(a) . . . αn−1(a) 6= 0.

(b) For every non-zero α-stable ideal I of T , there exists n ≥ 1 such that Nα
n (a) ∈ I.

When this occurs, the element a is called an α-special element.

From the definition it follows easily that an α-special ring is α-prime. Clearly, an α-simple
ring is α-special, with 1 as α-special element in this case. However, there are α-special rings which
are not α-simple. Consider, for example, the ring R of formal power series k[[X ]], where k is a
field containing an element q which is not a root of unity. Let α be the k-algebra automorphism
defined by setting α(X) := qX . Then X is an α-special element of R, but 〈X〉 is a proper α-ideal
of R.

Here is the characterisation of primitivity:

Theorem 4.2. [25, Theorem 3.10] Let R be a commutative Noetherian ring and let α ∈ Aut(R).
Then S = R[θ;α] is primitive if and only if R is α-special and α has infinite order.

In the proof of Theorem 4.2, given a Noetherian PI ring R and an automorphism α of R with
α-special element a, the authors build a simple faithful module over S = R[θ;α] of the form S/M ,
where M is a maximal right ideal of S containing (1− aθ)S. Following similar ideas, we show in
the proposition below that, when R is commutative, (1 − aθ)S is actually a maximal right ideal;
this will be important for us in the sequel. Note also that the proposition provides a proof that
the conditions on α in Theorem 4.2 are sufficient for primitivity of S when R is commutative.

Proposition 4.3. Let R be a commutative Noetherian ring and let α ∈ Aut(R) be such that R is
α-special with a an α-special element of R. Let S = R[θ;α]. Then (1 − aθ)S is a maximal right
ideal of S. If in addition α has infinite order, then V := S/(1− aθ)S is a faithful right S-module.

Proof. First note that since a is a regular element of R by [25, Lemma 1.2], (1− aθ)S 6= S. Let J
be a right ideal of S such that M := (1− aθ)S ⊂ J . We claim that

J ∩R 6= (0). (3)

Let n ≥ k and let
f = anθ

n + . . .+ akθ
k ∈ J\(1− aθ)S,

with f of shortest possible length ℓ(f) := n − k. Suppose that ℓ(f) > 0. Then, since 1 ≡
aθ (mod M),

akθ
k ≡ aθakθ

k ≡ aα(ak)θ
k+1 (mod M).

Thus, f ≡ g (mod M), where

g := anθ
n + . . .+ (ak+1 + aα(ak))θ

k+1,

so that ℓ(g) < ℓ(f). This contradicts our choice of f , and so ℓ(f) = 0. That is, 0 6= anθ
n ∈ J .

But now J also contains α−1(an)θ
n−1, because

anθ
nα−n(a) = aanθ

n = aθα−1(an)θ
n−1 ≡ α−1(an)θ

n−1(mod M).

This implies that α−n(an) ∈ J , so (3) holds.
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Next, observe that J ∩R is an α-stable ideal of R, since, if r ∈ J ∩R, then

α−1(r) ≡ aθα−1(r) = rθα−1(a) (mod M),

so that α−1(r) ∈ J . Therefore, as a is an α-special element of R and J ∩ R is non-zero and
α-stable, there exists k ∈ N such that (aθ)k ∈ J . But then (aθ)k−1 = (1− aθ)(aθ)k−1 + (aθ)k and
so (aθ)k−1 ∈ J . It follows that 1 ∈ J and (1 − aθ)S is maximal, as required.

To prove the last statement, assume that α is of infinite order. Let P = AnnS(V ). Then
P ⊆ (1 − aθ)S, so P ∩ R = (0) and P does not contain θ. By [17, Theorem 4.3] as R is α-prime
and α has infinite order, every non-zero prime ideal of S which intersects R in (0) contains θ, so
P = (0).

Remark 4.4. For use in Section 5, we record here a further property of the simple module
V defined in Proposition 4.3. Retain the notation of the proposition, and define A to be the
multiplicative subsemigroup of R \ {0} generated by {αi(a) : i ≥ 0}. Then A consists of regular
elements of S, and is easily seen to form an Ore set in that ring. We claim that

V is an A-torsion free simple right S-module.

By the proposition, V is simple, so it is either torsion or torsion free. Since a is a regular
element of S, for all h ∈ S \ {0}, the degree in θ of (1 − aθ)h is one more than the degree of h.
Hence (1−aθ)S ∩R = 0. Therefore 1+(1−aθ)S ∈ V is not A-torsion, and so V is A-torsion free.

4.2 Reduction to the case where R is a domain

To achieve the reduction as in the title of the subsection we need the following lemma:

Lemma 4.5. Let R be a commutative Noetherian ring, let α ∈ Aut(R) and set S = R[θ;α].
Suppose that S = R[θ;α] is prime. Then:

(a) R is α-prime, and so there exist n ∈ N and a prime ideal Q of R such that

{Q,α(Q), . . . , αn−1(Q)} is the set of minimal primes of R, with ∩n−1
i=0 α

i(Q) = (0).

(b) In the setting of (a), if S is primitive then (R/Q)[θn;αn] is primitive.

Proof. (a) This is clear from Lemma 2.3(c),(d).
(b) With the notation of (a), let T := R[θn;αn]. Notice that QT and its α-conjugates are the

minimal prime ideals of T . Suppose that V is a faithful simple right S-module. By [10, Theorem
4] V has a (finite) composition series as a T -module,

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vt = V.

Set Pi := AnnT (Vi/Vi−1), for i = 1, . . . , t, so that

V (PtPt−1 . . . P1) = 0.

Since V is by hypothesis a faithful S-module, PtPt−1 . . . P1 = (0). Hence there exists j, 1 ≤ j ≤ t,
with Pj ⊆ QT , and the minimality of the prime ideal QT of T ensures that Pj = QT .

That is, Vj/Vj−1 is a faithful simple T/QT -module, as required.

The above lemma, with an equivalence in (b), can be found as [25, Corollary 2.2] with a
different proof.

Lemma 4.6. Let R be a commutative Noetherian ring, α an automorphism of R, and S = R[θ;α].

(a) Let n ≥ 1 and let T = R[θn;αn]. Then S satisfies (⋄) if and only if T satisfies (⋄) .

(b) Suppose that R is α-prime, with Q and n chosen as in Lemma 4.5(a). If S satisfies (⋄) so
does T/QT ≃ (R/Q)[θn;αn].

Proof. (a) This follows immediately from Proposition 2.2, since S as a T -module is free with a
basis formed by the normal elements 1, θ, θ2, . . . , θn−1.

