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Abstract. The weight hierarchy of one-point algebraic geometry codes can be estimated by means of
the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The
asymptotical behaviour of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance
(r = 1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers
for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple
formula for the general case by using numerical semigroup techniques. These involve the computation of
the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained
is applied to lower-bounding the generalized Hamming weights, improving the bound given by Kirfel and
Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of
the Griesmer bound, improving this one in many cases.

1. Introduction

Kirfel and Pellikaan introduced in [17] the concept of array of codes. More generally, the concepts of
order function and weight function allows us to define arrays of codes with the same features (see [16]).
For such an array there is a majority voting algorithm for decoding efficiently up to half the so-called
Feng-Rao distance. This distance is obtained by numerical computations in a certain underlying numerical
semigroup.

These results are actually a linear algebra formalization of the Feng-Rao decoding algorithm and
the Feng-Rao distance δRF (m), introduced in [11] for one-point algebraic geometry codes (AG codes in
short). The Feng-Rao distance (also known as order bound in the literature) becomes a lower bound for
the minimum distance of the involved error-correcting codes.

In the case of one-point AG codes, the Feng-Rao distance improves the lower bound for the minimum
distance given by the Riemann-Roch theorem, that is called the Goppa distance. This result has a
translation in [17] to the case of arrays of codes, namely

δFR(m+ 1) ≥ m+ 2− 2g

if m > 2g − 2, and the equality holds for m >> 0. The number m + 2 − 2g corresponds to the Goppa
bound.

Even though the Feng-Rao distance was introduced just for Weierstrass semigroups and with decoding
purposes, it is just a combinatorial concept that makes sense for arbitrary numerical semigroups, so
that it can be computed just with numerical semigroup techniques. The problem of computing Feng-Rao
distances has been broadly studied in the literature for different types of numerical semigroups (see [2], [3]
or [17]).

Later on, the concept of minimum distance for an error-correcting code has been generalized to the
so-called generalized Hamming weights and the weight hierarchy . These concepts were independently
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introduced by Helleseth et al. in [14] and Wei in [22] for applications in coding theory and cryptography,
respectively.

On the other hand, the Feng-Rao distance has been generalized in a natural way to higher weights
(see [13]). The obtained generalized Feng-Rao distances (or generalized order bounds), defined on the
underlying numerical semigroup for an array of codes (or a weight function, in a modern setting), become
lower bounds for the corresponding generalized Hamming weights. However, the computation of these
generalized Feng-Rao distances is a much more complicated problem than in the classical case. This means
that very few results are known about this subject, and they are completely scattered in the literature
(see for example [1], [6], [7], [10] or [13]).

This paper is addressed to the asymptotical behaviour of the generalized Feng-Rao distances, that is,
δrFR(m) for r ≥ 2 and m >> 0. In fact, it was proved in [10] that

δrFR(m) = m+ 1− 2g + Er

for m >> 0 (details are made precise in the next section). The number Er ≡ E(S, r) is called the rth
Feng-Rao number of the semigroup S, and they are unknown but for very few semigroups and concrete
r’s. For example, it was proved in [8] that

(1) E(S, r) = ρr

for hyper-elliptic semigroups S = 〈2, 2g + 1〉, with multiplicity 2 and genus g, and for Hermitian-like
semigroups S = 〈a, a+ 1〉, where S = {ρ1 = 0 < ρ2 < · · · }.

In [7] the authors compute the Feng-Rao numbers for numerical semigroups generated by intervals,
generalizing the techniques for the Hermitian-like case, but not obtaining the same formula (note that
such semigroups are not symmetric in general). In the present paper we generalize the results of [8],
obtaining the above formula (1) for the general case of embedding dimension two numerical semigroups,
that is, S = 〈a, b〉 generated by two elements. In particular, we get a lower bound for the generalized
Hamming weights in an array of codes whose associated semigroup is such an S. This bound improves
the one given in [17] in terms of the classical Feng-Rao distance. In fact, once the Feng-Rao number Er

is computed, we get a lower bound for the generalized Feng-Rao distance

δrFR(m) ≥ m+ 1− 2g + Er

for m ≥ c (see [10]).
The computation of δrFR is related to divisors of multiple elements in a numerical semigroups, and we

show that these can be calculated by using Apéry sets. These sets are a powerful tool in the study of
numerical semigroups, basically because they provide fast computations, and they were known only when
n equals to one of the generators. We obtain a general expression for the Apéry sets of a semigroup S
with two generators, with respect to any integer n.

The paper is organized as follows. Section 2 sets the general definitions concerning numerical semi-
groups, Feng-Rao distances, Feng-Rao numbers and amenable sets. Computations on embedding dimen-
sion two numerical semigroups are introduced in main Section 3. More precisely, we revise the calculations
on grounds and triangles in [7] for the case of semigroups with two generators, obtaining the desired for-
mula (1) for the Feng-Rao numbers in Theorem 43 by working with amenable sets. Experimental results
with the GAP [12] package numericalsgps [6] pointed precisely to this formula for this type of semi-
groups, and were actually the starting point and motivation to write this paper. The paper ends with
some examples and conclusions in Section 4.

2. Feng-Rao distances on numerical semigroups

Let S be a numerical semigroup, that is, a submonoid of N such that #(N\S) <∞ and 0 ∈ S. Denote
by g := #(N \ S) the genus of S. Note that if S is the Weierstrass semigroup of a curve χ at a point P ,
g equals precisely to the geometric genus of χ, and the elements of G(S) := N \ S = {`1 < · · · < `g} are
called the gaps of S (for the case S being a Weierstrass semigroup, they are also known as Weierstrass
gaps of χ at P ).

Let c ∈ S be the conductor of S, that is the (unique) element in S such that c−1 /∈ S and c+ l ∈ S for
all l ∈ N. We obviously have c ≤ 2g, and thus the “largest gap” of S is `g

.
= c− 1 ≤ 2g − 1. The number
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`g is precisely the Frobenius number of S, denoted by F(S) in the literature. The semigroup S is called
symmetric provided r ∈ S if and only if c− 1− r /∈ S, for all r ∈ Z. This is equivalent to say that c = 2g
or F(S) = 2g − 1.

The multiplicity of a numerical semigroup is the least positive integer belonging to it. Note that if S is
the value semigroup of a curve χ at a point P , this number equals to the multiplicity of χ at the point P .

We say that a numerical semigroup S is generated by a set of elements G ⊆ S if every element m ∈ S
can be written as a linear combination

m =
∑
g∈G

λgg,

where finitely many λg ∈ N are non-zero. It is well-known that every numerical semigroup is finitely
generated, that is, there exists a finite set G that is a generator set for S. Furthermore, every such
generator set contains the set of irreducible elements, where m ∈ S is irreducible if m = a+ b and a, b ∈ S
implies a · b = 0. The set of irreducibles actually generates S, so that it is usually called “the” generator
set of S (and thus its elements are sometimes referred as generators). The number of irreducibles is
called embedding dimension of S (see [20] for further details). The smallest generator is precisely the
multiplicity.

Finally, if we enumerate the elements of S in increasing order

S = {ρ1 = 0 < ρ2 < · · · },
we note that every m ≥ c is the (m+ 1− g)th element of S, that is m = ρm+1−g .

Following [20], for a, b ∈ Z given, we say that a divides b, and write

a ≤S b, if b− a ∈ S.
This binary relation is an order relation.

The set D(a) denotes the set of divisors of a in S, and for a given M = {m1, . . . ,mr} ⊆ S, we write

D(M) = D(m1, . . . ,mr) =
r⋃

i=1

D(mi). Thus, from now on, we will use the term divisors to refer to the

elements in the sets D(·).
Note that D(m1) ⊆ [0,m1], and s ∈ D(m1) implies D(s) ⊆ D(m1). The following result was proved

in [7].

