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Abstract. The moduli space of Higgs bundles has two stratifications. The Bialynicki-
Birula stratification comes from the action of the non-zero complex numbers by multipli-
cation on the Higgs field, and the Shatz stratification arises from the Harder–Narasimhan
type of the vector bundle underlying a Higgs bundle. While these two stratification co-
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1 Introduction

Higgs bundles and their moduli were first studied by Hitchin and Simpson and have been
around for almost 30 years. They continue to be the subject of intensive investigations
with links to diverse areas of mathematics such as non-abelian Hodge theory, integrable
systems, mirror symmetry, the Langlands programme, among others.

In this paper we focus on the moduli space of Higgs bundles on a compact Riemann
surface X. The topology of this moduli space has been studied extensively. Some early
calculations of Betti numbers were carried out by Hitchin [17] for rank 2 and the first
author [6] for rank 3. Further significant progress has been made by a number authors,
see, e.g., [15, 16, 18, 1, 19, 13, 5, 12, 11, 8, 9]. Recently Schiffmann [22] has completely
determined the additive cohomology in the case of Higgs bundles with rank and degree
co-prime.
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2 Stratifications on the Moduli Space of Higgs Bundles

On the other hand, the homotopy theory of the moduli space of Higgs bundles has not
been the subject of a lot of interest. Hausel [10] in his thesis studied the case of rank 2
Higgs bundles, while in [4] some results were obtained for general rank. The latter paper
used the Bialynicki-Birula stratification of the Higgs bundle moduli space coming from
the C∗-action given by multiplying the Higgs field by scalars. In rank 2 this stratification
coincides with the Shatz stratification, which is given by the Harder–Narasimhan type
of the vector bundle underlying a Higgs bundle. As already observed by Hitchin and
exploited by Hausel and Thaddeus [10, 15] this makes the case of rank 2 Higgs bundles
akin to a finite dimensional version of the infinite dimensional situation of Atiyah–Bott
[2].

However, in general the Bialynicki-Birula and Shatz stratifications do not coincide,
and it is therefore of interest to study their relationship. In this paper we carry out such
a study in the case of rank 3 Higgs bundles, where it turns out that the situation is alreay
fairly complicated. Indeed, our main result, Theorem 4.2, shows that each Shatz stratum
is intersected by several different Bialynicki-Birula strata. Moreover, knowledge of the
underlying vector bundle of a Higgs bundle is not sufficient to determine its Bialynicki-
Birula stratum, one also needs knowledge on the Higgs field. However, for sufficiently
unstable underlying vector bundles the situation is simpler and the Shatz strata coincide
with Bialynicki-Birula strata: this is described in Theorem 4.6.

Our results should serve as a useful pointer to the general situation for higher rank
Higgs bundles and one may also hope that it could shed light on the homotopy theory of
higher rank Higgs bundle moduli spaces.

This paper is organized as follows. In Section 2 we give some preliminaries about
Higgs bundles and their moduli spaces and we explain the Bialynicki-Birula and Shatz
stratifications of the moduli space. Then in Section 3 we give some bounds on the Harder–
Narasimhan types which occur in the moduli space of rank 3 Higgs bundles. Finally, in
Section 4 we give our main results on the relation of the two stratifications.

2 Preliminaries

2.1 Higgs bundles and their moduli

Let X be a closed Riemann surface of genus g and let K = KX = TX∗ be the canonical
line bundle of X.

Definition 2.1. A Higgs bundle over X is a pair (E, Φ) where the underlying vector
bundle E → X is a holomorphic vector bundle and the Higgs field Φ : E → E ⊗ K is a
holomorphic endomorphism of E twisted by K.

The slope of a vector bundle E is the quotient between its degree and its rank: µ(E) =
deg(E)/ rk(E). Recall that a vector bundle E is semistable if µ(F ) 6 µ(E) for all non-zero
subbundles F ⊂ E, stable if it is semistable and strict inequality holds for all non-zero
proper F , and polystable if it is the direct sum of stable bundles, all of the same slope.
The corresponding stability notions for Higgs bundles are defined in exactly the same
way, except that only Φ-invariant subbundles F ⊂ E (satisfying Φ(F ) ⊂ F ⊗ K) are
considered.

The moduli space M(r, d) of rank r and degree d Higgs bundles was constructed by
Nitsure [20]. When r and d are coprime any semistable Higgs bundle is automatically
stable and M(r, d) is smooth. For the remainder of the paper we shall asumme that this
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P. B. Gothen and R. A. Zúñiga-Rojas 3

is the case. There are no stable Higgs bundles when g 6 1, and so we shall also assume
that g > 2.