(b) Clear from (a) and Proposition 2.2(c).
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4.3 (⋄) when R is an α-simple domain

To investigate which primitive skew polynomial rings over a commutative Noetherian domain R
satisfy (⋄), we first consider the case when R is α-simple. We preface the proposition with three
lemmas needed for its proof.

Lemma 4.7. Let α be an automorphism of the commutative ring R, and suppose that the α-orbit
of every non-zero prime ideal of R is infinite. Let P = {P1, . . . , Pt} be a finite set of non-zero
prime ideals of R. Then there exists a positive integer n such that, for all i = 1, . . . , t and for all
j ∈ Z \ {0},

αjn(Pi) /∈ P .

Proof. For each i, there is a positive integer ni such that {αnit(Pi) : t ∈ Z} ∩ P = {Pi}. Thus
n :=

∏
i ni is as required.

Lemma 4.8. Let α be an automorphism of the commutative ring R, let S = R[θ;α], and let ρ be
a non-zero non-unit of R. Then S/ρS is not an Artinian right S-module.

Proof. We claim that the chain

θS + ρS ⊇ θ2S + ρS ⊇ · · · ⊇ θmS + ρS ⊇ · · · ,

of right ideals of S is strictly descending. In order to prove this, suppose that m ≥ 0 and
θm ∈ θm+1S+ρS = Sθm+1+ρS, say θm = pθm+1+ρq for p, q ∈ S. Then ρq ∈ ρSθm. This implies
that 1 ∈ Sθ + ρS, contradicting the fact that ρ is not invertible.

Lemma 4.9. Let α be an automorphism of the ring R, S = R[θ;α], and let ρ be a regular non-unit
of R. Let {rλ : λ ∈ Λ} be a set of coset representatives for ρR in R. Then every element m of
M := S/ρ(1− θ)S has a unique expression

m =

k∑

i=ℓ

rλi
θi + ρb+ ρ(1− θ)S,

where b ∈ R and either (i) the part of the expression under the summation symbol is 0, or else (ii)
ℓ ≤ k ∈ Z≥0 with rλℓ

, rλk
6= 0.

Proof. Since S = R ⊕ (1 − θ)S as right R-modules and S ∼= ρS as right S-modules, the desired
expression using coset representatives {ρb : b ∈ R} for the elements of the submodule ρS/ρ(1−θ)S
of M is clear. Representation of elements of M by the listed elements follows, since S/ρS ∼=
R/ρR⊗R S as right S-modules.

Proposition 4.10. Let R be a commutative Noetherian domain which is not a field, α an auto-
morphism of R and suppose that R is α-simple. Then S = R[θ;α] does not satisfy (⋄). Moreover,
there is n ∈ N such that S/(1− θn)S is a finite length S-module whose injective hull is not locally
Artinian.

Proof. Let ρ ∈ R be a non-zero non-unit of R, and let P = {P1, . . . , Pt} be the set of annihilator
primes in R of the R-module R/ρR. Thus ρR ⊆ Pi for all i = 1, . . . , t, and the inverse image in
R of every minimal prime of R/ρR is in P , but there may also be further primes in P . We divide
the proof in two cases.

Case 1.

αj(Pi) /∈ P for all j ∈ Z \ {0}, 1 ≤ i ≤ t. (4)

Since R is commutative and α-simple, S/(1−θ)S is a simple S-module by Lemma 2.4(b). That
is, V := ρS/ρ(1 − θ)S is a simple submodule of M := S/ρ(1 − θ)S. By Lemma 4.8, M is not an
Artinian S-module. We shall prove that

V is an essential submodule of M ; (5)

9



that is, the thesis holds for n = 1 in this case.
Let p be a non-zero element of M and apply Lemma 4.9 to write

p =

k∑

i=l

rλi
θi + ρb+ ρ(1− θ)S (6)

for unique b ∈ R and coset representatives rλi
for ρR in R. Here, as in Lemma 4.9, either the

summation part of the expression for p is 0, so that p ∈ V , or we fix ℓ and k so that rλℓ
and rλk

are non-zero. In the former case we define the length ℓ(p) of p to be 0, and in the latter case we
define the number of i for which rλi

is non-zero to be the length ℓ(p) of p. The strategy of the
proof is to show that, if ℓ(p) > 0, then a non-zero element of strictly shorter length can be found
in the submodule pS of M .

Sublemma 1: If ℓ(p) > 1, then pS contains a non-zero element p̂ with 0 < ℓ(p̂) < ℓ(p).
Proof of Sublemma 1. Amongst those terms in the expression (6) for p with rλi

6= 0, choose rλj

such that rλj
R+ρR/ρR has a maximal annihilator ideal Q which has minimal height amongst all

the maximal annihilators in R of the non-zero R modules in the list {rλi
R+ ρR/ρR : ℓ ≤ i ≤ k}.

Let r ∈ R be such that
AnnR(X) = Q

for every non-zero R-submodule X of rλj
rR + ρR/ρR. Now multiply p by α−j(r), to get

p1 := pα−j(r)

= rλj
rθj +

∑

i6=j

rλi
αi−j(r)θi + ρbα−j(r) + ρ(1− θ)S.

Observe that, since we are assuming ℓ(p) > 1, the summation over i in the above expression is not
empty. If one or more of the terms appearing under the summation symbol features rλi

αi−j(r) ∈
ρR, then the proof of the sublemma is complete, taking p̂ := p1. Suppose then that this is not
the case, and choose w , ℓ ≤ w ≤ k, w 6= j, such that rλw

αw−j(r)R has a maximal annihilator
ideal J which is maximal amongst annihilator ideals of non-zero elements of the R-modules in the
collection {rλi

αi−j(r)R + ρR/ρR : i 6= j}. Choose r̂ ∈ R such that

AnnR(rλw
αw−j(r)r̂ + ρR) = J. (7)

Now multiply p1 by α−w(r̂) to get

p2 := p1α
−w(r̂)

= rλj
rαj−w(r̂)θj +

∑

i6=j,w

riα
i−j(r)αi−w(r̂)θi + rλw

αw−j(r)r̂θw + ρbα−j(r)α−w(r̂) + ρ(1− θ)S.

If rλj
rαj−w(r̂) ∈ ρR then the sublemma is proved. So, suppose on the other hand that

rλj
rαj−w(r̂) /∈ ρR. (8)

Observe that αj−w(J) cannot be strictly contained in Q, since

height(Q) ≤ height(J) = height(αj−w(J)),

thanks to our choice of Q. Moreover, thanks to (4),we cannot have αj−w(J) = Q. Thus it is
possible to choose x ∈ J with αj−w(x) /∈ Q. Then

p̂ := p2α
−w(x) ∈ pS ⊆ M

satisfies
0 < ℓ(p̂) < ℓ(p),

10



and the sublemma is proved.