Lemma 1. D(x) = S ∩ (x− S).

Remark 2. As an immediate consequence we get #(D(m+ ρn) ∩ [m,∞)) = n for m ≥ c.
The above inclusion D(m) ⊆ D(m+p), for all p ∈ S, is very useful for practical computations. Moreover,

we easily get the following result (see [7]).

Proposition 3. If m ≥ 2c− 1, then # D(m) = # (S ∩ (m− S)) = m+ 1− 2g.

We now introduce the definitions of the generalized Feng-Rao distances and summarize known results
about them.

Definition 4. Let S be a numerical semigroup. The (classical) Feng-Rao distance of S is defined by the
function

δFR : S −→ N
m 7→ δFR(m) := min{# D(m1) | m1 ≥ m, m1 ∈ S}.

There are some well-known facts about the δFR function for an arbitrary semigroup S (see [16], [17]
or [2] for further details). The most important one for our purposes is that δFR(m) ≥ m+ 1− 2g for all
m ∈ S with m ≥ c, and that equality holds if moreover m ≥ 2c− 1.

The classical Feng-Rao distance corresponds to r = 1 in the following definition.

Definition 5. Let S be a numerical semigroup. For any integer r ≥ 1, the rth Feng-Rao distance of S
is defined by the function

δrFR : S −→ N
m 7→ δrFR(m) := min{# D(m1, . . . ,mr) | m ≤ m1 < · · · < mr, mi ∈ S}.
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Very few results are known for the numbers δrFR, and their computation is very hard from both a the-
oretical and computational point of view. The main result we need describes the asymptotical behaviour
for m >> 0, and was proved in [10]. As we already mentioned in the introduction, this result tells us that
there exists a certain constant Er = E(S, r), depending on r and S, such that

(2) δrFR(m) = m+ 1− 2g + Er

for m ≥ 2c − 1. This constant is called the rth Feng-Rao number of the semigroup S. Furthermore, it
is also true that δrFR(m) ≥ m + 1 − 2g + E(S, r) for m ≥ c, and equality holds if S is symmetric and
m = 2g − 1 + ρ for some ρ ∈ S \ {0} (see [10]). Somehow, this constant measures the difference between
δrFR(m) and δFR(m) for sufficiently large m, being E(S, 1) = 0. For the trivial semigroup with g = 0, it
is easy to check that E(S, r) = r − 1.

We summarize some general properties of the Feng-Rao numbers, for r ≥ 2 and S fixed, with g ≥ 1
(see again [10] for the details):

1. The function E(S, r) is non-decreasing in r.
2. r ≤ E(S, r) ≤ ρr . If furthermore r ≥ c, then E(S, r) = ρr = r + g − 1.

The computation of the Feng-Rao numbers is a very hard task, even in very simple examples. So far,
only the second Feng-Rao number (r = 2) is computed in the literature, with either a general algorithm
based on Apéry systems, or concrete formulas for simple examples by counting deserts (see [10]). More
precisely, the only exact formula, given in [10], is that

E(S, 2) = ρ2

for S generated by two elements.
In a previous work [8], and by using different techniques, we have found two families of numerical semi-

groups with E(S, r) = ρr: that of numerical semigroups with multiplicity two (hyper-elliptic), and those
embedding dimension two numerical semigroups generated by a positive integer a and a+ 1 (hermitian-
like). In this paper we generalize this result to the whole family of embedding dimension two numerical
semigroups.

Note that in general this bound is not attained for other kinds of semigroups, not even for r = 2. For
example, if we consider the semigroup S = 〈6, 13, 14, 15, 16, 17〉 then E(S, 2) = 3 < ρ2 = 6.

The following definitions are addressed to find the minimum required by the definition of Feng-Rao
distance.

Definition 6. Let S be a numerical semigroup and let m ∈ S. A finite subset of S ∩ [m,∞) is called a
(S,m)-configuration, or simply a configuration. A configuration M of cardinality r is said to be optimal
if δrFR(m) = # D(M).

Motivated by Formula (2) and Proposition 3, in the sequel we denote by m any integer greater than or
equal to 2c− 1, where c is the conductor of the semigroup under consideration.

Definition 7. Let S be a numerical semigroup with conductor c. Let M = {m1, . . . ,mr} ⊆ S with
m = m1 < · · · < mr. We say that the set M is (S,m, r)-amenable if:

(3) for all i ∈ {1, . . . , r},D(mi) ∩ [m,∞) ⊆M.

We will refer a set satisfying (3) as being m-closed under division. So, a subset of S ∩ [m,∞) with
cardinality r is (S,m, r)-amenable if and only if it contains m and is m-closed under division.

When no confusion arises or only the concept is important, we simply say amenable set.
The following is immediate from the definition (it has also been stated in [7, Lemma 40]).

Lemma 8. Let M 6= {m} be an amenable set. Then M \ {max(M)} is again an amenable set.

The importance of amenable sets comes from the following result, which states that among the optimal
configurations of cardinality r there is at least one (S,m, r)-amenable set.

Proposition 9. [7, Proposition 10] Let S be a numerical semigroup with conductor c and let m ≥ 2c− 1.
Let r be a positive integer. Among the (S,m)-optimal configurations of cardinality r there is one (S,m, r)-
amenable set.
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The following lemma is of extreme importance, since it will allow us to concentrate in computing
amenable sets whose so-called grounds have as few divisors as possible.

Lemma 10. Let S be a numerical semigroup minimally generated by {n1 < · · · < ne} with conductor c.
Let m ≥ 2c − 1 and let M = {m = m1 < · · · < mr} be an amenable set. Define L = M ∩ [m,m + ne).
Then L is an amenable set,

D(L) ∩ [0,m) = D(M) ∩ [0,m)

and
# D(M) = #(D(L) ∩ [0,m)) + #M.

Proof. Clearly L is amenable.
By [7, Lemma 13], D(M) = (M \ L) ∪ D(L). Hence D(M) ∩ [0,m) = ((M \ L) ∪ D(L)) ∩ [0,m) =

D(L) ∩ [0,m).
Also D(M) = (M \L)∪ (D(L)∩ [m,∞))∪ (D(L)∩ [0,m)). As L is amenable, D(L)∩ [m,∞) = L. Hence

D(M) = (M \ L) ∪ L ∪ (D(L) ∩ [0,m)) = M ∪ (D(L) ∩ [0,m)), and this union is a disjoint union, whence
# D(M) = #(D(L) ∩ [0,m)) + #M . �

Let S be a numerical semigroup, n an integer and consider the following set:

Ap(S, n) = {s ∈ S | s− n 6∈ S}.
This set is said to be the Apéry set of S with respect to n. The Apéry set with respect to an element of
S is one of the most powerful ingredients in the study of numerical semigroups, in part because it leads
to fast computations, though in the literature usually n is chosen to be a nonzero element of S.

Next we present an useful relationship between Apéry sets and divisors.

Proposition 11. The mapping f : Ap(S, n)→ D(m + n) \D(m), f(s) = m + n− s is a bijection.

Proof. Let us see that this map is well defined. Let s ∈ Ap(S, n). Then m + n − s ∈ D(m + n). On the
other hand, as m + n− s = m− (s− n), m + n− s ∈ S implies that m + n− s 6∈ D(m).

The fact that f is one to one is clear.
Let now m + n − s ∈ S be a divisor of m + n (which implies that s ∈ S) that is not a divisor of m.

As m + n− s = m− (s− n), the fact that m + n− s belongs to S and is not a divisor of m implies that
s − n 6∈ S. It follows that we can take s as a pre-image of m + n − s, concluding in this way that f is
surjective. �

For symmetric numerical semigroups we can get an alternative description.