We shall need to consider the moduli space from the complex analytic point of view.
For this, fix a complex C∞ vector bundle E of rank r and degree d on X. A holomorphic
structure on E is given by a ∂̄-operator ∂̄E : A0(E) → A0,1(E) and we thus obtain a
holomorphic vector bundle E = (E , ∂̄E). From this point of view, a Higgs bundle (E, Φ)
arises from a pair (∂̄E , Φ) consisting of a ∂̄-operator and a Higgs field Φ ∈ A1,0(End(E))
such that ∂̄EΦ = 0. The natural symmetry group of the situation is the complex gauge
group GC = {g : E → E | g is a C∞ bundle isomorphism}, which acts on pairs (∂̄E , Φ)
in the standard way:

g · (∂̄E , Φ) = (g ◦ ∂̄E ◦ g−1, g ◦ Φ ◦ g−1).

The moduli space can then be viewed as the quotient3

M(r, d) = {(∂̄E , Φ) | ∂̄EΦ = 0 and (E, Φ) is stable}/GC.

2.2 Harder–Narasimhan filtrations and the Shatz stratification

The Harder–Narasimhan filtration of a vector bundle was introduced in [7] and studied
systematically by Shatz [21]. It plays an important role in the work of Atiyah and Bott
[2]. We refer the reader to these references for details on what follows.

Let E be a holomorphic vector bundle on X. A Harder-Narasimhan Filtration of E,
is a filtration of the form

HNF(E) : E = Es ⊃ Es−1 ⊃ · · · ⊃ E1 ⊃ E0 = 0 (2.1)

which satisfies the following two properties:

(i) µ(Ej+1/Ej) < µ(Ej/Ej−1) for 1 6 j 6 s − 1.

(ii) Ej/Ej−1 is semistable for 1 6 j 6 s.

For brevity, when we have a filtration E = Es ⊃ Es−1 ⊃ · · · ⊃ E1 ⊃ E0 = 0 we shall
sometimes write Ēj = Ej/Ej−1 for the subquotients. The associated graded vector bundle
is

Gr(E) =
s
⊕

j=1

Ej/Ej−1 =
s
⊕

j=1

Ēj .

Any vector bundle E has a unique Harder–Narasimhan filtration. The Harder–
Narasimhan polygon is the polygon in the first quadrant of the (r, d)-plane with vertices
(rk(Ej), deg(Ej)) for j = 0, . . . , s. The slope of the line joining (rk(Ej−1), deg(Ej−1)) and
(rk(Ej), deg(Ej)) is µ(Ēj). Condition (i) above says that the Harder–Narasimhan polygon
is convex. Clearly this is equivalent to saying that µ(Ej) < µ(Ej−1) for j = 2, . . . , s.

The Harder–Narasimhan type of E is the vector in Rr:

HNT(E) = µ = (µ(Ē1), . . . , µ(Ē1), . . . , µ(Ēs), . . . , µ(Ēs))

where the slope of each Ēj is repeated rk(Ēj) times.

3Strictly speaking one should use appropriate Sobolev completions as in Atiyah and Bott [2]; see, for
example, Hausel and Thaddeus [15] for the case of Higgs bundles.
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4 Stratifications on the Moduli Space of Higgs Bundles

As a consequence of Shatz [21, Propositions 10 and 11], there is a finite stratification
of M(r, d) by the Harder–Narasimhan type of the underlying vector bundle E of a Higgs
bundle (E, Φ):

M(r, d) =
⋃

µ

U ′

µ

where U ′

µ ⊂ M(r, d) is the subspace of Higgs bundles (E, Φ) whose underlying vector
bundle E has Harder–Narasimhan type µ. This stratification is known as the Shatz
stratification. Note that there is an open dense stratum corresponding to Higgs bundles
(E, Φ) for which the underlying vector bundle E is itself stable. Since Φ ∈ H0(End(E) ⊗
K) ∼= H1(End(E))∗ (by Serre duality) such a Higgs bundle represents a point in the
cotangent bundle of the moduli space of stable bundles N (r, d). In other words,

U ′

(r/d,...,r/d) = T ∗N (r, d) ⊂ M(r, d).

2.3 The C
∗-action and the Bialynicki-Birula stratification

We review some standard facts about the C∗-action on M(r, d). For more details see,
e.g., Simpson [23].

The holomorphic action of the multiplicative group C∗ on M(r, d) is defined by the
multiplication:

z · (E, Φ) 7→ (E, z · Φ).