Sublemma 2: Let p ∈ M be written in normal form (6), with ℓ(p) = 1 - that is, ℓ = k and
rλk

6= 0. Then there exists u ∈ R such that 0 6= pu ∈ V.
Proof of Sublemma 2. Simplifying notation slightly, let p have coset representative

riθ
i + ρb ∈ S \ ρ(1 − θ)S, (9)

where 0 6= ri ∈ R \ ρR, b ∈ R, and i ≥ 0. We have to show that there exists u ∈ R such that

(riθ
i + ρb)u ∈ ρS \ ρ(1− θ)S. (10)

We prove that (10) is true with u = α−i(ρ). For (riθ
i + ρb)α−i(ρ) clearly lies in ρS. On the other

hand,

(riθ
i + ρb)α−i(ρ) ∈ ρ(1− θ)S

⇔ ρriθ
i + ρbα−i(ρ) ∈ ρ(1− θ)S

⇔ riθ
i + bα−i(ρ) ∈ (1− θ)S

⇔ (θi − 1)α−i(ri) + α−i(ri) + bα−i(ρ) ∈ (1− θ)S

⇔ α−i(ri) = −bα−i(ρ)

⇔ ri = −ραi(b),

where the penultimate equivalence follows from Lemma 2.4(a). But ri = −ραi(b) is a contradiction
to the initial hypothesis that ri /∈ ρR, so that (10) is true and Sublemma 2 is proved.

Thus (5) follows at once from the two sublemmas, and V = S/(1 − θ)S is a simple S-module
with an injective hull that is not locally Artinian.

Case 2. Assume that (4) does not hold. Note that if R is α-simple, then R is also αm-simple
for any m ∈ N. Indeed if I is αm-stable proper ideal of R, then Iα(I) . . . αm−1(I) = 0 as it is an
α-stable proper ideal, and so I = (0) since R is a domain. Hence also every non-zero prime ideal
has an infinite αm-orbit. Choose n ∈ N such that the conclusion of Lemma 4.7 holds for α and
P . By the above we can apply Case 1 to S′ = R[θn;αn] and obtain that V = S′/(1 − θn)S′ is a
simple S′-module with an injective hull that is not locally Artinian.

As an S′-module, S is free with a basis formed by normal elements, 1, θ, . . . , θn−1. The S-
module V ⊗S′ S ≃ S/(1− θn)S is, as an S′-module, isomorphic to

n−1⊕

i=0

V αi

where V αi

is the S′-module defined by taking V as the underlying Abelian group and setting
v · s = vαi(s), where αi is the automorphism of S′ induced by αi. Since V is simple as S′-module,

so is each V αi

. Hence V ⊗S′ S is a finite length S′-module. Therefore V ⊗S′ S is a finite length
S-module.

Since S is free as an S′-module, V ⊗S′ S ≤ ES′(V ) ⊗S′ S. Write ≤e for “is an essential
submodule of”, and observe that V ⊗S′ S ≤e ES′(V )⊗S′ S as S′-modules, and hence a fortiori as
S-modules. So

ES′(V )⊗S′ S ≤e ES(V ⊗S′ S).

Since E1 := ES′(V )⊗S′S is contained in ES(V ⊗S) and is not locally Artinian, there is a finitely
generated S′-submodule M of E1 which is not S′-Artinian. The finitely generated S-submodule
MS of E1. Then MS is finitely generated also as an S′-module, and so, by [10, Theorem 4] if
MS were S-Artinian, then MS would be S′-Artinian. This is a contradiction, since M ≤ MS as
S′-submodule. So MS is not S-Artinian and ES(V ⊗ S) is not a locally Artinian S-module, as
claimed.
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In fact it can be shown, using an argument based on [40, Exercise 31 on page 112] that
ES′(V )⊗S′ S = ES(V ⊗ S) but we do not give details here since we do not need that fact.

5 Necessary and sufficient conditions for (⋄)

In handling primitive skew polynomial rings our approach is to strengthen the α-special property,
guaranteed by Theorem 4.2 for such a primitive ring, to the stronger α-simple condition. This
can be achieved by localising at the smallest Ore set A of S containing the α-special element.
However, to apply Proposition 4.10 after this localisation, we need to exclude the possibility that
RA−1 is a field. To achieve this, we need to assume that R is “sufficiently big” in terms both
of the height and the “width” of its lattice of prime ideals, and that it contains an uncountable
field. The technicalities for this are provided by the lemmas of §5.1. The key results are then
Proposition 5.3 and Theorem 5.4.

5.1 Localisation lemmas

Lemma 5.1. Let T be a ring and A a multiplicatively closed Ore subset of regular elements with
1 ∈ A. If there exists a right T -module V such that ETA−1(V ⊗T TA−1) is not locally Artinian
as a TA−1-module, then ET (V/τ(V )) is not locally Artinian, where τ(V ) denotes the A-torsion
submodule of V .

Proof. Suppose that ETA−1 (V ⊗ TA−1) is not locally Artinian as a TA−1-module. In particular
V is not A-torsion. Let τ(V ) be the A-torsion submodule of V , then V

τ(V ) ⊗ TA−1 ≃ V ⊗ TA−1.

Thus replacing V by V/τ(V ) we may assume that τ(V ) = 0.
It is easy to check that ETA−1(V ⊗T TA−1) is an essential extension of V as a T -module. In

particular this implies that
ETA−1(V ⊗T TA−1) ≤ ET (V ).

Now let e1, . . . , en ∈ ETA−1(V ⊗T TA−1) be such that W :=
m∑

j=1

ejTA
−1 contains an infinite

descending chain

. . . ⊂ Wi+1 ⊂ Wi ⊂ . . . ⊂ W2 ⊂ W1 = W (11)

of TA−1-submodules of W . For all i, Wi = (Wi ∩
∑m

j=1 ejT )TA
−1, so (11) yields an infinite

strictly descending chain of T -submodules of

m∑

j=1

ejT , as required.

The example (already featuring in §4) of R = k[[X ]] and A = {X i : i ≥ 0} should be borne in
mind in conjunction with the next lemma.

Lemma 5.2. Let R be a commutative Noetherian domain which is an algebra over an uncountable
field, but is not itself a field. Suppose that there exists a countable multiplicatively closed subset A
of R \ {0} such that RA−1 is the quotient field of R. Then R has Krull dimension 1 and Spec(R)
is countable.