Remark 12. Let S be a symmetric numerical semigroup. Then D(m + n) \D(m) = Ap(S, n) + m− F(S).

Proof. Let t ∈ D(m+n)\D(m). Then m+n−t ∈ S and m−t 6∈ S. As S is symmetric F(S)−(m+n−t) 6∈ S
and F(S) − (m − t) ∈ S. Set s = F(S) − (m − t) ∈ S. Then s ∈ Ap(S, n), and t = s + m − F(S) ∈
Ap(S, n) + m− F(S).

For the other inclusion, take s ∈ Ap(S, n). Then m+n−(s+m−F(S)) = F(S)−(s−n) ∈ S (s−n 6∈ S
and S is symmetric), and m − (s + m − F(S)) = F(S) − s 6∈ S (since s ∈ S and S is symmetric). Hence
m + s− F(S) ∈ D(m + n) \D(m). �

3. Feng-Rao numbers of embedding dimension two numerical semigroups

Let S = 〈a, b〉, with a < b coprime integers greater than two. Let c be the conductor of S. A well
known result of Sylvester states that c = ab − a − b + 1. Let m be an integer greater than or equal to
2c− 1.

Throughout this section, the letters a, b and m shall be used with the above meanings.
This section is composed of various subsections. The first one, recalls some known facts for Weierstrass

semigroups with two generators. Then we introduce some technical results that will be used in the rest of
the paper. It is worth to highlight that among these, we present an explicit description of the Apéry sets
with restpect to any positive integer. Later we introduce a way to draw sets of integers that may help
to follow the text remaining. The pictures, which show results produced with the package [6], have been
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created by using the GAP [12] package IntPic [5]. These type of images helped the authors to prove the
results presented in this paper. Next we show how to organize sets of divisors in triangles, and finally we
discuss how to arrange them to obtain optimal configurations.

3.1. Weierstrass semigroups with two generators. For a base field F of characteristic zero, it is
classically known that every numerical semigroup S generated by two elements is actually a Weierstrass
semigroup, in the sense that there exists an irreducible smooth projective algebraic curve χ and a point
P ∈ χ such that the Weierstrass semigroup of χ at P is precisely S (see [18]).

Unfortunately, this result is not proven to be true also in positive characteristic. Nevertheless, there are
sufficiently many examples of embedding dimension two numerical semigroups that are actually Weier-
strass. In fact, provided F is a perfect field of positive characteristic (a finite field, in particular), one has
that the plane curve given by the equation

αxa + βyb = γ

has genus

g =
1

2
(a− 1)(b− 1)

where α, β, γ ∈ F \ {0}, gcd(a, b) = 1 and charF - a · b (see [21]).
It is easy to check that the rational functions x and y have a unique pole at P , P being the only point

at infinity, of order b and a respectively, so that the semigroup S = 〈a, b〉 is contained in the Weierstrass
semigroup Γ of χ at P . But since both semigroups S and Γ have the same genus, one concludes that
S = Γ.

The above example shows that, for a given characteristic p, infinitely many embedding dimension two
numerical semigroups are Weierstrass (those whose generators are none of them multiple of p). Conversely,
a given semigroup S = 〈a, b〉 is Weierstrass for every characteristic p but for a finite number of primes p
(namely, those prime factors of a or b).

The above example does not work when the characteristic p divides one of the generators. For example,
if F = F2 and one considers the curve x4 +y5 = 1, the genus turns out to be 0 (use for example the library
brnoeth.lib [9] of the computer algebra system Singular [4]), so that the semigroup S = 〈4, 5〉 is not
the Weierstrass semigroup of this curve at any of its points.

3.2. Technical results. We start by giving a procedure to decide when an integer belongs to 〈a, b〉. This
criterion will be used many times in the rest of the paper. This is indeed a direct consequence of [20,
Lemma 2.6], and its proof is included for the sake of completeness.

Lemma 13. Let u ∈ {0, . . . , b− 1}, and let v be an integer.

1. The integer ua+vb ∈ S if and only if v ≥ 0 (analogously, for v ∈ {0, . . . , a−1} and u ∈ Z, ua+vb ∈ S
if and only if u ≥ 0).

2. If ua + vb = u′a + v′b with 0 ≤ u′ ≤ b − 1 and v′ ∈ Z, then u′ = u and v′ = v (the same for
v′ ∈ {0, . . . , a− 1}, u′ ∈ Z)

Proof. 1. Clearly, if v ≥ 0, then ua+ vb ∈ S. For the converse, if ua+ vb ∈ S, then there exist u′, v′ ∈ N
such that ua+vb = u′a+v′b. Assume to the contrary that v < 0. Then ua = u′a+ (v′−v)b. As b > a,
we get that ua = u′a+ (v′− v)b > (u′+ v′− v)a, and consequently u > u′. Hence (u−u′)a = (v′− v)b.
However, gcd(a, b) = 1, which implies that b|u − u′. Since u − u′ ∈ {0, . . . , b − 1}, this forces u = u′,
and then v′ − v = 0, contradicting v < 0, v′ ∈ N.

2. If ua + vb = u′a + v′b, as u′a + (v′ − v)b = ua, we have too that a divides v′ − v and we can write
v′ − v = xa, with x ∈ Z, to obtain (u′ + xb)a = ua. Since 0 ≤ u = u′ + xb ≤ b− 1 and 0 ≤ u′ ≤ b− 1,
we deduce that x = 0 and u = u′.

�

We observe that for an integer n given, there exist integers u and v such that n = ua+ vb, since a and
b are coprime. Furthermore, u can be taken such that 0 ≤ u < b (in fact, u = na−1 mod b) and, in this
case, u and v are unique, by the above lemma.

Let n be a positive integer. Next we give a description of Ap(S, n).
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Theorem 14. Let a and b be coprime positive integers, and let S = 〈a, b〉. Let n be an integer, and let u
and v be integers with 0 ≤ u < b, such that n = ua+ vb. Then

Ap(S, n) =


{αa+ βb | 0 ≤ α < u and 0 ≤ β < a+ v}, if − a ≤ v < 0,

{αa+ βb | u ≤ α < b and 0 ≤ β < v}
∪{αa+ βb | 0 ≤ α < u and 0 ≤ β < a+ v}, if n ∈ S.

In particular,

# Ap(S, n) =


0 if v < −a,
u(a+ v) if − a ≤ v < 0,

n otherwise.

Proof. Take s = αa + βb ∈ S, with 0 ≤ α < b, β ≥ 0. Since 0 ≤ u < b and 0 ≤ α < b implies that
−b < α − u < b, we have that s − n = (α − u)a + (β − u)b 6∈ S if and only if either 0 ≤ α − u < b and
β − v < 0, or −b < α− u < 0 and β − v < a. It follows that

Ap(S, n) = {αa+ βb | (0 ≤ α− u < b and β − v < 0) and (0 ≤ α < b and β ≥ 0)}
∪ {αa+ βb | (−b < α− u < 0 and β − v < a) and (0 ≤ α < b and β ≥ 0)}.

And the proof follows easily by studying the possible cases. �

Observe that we recover the well known fact that the Apéry set of an element n in S has cardinality n.
In light of Proposition 11, the description of the Apéry sets for semigroups of embedding dimension

two given in Theorem 14 yields a description of the set D(m+n) \D(m), that is, of the new divisors that
m + n adds to those of m.

To better understand the result below, we refer the reader to the figures in Example 17.

Corollary 15. Let n ∈ N, n = ua+ vb with u ∈ {0, . . . , b− 1} and v ∈ Z. Then

D(m + n) \D(m) =


{m + xa+ yb | 0 < x ≤ u and − a < y ≤ v < 0}, if v < 0,

{m + xa+ yb | u < x ≤ b and − a < y ≤ v − a}
∪{m + xa+ yb | 0 < x ≤ u and − a < y ≤ v}, if n ∈ S.

