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ABSTRACT

It is shown that the lattices of flats of boolean representable simplicial complexes
are always atomistic, but semimodular if and only if the complex is a matroid. A
canonical construction is introduced for arbitrary finite atomistic lattices, providing
a characterization of the lattices of flats of boolean representable simplicial com-
plexes and a decidability condition. We remark that every finite lattice occurs as
the lattice of flats of some simplicial complex.

1 Introduction

In a series of three papers [3, 4, 5], Izhakian and Rhodes introduced the concept of boolean repre-
sentation for various algebraic and combinatorial structures. These ideas were inspired by previous
work by Izhakian and Rowen on supertropical matrices (see e.g. [2, 6, 7, 8]), and were subsequently
developed by Rhodes and Silva in a recent monograph, devoted to boolean representable simplicial
complexes [12].

The original approach is to consider matrix representations over the superboolean semiring SB,
using appropriate notions of vector independence and rank. Writing N = {0, 1, 2, . . .}, we can define
SB as the quotient of (N,+, ·) (usual operations) by the congruence which identifies all integers
≥ 2. In this context, boolean representation refers to matrices using only 0 and 1 as entries.

In this paper, we view (finite) simplicial complexes in their abstract form, as hereditary col-
lections. However, boolean representations have also provided results of a more geometric and
topological nature, namely on the homotopy of (geometric) simplicial complexes (see [12, Chapter
7], [9]).

As an alternative, boolean representability can be characterized by means of the lattice of
flats. The lattice of flats plays a fundamental role in matroid theory but is not usually considered
for arbitrary simplicial complexes, probably due to the fact that, unlike in the matroid case, the
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structure of a simplicial complex cannot in general be recovered from its lattice of flats. However,
this is precisely what happens with boolean representable simplicial complexes (BRSCs). If H =
(V,H) is a simplicial complex and FlH denotes its lattice of flats, then H is boolean representable
if and only if H equals the set of transversals of the successive differences for chains in FlH. This
implies in particular that all (finite) matroids are boolean representable. If the BRSC is simple, it
can be characterized by the isomorphism class of its lattice of flats, plus a bijection from its vertex
set onto the set of atoms of the lattice.

Therefore it is a natural question to inquire about the nature of the lattices of flats of BRSCs.
We note that in the matroid case the lattices of flats are precisely the geometric lattices (atomistic
and semimodular) [10, Theorem 1.7.5].

We note that it is known that any finite lattice embeds in a finite partition lattice [11], which
is a geometric lattice, so corresponds to a matroid. Therefore every finite lattice is isomorphic to
some full sublattice of the lattice of flats of some H ∈ BR.

The paper is organized as follows. In Section 2 we present all the basic notions and results
needed in the paper. In Section 3 we show that every finite lattice occurs as the lattice of flats of
some simplicial complex. In Section 4 we show that lattices of flats of BRSCs are always atomistic,
but not necessarily semimodular. In Section 5 we construct a simple BRSC TL for every finite
atomistic lattice L and show that L ∼= FlH for some BRSC H if and only if L ∼= FlTL. Moreover,
in this case TL is isomorphic to some restriction of H, and if H is simple, then TL is isomorphic to
H. This provides an easy way of deciding whether or not a finite lattice is isomorphic to the lattice
of flats of some BRSC, and the complexity is polynomial for fixed height. In Section 6, we prove a
graph-theoretical characterization for lattices of height 3, also decidable in polynomial time.

2 Preliminaries

All lattices and simplicial complexes in this paper are assumed to be finite. The reader is assumed
to have some familiarity with basic notions of lattice theory, being referred to [1].

Given a set V and n ≥ 0, we denote by Pn(V ) (respectively P≤n(V )) the set of all subsets of
V with precisely (respectively at most) n elements. To simplify notation, we shall often represent
sets {a1, a2, . . . , an} in the form a1a2 . . . an.

A (finite) simplicial complex is a structure of the formH = (V,H), where V is a finite nonempty
set and H ⊆ 2V is nonempty and closed under taking subsets. Simplicial complexes, in this abstract
viewpoint, are also known as hereditary collections.