Proof. Assume R and A are as above. By [37, Proposition 2.5] every Noetherian ring containing
an uncountable field has the countable prime avoidance property. It follows from [23, Theorem
3.8] that Spec(R) is countable and that each non-zero prime ideal is maximal.

5.2 (⋄) when S is primitive

Recall that the multiplicatively closed α-invariant Ore subset A of S generated by an α-special
element a of R was defined in Remark 4.4.
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Proposition 5.3. Let R be a commutative Noetherian domain, α an automorphism of R. Suppose
that S = R[θ;α] is primitive, with α-special element a and associated Ore subset A. Suppose that
RA−1 is not a field. Then S does not satisfy (⋄).

Proof. The existence of the element a is guaranteed by Theorem 4.2. Note that RA−1 is α-simple
and SA−1 = RA−1[θ;α] = RA−1[aθ;α]. By Proposition 4.10 there is n ∈ N such that

ESA−1

(
SA−1/(1− (aθ)n

)
SA−1)

is not locally Artinian.
Set S′ = R[θn;αn]. Since for any αn-stable ideal I of R, the ideal Iα(I) . . . αn−1(I) is α-stable,

it is clear that R is αn-special with the special element b = aα(a)α2(a) . . . αn−1(a). Thus S′ is
primitive and by Proposition 4.3, V = S′/(1− bθn)S′ = S′/(1− (aθ)n)S′ is simple as a S′-module
since bθn = (aθ)n.

By similar arguments to the ones at the end of the proof of Proposition 4.10, W := V ⊗ S =
S/(1− (aθ)n)S is of finite length as S-module. By Lemma 5.1 the injective hull of the finite length
module W/τ(W ) is not locally Artinian and the result follows.

We can now give necessary and sufficient conditions for S = R[θ;α] to satisfy (⋄) when S is
primitive. Unfortunately, however, these two conditions do not together cover all possibilities.

Theorem 5.4. Let R be a commutative Noetherian ring, α an automorphism of R, and let
S = R[θ;α]. Suppose that S is primitive.

(a) If R has Krull dimension 0 then S satisfies (⋄).

(b) Suppose that R contains an uncountable field. Suppose also that either R has Krull dimension
at least 2, or Spec(R) is uncountable. Then S does not satisfy (⋄).

Proof. (a) When R has Krull dimension 0, S has Krull dimension 1 by [13, Theorem 15.19].
Since S is a prime Noetherian ring of Krull dimension 1, (⋄) follows easily (see for instance [28,
Proposition 5.5]).

(b) Suppose that R contains an uncountable field, and that R has Krull dimension 2 or more,
or has uncountably many prime ideals. Let Q be a minimal prime ideal of R, let n ∈ N be such
that the minimal primes of R are {αi(Q) : 0 ≤ i ≤ n − 1}, and set T := R[θn;αn]. By Lemma
4.5(b) T/QT is also primitive, and by Lemma 4.6(b) it is enough to show that T/QT does not
satisfy (⋄). In other words, in proving (b), we can pass to (R/Q)[θn;αn], observing that R/Q
will like R contain an uncountable field, and have Krull dimension at least 2 or have uncountably
many prime ideals, just as R does. That is, we may assume additionally that R is a domain in
proving (b).

Let a be the α-special element of R guaranteed by Theorem 4.2, with A the α-invariant Ore
set it generates. By Lemma 5.2 RA−1 cannot be the quotient field of R. Proposition 5.3 now
implies that S does not satisfy (⋄).

It is straightforward to show that in Theorem 5.4 under the hypothesis (a), the ring R is a
finite direct sum of isomorphic fields.

6 Property (⋄) when R is affine

The gap between parts (a) and (b) of Theorem 5.4 can be closed so as to determine completely
the occurrence of (⋄) for S = R[θ;α], provided R contains an uncountable field and has no α-
invariant factors of Krull dimension 1 whose spectrum is countable. In particular, this allows us
to completely settle the matter when R is an affine algebra over an uncountable field, as follows.

Theorem 6.1. Let k be an uncountable field and R an affine k-algebra, and let α be a k-algebra
automorphism of R. Let S = R[θ;α]. Then the following are equivalent:
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(a) S satisfies (⋄);

(b) all simple S-modules are finite dimensional k-vector spaces.

Proof. (b)⇒(a) This follows immediately from Propositions 3.2 and 3.3 and does not require that
k is uncountable.

(a)⇒(b) Suppose that S satisfies (⋄). Let V be a simple S-module and P = AnnS(V ).
If θ ∈ P , then P/θS is a primitive ideal of the commutative affine k-algebra R, so V is finite

dimensional over k, thanks to the Nullstellensatz.
Suppose next that (P ∩ R)S ⊂ P and θ /∈ P . Then [17, Theorem 4.3] implies that S/(P ∩

R)S satisfies a polynomial identity. Since S/(P ∩ R)S is also by hypothesis and construction a
Noetherian affine k-algebra, V is finite dimensional over k by Kaplansky’s theorem, [2, Theorem
I.13.3].

Suppose finally that (P ∩R)S = P and let Q as usual denote a minimal prime over P ∩ R in
R. If R/P ∩R has Krull dimension 0, it is a finite direct sum of copies of the field R/Q := F , by
Lemma 2.3(d). Hilbert’s Nullstellensatz ensures that F is finite dimensional over k, so that some
finite power, say n, of α not only fixes Q, but then also induces the identity on F . Hence, S/P
is a finite (free) module over the commutative ring (R/P ∩R)[θn], so S/P satisfies a polynomial
identity and Kaplansky’s theorem applies. Suppose on the other hand that R/P ∩ R has Krull
dimension at least 1. Then, for example using Lying Over and the Noether normalisation theorem
[8, Proposition 4.15 and §8.2.1, Theorem A1], Spec(R/Q) is uncountable since k is uncountable.
By Theorem 5.4(b), this contradicts property (⋄) for S. So no such primitive ideals P can exist
in S and (b) follows.

Notice that (b) ⇒ (a) of this theorem is valid, with the same proof, for an arbitrary commu-
tative Noetherian k-algebra over any field. Indeed, if we change statement (b) to

(b′) S/AnnS(V ) is Artinian for all simple S-modules V,

then a small adjustment to the argument confirms that (b′) ⇒ (a) is true for all commutative
Noetherian coefficient rings R.