Proof. Let s ∈ D(m + n) \D(m). By applying Proposition 11, there exists αa+ βb ∈ Ap(S, n) such that

s = f(αa+ βb) = m + ua+ vb− (αa+ βb) = m + (u− α)a+ (v − β)b

= m + (u− α+ b)a+ (v − β − a)b.

The inequalities in Theorem 14 involved in the description of Ap(S, n) can be rewritten as follows.

• 0 ≤ α < u is equivalent to 0 < u− α ≤ u.
• 0 ≤ β < a+ v if and only if −a < v − β ≤ v.
• u ≤ α < b is the same as u < u− α+ b ≤ b.
• 0 ≤ β < v is equivalent to −a < v − β − a ≤ v − a.
• 0 ≤ β < a+ v corresponds to −a < v − β ≤ v.

From the above inequalities and Theorem 14 we obtain

D(m + n) \D(m) ⊆


{m + xa+ yb | 0 < x ≤ u and − a < y ≤ v < 0}, if v < 0,

{m + xa+ yb | u < x ≤ b and − a < y ≤ v − a}
∪{m + xa+ yb | 0 < x ≤ u and − a < y ≤ v}, if n ∈ S.

Now by Lemma 13, the set on the right hand side has the same cardinality as that of Ap(S, n), which by
Proposition 11, is the same as that of D(m + n) \D(m). Hence the equality holds. �

As a consequence of Corollary 15, we also obtain

(4) D(m,m + n) = D(m) ∪


{m + xa+ yb | 0 < x ≤ u and − a < y ≤ v < 0}, if v < 0,

{m + xa+ yb | u < x ≤ b and − a < y ≤ v − a}
∪{m + xa+ yb | 0 < x ≤ u and − a < y ≤ v}, if n ∈ S,
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and this union is disjoint.

3.3. A way to visualize integers. Our purpose in this subsection is to construct a table where each
integer appears exactly once and such that the way the integers are disposed helps the understanding of
the problem treated in this paper, as well as many of the statements and proofs. Instead of the traditional
arrangement of the integers in a straight line, we represent them in a an bi-infinite strip whose width
depends on a given integer and the way the elements are presented depends on another integer which is
smaller and coprime to the former one. The pictures, which show results produced with the package [6],
have been produced by using the GAP [12] package IntPic [5].

Let a, b ∈ N be coprime integers such that a < b. We shall construct a bi-infinite table such that each
row has length b. For this purpose, we choose an integer o which will work as the origin of a referential.
Take the row {o, o + a, . . . , o + (b− 1)a} (which will work as the x-axis.) The other rows are obtained by
adding or subtracting multiples of b in such a way that the y-axis is {. . . , o− 2b, o− b, o, o+ b, o+ 2b, . . .}.
Similarly, each of the other columns consist of o plus multiples of b plus a certain fixed multiple of a
between 0 and (b − 1)a. It follows from Lemma 13 that each integer appears exactly once in the table
and, if we write n = ua+ vb, with u ∈ {1, . . . , b− 1} and v ∈ Z, u and v may be seen as the x-coordinate
and the y-coordinate, respectively.

Throughout the paper, the integers a and b will be taken as the minimal generators of an embedding
dimension two numerical semigroup and o is taken as m.

The examples in this subsection show the relevant parts of pictures that have been produced by taking
a = 11, b = 29 and o = m = 559. In the next example the numbers are shown, so that the reader can easily
verify which are the integers involved in the other examples. Colors (or gray tones) are used to highlight
elements. For those elements belonging to more than one set whose elements are to be highlighted, we
use gradients ranging through all the colors involved. The set {m, . . . ,m+ b−1} will be called the ground
with respect to m, or simply ground when no possible confusion may arise.

Example 16. Let a = 11, b = 29, o = m = 559. The highlighted elements are those of the x and y axis
and the ground. In this example, the steps of the ground have lengths 2 or 3.

617 628 639 650 661 672 683 694 705 716 727 738 749 760 771 782 793 804 815 826 837 848 859 870 881 892 903 914 925
588 599 610 621 632 643 654 665 676 687 698 709 720 731 742 753 764 775 786 797 808 819 830 841 852 863 874 885 896
559 570 581 592 603 614 625 636 647 658 669 680 691 702 713 724 735 746 757 768 779 790 801 812 823 834 845 856 867
530 541 552 563 574 585 596 607 618 629 640 651 662 673 684 695 706 717 728 739 750 761 772 783 794 805 816 827 838
501 512 523 534 545 556 567 578 589 600 611 622 633 644 655 666 677 688 699 710 721 732 743 754 765 776 787 798 809
472 483 494 505 516 527 538 549 560 571 582 593 604 615 626 637 648 659 670 681 692 703 714 725 736 747 758 769 780
443 454 465 476 487 498 509 520 531 542 553 564 575 586 597 608 619 630 641 652 663 674 685 696 707 718 729 740 751
414 425 436 447 458 469 480 491 502 513 524 535 546 557 568 579 590 601 612 623 634 645 656 667 678 689 700 711 722
385 396 407 418 429 440 451 462 473 484 495 506 517 528 539 550 561 572 583 594 605 616 627 638 649 660 671 682 693
356 367 378 389 400 411 422 433 444 455 466 477 488 499 510 521 532 543 554 565 576 587 598 609 620 631 642 653 664
327 338 349 360 371 382 393 404 415 426 437 448 459 470 481 492 503 514 525 536 547 558 569 580 591 602 613 624 635
298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496 507 518 529 540 551 562 573 584 595 606
269 280 291 302 313 324 335 346 357 368 379 390 401 412 423 434 445 456 467 478 489 500 511 522 533 544 555 566 577
240 251 262 273 284 295 306 317 328 339 350 361 372 383 394 405 416 427 438 449 460 471 482 493 504 515 526 537 548
211 222 233 244 255 266 277 288 299 310 321 332 343 354 365 376 387 398 409 420 431 442 453 464 475 486 497 508 519

The following example gives us the (correct) impression that the way the elements are sorted in the
construction of the table leads to disposing the divisors in a way that makes easy to visualize and count
them. The pictures are meant to illustrate the sets in Corollary 15.

Example 17. The highlighted cells in the leftmost picture, corresponding to the case n 6∈ S, are the
divisors of m(= 559), and the divisors of m + n(= m + 22a − 8b = 569) that are not divisors of m. The
highlighted cells in the picture on the right, correspond to the case n ∈ S, and are on the one hand the
divisors of m(= 559), and on the other hand, the divisors of m + n(= m + 2a + b = 610) that are not
divisors of m; these consist of the union of two sets that are drawn by using different colors.
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3.4. Ground, triangles and divisibility. Every x ∈ {0, . . . , b− 1} can be expressed as ia mod b for a
unique i ∈ {0, . . . , b− 1}, because gcd(a, b) = 1.

For i ∈ N, we will write m⊕ i for m+ (ia mod b), which is a rather convenient way to express uniquely
the elements of the ground.

In order to avoid the unnecessary parentheses, we will assume that the precedence of ⊕ is higher than
the rest of binary operations. Thus, for instance, we will write m⊕ i+ ha to refer to (m⊕ i) + ha.

The divisors of an element in the ground, excluding the divisors of m are described in the following
consequence of Corollary 15.

Corollary 18. Let i ∈ {0, . . . , b− 1}. Then

D(m⊕ i) \D(m) = {m + xa+ yb | 0 < x ≤ i,−a < y ≤ −bia/bc}.

Proof. Just use Corollary 15 with ia mod b = ia− bia/bcb (u = i, v = −bia/bc). �

We are going to see that if an element divides two elements in the ground and does not divide m, then
it divides all the elements between these two elements. First we give an example that may help to follow
the proof.