Two simplicial complexes (V,H) and (V ′,H ′) are isomorphic if there exists a bijection ϕ : V →
V ′ such that

X ∈ H if and only if Xϕ ∈ H ′

holds for every X ⊆ V .
If H = (V,H) is a simplicial complex and W ⊆ V is nonempty, we call

H|W = (W,H ∩ 2W )

the restriction of H to W . It is obvious that H|W is still a simplicial complex.

2



We say that X ⊆ V is a flat of H if

∀I ∈ H ∩ 2X ∀p ∈ V \X I ∪ {p} ∈ H.

The set of all flats of H is denoted by FlH.
Clearly, the intersection of any set of flats (including V = ∩∅) is still a flat. If we order FlH by

inclusion, it is then a ∧-semilattice, and therefore a lattice with

(X ∨ Y ) = ∩{F ∈ FlH | X ∪ Y ⊆ F}

for all X,Y ∈ FlH. We call FlH the lattice of flats of H. The lattice of flats induces a closure
operator on 2V defined by

X = ∩{F ∈ FlH | X ⊆ F}

for every X ⊆ V .
We say that X is a transversal of the successive differences for a chain of subsets

A0 ⊂ A1 ⊂ . . . ⊂ Ak

if X admits an enumeration x1, . . . , xk such that xi ∈ Ai \ Ai−1 for i = 1, . . . , k.
Let H = (V,H) be a simplicial complex. If X ⊆ V is a transversal of the successive differences

for a chain
F0 ⊂ F1 ⊂ . . . ⊂ Fk

in FlH, it follows easily by induction that {x1, x2, . . . xi} ∈ H for i = 0, . . . , k. In particular, X ∈ H.
We say thatH is boolean representable if everyX ∈ H is a transversal of the successive differences

for a chain in FlH. We denote by BR the class of all (finite) boolean representable simplicial
complexes (BRSCs).

A simplicial complex H = (V,H) is called a matroid if it satisfies the exchange property:

(EP) For all I, J ∈ H with |I| = |J |+ 1, there exists some i ∈ I \ J such that J ∪ {i} ∈ H.

All matroids are boolean representable, but the converse is not true (see [12, Example 5.2.11]).

3 Arbitrary complexes

In the literature, the lattice of flats is defined only for matroids, but there is no reason to pre-
vent considering it for arbitary simplicial complexes. It turns out that every finite lattice can be
constructed this way.

Theorem 3.1 Every finite lattice is isomorphic to the lattice of flats of some simplicial complex.

Proof. Let L be a finite lattice. If L is trivial, then L ∼= FlH for H = (V, {∅}), hence we assume
that L is nontrivial. Let B and T denote the bottom and the top elements of L. Let

V = {a(i) | a ∈ L \ {B}, i = 1, 2, 3}
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and let π : V → L \ {B} be the canonical mapping. Let

J = {X ⊂ V
∣

∣ π|X is injective}.

For every P ⊆ L \ {B}, let

Pα = {a ∈ L \ {B} | p 6≤ a for every p ∈ P and (a ∨ p) 6= q for all distinct p, q ∈ P}.

We define
H = J ∪ {X ∪ {a(1), a(2)} | X ∈ J, a ∈ Xπα}.

It is easy to check that H = (V,H) is a (finite) simplicial complex. This follows from J being
closed under taking subsets and

X ∪ {a(i)} ∈ J whenever X ∈ J, a ∈ Xπα and i ∈ {1, 2}.

For every a ∈ L, let
aβ = {x ∈ L \ {B} | x ≤ a}.

Since P1(V ) ⊆ H, we get
∅ = ∅ = Bβπ−1. (1)

Next let a ∈ L \ {B} and i ∈ {1, 2, 3}. We show that

a(i) = aβπ−1. (2)

Since a(i) ∈ H and {a(1), a(3)}, {a(2), a(3)} /∈ H, we get a(3) ∈ a(i) and thus aπ−1 ⊆ a(i). Now
let B 6= x < a in L and let j ∈ {1, 2, 3}. Then {a(1), a(2), x(j)} /∈ H because a /∈ xα. Since

{a(1), a(2)} ∈ H, we get x(j) ∈ a(i) and so aβπ−1 ⊆ a(i).
Thus it is enough to prove that aβπ−1 ∈ FlH. Let I ⊆ aβπ−1 be such that I ∈ H and let

y(j) ∈ V \ aβπ−1. If I ∈ J , then y(j) /∈ aβπ−1 together with I ⊆ aβπ−1 yield I ∪ {y(j)} ∈ J ⊆ H,
hence we may assume that I = X ∪ {a(1), a(2)} for some X ∈ J and a ∈ Xπα.