Let k be any field, let R be a commutative affine k-algebra and let α be a k-algebra automor-
phism of R. In the light of Theorem 6.1 it is natural to ask exactly what conditions on R and α
are required for (b) of Theorem 6.1 to hold. This appears to be quite a subtle question, which we
discuss further in §7. First, we give here an important special case in which a complete answer is
available:

Proposition 6.2. Let k be a field, t a positive integer, V a vector space over k with basis
{x1, . . . , xt} and α ∈ GL(t, k) an automorphism of V . Let R = k[x1, . . . , xt], so that α induces a
k-algebra automorphism of R, also denoted by α. Then S := R[θ;α] satisfies (⋄) if and only if the
order |α| of the automorphism α is finite.

Proof. Suppose |α| = n < ∞. Since the commutative Noetherian ring R[θn] satisfies (⋄), Lemma
4.6(a) implies that S satisfies (⋄).

For the converse, suppose that S satisfies (⋄). Let L be a finite extension field of k such that
the Jordan Normal Form of α exists in GL(t, L). By Proposition 2.2 L ⊗k S satisfies (⋄), so we

may replace R by R̂ = L[x1, . . . , xt] and S by Ŝ := R̂[θ;α] in proving that |α| < ∞. Changing
the basis of V as necessary, we can assume that α has Jordan Normal Form with respect to the
ordered basis {x1, . . . , xt}. We show first that

every generalised eigenvalue of α is a root of unity in L. (12)

Suppose that (12) is false, so there exists i such that the generalised eigenvalue ai of xi is not
a root of 1. Choose i and j ≤ i so that {xj , . . . , xi} is a basis of the Jordan block of α for the
eigenvalue ai. Then it is clear that

P :=
∑

ℓ 6=i

xℓR̂
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is an α-invariant ideal of R̂. Thus PŜ ✁ Ŝ, with

Ŝ/P Ŝ ∼= (R̂/P )[θ;α] = L[xi][θ;α],

slightly abusing notation by writing xi for the image of that element of R̂ in R̂/P , and where

α is the L-algebra automorphism of L[xi] defined by α(xi) = aixi. Thus Ŝ/P Ŝ is a quantum
plane with parameter ai and does not satisfies (⋄) by [6, Theorem 3.1]. This contradicts the

hypothesis that S and therefore Ŝ satisfy (⋄), so (12) is proved. (This can also be seen with the

help of Proposition 5.3. Indeed one checks easily that xi is an α-special element of R̂/P , with

corresponding α-invariant Ore set A in R̂/P equal to {ami xn
i : m ∈ Z, n ∈ N}. Hence Ŝ/P Ŝ is

primitive and since (R̂/P )A−1 is not a field, we conclude from the proposition that Ŝ/P Ŝ does
not satisfy (⋄).)

Notice also that this completes the proof of the proposition in the case where k, or equivalently
L, has positive characteristic, since then the matrix of α lies in GL(t, E) for some finite field E.

Now suppose L has characteristic 0, and that α is not diagonalisable, so that there is a Jordan
block of α of cardinality greater than 1. Let n be the least common multiple of the orders of the
generalised eigenvalues of α. Replacing Ŝ by R̂[θn;αn], using Lemma 4.6(a), we may assume that

the only generalised eigenvalue of α is 1. We aim for a contradiction to the hypothesis that Ŝ
satisfies (⋄). Rearranging the order of the basis vectors of V if need be, we can assume that there

is a block of α with basis {xm, . . . , xt}, for some m < t. Consider now the α-invariant ideal of R̂,

I :=
t−2∑

ℓ=1

xℓR̂+ (xt−1 − 1)R̂.

Passing to Ŝ/IŜ ∼= (R̂/I)[θ;α] ∼= L[xt][θ;α], we may assume that

α : xt 7→ xt + 1. (13)

One readily checks that Ŝ/IŜ is isomorphic to the enveloping algebra of the 2-dimensional solvable
non-abelian Lie algebra over a field of characteristic 0, so it does not satisfy (⋄), by [29]; alter-

natively, since L has characteristic 0, R̂/I is α-simple and one can appeal directly to Proposition

4.10 to get a contradiction to property (⋄) for Ŝ. Therefore, α is diagonalisable; coupling this with
(12), the proposition is proved.

7 Examples and discussion

We discuss in this section property (⋄) for S = R[θ;α] when the base ring R is an integral domain
and an affine k-algebra over a field k, and α is a k-algebra automorphism of R. In the light of
Theorem 6.1 and Proposition 6.2, this amounts to examining the interconnections between the
following four hypotheses:

(•) S satisfies (⋄).

(•) Every simple S-module has finite dimension over k.

(•) S satisfies a polynomial identity.

(•) α has finite order.

We have seen in §6 that the first two of these are equivalent, that the third and fourth are
equivalent, by [7], and that the third implies the second, by Kaplansky’s theorem, [2, Theorem
I.13.3]. Moreover all four are equivalent when α is a linear automorphism of a polynomial algebra,
by Proposition 6.2.

We first consider, in §7.1 and §7.2, the application of Theorem 6.1 to the algebras Sk,n,α :=
k[x1, . . . , xn][θ;α], where k is a field, n is a positive integer, and α is as a k-algebra automorphism
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of k[x1, . . . , xn]. Here, we will only consider n = 1 and n = 2, but even for these small values of n
the situation turns out to be surprisingly delicate. The representation theory of Sk,n,α likely has
close interactions with the dynamical properties of α, as studied for example in [9] and subsequent
works; see for instance [33]. Even for the case n = 2 we are unable to determine whether the first
bullet point above is equivalent to the third and fourth.

We then turn in §7.3 to algebras S = R[θ;α] occurring as subalgebras of group algebras kG
of torsion-free polycyclic groups G, where k is algebraic over a field of p elements, p prime. Here,
thanks to deep results on the representation theory of these group algebras, we can easily construct
many examples where the first two of the above bullet points hold, but the second two do not.

It remains to the best of our knowledge an open question at this point whether the four bullet
points above are equivalent when k has characteristic 0. In the final subsection, §7.4, we describe
an example due to Jordan (cf.[21]), which would, if correct, show that there is no equivalence of
the four bullet points for affine algebras in characteristic 0; but unfortunately there appears to be
a gap in the analysis of this example in [21].

7.1 (⋄) for Sk,1,α

Here k can be an arbitrary field. As is easy to confirm, the group A of k-algebra automorphisms
of k[x] consists of the affine automorphisms, mapping x to βx+ γ, for β, γ ∈ k with β non-zero.

Proposition 7.1. With the above notation, the following are equivalent.