The limit (E0, ϕ0) = limz→0 z · (E, Φ) exists for all (E, Φ) ∈ M(r, d). Moreover, this limit
is fixed by the C∗-action. A Higgs bundle (E, Φ) is a fixed point of the C∗-action if and
only if it is a Hodge bundle, i.e. there is a decomposition E =

⊕p
j=1 Ej with respect to

which the Higgs field has weight one: Φ: Ej → Ej+1 ⊗ K. The type of the Hodge bundle
(E, Φ) is (rk(E1), . . . , rk(Ep))

Let {Fλ} be the irreducible components of the fixed point locus of C∗ on M(r, d). Let

U+
λ := {(E, Φ) ∈ M | lim

z→0
z · (E, Φ) ∈ Fλ}.

Then we have the Bialynicki-Birula stratification (cf. [3]) of M(r, d):

M =
⋃

λ

U+
λ .

3 Bounds on Harder–Narasimhan types in rank 3

Let (E, Φ) be a rank 3 Higgs bundle. Let (µ1, µ2, µ3) be the Harder–Narasimhan type of
E, so that µ1 > µ2 > µ3 and µ1 + µ2 + µ3 = 3µ, where µ = µ(E). We can write the
Harder–Narasimhan filtration of the vector bundle E as follows:

HNF(E) : 0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 = E,

where we have made the convention that Ei = Ej if µi = µj . Thus, for example, if
µ1 = µ2 > µ3 then the Harder–Narasimhan filtration is

HNF(E) : 0 = E0 ⊂ E1 = E2 ⊂ E3 = E

and rk(E1) = rk(E2) = 2. Similarly, if µ1 > µ2 = µ3 then rk(E1) = 1 and rk(E2) = 3.

4
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We shall next introduce some notation which will be used throughout the remainder
of the paper.

Let ϕ21 : E1 → E/E1 ⊗ K be the map induced by Φ and let

I ⊂ E/E1 (3.1)

be the subbundle defined by saturating the subsheaf ϕ21(E1) ⊗ K−1 ⊂ E/E1. Similarly,
let ϕ32 : E2 → E/E2 ⊗ K be the map induced by Φ and let

N = ker(ϕ32) ⊂ E2 (3.2)

viewed as a subbundle.

Remark 3.1. Let (E, Φ) be a stable Higgs bundle such that E is an unstable vector bundle
of Harder–Narasimhan type (µ1, µ2, µ3). Then E1 ⊂ E2 is destabilizing and hence, by
stability of (E, Φ), we have ϕ21 6= 0. Similarly E2 ⊂ E is destabilizing and so ϕ32 6= 0
(unless µ2 = µ3 ⇐⇒ E2 = E).

Proposition 3.2. Let (E, Φ) be a semistable rank 3 Higgs bundle of Harder–Narasimhan
type (µ1, µ2, µ3). Then

0 6 µ1 − µ2 6 2g − 2, (3.3)

0 6 µ2 − µ3 6 2g − 2. (3.4)

Proof. The fact that the differences µi+1 − µi are non-negative is just the convexity of
the Harder–Narasimhan polygon.

If E is semistable the result is clear, so we may assume that this is not the case.
If µ1 > µ2 then rk(E1) = 1, and I ⊂ E/E1 is a line bundle, since ϕ21 6= 0 by

Remark 3.1. It follows that we have a non-zero map of line bundles E1 → I ⊗ K and so

µ(I) + 2g − 2 > µ(E1) = µ1.

Also, since E2/E1 ⊂ E/E1 is maximal destabilizing, we have that

µ(I) 6 µ(E2/E1) = µ2

(note that this inequality also holds if µ2 = µ3). Combining these two inequalities proves
(3.3).

If µ2 > µ3 then rk(E2) = 2, and N ⊂ E2 is line bundle, since ϕ32 6= 0 by Remark 3.1.
It follows that we have a non-zero map of line bundles E2/N → E/E2 ⊗ K and so

µ(E/E2) + 2g − 2 > µ(E2/N)

⇐⇒ µ3 + 2g − 2 > deg(E2) − µ(N) = µ1 + µ2 − µ(N).

Also, since E1 ⊂ E2 is maximal destabilising, we have that

µ(N) 6 µ(E1) = µ1

(note that this inequality also holds if µ1 = µ2). Combining these two inequalities proves
(3.4).

Note that the proof of the preceding Proposition gives the following bounds on the
slopes of the bundles I and N .

5



6 Stratifications on the Moduli Space of Higgs Bundles

Proposition 3.3. Let (E, Φ) be a semistable rank 3 Higgs bundle of Harder–Narasimhan
type (µ1, µ2, µ3) and define I ⊂ E/E1 and N ⊂ E2 as above.

(1) If µ1 > µ2 then I ⊂ E/E1 is a line subbundle of a rank 2 bundle and µ1 −(2g −2) 6
µ(I) 6 µ2.

(2) If µ2 > µ3 then N ⊂ E2 is a line subbundle of a rank 2 bundle and µ1 + µ2 − µ3 −
(2g − 2) 6 µ(N) 6 µ1.