Suppose that x(k) ∈ X. Then x(k) ∈ I ⊆ aβπ−1 and so x ≤ a. On the other hand, a ∈ Xπα
yields x 6≤ a, a contradiction. Thus X = ∅ and so I = {a(1), a(2)}. It follows that

I ∪ {y(j)} = {y(j)} ∪ {a(1), a(2)}.

Clearly, {y(j)} ∈ J and y(j) /∈ aβπ−1 yields a ∈ y(j)πα. Therefore I ∪ {y(j)} ∈ H. It follows that
aβπ−1 ∈ FlH and so (2) holds.

Next we show that
{a(i), b(j)} = (a ∨ b)βπ−1 (3)

holds for all a, b ∈ L \ {B}.
Let c = (a ∨ b). In view of (2), we may assume that c > a, b. It is easy to check that

{a(1), a(2), b(1)} ∈ H (because b 6≤ a) and {a(1), a(2), b(1), c(1)} /∈ H (because c = (a ∨ b)). Since

{a(1), a(2), b(1)} ⊆ {a(i), b(j)} by (2), we get c(1) ∈ {a(i), b(j)} and so cβπ−1 ⊆ {a(i), b(j)} by (2). Now
the opposite inclusion follows from {a(i), b(j)} ⊆ (a ∨ b)βπ−1, therefore (3) holds.
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Now we claim that
FlH = {aβπ−1 | a ∈ L}. (4)

The opposite inclusion follows from (1) and (2). Take F ∈ FlH. In view of (1), we may assume
that F 6= ∅. It follows from (3) that Fπ has a maximum a 6= B, and (2) yields F = aβπ−1. Thus
(4) holds and it follows easily that

L → FlH
a 7→ aβπ−1

is an isomorphism of posets and therefore a lattice isomorphism. �

4 A necessary condition

In this section, we start the discussion on the lattices of flats of BRSCs.
The main theorem of the section proves a necessary condition for a lattice to be isomorphic to

such a lattice of flats. This implies that we cannot assume the simplicial complexes to be boolean
representable in Theorem 3.1. But first we prove two simple lemmas.

Lemma 4.1 Let H = (V,H) be a simplicial complex and let W ⊆ V . Let F ∈ FlH. Then
F ∩W ∈ Fl(H|W ).

Proof. Let H ′ = H ∩ 2W . Assume that I ∈ H ′ ∩ 2F∩W and p ∈ W \ (F ∩W ). Then I ∈ H ∩ 2F

and p ∈ V \ F , hence F ∈ FlH yields I ∪ {p} ∈ H. Since I ∪ {p} ⊆ W , we get I ∪ {p} ∈ H ′. Thus
F ∩W ∈ Fl(H|W ). �

Lemma 4.2 Let H = (V,H) be a simplicial complex and let V ′ = {p ∈ V | {p} ∈ H}. Then
FlH ∼= Fl(H|V ′).

Proof. Write H′ = H|V ′ and H ′ = H ∩ 2V
′

. Let α : FlH → FlH′ and β : FlH′ → FlH be the
mappings defined by

Fα = F ∩ V ′, F ′β = F ′ ∪ (V \ V ′).

By Lemma 4.1, α is well defined. Now let F ′ ∈ FlH′. Assume that I ∈ H ∩ 2F
′β and p ∈ V \ F ′β.

By definition of V ′, we have I ⊆ V ′, hence I ∈ H ′ ∩ 2F
′

. Since also p ∈ V ′ \ F ′, then F ′ ∈ FlH′

yields I ∪ {p} ∈ H ′ ⊆ H. Thus F ′β ∈ FlH and β is well defined.
Next we show that the mappings α and β are mutually inverse. Let F ∈ FlH. Then

Fαβ = (F ∩ V ′) ∪ (V \ V ′)

and so F ⊆ Fαβ. Suppose that p ∈ Fαβ \ F . Then p ∈ V \ V ′. Since ∅ ∈ H ∩ 2F and {p} /∈ H,
then F ∈ FlH yields p ∈ F , a contradiction. Thus Fαβ = F and so αβ = 1.