(a) Sk,1,α satisfies (⋄);

(b) every simple Sk,1,α-module is finite dimensional over k;

(c) Sk,1,α is a finite module over its centre;

(d) either (i) k has characteristic 0, β is a root of unity and γ = 0; or (ii) k has positive
characteristic p and β is a root of unity.

Proof. The implications (d)⇒(c)⇒(b)⇒(a) are standard. Indeed suppose (d) holds. Then α is of
finite order and by Noether’s Theorem [38, Theorem 2.3.1], (c) follows easily. Moreover S satisfies
a polynomial identity and by Kaplansky’s Theorem [2, Theorem I.13.3] we have that (c)⇒(b).
The implication (b)⇒(a) follows as in Theorem 6.1.

(a)⇒(d) Suppose that Sk,1,α satisfies (⋄).
First, assume that k has characteristic 0. Then, if γ is not 0 we can argue as in the argument

to deal with (13) in the proof of Theorem 6.1, to get a contradiction. So γ = 0 and we are in the
quantum plane setting which arose in proving (12). By [6, Theorem 3.1] it follows that β is a root
of unity.

Finally, suppose that k has positive characteristic p. Replacing Sk,1,α by T := k[x][θp;αp] and
appealing to Proposition 2.2(a), we may assume that γ = 0. So T is a quantum plane and βp is a
root of unity as above, completing the proof.

7.2 (⋄) for SC,2,α

Consider here SC,2,α = C[x, y][θ;α]. Let A := Aut(C[x, y]), the group of C-algebra automorphisms
of R := C[x, y], and let α ∈ A. Following [39, Proposition 1], α is triangular if it is conjugate in
A to one of the following types of automorphism:

(i) x 7→ λx; y 7→ µy, λ, µ ∈ C \ {0};

(ii) x 7→ λx; y 7→ y + c, λ, c ∈ C \ {0};

(iii) x 7→ λx+
∑

{i:λ=µi}

ηiy
i; y 7→ µy, ηi ∈ C, λ, µ ∈ C \ {0}.
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Note that if ξ ∈ A, then ξ extends to an isomorphism from R[θ;α] to R[θ; ξαξ−1]. Thus,
throughout the arguments below, we may where convenient replace a hypothesis that α is conjugate
to an element of type (j) by the hypothesis that α belongs to type (j). A similar comment applies
also to the later proofs in this subsection.

Lemma 7.2. With the notation as above, suppose that α is triangular. Then the following are
equivalent:

(a) SC,2,α satisfies (⋄);

(b) α is conjugate to an automorphism of type (i), with λ and µ both roots of unity;

(c) α has finite order;

(d) SC,2,α is a finite module over its centre;

(e) every simple SC,2,α-module is a finite dimensional k-vector space.

Proof. The implication (b)⇒(c) is clear and (c)⇒(d)⇒(e) follow as in the first paragraph of the
proof of Proposition 7.1. Finally, (e)⇒(a) is a special case of (b)⇒(a) of Theorem 6.1.

To prove (a)⇒(b) suppose that SC,2,α satisfies (⋄). If α is of type (ii), then xSC,2,α is an ideal of
SC,2,α and SC,2,α/xSC,2,α is isomorphic to C[y][θ;β] where β(y) = y+ c for c 6= 0. By Proposition
7.1 and Proposition 2.2(c), SC,2,α does not satisfy (⋄), contradicting our hypothesis.

Suppose alternatively that α is of type (iii) but not type (i). Since ySC,2,α is an ideal of SC,2,α

and SC,2,α/ySC,2,α is isomorphic to a quantum plane with parameter λ. By Propositions 7.1 and
2.2(c), λ is a root of unity. Since SC,2,α is by hypothesis not type (i), this forces µ also to be a
root of unity. By Proposition 2.2 the subalgebra C[x, y][θn;αn] of SC,2,α also satisfies (⋄), so we
may pass to that subalgebra for a suitable choice of n, and thus assume that µ = 1 = λ, (but

keep the notation SC,2,α = C[x, y][θ;α]). Let τ ∈ C be a root of the polynomial
∑

λ=µi

ηiy
i − 1.

Then (y − τ)SC,2,α is an ideal of SC,2,α, with SC,2,α/(y − τ)SC,2,α isomorphic to C[x][θ;α] and
α(x) = x+ 1. A contradiction once again follows from Propositions 7.1 and 2.2(c).

We turn now to a consideration of those automorphisms of C[x, y] which are not triangular.
Again following [39], an element α of A is called square if it is not conjugate to a triangular
automorphism, and, following [9], α is a generalised Hénon automorphism if

α(x) = y; α(y) = λx+ β(y)

for some λ ∈ C \ {0} and β(y) ∈ C[y], with β(y) having degree at least two1. By [9, Theorem 2.6],
every square element of A is conjugate to a product of generalised Hénon automorphisms2.

Let us examine first the prime spectrum of SC,2,α when α is square. We follow initially in the
proof of the following lemma the argument of [21, proof of Proposition 7.8, first paragraph].

Lemma 7.3. Let α be a square automorphism of C[x, y]. Then Spec(SC,2,α) is the disjoint union
of V(θ) := {P ∈ Spec(SC,2,α) : θ ∈ P}, and C(θ) := Spec(SC,2,α) \ V(θ), and these sets have the
following descriptions:

(a) V(θ) is homeomorphic to Spec(C[x, y]).

(b) C(θ) is homeomorphic to Spec(TC,2,α), where TC,2,α := C[x, y][θ±1;α].

(c) Spec(TC,2,α) is partitioned into the following three disjoint subsets.

1This degree condition is mistakenly omitted from the definition in [21, page 368], although it is present in [9,
Definition 2.5] The condition omitted by [21] is definitely needed for the validity of some of the results in [9].

2[9, Theorem 2.6] is slightly mis-stated, since the cyclically reduced automorphisms which it treats include all
the square automorphisms, but also the affine automorphisms which are not also elementary, such as, for example
the map τ : x 7→ y, y 7→ x. See the definitions on pages 68-69 of [9]. In fact, [9, Theorem 2.6] is valid, in the
terminology of that paper, for the elements of A having degree at least 2.
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(i) An uncountable set of co-Artinian maximal ideals {Mj,λ : j ∈ N, λ ∈ C}, all of height
2;

(ii) A countably infinite set of height one mutually comaximal prime ideals {Pj : j ∈ N},
with ⋂

j∈N

Pj = (0);

(iii) (0).

(d) For each j ∈ N, there exists a positive integer nj and a finite 〈α〉-orbit {Qj,0, Qj,1 =
α(Qj,0), . . . , Qj,nj−1 = αnj−1(Qj,0)} of maximal ideals of C[x, y], such that

Pj = (

nj−1⋂

ℓ=0

Qj,ℓ)TC,2,α.