4 Limits of the C
∗-action

The purpose of the present section is to analyse the limit as z → 0 of z · (E, Φ) as a
function of the Harder–Narasimhan type of E.

4.1 Trivial Harder–Narasimhan filtrations

Let (E, Φ) be a stable Higgs bundle. When the underlying vector bundle E is itself stable,
clearly limz→0 z · (E, Φ) = (E, 0). Hence we have the following result, valid for any rank.

Proposition 4.1. Let (E, Φ) ∈ M(r, d). Then limz→0 z · (E, Φ) = (E, 0) if and only if
E is stable.

Proof. It only remains to observe that if (E, 0) = limz→0 z ·(E, Φ) is a stable Higgs bundle
then E is a stable vector bundle.

4.2 Non-trivial Harder–Narasimhan filtrations

Again we limit ourselves to considering rank 3 stable Higgs bundles (E, Φ) and assume
that (r, d) = 1, i.e., that d is not divisible by 3. We shall use the notation introduced in
Section 3.

Theorem 4.2. Let (E, Φ) ∈ M(3, d) be such that E is an unstable vector bundle of slope µ
and with Harder–Narasimhan type (µ1, µ2, µ3). Then the limit (E0, Φ0) = limz→0(E, z ·Φ)
is given as follows.

(1) Assume that µ2 < µ. Then µ1 > µ2 > µ3 and one of the following alternatives
holds.

(1.1) The slope of I satisfies µ1 − (2g − 2) 6 µ(I) < −1
3
µ1 + 2

3
µ2 + 2

3
µ3 and (E0, Φ0)

is the following Hodge bundle of type (1, 2):

(E0, Φ0) =
(

E1 ⊕ E/E1,

(

0 0
ϕ21 0

)

)

.

The associated graded vector bundle is Gr(E0) = Gr(E).

6
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(1.2) The slope of I satisfies −1
3
µ1 + 2

3
µ2 + 2

3
µ3 < µ(I) 6 µ3 and (E0, Φ0) is the

following Hodge bundle of type (1, 1, 1):

(E0, Φ0) =
(

E1 ⊕ I ⊕ (E/E1)/I,







0 0 0
ϕ21 0 0
0 ϕ32 0







)

,

where ϕ21 and ϕ32 are induced from Φ. The associated graded vector bundle is
Gr(E0) = E1 ⊕ (E/E1)/I ⊕ I and its Harder–Narasimhan type is HNT(E0) =
(µ1, µ2 + µ3 − µ(I), µ(I)).

(1.3) The slope of I satisfies µ(I) = µ2 and the strict inequality µ3 < µ2 holds.
Moreover, the line bundle I = E2/E1 and (E0, Φ0) is the following Hodge
bundle of type (1, 1, 1):

(E0, Φ0) =
(

E1 ⊕ E2/E1 ⊕ E/E2,







0 0 0
ϕ21 0 0
0 ϕ32 0







)

,

where ϕ32 is induced from Φ. The associated graded vector bundle is Gr(E0) =
Gr(E).

(2) Suppose that µ2 > µ. Then µ1 > µ2 > µ3 and one of the following alternatives
holds.

(2.1) The slope of N satisfies µ1 + µ2 − µ3 − (2g − 2) 6 µ(N) < µ and (E0, Φ0) is
the following Hodge bundle of type (2, 1):

(E0, Φ0) =
(

E2 ⊕ E/E2,

(

0 0
ϕ32 0

)

)

.

The associated graded vector bundle is Gr(E0) = Gr(E).

(2.2) The slope of N satisfies µ < µ(N) 6 µ2 and (E0, Φ0) is the following Hodge
bundle of type (1, 1, 1):

(E0, Φ0) =
(

N ⊕ E2/N ⊕ E/E2,







0 0 0
ϕ21 0 0
0 ϕ32 0







)

where ϕ21 and ϕ32 are induced from Φ. The associated graded vector bundle is
Gr(E0) = E2/N ⊕ N ⊕ E/E2 and its Harder–Narasimhan type is HNT(E0) =
(µ1 + µ2 − µ(N), µ(N), µ3).

(2.3) The slope of N satisfies µ(N) = µ1 and the strict inequality µ1 > µ2 holds.
Moreover the line bundle N = E1 and (E0, Φ0) is the following Hodge bundle
of type (1, 1, 1):

(E0, Φ0) =
(

E1 ⊕ E2/E1 ⊕ E/E2,







0 0 0
ϕ21 0 0
0 ϕ32 0







)

,

where ϕ21 is induced from Φ. The associated graded vector bundle is Gr(E0) =
Gr(E).
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8 Stratifications on the Moduli Space of Higgs Bundles

Remark 4.3. Note that the condition µ2 < µ is equivalent to µ3 > −1
3
µ1 + 2

3
µ2 + 2

3
µ3. In

particular the range for µ(I) in Case (1.2) is non-empty.