On the other hand, for every F ′ ∈ FlH′ we have

F ′βα = (F ′ ∪ (V \ V ′)) ∩ V ′ = F ′,

thus βα = 1. Therefore α and β are mutually inverse.
Since α and β are both order-preserving, they are poset isomorphisms and therefore lattice

isomorphisms. �
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Let L be a lattice. Given a, b ∈ L, we say that b covers a if a < b and there is no c ∈ L such
that a < b < c. An atom of L is a element covering the bottom element B. We denote by At(L)
the set of atoms of L. The lattice L is atomistic if every element of L is a join of atoms. We show
next that being atomistic is a necessary condition for a lattice to be isomorphic to the lattice of
flats of a BRSC.

Theorem 4.3 Let H = (V,H) ∈ BR. Then:

(i) if P1(V ) ⊆ H, then V is the union of the atoms of FlH;

(ii) FlH is atomistic.

Proof. (i) In [9], we introduced the equivalence relation on V defined by

pηq if p = q

and the simplification HS = (V/η,H/η). By [9, Proposition 4.2](iii), we have FlH ∼= FlHS . On
the other hand, if ϕ : V → V/η denotes the canonical projection, it follows from [9, Proposition
4.2](ii) that the atoms of FlH are of the form Aϕ−1, where A is an atom of HS . But the the atoms
of FlHS are the singleton sets, thus we are done.

(ii) By Lemma 4.2, we may assume that P1(V ) ⊆ H, and by [9, Proposition 4.2](iii) we may
assume that H is simple. Hence the atoms of H are the singleton sets {p} with p ∈ V . Now the
claim becomes obvious. Note that ∅ is the bottom element of FlH, which is the join of the empty
set of atoms. �

Corollary 4.4 The 3-point chain
•

•

•

is the smallest lattice not isomorphic to the lattice of flats of some H ∈ BR.

Proof. In fact, this chain happens to be the smallest non atomistic lattice. On the other hand,
the trivial lattice and the 2-point lattice occur as the lattices of flats for (V, {∅}) and (V, P≤1(V )),
respectively. Now the claim follows from Theorem 4.3(ii). �
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A lattice L is said to be (upper) semimodular if has no sublattice of the form

a

����
��
��
�

��
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

b

��

c

��
❃❃

❃❃
❃❃

❃❃
d

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

e

with d covering e. A geometric lattice is a lattice which is both semimodular and atomistic. It is
well known that a finite lattice is geometric if and only if it is isomorphic to the lattice of flats of
some (finite) matroid [10, Theorem 1.7.5].

The next example shows that the lattice of flats of a BRSC is not necessarily semimodular (we
must take a BRSC which is not a matroid).

Example 4.5 Let V = {1, 2, 3, 4} and H = P≤2(V ) ∪ {123, 124}. Then H = (V,H) ∈ BR but
FlH is not semimodular.

Indeed, it is easy to check that FlH = P≤1(V ) ∪ {V, 12}, and can therefore be described as

V

⑥⑥
⑥⑥
⑥⑥
⑥⑥

✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

12

⑦⑦
⑦⑦
⑦⑦
⑦⑦

1

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖ 2

❆❆
❆❆

❆❆
❆❆

3 4

��
��
��
��

∅

and is therefore boolean representable (see [12, Example 5.2.11]).
By considering the sublattice {V, 12, 2, 4, ∅}, we deduce that FlH is not semimodular.

5 The minimal simplicial complex on a lattice of flats

We show in this section that, whenever a lattice is isomorphic to the lattice of flats of some
H ∈ BR, there exists a minimal simplicial complex satisfying this condition. To prove this claim,
we introduce the following construction.

Let L be an atomistic lattice. For every x ∈ L, let

xξ = {a ∈ At(L) | a ≤ x}.
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We say that A ⊆ At(L) is a transversal of a chain in L if there exists an enumeration a1, . . . , am of
the elements of A and a chain

x0 < x1 < . . . < xm

in L such that ai ∈ xiξ \ xi−1ξ for i = 1, . . . ,m.

Let TL ⊆ 2At(L) consist of all the transversals of some chain in L and write TL = (At(L), TL).
It is immediate that TL is a simplicial complex. We prove the following lemma.