Example 19. The divisors of m⊕ 9, m⊕ 15 and m⊕ 21 are represented in the following picture.

Corollary 20. Let i, j, k ∈ {0, . . . , b− 1} with i < j < k. Then

(D(m⊕ i) ∩D(m⊕ k)) \D(m) ⊆ D(m⊕ j) \D(m).

Proof. Following Corollary 18, if we take s ∈ (D(m ⊕ i) ∩ D(m ⊕ k)) \ D(m), then s = m + xa + yb with
0 < x ≤ i and −a < y ≤ −bka/bc. Thus 0 < x ≤ i < j and −a < y ≤ −bka/bc ≤ −bja/bc, and so by
using again Corollary 18, we obtain that x ∈ D(m⊕ j) \D(m). �

Given n, n′ ∈ N, n′ ≤S n if and only if D(m + n′) ⊆ D(m + n), or equivalently, D(m + n′) ∩ [m,∞) ⊆
D(m+ n)∩ [m,∞). That is n− n′ ∈ S (n′ divides n with respect to S) if and only if D(m+ n′)∩ [m,∞),
is included in D(m + n) ∩ [m,∞). We say that D(m + n) ∩ [m,∞) is the triangle associated to n, and
D(m+n)∩ [m,m+ b) is its base. Also we will refer to n as the upper vertex of the triangle. Thus we have
shown that n ≤S n

′ if and only if the triangle associated to n is included in that associated to n′. We are
going to see that we do not need to compare the whole triangles, but just the bases.
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Example 21. The following pictures illustrate the two existing kinds of triangles (depending on having m
in the base or not). The bases and upper vertices are highlighted.

An interval of the ground is a subset L of [m,m + b) of the form L = {m ⊕ i, . . . ,m ⊕ (i + h)}, with
i, h ∈ {0, . . . , b−1}. Observe that if ia mod b ≥ a, then m+ia mod b−a = m⊕(i−1) ∈ (D(L)∩[m,m+b))\L
and L is non amenable. An interval of the ground that happens to be an amenable set is said to be an
amenable interval.

Example 22. The two existing types of amenable intervals are illustrated in the figures below. They have
been obtained using, respectively, i = 6, h = 8 and i = 22, h = 11.

As we see next, every amenable interval is realizable as the base of a triangle.

Lemma 23. Let L = {m ⊕ i, . . . ,m ⊕ (i + h)} be an amenable interval, with 0 ≤ i, h < b. Then
D(m⊕ i+ ha) ∩ [m,m + b) = L.

Proof. The divisors of m⊕ i+ ha can be expressed as m⊕ i+ ha− xa− yb with x, y ∈ N.
Let x, y ∈ N. Next we use the division algorithm to manipulate m + ia mod b+ ha− xa− yb.

m + ia mod b+ ha− xa− yb = m + ia mod b+ b(h− x)a/bcb+ (h− x)a mod b− yb
= m + ia mod b+ (h− x)a mod b+ (b(h− x)a/bc − y)b.

Hence

(5) m + ia mod b+ ha− xa− yb = m + (i+ h− x)a mod b+ Y b,

where

Y =

{
b(h− x)a/bc − y if 0 ≤ ia mod b+ (h− x)a mod b < b,
b(h− x)a/bc − y + 1 if b ≤ ia mod b+ (h− x)a mod b < 2b.

Hence
m + ia mod b+ ha− (m + (i+ h− x)a mod b) = xa+ (y + Y )b.

As the elements of L are in the ground and may be written as m⊕ (i+ h− x), with x ∈ {0, . . . , h}, the
above equation proves that L ⊆ D(m⊕ i+ ha) ∩ [m,m + b).

In order to prove the reverse inclusion recall that as L is amenable, we have that ia mod b < a. Thus

m⊕ i+ ha− xa− yb = m + (ia mod b) + ha− xa− yb
< m + a+ ha− xa− yb = m + (1 + h− x)a− yb.

If x > h, then we get a divisor that is smaller than m, therefore we may assume that x ∈ {0, . . . , h}. Now
it suffices to use again Equation (5), to see that m⊕ i+ ha− xa− yb ∈ [m,m+ b) if and only if Y = 0,
and then m⊕ i+ ha− xa− yb = m + (i+ h− x)a mod b ∈ {m⊕ i, . . . ,m⊕ (i+ h)} = L. �

For h > b− 1, D(m⊕ i+ (b− 1)a) ⊆ D(m⊕ i+ ha). By Lemma 23, D(m⊕ i+ (b− 1)a)∩ [m,m + b) =
{m, . . . ,m + b− 1}, and consequently D(m + n) ∩ [m,m + b) = {m, . . . ,m + b− 1}.
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Remark 24. Let n ∈ N. Then n = ia mod b + ha, with i = (n mod a)a−1 mod b and h =
⌊
n
a

⌋
. This is

because n = bn/aca+ n mod a = ha+ ia mod b. Observe that

ia mod b = n− ha < a,

and thus L = {m⊕ i, . . . ,m⊕ (i+ h)} is an amenable interval. Moreover, by Lemma 23, L = D(m+ n)∩
[m,m + b), and if h < b, L 6= {m, . . . ,m + b− 1}.

• If m ∈ L, by Lemma 23, m ∈ D(m⊕ i+ ha) = D(m+ n). Thus m+ n−m = n ∈ S. The converse
is trivially true. Hence m ∈ L if and only if n ∈ S. In this setting, if i 6= 0, L can be written as

L = {m, . . . ,m⊕ (i+ h− b)} ∪ {m⊕ i, . . . ,m⊕ (b− 1)}.
If i = 0, then L = {m, . . . ,m⊕ h}.
• If m /∈ L (n 6∈ S), then h + i < b (since if i + h ≥ b, m = m ⊕ b ∈ L), and 0 < ia mod b (since

otherwise, n = ha ∈ S).

Observe that if M is an amenable set and L = M ∩ [m,m + b) = {m, . . . ,m + b − 1}, then according
to Lemma 10, # D(M) = #(D(m, . . . ,m + b− 1) ∩ [0,m)) + #M . Hence whenever we add an element to
M so that it remains amenable, the resulting number of divisors is increased just by one. Thus we are
mainly interested in the case M ∩ [m,m + b) ( {m, . . . ,m + b− 1}.

Lemma 25. Let n, n′ ∈ N with D(m + n) ∩ [m,m + b) 6= {m, . . . ,m + b− 1}. Then n′ ≤S n if and only if
D(m + n′) ∩ [m,m + b) ⊆ D(m + n) ∩ [m,m + b).

Proof. If n′ ≤S n, then as it was already mentioned above, trivially D(m + n′) ⊆ D(m + n).
For the converse, let i, h, i′, h′ be as in Remark 24, such that n = ia mod b+ha and n′ = i′a mod b+h′a.

Notice that n−n′ = (h+ i−h′− i′)a+(bi′a/bc − bia/bc) b = (h+ i−h′− i′−b)a+(bi′a/bc − bia/bc+ a) b.
In view of Remark 24, D(m+n′)∩ [m,m+ b) = {m⊕ i′, . . . ,m⊕ (i′+h′)}, and D(m+n)∩ [m,m+ b) =

{m⊕ i, . . . ,m⊕ (i+ h)}.
As D(m+n′)∩[m,m+b) ⊆ D(m+n)∩[m,m+b) 6= {m, . . . ,m+b−1}, we deduce {m⊕i′, . . . ,m⊕(i′+h′)} ⊆

{m⊕ i, . . . ,m⊕ (i+ h)} and h < b− 1. The following cases may occur.