Before proceeding with the proof of Theorem 4.2 we deduce a couple of interesting
consequences. The theorem shows that, in general, knowledge of the Harder–Narasimhan
type of E does not suffice to determine the underlying bundle E0 of the limit (E0, Φ0) =
limz→0(E, z · Φ): indeed in cases (1.2) and (2.2) of the theorem one also needs knowledge
of Φ. However, there are some Harder–Narasimhan types (µ1, µ2, µ3) for which E0 is
determined by E. We note that, by Proposition 3.2, one has 0 6 µ1 − µ3 6 4g − 4.

Corollary 4.4. Let (E, Φ) ∈ M(3, d) be such that E is an unstable vector bundle of slope
µ and Harder–Narasimhan type (µ1, µ2, µ3). Assume that µ1 − µ3 > 2g − 2. Then the
limit (E0, Φ0) = limz→0(E, z · Φ) is given by (1.3) of Theorem 4.2 if µ2 < µ, and by (2.3)
of Theorem 4.2 if µ2 > µ.

Proof. We only have to observe that in all the other case of Theorem 4.2 we have µ1−µ3 6

2g − 2.

In Cases (1.1) and (1.2) we have µ(I) 6 µ3 (cf. Remark 4.3). Moreover, by (1) of
Proposition 3.3, we have µ1 − (2g − 2) 6 µ(I). It follows that µ1 − (2g − 2) 6 µ3 as
desired.

Similarly, in Cases (2.1) and (2.2) we have µ(N) 6 µ2 and, by (2) of Proposition 3.3,
µ1 + µ2 − µ3 − (2g − 2) 6 µ(N). Hence µ1 + µ2 − µ3 − (2g − 2) 6 µ2 which gives the
conclusion.

In a similar vein, we shall next see that certain types of Hodge bundle can only be the
limit of a Higgs bundle whose underlying vector bundle has the same Harder–Narasimhan
type as that of the Hodge bundle.

Before stating the result we recall (see, e.g., [6] or Hausel–Thaddeus [14]) that fixed
points of type (1, 1, 1) of the form

(E0, Φ0) = (L1 ⊕ L2 ⊕ L3,







0 0 0
ϕ21 0 0
0 ϕ32 0





)

are usually parametrised by the numerical invariants

m1 = deg(L2) − deg(L1) + 2g − 2,

m2 = deg(L3) − deg(L2) + 2g − 2,

subject to the conditions

mi > 0, i = 1, 2,

2m1 + m2 < 6g − 6,

m1 + 2m2 < 6g − 6,

m1 + 2m2 ≡ 0 (mod 3).

For our purposes it is more natural to translate to the invariants (l1, l2, l3) with li =
µ(Li) = deg(Li) (subject to the condition l1 + l2 + l3 = 3µ). We then have corresponding

8



P. B. Gothen and R. A. Zúñiga-Rojas 9

components F(l1,l2,l3) of the fixed locus and the invariants (l1, l2, l3) are subject to the
constraints

li+1 − li + 2g − 2 > 0, i = 1, 2,

1

3
l1 +

1

3
l2 −

2

3
l3 > 0,

2

3
l1 −

1

3
l2 −

1

3
l3 > 0.

Corollary 4.5. Let (E0 = L1 ⊕ L2 ⊕ L3, Φ0 =
(

0 0 0
ϕ21 0 0

0 ϕ32 0

)

) be a Hodge bundle of type

(1, 1, 1) with µ(L1) − µ(L3) > 2g − 2. Then µ(L1) > µ(L2) > µ(L3) and any (E, Φ) such
that limz→0(E, z · Φ) = (E0, Φ0) satisfies Gr(E) = Gr(E0).

Proof. Since ϕ21 is non-zero we have µ(L2)+2g −2 > µ(L1). This, together with µ(L1)−
µ(L3) > 2g −2 implies that µ(L2) > µ(L3). Since in Cases (1.2) and (2.2) of Theorem 4.2
one has µ(L2) 6 µ(L3), it follows that the limit (E0, Φ=) must arise either from Case (1.3)
or from Case (2.3). The conclusion follows since in these cases Gr(E) = Gr(E0).

The two previous corollaries lead to an identification between Shatz and Bialynicki–
Birula strata in some cases. Recall that U+

(l1,l2,l3) denotes the Bialynicki-Birula stratum
of Higgs bundles whose limits lie in F(l1,l2,l3) and that U ′

(l1,l2,l3) denotes the Shatz stratum
of Higgs bundles whose Harder–Narasimhan type is (l1, l2, l3).