Lemma 5.1 Let L be an atomistic lattice. Then:

(i) xξ ∈ FlTL for every x ∈ L;

(ii) ξ is a lattice isomorphism of L onto Lξ ⊆ FlTL;

(iii) TL ∈ BR;

(iv) TL is simple.

Proof. (i) Let x ∈ L. If x = T , then the conclusion is clear, so assume that x 6= T . Assume that
A ∈ TL ∩ 2xξ and p ∈ At(L) \ xξ. Since A ∈ TL, there exists an enumeration a1, . . . , am of A and a
chain x0 < . . . < xm in L such that ai ∈ xiξ \ xi−1ξ for i = 1, . . . ,m. Now

(x0 ∧ x) ≤ (x1 ∧ x) ≤ . . . ≤ (xm ∧ x). (5)

Since A ⊆ xξ, we get ai ∈ (xi ∧x)ξ \ (xi−1 ∧x)ξ for i = 1, . . . ,m, hence the ordering in (5) must be
strict. Since (xm ∧ x)ξ ⊆ xξ, then p ∈ Tξ \ (xm ∧ x)ξ and so A ∪ {p} is a transversal of the chain

(x0 ∧ x) < (x1 ∧ x) < . . . < (xm ∧ x) < T

in K. Thus A ∪ {p} ∈ TL and so xξ ∈ FlTL.
(ii) Since L is atomistic, we have

x = ∨(xξ) for every x ∈ L, (6)

hence ξ is injective.
Let x, y ∈ L. It is immediate that x ≤ y implies xξ ⊆ yξ, hence ξ is order-preserving. Finally,

in view of (6), xξ ⊆ yξ yields
x = ∨(xξ) ≤ ∨(yξ) = y,

hence ξ : L → Lξ is a poset isomorphism and therefore a lattice isomorphism (preserving top and
bottom).

(iii) Let A ∈ TL. Then there exists an enumeration a1, . . . , am of the elements of A and a chain

x0 < x1 < . . . < xm

in L such that ai ∈ xiξ \ xi−1ξ for i = 1, . . . ,m. Since xiξ ∈ FlTL for i = 0, . . . ,m, it follows
that A is a transversal of the successive differences for a chain in FlTL. Therefore TL is boolean
representable.

(iv) It is immediate that P2(At(L)) ⊆ TL. �
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The following theorem asserts the canonical role played by TL.

Theorem 5.2 Let L be an atomistic lattice. Then the following conditions are equivalent.

(i) L ∼= FlH for some H ∈ BR;

(ii) L ∼= FlTL;

(iii) ξ : L → FlTL is onto;

(iv) (∨F )ξ ⊆ F for every F ∈ FlTL.

Moreover, in this case TL is isomorphic to some restriction of H, and for H simple we get an
isomorphism.

Proof. (i) ⇒ (ii). Let H = (V,H). By Lemma 4.2, we may assume that P1(V ) ⊆ H, and by
[9, Proposition 4.2](iii) we may assume that H is simple (replacing H by its simplification HS ,
isomorphic to some restriction of H).

Let ϕ : L → FlH be a lattice isomorphism. Since At(FlH) = {{p} | p ∈ V }, ϕ induces a
bijection ϕ′ : At(L) → V defined by aϕ = {aϕ′}. We claim that

TL ∼= H. (7)

Indeed, let X ⊆ At(L). Then X ∈ TL if and only if there exists an enumeration a1, . . . , ak of
the elements of X and a chain ℓ0 < ℓ1 < . . . < ℓk in L such that ai ∈ ℓiξ \ ℓi−1ξ for i = 1, . . . , k.
It is easy to check that ℓ0ϕ < ℓ1ϕ < . . . < ℓkϕ is a chain in FlH such that aiϕ

′ ∈ ℓiϕ \ ℓi−1ϕ
for i = 1, . . . , k. Hence Xϕ′ ∈ H. Similarly, Xϕ′ ∈ H implies X ∈ TL, therefore ϕ′ defines an
isomorphism between TL and H, and so (7) holds.

Note that, for arbitrary H, the reductions performed above through Lemma 4.2 and [9, Propo-
sition 4.2](iii) replace the original BRSC H by one of its restrictions, so TL is indeed isomorphic to
some restriction of H.