(e) For j ∈ N, denote the prime ideal Pj ∩SC,2,α of SC,2,α by P ′
j. Thus P ′

j = (
⋂nj−1

ℓ=0 Qj,ℓ)SC,2,α.
For each j ∈ N, (writing θ also for the image of θ in SC,2,α/P

′
j and in TC,2,α/Pj),

(SC,2,α/P
′
j)[θ

−1] = TC,2,α/Pj
∼= Mnj

(C[θ±nj ]). (14)

In particular, TC,2,α/Pj is an Azumaya algebra over its centre C[θ±nj ], so the maximal ideals
of TC,2,α/Pj are parametrised by C, and are the ideals

{Mj,λ/Pj : λ ∈ C}.

Hence, for all j ∈ N and λ ∈ C,

TC,2,α/Mj,λ
∼= Mnj

(C).

(f) The integers nj, for j ∈ N, are unbounded; more precisely, every sufficiently large prime
number occurs amongst the nj.

Proof. The partition of Spec(SC,2,α) into V(θ) and C(θ) is clear, and (a) and (b) follow at once
since SC,2,α/θSC,2,α

∼= R and TC,2,α is the localization of SC,2,α with respect to powers of θ.
By [9, Theorem 3.1], C[x, y] has countably infinitely many maximal ideals with a finite 〈α〉-

orbit. Enumerating these orbits by the parameter j ∈ N, and letting nj be the size of the jth
orbit, the integers nj satisfy (f), by [9, Corollary 8.6 and note added in proof, page 97]. Labelling
the jth finite 〈α〉-orbit as in (d), and defining the corresponding induced ideal Pj also as in (d),
yields a countably infinite set of comaximal prime ideals of T2,α,C by Lemma 2.3(b), giving the
subset (c)(ii) of Spec(TC,2,α), see also [41, Theorem III.31]. The subset (c)(iii) is clear.

Let I be any other prime ideal of T2,α,C, so that I is non-zero and

I ∩ C[x, y] = (I ∩ SC,2,α) ∩ C[x, y]

is an α-prime ideal of C[x, y] by Lemma 2.3(c). If I ∩C[x, y] is co-Artinian, then, by construction,
I contains one of the primes Pj constructed above. Otherwise,

I ∩ C[x, y] = (0), (15)

since C[x, y] has no α-stable proper principal ideal, by [24]; see [39, note added in proof, page
572]. Assume now that (15) holds. By [17, Theorem 4.3], as α is of infinite order the only prime
of SC,2,α, not containing θ, which lies over (0) in C[x, y] is (0). Thus (0) is the only prime ideal of
TC,2,α not containing one of the ideals Pj .

It remains to prove (e), in the course of which the maximal ideals of (c)(i) will be described.
It follows easily from Lemma 2.3(b) that TC,2,α/Pj

∼= R[θ±1;α] where R is the direct sum
of nj copies of C and α acts on R by α(ei) = e(i+1)modnj

, where {ei : 1 ≤ i ≤ nj} is the set
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of primitive idempotents of R. Set n = nj , f = (1 − e1)θ, a = θ−n+1 and b = θ−1. Then:
fn−1 = (1− e1)(1− e2) . . . (1− en−1)θ

n−1 = enθ
n−1, afn−1 = θ−n+1enθ

n−1 = e1 and fb = 1− e1.
Thus afn−1 + fb = 1 and fn = 0. Therefore, by [1, Theorem 1.3], R[θ±1;α] = Mn(B) with
e11 = afn−1 = e1. As θ

n is central and e1θ
ke1 = 0, for 0 < k < n, we have B = e11R[θ±1;α]e11 =

(e1R)[θ±n] ≃ C[θ±n] and (14) holds. Now using standard arguments it is easy to complete the
proof.

We can now summarise our (at present incomplete) knowledge about the occurrence of property
(⋄) for the algebras SC,2,α. Recall that, by definition, every element of AutC−alg(C[x, y]) is either
triangular or square.

Theorem 7.4. Let R = C[x, y], let α ∈ A = AutC−alg(R), and let SC,2,α = R[θ;α].

(a) Suppose that α is triangular. Then SC,2,α satisfies (⋄) if and only if α has finite order if and
only if α is conjugate to an element of type (i), with λ, µ roots of unity in C.

(b) Suppose that α is square. Then SC,2,α satisfies (⋄) if and only if SC,2,α is not primitive.

Proof. (a) This is part of Lemma 7.2.
(b) Suppose that SC,2,α is primitive. Then SC,2,α does not satisfy (⋄) by Theorem 5.4(b).
Suppose on the other hand that SC,2,α is not primitive. Then, from the description of the prime

spectrum of SC,2,α in Lemma 7.3, it is clear, bearing in mind Kaplansky’s theorem [2, Theorem
I.13.3], that the only primitive ideals of SC,2,α are the co-Artinian maximal ideals Mj,λ. Hence,
every simple SC,2,α-module is finite dimensional over C. Therefore, SC,2,α satisfies (⋄) by Theorem
6.1.

Of course, Theorem 7.4(b) begs the following obvious question. Keep the notation of Theorem
7.4, and suppose that α is a square automorphism. Is SC,2,α primitive? The simplest square
automorphism is perhaps the map x 7→ y, y 7→ x + y2. We do not even know the answer in this
case.

Using the Leroy-Matczuk criterion for primitivity, Theorem 4.2, coupled with Lemma 7.3, it
is not hard to reduce the above question to one about the geometry of the finite orbits of square
automorphisms, a question which may be of independent interest. It seems more natural to frame
it in terms of points in the plane C2, rather than in terms of maximal ideals of R:

Proposition 7.5. Keep the notation of Theorem 7.4, with α square. Denote the countably in-
finitely many finite 〈α〉-orbits of points in C2 by Pj, for j ∈ N. Then SC,2,α is primitive if and
only if a point (aj , bj) ∈ Pj can be chosen, for every j ∈ N, such that {(aj, bj) : j ∈ N} lies on a
(not necessarily irreducible) affine curve in C2.

We leave the straightforward proof to the reader and refer to [21, Lemma 2.6(v)] for an equiv-
alent description of α-special rings.

7.3 Subalgebras of group algebras over absolute fields

This family of examples shows that neither of the conditions (c) S satisfies a polynomial identity
nor (d) |α| < ∞ is implied by conditions (a) or (b) of Theorem 6.1. Note that (c) and (d) are
equivalent when R is semiprime, by [31] or [7].