1. If i + h < b, then i ≤ i′ and h′ + i′ ≤ h + i. Hence n − n′ ∈ S, because h + i − h′ − i′ ≥ 0 and
bi′a/bc − bia/bc ≥ 0.

2. If i+ h ≥ b, then {m⊕ i, . . . ,m⊕ (i+ h)} = {m, . . . ,m⊕ (i+ h− b)} ∪ {m⊕ i, . . . ,m⊕ (b− 1)}, and
we have to distinguish three sub-cases.

i. 0 ≤ i′ ≤ i′+ h′ ≤ i+ h− b. In this setting, n−n′ = (h+ i− b− h′− i′)a+ (bi′a/bc − bia/bc+ a) b,
which is in S, since h+ i− b− h′ − i′ ≥ 0 and bi′a/bc − bia/bc+ a ≥ 0.

ii. i ≤ i′ ≤ i′ + h′ < b(≤ i+ h). Now, n− n′ = (h+ i− h′ − i′)a+ (bi′a/bc − bia/bc) b, which is in S.
iii. i ≤ i′ and 0 ≤ i′+h′−b ≤ i+h−b < i−1. In this case, n−n′ = (h+i−h′−i′)a+(bi′a/bc − bia/bc) b,

which belongs to S. �

Next result tells us that triangles are in some sense maximal amenable sets with respect to their base.

Corollary 26. Let L = {m ⊕ i, . . . ,m ⊕ (i + h)} 6= {m, . . . ,m + b − 1}, 0 ≤ i, h < b, be an amenable
interval. Let M be an amenable set such that M ∩ [0,m + b) ⊆ L. Then M ⊆ D(m⊕ i+ ha).

Proof. Let n = ia mod b+ha and take m+n′ ∈M . As M is amenable, D(m+n′) ⊆M , and D(m+n′)∩
[m,m + b) ⊆ L. In light of Lemmas 23 and 25, we have n′ ≤S n. Hence m + n′ ∈ D(m + n) ∩ [m,∞) ⊆
D(m⊕ i+ ha). �

3.5. Moving triangles and optimal configurations. The results obtained so far allow us to assert
that an amenable set is a union of triangles (not necessarily disjoint). We see in this section how to
organize these triangles so that we get a configuration with the least possible number of divisors. First
we prove that the size of the triangles increases as we increase their upper vertex.

Lemma 27. Let n, n′ ∈ N, n ≤ n′. Then #(D(m + n) ∩ [m,∞)) ≤ #(D(m + n′) ∩ [m,∞)).

Proof. If m + t ∈ D(m + n) ∩ [m,∞), then t = n − s with s ∈ S. Since t + (n′ − n) = n′ − s, we get
m + t+ (n′ − n) ∈ D(m + n′) ∩ [m,∞). �
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As we saw above, triangles are uniquely determined by their bases, which are amenable intervals.
Moreover, the number of divisors of the elements in the triangles smaller than m depends only on the
elements in their bases. We introduce a way to arrange amenable intervals that allows us to handle easily
the elements in the ground of an amenable set.

Given L and L′ amenable intervals, we write L ≺ L′ if L ∪ L′ is not an amenable interval and either

• m ∈ L or
• m 6∈ L ∪ L′, and for all m ⊕ x ∈ L and every m ⊕ y ∈ L′, x < y (the condition L ∪ L′ is not an

amenable interval then forces x+ 1 < y, and also that L ∩ L′ = ∅).

Remark 28. Let M be an amenable set. The set L = M ∩ [m,m+ b) can be expressed as union of disjoint
amenable intervals, L = L1 ∪ · · · ∪ Lt, such that L1 ≺ L2 ≺ · · · ≺ Lt.

According to Proposition 9, when looking for an optimal configuration, we may choose M amenable
with m ∈ M . This is why in the following results we may impose m ∈ L1 without loosing generality. In
light of this, we will also assume that m ⊕ (b− 1) /∈ Lt for t > 1, since we will take L1 ≺ Lt.

Proposition 29. Let L1, . . . , Lt be a sequence of amenable intervals with m ∈ L1 ≺ · · · ≺ Lt. For
1 < i < t,

D(Li) \D(L1 ∪ · · · ∪ Li−1 ∪ Li+1 ∪ · · · ∪ Lt) = D(Li) \D({m} ∪ Li−1 ∪ Li+1).

Proof. The inclusion D(Li) \D(L1 ∪ · · · ∪Li−1 ∪Li+1 ∪ · · · ∪Lt) ⊆ D(Li) \D({m}∪Li−1 ∪Li+1) is trivial.
For the other inclusion, let ni ∈ N be such that D(m + ni) ∩ [m,m + b) = Li (Lemma 23). As i > 1,
m 6∈ D(Li), and thus ni 6∈ S (Remark 24).

Let s ∈ D(Li)\D({m}∪Li−1∪Li+1). Assume that s ∈ D(Lj) with j /∈ {i−1, i, i+1}. Then there exist
u, v ∈ {0, . . . , b−1}, such that m⊕u ∈ Lj , m⊕v ∈ Li and s ∈ (D(m⊕u)∩D(m⊕v))\D(m). If u < v, then
from the hypothesis it easily follows that for all w ∈ {0, . . . , b−1} with m⊕w ∈ Li−1, we have u < w < v.
Then, by taking any of such w and by Corollary 20, we deduce that s ∈ D(m⊕ w) \ D(m) ⊆ D(Li−1), a
contradiction. If u > v, we proceed analogously but with Li+1. �

This result allows us to focus in what happens when we have three disjoint triangles and we want to move
the one in the middle. Our aim is to change D(m,m+n1,m+n2,m+n3) with D(m,m+n1+(h2+1)a,m+n3).
We are going to see that in this way, the number of divisors below m decreases, while we get more over
m (see the picture in Example 36).

First we see how many new divisors m + n2 adds to those of m + n1 and m + n3. To see this we will
use (4).

Lemma 30. Let n1, n2, n3 ∈ N, and set Lj = D(m + nj) ∩ [m,m + b), j ∈ {1, 2, 3}. Assume that
m ∈ L1 ≺ L2 ≺ L3. Write nj = uja+vjb with uj ∈ {0, . . . , b−1} and vj ∈ Z, j ∈ {1, 2, 3}. Then u1 < u2,
v3 < v2 < 0 and

D(m + n1,m + n2,m + n3) \D(m + n1,m + n3) = {m + xa+ yb | u1 < x ≤ u2, v3 < y ≤ v2}.

Proof. Observe that D(m+n1,m+n2,m+n3) \D(m+n1,m+n3) = D(m,m+n2) \D(m+n1,m+n3) =
(D(m,m + n2) \D(m,m + n1)) ∩ (D(m,m + n2) \D(m,m + n3)).

Let ij , hj ∈ {0, . . . , b − 1} be such that nj = ija mod b + hja as in Remark 24. Then we have that
Lj = {m⊕ ij , . . . ,m⊕ (ij + hj)}. The condition L1 ≺ L2 ≺ L3, implies that n2, n3 6∈ S. And as m ∈ L1,
by Remark 24 again, if i1 6= 0, i1 + h1 ≥ b. Hence u2 = i2 + h2, u3 = i3 + h3, v2 = −bi2a/bc and
v3 = −bi3a/bc. If i1 6= 0, then u1 = i1 + h1 − b, v1 = a − bi1a/bc, and if i1 = 0, u1 = h1 and v1 = 0.
Hence u1 < u2 < u3 and v1 − a < v3 < v2 < 0 ≤ v1.

The proof now follows by using (4). �
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Example 31. The following picture illustrates the sets involved in the preceding lemma. It was made
taking n1 = 6a+ b, n2 = 15a− 4b and n3 = 25a− 7b.

Now we see how many new divisors m + n1 + ka and m + ka add to those of m + n1 and m + n3.