(ii) ⇒ (i). By Lemma 5.1(i).
(ii) ⇔ (iii). In view of Lemma 5.1(ii), and since L is finite.
(iii) ⇒ (iv). Let F ∈ FlTL. By condition (iii), we have F = xξ for some x ∈ L. Hence a ≤ x

for every a ∈ F and so ∨F ≤ x. Thus (∨F )ξ ⊆ xξ = F .
(iv) ⇒ (iii). Let F ∈ FlTL and let x = ∨F . Since a ∈ F implies a ≤ x, we have F ⊆ xξ. On

the other hand, condition (iv) yields xξ ⊆ F , hence ξ : L → FlTL is onto. �

Corollary 5.3 Let L be a lattice. Then it is decidable whether or not L ∼= FlH for some H ∈ BR.

Proof. By Theorem 4.3(ii), L being atomistic is a necessary condition. Since being atomistic is
certainly decidable, we may assume that L is atomistic.

Since we can successively compute TL and Fl(TL), the claim now follows from Theorem 5.2. �
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Predictably, being atomistic is not a sufficient condition, as we show in the next result. We
recall that the height of a lattice L, denoted by ht(L), is the maximal length n of a chain x0 <
x1 < . . . < xn in L. Given a set X, let (2X ,⊆) be the lattice of all subsets of X with respect to
inclusion.

Proposition 5.4 Let L be a lattice with ht(L) = |At(L)|. Then the following conditions are
equivalent:

(i) L ∼= FlH for some H ∈ BR;

(ii) L ∼= (2At(L),⊆).

Proof. (i) ⇒ (ii). By Theorem 4.3(ii), L is atomistic. Let

x0 < x1 < . . . < xn

be a chain of maximal length in L. Since L is atomistic, for every i ∈ {1, . . . , n} there exists
some ai ∈ xiξ \ xi−1ξ. It is easy to see that the ai are all distinct and so ht(L) = |At(L)| yields

At(L) = {a1, . . . , an}. Hence At(L) ∈ TL and so TL = 2At(L). Thus 2At(L) = FlTL is a lattice
(with height |At(L)|) with respect to inclusion. Now the claim follows from Theorem 5.2.

(ii) ⇒ (i). Let H = (At(L), 2At(L)). Then FlH = 2At(L) and so H ∈ BR. Since L ∼= FlH, we
are done. �

We can now produce the equivalent of Corollary 4.4 for atomistic lattices.

Corollary 5.5 The lattice L depicted by

•

✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

•

⑧⑧
⑧⑧
⑧⑧
⑧

1

❄❄
❄❄

❄❄
❄❄

2 3

⑧⑧
⑧⑧
⑧⑧
⑧⑧

•

is the smallest atomistic lattice not isomorphic to the lattice of flats of some H ∈ BR.

Proof. Since the above lattice, which is clearly atomistic, has 3 atoms, height 3 and 6 elements, it
is not isomorphic to the lattice of flats of some H ∈ BR by Proposition 5.4.
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Indeed, it is easy to check that TL = (123, P≤3(123)) and so FlTL is the lattice

123

❉❉
❉❉

❉❉
❉❉

③③
③③
③③
③③

12

❉❉
❉❉

❉❉
❉❉

❉ 13

③③
③③
③③
③③
③

❉❉
❉❉

❉❉
❉❉

❉ 23

③③
③③
③③
③③
③

1

❊❊
❊❊

❊❊
❊❊

❊ 2 3

②②
②②
②②
②②
②

•

clearly not isomorphic to L.
It is easy to check that any other atomistic lattice with less than 7 elements must have height

≤ 2 and is therefore geometric. It follows that it must be isomorphic to the lattice of flats of a
matroid, and matroids are boolean representable. �

We end this section by showing that the complexity of the algorithm outlined in Corollary 5.3
is polynomial for fixed height.

We recall the O notation from complexity theory. Let P be an algorithm defined for instances
depending on parameters n1, . . . , nk. If ϕ : Nk → N is a function, we write P ∈ O((n1, . . . , nk)ϕ)
if there exist constants K,L > 0 such that P processes each instance of type (n1, . . . , nk) in
time ≤ K((n1, . . . , nk)ϕ) + L (where time is measured as the number of elementary operations
performed).

Proposition 5.6 It is decidable in time O(n3h) whether an atomistic lattice of height h with n
atoms is isomorphic to FlH for some H ∈ BR.