Let A be a free abelian group of finite rank t, (t > 1). Write A multiplicatively with free
generating set X1, . . . , Xt. Let M ∈ GLt(Z), and define an automorphism α of A using M ; that
is, for Xn = Xn1

1 . . . Xnt

t ∈ A, with n = (n1, . . . , nt) ∈ Zt,

α(Xn) := XMn,

where n is written as a column vector on the right hand side.
Let 〈θ±1〉 be an infinite cyclic group, and form the semidirect product

G := A⋊α 〈θ±1〉,
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so that G is a torsion-free polycyclic group of Hirsch length t + 1. Now let p be a prime integer,
and let k be a subfield of the algebraic closure of the field of p elements. By a celebrated result of
Roseblade, [34], every simple module for the group algebra kG has finite dimension as a k-vector
space. (Roseblade’s result applies to all polycyclic-by-finite groups; the case where the group is
nilpotent-by-finite was proved by Philip Hall in 1959 [15].)

Let S be the subalgebra kA[θ;α] of kG. We claim that S inherits from kG the property that
all its simple modules are finite dimensional. To see this, let W be a simple S-module. Since
the powers of θ form an Ore set in S, W is either θ-torsion or θ-torsion free. In the first case,
Wθ = 0, so that W is a simple module over S/θS ∼= kA. Therefore dimk(W ) < ∞ by Hilbert’s
nullstellensatz. In the second case, Wθ = W , so W carries a structure as S〈θ−1〉-module, that is
as kG-module. As such, it is necessarily simple, and hence has finite k-dimension by Roseblade’s
theorem [34].

Finally, choosing M to be a matrix of infinite order, we obtain an algebra S which is a skew
polynomial k-algebra over a Laurent polynomial coefficient algebra, which has property (⋄) but
for which |α| = ∞.

7.4 A subalgebra of a group algebra in characteristic 0

The following example is considered in [21, 7.10-7.14].
Let S = R[θ;α], where R = C[x, x−1, y, y−1] and α ∈ AutC−alg(R) is defined by α(y) = x and

α(x) = yx−1. In [21], Jordan considers both the algebras S := R[θ;α] and T := R[θ±1;α]. He
proves in [21, Proposition 7.13] that T is primitive. In the same proposition it is claimed that R is
not α-special, so that, by the Leroy-Matczuk theorem, Theorem 4.2, S is therefore not primitive.
As is shown in [21, Propositions 7.11, 7.12], every non-zero primitive ideal of S is co-Artinian.
Hence, if S itself is not primitive, then every simple S-module is finite dimensional, and S satisfies
(⋄) by Theorem 6.1. However, there appears to be a gap in the proof that R is not α-special in
[21, Proposition 7.13], so that the status of S as regards the first two bullet points listed at the
start of §7 is unknown. We therefore ask: Is S primitive?

Observe that, in the light of Theorem 6.1 and the above discussion, S satisfies (⋄) if and only
if it is not primitive.

8 Questions

For the convenience of the reader, we gather here a number of open questions arising from this
work, some of them previously raised earlier in the text, some appearing here for the first time.
As usual, k is a field, and S will denote the skew polynomial ring R[θ;α], where R is commutative
Noetherian and α is an automorphism. Further hypotheses will be added as needed.

First, a question which seeks to remove the gap between the necessary and sufficient conditions
in Theorem 1.1 (= 5.4).

Question 8.1. Suppose that S is primitive and satisfies (⋄). Must R be a finite direct sum of
fields?

We should note that the remaining case of Theorem 5.4 is the one where α is of infinite order,
and R is an α-special Noetherian domain of Krull dimension 1 with countable spectrum. Moreover
RA−1 is a field, where A, as before, is the smallest Ore set of S containing an α-special element.
When A is finitely generated as a multiplicatively closed set (it is then possible to replace A by
the set of powers of an α-special element) R is a G-domain (see [22, Theorem 19]). Thus, by [22,
Theorem 156], R is semilocal. The case when R = K[[X ]], the ring of formal power series and
α is the automorphism given by α(X) = qX , for q ∈ K not a root of unity, is a key example to
consider.

A second point where necessary and sufficient conditions fail to match is in the affine case,
where the proof in one direction of Theorem 1.2 (= 6.1) needs the base field to be uncountable.
So we ask:
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Question 8.2. Suppose that R is an affine k-algebra and S satisfies (⋄). Are all simple S-modules
finite dimensional over k?

It is worth noting in connection with Question 8.2 that (⋄) is in general not well-behaved with
regard to change of base field. Consider, for example, any polycyclic-by-finite group G which is
not abelian-by-finite; for instance, the Heisenberg group

G = 〈x, y, z : [x, y] = z, z central〉.

Choose a prime p, and let k be the field of p elements. Then kG satisfies (⋄), as already noted in
§1.3, thanks to Roseblade’s theorems [35], [34] (or by [15] if we take G to be nilpotent as above.
Now let F be any field of charactersitic p which is not algebraic over k. Then FG = F ⊗k kG
does not satisfy (⋄) by [29].

Haunting the results of §6 and the examples of §7 is the fundamental, if vague, question:

Question 8.3. Suppose that R is k-affine and α ∈ Autk−alg(R). Are there “reasonable” necessary
and sufficient hypotheses on R and α which determine when all the simple S-modules are finite-
dimensional?

The examples stemming from group examples considered in §7.3 show that the situation re-
garding Question 8.3 in positive characteristic is undoubtedly rather delicate. By contrast, in
characteristic 0, there is, so far as we are aware, no example known at present where S is k-affine,
has all its simple modules finite dimensional, but does not satisfy a polynomial identity. Note
however that this includes specific examples studied in §§7.2 and 7.4 where the question of prim-
itivity remains open. We therefore end by recording those concrete examples, which should be
regarded as test cases for Question 8.3, and whose resolution seems to be potentially interesting
from the perspectives of dynamical systems and of algebraic geometry.

The first of these two test cases repeats the question asked after Theorem 7.4.

Question 8.4. Let S = SC,2,α = C[x, y][θ;α], where α is a square automorphism. For example,
α could be the map sending x to y and y to x+ y2. Is S primitive? Equivalently, does S have an
infinite dimensional simple module?

The final test case seeks a resolution of the gap left in the proof of [21, Proposition 7.13].

Question 8.5. Let S = C[x, x−1, y, y−1][θ;α], where α(y) = x and α(x) = yx−1. Is S primitive?
Equivalently, does S have an infinite dimensional simple module?
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