Lemma 32. Let n1, n3 ∈ N, and set Lj = D(m+ nj)∩ [m,m+ b), j ∈ {1, 3}. Assume that m ∈ L1 ≺ L3,
and let k ∈ N be such that D(m+n1 +ka)∩ [m,m+ b) ≺ L3. Write nj = uja+vjb with uj ∈ {0, . . . , b−1}
and vj ∈ Z, j ∈ {1, 3}. Then

D(m + n1 + ka,m + n3) \D(m + n1,m + n3) = {m + xa+ yb | u1 < x ≤ u1 + k, v3 < y ≤ v1}.

Proof. As in Lemma 30 the proof follows from (4). �

Example 33. The following picture illustrates the sets involved in the preceeding lemma. It was made by
taking n1 = 6a+ b, k = 9 and n3 = 25a− 7b.

Lemma 34. Let n1, n3 ∈ N, and set Lj = D(m + nj) ∩ [m,m + b), j ∈ {1, 3}. Write nj = uja + vjb
with uj ∈ {0, . . . , b − 1} and vj ∈ Z, j ∈ {1, 3}. Assume that m ∈ L1 ≺ L3, and let k ∈ N be such that
D(m + ka) ∩ [m,m + b) ≺ L3 and k ≥ u1. Then

D(m + ka,m + n3) \D(m + n1,m + n3) = {m + xa+ yb | u1 < x ≤ k, v3 < y ≤ 0}.

Proof. Again, the proof follows from (4). �

Example 35. The following figure represents the sets involved in Lemma 34. We used n1 = 6a+ b, k = 11
and n3 = 25a− 7b.

The next task is to see that the number of divisors below m decreases when we change n2 with
n1 + (h2 + 1)a.

Example 36. Let us compare these sets in an example. Set n1 = 146, n2 = 75 and n3 = 54, which
corresponds to u1 = n1a

−1 mod b = 8, v1 = 2, u2 = 20, v2 = −5, u3 = 26, v3 = −8, i1 = (n1 mod



14 M. DELGADO, J. I. FARRÁN, P. A. GARCÍA-SÁNCHEZ, AND D. LLENA

a)a−1 mod b = 24, h1 = 13, i2 = 14, h2 = 6, i3 = 22, h3 = 4.

Lemma 37. Let n1, n2, n3 ∈ N, and set Lj = D(m + nj) ∩ [m,m + b), j ∈ {1, 2, 3}. Assume that
m ∈ L1 ≺ L2 ≺ L3. Let ij , hj ∈ {0, . . . , b−1} be such that nj = ija mod b+hja (as in Remark 24). Then

#(D(m + n1,m + n2,m + n3) ∩ [m,∞)) ≤ #(D(m + n1 + (h2 + 1)a,m + n3) ∩ [m,∞)).

Proof. By using Lemma 25 and that L1 ≺ L2 ≺ L3, it is easy to prove that #(D(m + n1,m + n2,m +

n3)∩ [m,∞)) =
∑3

j=1 #(D(m+nj)∩ [m,∞)) and #(D(m+n1 + (h2 + 1)a,m+n3)∩ [m,∞)) = #(D(m+

n1 + (h2 + 1)a) ∩ [m,∞)) + #(D(m + n3) ∩ [m,∞)).
As m ∈ L1 ≺ L2, we get m 6∈ L2, and thus by Remark 24, n2 /∈ S. Therefore, Remark 24, asserts

that 0 < i2a mod b < a. Thus, h2a < n2 = i2a mod b + h2a < (h2 + 1)a. Hence, from Lemma 27,
#(D(m + n2) ∩ [m,∞)) ≤ #(D(m + (h2 + 1)a) ∩ [m,∞)).

For every element m+x in D(m+(h2+1)a)∩[m,∞), we have m+n1+x ∈ D(m+n1+(h2+1)a)\D(m+n1).
Hence #(D(m + n1 + (h1 + 1)a) ∩ [m,∞))−#(D(m + n1) ∩ [m,∞)) ≥ #(D(m + (h2 + 1)a) ∩ [m,∞)) ≥
#(D(m + n2) ∩ [m,∞)). This proves #(D(m + n1 + (h2 + 1)a) ∩ [m,∞)) ≥ #(D(m + n1) ∩ [m,∞)) +
#(D(m + n2) ∩ [m,∞)). �

And now we show that we gain divisors over m.

Lemma 38. Let n1, n2, n3 ∈ N, and set Lj = D(m + nj) ∩ [m,m + b), j ∈ {1, 2, 3}. Assume that
m ∈ L1 ≺ L2 ≺ L3. Let ij , hj ∈ {0, . . . , b− 1} be such nj = ija mod b+ hja (as in Remark 24). Then

#((D(m + n1,m + n2,m + n3) \D(m + n1,m + n3)) ∩ [0,m))

≥ #((D(m + n1 + (h2 + 1)a,m + n3) \D(m + n1,m + n3)) ∩ [0,m)).

Proof. For j ∈ {1, 2, 3}, let uj ∈ {0, . . . , b − 1} and vj ∈ Z such that nj = uja + vjb. Then, as above,
either u1 = i1 + h1 − b and v1 = a− bi1a/bc (i1 6= 0), or u1 = h1 and v1 = 0 (i1 = 0). Also u2 = i2 + h2,
u3 = i3 + h3, v2 = −bi2a/bc and v3 = −bi3a/bc. Remark 24 describes both L1 and L2, and as a
consequence of L1 ≺ L2, we get u1 < i2. Thus u1 + h2 + 1 ≤ i2 + h2 = u2. Let

A = D(m + n1,m + n2,m + n3) \D(m + n1,m + n3),
B = D(m + (u1 + h2 + 1)a,m + n3) \D(m + n1,m + n3),
C = D(m + u2a,m + n3) \D(m + n1,m + n3).

From Lemmas 30 and 34, we deduce that

A = {m + xa+ yb | u1 < x ≤ u2, v3 < y ≤ v2},
B = {m + xa+ yb | u1 < x ≤ u1 + h2 + 1, v3 < y ≤ 0},
C = {m + xa+ yb | u1 < x ≤ u2, v3 < y ≤ 0}.

Notice that A ⊆ C, and B ⊆ C. Also

C \A = {m + xa+ yb | u1 < x ≤ u2, v2 < y ≤ 0},
C \B = {m + xa+ yb | u1 + h2 + 1 < x ≤ u2, v3 < y ≤ 0}.

Define
RA = {m + xa+ yb | u1 < x ≤ u2 − h2 − 1, v2 < y ≤ 0},
RB = {m + xa+ yb | u1 + h2 + 1 < x ≤ u2, v3 < y ≤ v3 − v2}.

Then we can write

RA = vA +D, RB = vB +D,
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where D = {xa+ yb | u1 − u2 + h2 + 1 < x ≤ 0, 0 ≤ y < −v2}, vA = m + (u2 − h2 − 1)a+ (v2 + 1)b and
vB = m + u2a+ (v3 + 1)b.

The following figure illustrates the regions involved in this proof. The one on the right corresponds to
the region C where A, B, RA, RB, RA ∩ [0,m) and RB ∩ [0,m) are highlighted.

We claim that (C \ A) ∩ [0,m) ⊆ RA ∩ [0,m). Let us prove that (C \ A) \ RA ⊆ [m,∞). To this end,
observe that (C \ A) \ RA = {m + xa + yb | u2 − h2 − 1 < x ≤ u2, v2 < y ≤ 0} ⊆ vA + N. In addition,
vA = m+u2a−h2a−a+v2b+b = m−h2a+n2−a+b = m+i2a mod b−a+b. As L1 ≺ L2, we have m /∈ L2,
whence by Remark 24, n2 6∈ S, and by Remark 24, 0 < i2a mod b < a. Thus, m + b− a < vA < m + b.