Proof. Let M = (mℓa) be the L×At(L) defined by

mℓa =

{

0 if x ≥ a
1 otherwise

It follows from the results in [12, Section 3.5] that M is a boolean matrix representation of TL.
We may assume h ≥ 3. By [9, Theorem 7.4], it is possible to compute in time O(n3d+3) the list

of flats of a simplicial complex of dimension d defined by a reduced boolean matrix with n columns.
Since L has height h, the dimension of TL (corresponding to the maximum size of an element of
TL minus 1) is h− 1. Moreover, M is reduced (all rows are distinct) since L is atomistic. Thus we
can enumerate in time O(n3h) the list of flats of TL and compute |FlTL|.

Now, in view of Lemma 5.1(ii) and Theorem 5.2, we have L ∼= FlH for some H ∈ BR if and
only if |FlTL| = |L|. Thus we obtain the claimed complexity. �
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6 Height 3

If L is an atomistic lattice of height 2, then L ∼= FlTL since TL = P≤2(At(L)) and so FlTL =
P≤1(At(L)) ∪ {At(L)}.

We provide in this section a necessary and sufficient graph-theoretical condition for the case
of (atomistic) lattices of height 3 to be lattices of flats of a BRSC. Note that lattices of height 3
are important since every simplicial complex of dimension 2 has a lattice of flats of height ≤ 3,
and dimension 2 is a broad universe. For instance, any finitely presented group can occur as the
fundamental group of a simplicial complex of dimension 2 (see [13, Theorem 7.45]).

Let Γ = (V,E) be a finite (undirected) graph. A clique of Γ is a subset W of V inducing
a complete subgraph of Γ. The clique W is nontrivial if |W | ≥ 2. A nontrivial clique W is a
superclique if, for all a, b ∈ W distinct, every c ∈ V \ W is not adjacent to either a or b. In
particular, every superclique is a maximal clique.

Given an atomistic lattice L of height 3 (with top element T ), we define a graph ΓL =
(At(L), EL) by

EL = {{a, b} | a, b ∈ At(L), (a ∨ b) = T}.

We remark that, if L is the lattice of flats of a BRSC H, then ΓL ia actually the complement graph
of ΓFlH, the graph of flats of H, introduced in [12, Section 6.4].

Theorem 6.1 Let L be a lattice of height 3. Then the following conditions are equivalent.

(i) L ∼= FlH for some H ∈ BR;

(ii) L is atomistic and ΓL has no supercliques.

Proof. (i) ⇒ (ii). By Theorem 4.3, L is atomistic. By Theorem 5.2, we may assume that H =
TL = (At(L), TL).

Suppose that W ⊆ At(L) is a superclique of ΓL. Since L has height 3, we have W ⊂ At(L). We
claim that W ∈ FlTL. Indeed, let I ∈ TL ∩ 2W be nonempty and p ∈ At(L) \W . Then I admits an
enumeration a1, . . . , am such that

a1 < (a1 ∨ a2) < . . . < (a1 ∨ . . . ∨ am).

Since a1 −− a2 is an edge of ΓL, we get (a1 ∨ a2) = T and so |I| ≤ 2. By Lemma 5.1(iv), we may
assume that |I| = 2. SinceW is a superclique of ΓL, there exists some a ∈ W such that {a, p} /∈ EL.
Hence (a ∨ p) < T . Writing I = {a, b}, we have (a ∨ b) = T , hence a < (a ∨ p) < T = (a ∨ b ∨ p)
and so I ∪ {p} ∈ TL. Thus W ∈ FlTL.

It follows from Theorem 5.2 that At(L) = Tξ = (∨W )ξ ⊆ W , contradicting W ⊂ At(L).
Therefore ΓL has no supercliques.

(ii) ⇒ (i). Suppose that (i) fails. By Theorem 5.2, there exists some F ∈ FlTL such that
(∨F )ξ 6⊆ F . It follows that |F | ≥ 2.

Suppose that (a ∨ b) < T for some distinct a, b ∈ F . Let p ∈ (a ∨ b)ξ \ F . By Lemma 5.1(iv),
we get abp ∈ TL. Since (a ∨ b ∨ p) = (a ∨ b) < T , this contradicts ht(L) = 3. Thus (a ∨ b) = T for
all distinct a, b ∈ F and so F is a clique of ΓL.