Theorem 4.6. Let (l1, l2, l3) be such that l1 − l3 > 2g − 2. Then the corresponding Shatz
and Bialynicki-Birula strata in M(3, d) coincide:

U ′

(l1,l2,l3) = U+
(l1,l2,l3).

4.3 Proof of Theorem 4.2

For the proof, we adopt the complex analytic point of view as explained in Section 2.1.
Let E be the C∞ bundle underlying E and consider the pair (∂̄E , Φ) representing (E, Φ)
in the configuration space of all Higgs bundles. Our strategy of proof is to find a family
of gauge transformations g(z) ∈ GC, parametrized by z ∈ C∗, such that the limit in the
configuration space

(∂̄E0
, Φ0) = lim

z→0

(

g(z) · (∂̄E , z · Φ)
)

gives a stable Higgs bundle (E0, Φ0). It will then follow that (E0, Φ0) represents the limit
in the moduli space.

We now need to consider several cases.

4.3.1 Proof of Theorem 4.2 – Case (1)

Suppose that µ2 < µ. Then, since µ1 > µ, we must have µ1 > µ2 > µ3. It follows from
(1) of Proposition 3.3 that I ⊂ E/E1 is a line bundle and that µ1 − (2g −2) 6 µ(I) 6 µ2.

We consider two separate cases.

9



10 Stratifications on the Moduli Space of Higgs Bundles

Case A: µ1 − (2g − 2) 6 µ(I) < −1
3
µ1 + 2

3
µ2 + 2

3
µ3.

We have a short exact sequence 0 → E1 → E → E/E1 → 0. Let E , E1 and E2 be the
C∞ vector bundles underlying E, E1 and E/E1, respectively. Then

E ∼= E1 ⊕ E2 (4.1)

and the holomorphic structure on E is given by the ∂̄-operator:

∂̄E =

(

∂̄1 β

0 ∂̄2

)

,

where ∂̄1 and ∂̄2 are ∂̄-operators defining the holomorphic structures on E1 and E2, re-
spectively, and β ∈ A0,1(Hom(E2, E1)). With respect to the smooth decomposition (4.1),
the Higgs field Φ ∈ A1,0(End(E)) takes the form:

Φ =

(

ϕ11 ϕ12

ϕ21 ϕ22

)

.

Consider, for each z ∈ C∗, the constant gauge transformation g(z) ∈ GC defined by

g(z) :=

(

1 0
0 z · I

)

,

with respect to the decomposition (4.1). Then:

g(z) · (z · Φ) = g(z)−1(z · Φ)g(z) =

(

z · ϕ11 z2 · ϕ12

ϕ21 z · ϕ22

)

→

(

0 0
ϕ21 0

)

when z → 0

and, moreover,

g(z) · ∂̄E = g(z)−1 ◦ ∂̄E ◦ g(z) =

(

∂̄1 z · β

0 ∂̄2

)

→

(

∂̄1 0

0 ∂̄2

)

when z → 0.

Note that this simple formula for the gauge transformed ∂̄-operator is valid because the
gauge transformation is constant on X. Thus, in the configuration space of all Higgs
bundles the limit limz→0 z · (E, Φ) is gauge equivalent to

(E0, Φ0) =
(

E1 ⊕ E/E1,

(

0 0
ϕ21 0

)

)

.

This Higgs bundle will represent the limit in the moduli space M(3, d) provided that it
is stable.

To show stability, we note that there are three kinds of Φ0-invariant subbundles of
E0, namely E1 ⊕ I, E/E1, and an arbitrary line bundle L ⊂ E/E1. We deal with each
case in turn:

1. The subbundle E1 ⊕I ⊂ E1 ⊕E/E1. By hypothesis µ(I) < −1
3
µ1 + 2

3
µ2 + 2

3
µ3 which

is equivalent to µ(E1 ⊕ I) < µ(E) = µ(E0) as required.

2. The subbundle E/E1 ⊂ E1 ⊕ E/E1. It is immediate from the properties of the
Harder–Narasimhan filtration that µ(E/E1) < µ(E) = µ(E0).

10
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3. A line subbundle L ⊂ E/E1. From the properties of the Harder–Narasimhan fil-
tration we have that either E2/E1 ⊂ E/E1 is maximal destabilizing (if µ2 < µ3)
or E/E1 is semistable (if µ2 = µ3). Either way we have that µ(L) 6 µ2. Since
µ2 < µ = µ(E) by hypothesis, it follows that µ(L) < µ(E) = µ(E0).

Finally note that, clearly, Gr(E0) = E1 ⊕ E2/E1 ⊕ E/E2 = Gr(E). Altogether we
have seen that, under the given conditions on the slope of I, the limiting bundle (E0, Φ0)
is as stated in Case (1.1) of the theorem.

Case B: −1
3
µ1 + 2

3
µ2 + 2

3
µ3 < µ(I) 6 µ2.

Define Q = (E/E1)/I so that we have a short exact sequence 0 → I → E/E1 → Q →
0. Let E1, I and Q be the C∞ bundles underlying E1, I and Q, respectively, so that we
have a C∞-decomposition

E = E1 ⊕ I ⊕ Q. (4.2)

Recalling that I comes from Φ(E1) ⊗ K−1, we may write the Higgs field Φ as:

Φ =







ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

0 ϕ32 ϕ33







with respect to the decomposition (4.2). Moreover, the holomorphic structure on E is of
the form

∂̄E =







∂̄1 β12 β13

0 ∂̄2 β23

0 0 ∂̄3





 .

Now, for each z ∈ C∗ take the following constant gauge transformation:

g(z) :=







1 0 0
0 z 0
0 0 z2







of E with respect to the decomposition (4.2). Then

g(z) · (z · Φ) = g(z)−1(z · Φ)g(z)

=







z · ϕ11 z2 · ϕ12 z3 · ϕ13

ϕ21 z · ϕ22 z2 · ϕ23

0 ϕ32 z · ϕ33





 −→







0 0 0
ϕ21 0 0
0 ϕ32 0





 when z → 0

and

g(z) · ∂̄E = g(z)−1 ◦ ∂̄E ◦ g(z)

=







∂̄1 z · β12 z2 · β13

0 ∂̄2 z · β23

0 0 ∂̄3





 −→







∂̄1 0 0

0 ∂̄2 0

0 0 ∂̄3





 when z → 0.

Hence, in the configuration space, limz→0 z · (E, Φ) is gauge equivalent to

(E0, Φ0) =
(

E1 ⊕ I ⊕ (E/E1)/I,







0 0 0
ϕ21 0 0
0 ϕ32 0







)

.

It remains to prove that (E0, Φ0) is a stable Higgs bundle. The Φ0-invariant subbundles
of E0 are the following:

11



12 Stratifications on the Moduli Space of Higgs Bundles

1. The subbundle (E/E1)/I ⊂ E0. The condition µ((E/E1)/I) < µ(E) is equivalent
to −1

3
µ1 + 2

3
µ2 + 2

3
µ3 < µ(I) which holds by assumption.

2. The subbundle I ⊕ (E/E1)/I ⊂ E0. In this case we note that µ(I ⊕ (E/E1)/I) <
µ(E) ⇐⇒ µ(E1) > µ(E), which holds by properties of the Harder–Narasimhan
filtration.

Next we analyze the Harder–Narasimhan type. For brevity we continue to write
Q = (E/E1)/I. There are two situations to consider.

The first situation is when µ(I) 6 µ(Q). Then the Harder–Narasimhan type of E0

is HNT(E0) = (µ(E1), µ(Q), µ(I)). Hence, using Shatz’s theorem [21, Theorem 3] that
the Harder–Narasimhan polygon rises under specialization, we conclude that µ(I) 6

µ(E/E2). This leads to the description given in Case (1.2).

The second situation is when µ(I) > µ(Q). Then the Harder–Narasimhan type of
E0 is HNT(E0) = (µ(E1), µ(I), µ(Q)). Hence, from Shatz’s theorem we deduce that
µ(I) > µ(E2/E1). But I ⊂ E/E1 so, from the properties of the Harder–Narasimhan
filtration, we conclude that in fact µ(I) = µ2. If µ3 = µ2 it follows that µ(I) = µ(Q),
contradicting µ(I) > µ(Q). Hence µ3 < µ2 and I ⊂ E/E1 is the unique maximal
destabilizing subbundle, i.e., I = E2/E1 and so Case (1.3) occurs.

This completes the proof of Case (1).

4.3.2 Proof of Theorem 4.2 – Case (2)

Suppose that µ2 > µ. Then, since µ3 < µ, we must have µ1 > µ2 > µ3. It follows from
(2) of Proposition 3.3 that N ⊂ E2 is a line bundle and that µ1 + µ2 − µ3 − (2g − 2) 6
µ(N) 6 µ1.

We consider two separate cases.

Case C: µ1 + µ2 − µ3 − (2g − 2) 6 µ(N) < µ.