12



Let a, b ∈ F be distinct and let p ∈ At(L) \ F . By Lemma 5.1(iv), we get abp ∈ TL. Now
(a ∨ b) = T implies that either (a ∨ p) < T or (b ∨ p) < T , hence {{a, p}, {b, p}} 6⊆ EL and so F is
a superclique of ΓL, a contradiction. Therefore (ii) holds as required. �

We have remarked before that the lattices of flats of matroids are precisely the geometric lattices.
Since every matroid is boolean representable, it follows that ΓL has no supercliques when L is a
geometric lattice of height 3. Indeed, in this case the graph ΓL has no edges at all. Suppose
that a, b ∈ at(L) satisfy (a ∨ b) = T . Since a geometric lattice must satisfy the Jordan-Dedekind
condition (all maximal chains have the same length), there exists some c ∈ L such that a < c < T .
But then

T

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

��
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴
✴

c

��

a

��
❄❄

❄❄
❄❄

❄ b

����
��
��
�

B

is a subsemilattice of L, contradicting semimodularity.
Note also that, for the lattice L of Corollary 5.5, ΓL is the graph

1 −− 3 −− 2

and has therefore supercliques (13 and 23). Therefore Theorem 6.1 provides an alternative way of
showing that L is not isomorphic to the lattice of flats of some H ∈ BR.

We can show that the algorithm implicit in Theorem 6.1 has polynomial complexity.

Proposition 6.2 It is decidable in time O(n5) whether a graph with n vertices has no supercliques.

Proof. Let Γ = (V,E) be a graph with n vertices. Given an edge a −− b in Γ, we define a sequence
of sets of vertices

ab = W0 ⊂ W1 ⊂ . . . ⊂ Wk ⊆ V (8)

as follows.
Assume that Wi is defined. If there exists some v ∈ V \Wi adjacent to at least two vertices in

Wi, let Wi+1 = Wi ∪ {v}. Otherwise, the sequence terminates at Wi.
Note that this procedure is nondeterministic, but it turns out to be confluent. Indeed, let

ab = W ′
0 ⊂ . . . ⊂ W ′

ℓ be an alternative sequence. Write W ′
j \W

′
j−1 = {w′

j}. Let j ∈ {1, . . . , ℓ} and
assume that {w′

1, . . . , w
′
j−1} ⊆ Wk. Then w′

j is adjacent to at least two vertices of Wk. Since (8)
terminates at Wk, it follows that w′

j ∈ Wk. By induction, we get W ′
ℓ ⊆ Wk and so W ′

ℓ = Wk by
symmetry. Therefore the procedure is confluent and we may define C(ab) = Wk.

We show that

every superclique of Γ is of the form C(ab) for some ab ∈ E. (9)
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Suppose that W ⊆ V is a superclique of Γ. Since |W | ≥ 2, there exists an edge ab ∈ E∩P2(W ).
We show that W = C(ab).

Consider the sequence (8) with Wk = C(ab). Straightforward induction shows that Wi ⊆ W
for i = 0, . . . , k. Thus C(ab) ⊆ W and so C(ab) is a clique of Γ, actually a superclique since every
v ∈ V \ C(ab) is adjacent to at most one vertex of C(ab). Since every superclique is a maximal
clique, it follows that W = C(ab) and so (9) holds.

It is easy to see that

C(ab) is a superclique of Γ if and only if it is a clique. (10)

Now Γ has O(n2) edges. For each one of these edges, say ab, we can compute C(ab) in time
O(n3). Indeed, k ≤ n − 2, and we can go from Wi−1 to Wi in time O(n2). This can be argued
by considering the adjacency matrix of Γ (an n× n boolean matrix): assuming that the rows and
columns corresponding to Wi−1 are marked, it suffices to go through the entries of the matrix once
to search for the vertex of Wi \Wi−1. Using the adjacency matrix, we can also check if C(ab) is a
clique in time O(n2).

In view of (9) and (10), we can compute in time O(n5) any possible supercliques of Γ. �

This complexity bound can most probably be improved.
It is clear that the construction of ΓL from L can be performed in time at most O(n5), so we

get the polynomial complexity claim on the lattice (in O(n5)). Note that the general algorithm
from Proposition 5.6 yields only a complexity in O(n9).

The following question follows naturally from the results in this paper: is there a more efficient
algorithm to decide if a lattice is the lattice of flats of a BRSC?
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