We have a short exact sequence 0 → E2 → E → E/E2 → 0. Let E , E2 and E3 be
the C∞ vector bundles underlying E, E2 and E/E2, respectively. Then E ∼= E2 ⊕ E3 and

the holomorphic structure on E is given by a ∂̄-operator of the form ∂̄E =
(

∂̄2 β

0 ∂̄3

)

, while

the Higgs field Φ ∈ A1,0(End(E)) takes the form: Φ = ( ϕ22 ϕ23

ϕ32 ϕ33
). The same calculation as

in Case A shows that in the configuration space of all Higgs bundles, limz→0 z · (E, Φ) is
gauge equivalent to

(E0, Φ0) =
(

E2 ⊕ E/E2,

(

0 0
ϕ32 0

)

)

.

This Higgs bundle will represent the limit in the moduli space M(3, d) if it is stable.
There are three kinds of Φ0-invariant subbundles to check:

1. The subbundle N ⊂ E2 ⊕ E/E2. By hypothesis µ(N) < µ = µ(E) = µ(E0).

2. The subbundle E/E2 ⊂ E2 ⊕ E/E2. It is immediate from the properties of the
Harder–Narasimhan filtration that µ(E/E2) < µ(E) = µ(E0).

3. Subbundles L ⊕ E/E2 ⊂ E2 ⊕ E/E2 for L ⊂ E2 a line subbundle. From the
properties of the Harder–Narasimhan filtration we have that either E1 ⊂ E2 is

12
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maximal destabilizing (if µ1 > µ2) or E2 is semistable (if µ1 = µ2). Either way we
have that µ(L) 6 µ1. It follows that

2µ(L ⊕ E/E2) = µ(L) + 3µ − µ1 − µ2

6 3µ − µ2

< 2µ,

where we have used the hypothesis µ2 > µ in the last step. Hence µ(L ⊕ E/E2) <
µ = µ(E) = µ(E0) as desired.

Finally note that, clearly, Gr(E0) = E1 ⊕ E2/E1 ⊕ E/E2 = Gr(E). Altogether we
have seen that, under the given conditions on the slope of I, the limiting bundle (E0, Φ0)
is as stated in Case (2.1) of the theorem.

Case D: µ < µ(N) 6 µ1.
Define R = E2/N so that we have a short exact sequence 0 → N → E2 → R → 0.

Let N , R and E3 be the C∞ bundles underlying N , R and E/E2, respectively, so that
we have a decomposition of C∞-bundles

E = N ⊕ Q ⊕ E3. (4.3)

Recalling that N comes from ker(ϕ21), we may write the Higgs field Φ as:

Φ =







ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

0 ϕ32 ϕ33







with respect to the decomposition (4.3). Moreover, the holomorphic structure on E is of
the form

∂̄E =







∂̄1 β12 β13

0 ∂̄2 β23

0 0 ∂̄3





 .

Now take the constant gauge transformation g(z) =
(

1 0 0
0 z 0
0 0 z2

)

of E with respect to the

decomposition (4.3). The same calculation as in Case B shows that in the configuration
space limz→0 z · (E, Φ) is gauge equivalent to

(E0, Φ0) =
(

N ⊕ E2/N ⊕ E/E2,







0 0 0
ϕ21 0 0
0 ϕ32 0







)

.

It remains to prove that (E0, Φ0) is a stable Higgs bundle. The Φ0-invariant subbundles
of E0 are the following:

1. The subbundle E/E2 ⊂ E0. From the properties of the Harder–Narasimhan filtra-
tion we have µ(E/E2) < µ(E) = µ(E0).

2. The subbundle E2/N ⊕ E/E2 ⊂ E0. The hypothesis µ(N) > µ is equivalent to
µ(E2/N ⊕ E/E2) < µ = µ(E) = µ(E0).

13



14 Stratifications on the Moduli Space of Higgs Bundles

Next we analyze the Harder–Narasimhan type. For brevity we continue to write
R = E2/N . There are two situations to consider.

The first situation is when µ(N) 6 µ(R). Then the Harder–Narasimhan type of E0

is HNT(E0) = (µ(R), µ(N), µ3). Hence, once again using Shatz’s theorem, we conclude
that µ(N) 6 µ2. This leads to the description given in Case (2.2).

The second situation is when µ(N) > µ(R). Then the Harder–Narasimhan type
of E0 is HNT(E0) = (µ(N), µ(R), µ3). Hence, from Shatz’s theorem we deduce that
µ(N) > µ1. But N ⊂ E2 so, from the properties of the Harder–Narasimhan filtration, we
conclude that in fact µ(N) = µ1. If µ2 = µ1 it follows that µ(N) = µ(R), contradicting
µ(N) > µ(R). Hence µ2 < µ1 and so N ⊂ E2 is the unique maximal destabilizing
subbundle, i.e., N = E1 and Case (2.3) occurs.

This completes the proof of Case (2) and thus the proof of Theorem 4.2.
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