Since RB ⊆ C \B, we get trivially that RB ∩ [0,m) ⊆ (C \B) ∩ [0,m).
Finally we prove that RA ∩ [0,m) ↪→ RB ∩ [0,m). First, vB = m+ (i2 + h2)a−bi3a/bcb+ b = m+ (i2 +

h2− i3)a+ i3a mod b+ b. Again, by Remark 24, i3a mod b < a, and thus vB < m+ (i2 +h2 + 1− i3)a+ b.
Moreover, L2 ≺ L3, whence i2 + h2 + 1 < i3, and consequently vB < m − a + b < vA. For every
n ∈ RA ∩ [0,m), n = vA + x, x ∈ D, and vA + x < m. Hence vB + x < vA + x < m. This implies that the
map RA → RB, vA +x 7→ vB +x is injective and maps elements in RA ∩ [0,m) to elements in RB ∩ [0,m).

Therefore, #((C \ A) ∩ [0,m)) ≤ #(RA ∩ [0,m)) ≤ #(RB ∩ [0,m)) ≤ #((C \ B) ∩ [0,m)). Hence
#(B ∩ [0,m)) ≤ #(A ∩ [0,m)). In view of Lemma 32, (D(m + n1 + (h2 + 1)a,m + n3) \ D(m + n1,m +
n3))∩ [0,m) ⊆ B. Thus #((D(m+n1 + (h2 + 1)a,m+n3)\D(m+n1,m+n3))∩ [0,m)) ≤ #(B∩ [0,m)) ≤
#(A ∩ [0,m)) = #((D(m + n1,m + n2,m + n3) \D(m + n1,m + n3)) ∩ [0,m)). �

Remark 39. Lemmas 30 to 38 also hold if we only take n1, n2 ∈ N with m ∈ L1 ≺ L2. The role played by
v3 is in this setting played by v1 − a = −bi1a/bc if i1 6= 0 and by −a otherwise.

We are going to prove that in addition to the condition m ∈ M (Proposition 9), in order to find an
optimal configuration, we can also assume that the set M ∩ [m,m + b) is an amenable interval.

Lemma 40. Let M ⊆ [m,∞) be an amenable set with m ∈ M , such that # D(M) is the minimum of
# D(M ′) with M ′ ⊆ [m,∞) amenable, m ∈M ′ and #M = #M ′. Then we can assume that M ∩ [m,m+b)
is an amenable interval.

Proof. We know that L = M ∩ [m,m + b) is of the form L = L1 ∪ · · · ∪ Lt with L1, . . . , Lt amenable
intervals such that m ∈ L1 ≺ · · · ≺ Lt. Take M with t minimum. Assume that t > 1.

Let r = #M . Let n1, . . . , nt ∈ {0, . . . , ab − 1} be such that D(m + ni) ∩ [m,m + b) = Li, and
let ij , hj ∈ {0, . . . , b − 1} be such that nj = ija mod b + hja, j ∈ {1, . . . , t} (Remark 24). Let D =
D(m + n1, . . . ,m + nt) ∩ [m,∞). Then D ∩ [m,m + b) = L, and by Lemma 25, M ⊆ D and D is an
amenable set.

Consider now D′ = D(m+n1 + (h2 + 1)a,m+n3, . . . ,m+nt)∩ [m,∞). Then #D′ ≥ r and #(D(D′)∩
[0,m)) ≤ #(D(D) ∩ [0,m)) = #(D(M) ∩ [0,m)) in view of Lemmas 37 and 38, Propositions 29 and 10,
and Remark 39. Observe that if we set L′ = D′ ∩ [m,m + b), then #L = #L′ by Lemma 23.

Finally we construct M ′ by changing D′ with D′ \ {max(D′)} as many times as needed until M ′ has
r elements. We can do this because #D′ ≥ r. Then M ′ is amenable and M ′ ∩ [m,m + b) = L′ (this last
assertion holds because #L = #L′, and thus in the process of removing max(D′) we never take elements in
L′). By Proposition 10, # D(M ′) = #(D(D′)∩[0,m))+r ≤ #(D(D)∩[0,m))+r = #(D(M)∩[0,m))+r =
# D(M). The minimality of # D(M) forces # D(M ′) = # D(M). However, L′, in its decomposition as
amenable intervals, has one interval less than L, contradicting the minimality of t. �
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Our next goal is to prove that the amenable set D(m+ρr)∩ [m,∞) is an optimal configuration (actually
with r elements in light of Remark 2). First we need a result comparing the divisors below m while we
move upwards in S.

Lemma 41. For every t, r ∈ N, with t ≥ r, #(D(m + ρt) ∩ [0,m)) ≥ #(D(m + ρr) ∩ [0,m)).

Proof. Observe that ρt − ρt−1 ≥ 1. Hence by induction ρt − ρr ≥ t− r.
From Proposition 3, we deduce that # D(m + ρt) = # D(m) + ρt and # D(m + ρr) = # D(m) + ρr.

Hence, # D(m + ρr) + ρt − ρr = # D(m + ρt).
By Proposition 10 and Remark 2, # D(m + ρt) = #(D(m + ρt) ∩ [0,m)) + t and # D(m + ρr) =

#(D(m + ρr) ∩ [0,m)) + r. Hence, #(D(m + ρt) ∩ [0,m)) = #(D(m + ρr) ∩ [0,m)) + ρt − ρr − (t− r). As
ρt − ρr ≥ t− r we conclude that #(D(m + ρt) ∩ [0,m)) ≥ #(D(m + ρr) ∩ [0,m)). �

Lemma 42. Let M ⊆ [m,∞) be an amenable set with m ∈ M , and such that # D(M) is the minimum
of # D(M ′) with M ′ ⊆ [m,∞) amenable, m ∈ M ′ and #M = #M ′. Then # D(M) = m + 1 − 2g + ρr,
where r = #M .

Proof. In light of Lemma 40, we may assume that L = M ∩ [m,m + b) is an amenable interval. It may
happen that L coincides with the ground or that it is strictly contained in it. We consider these two cases
separately.

1. L = {m, . . . ,m+b−1}. Let L′ = D(m+ρr)∩[m,m+b). In view of Proposition 10, # D(M) = #(D(M)∩
[0,m))+r. Also, #(D(M)∩[0,m)) = #(D(L)∩[0,m)) ≥ #(D(L′)∩[0,m)) = #(D(m+ρr)∩[0,m). Hence
# D(M) ≥ #(D(m+ρr)∩ [0,m)) + r = #(D(m+ρr)∩ [0,m)) + #(D(m+ρr)∩ [m,∞) (Remark 2). We
conclude that # D(M) ≥ # D(m+ρr), and, by minimality of # D(M), the equality holds. Proposition 3
then asserts that # D(M) = m + 1− 2g + ρr.

2. L 6= {m, . . . ,m+ b− 1}. Let n ∈ N be such that L = D(m+ n)∩ [m,m+ b). Such an element exists by
Lemma 23. Since m ∈ L ⊆ D(m + n), we have that n = m + n−m ∈ S. Let D = D(m + n) ∩ [m,∞).

Let t = #D. By Remark 2, we have that n = ρt. In view of Corollary 26, r ≤ t. From Lemma 41
follows that #(D(m + ρt) ∩ [0,m)) ≥ #(D(m + ρr) ∩ [0,m)).

Proposition 10 ensures that # D(M) = #(D(L)∩ [0,m))+ r = #(D(m+ρt)∩ [0,m))+ r ≥ #(D(m+
ρt) ∩ [0,m)) + r = # D(m + ρt). By the minimality of # D(M), we get # D(M) = # D(m + ρr).

Finally, it suffices to use the equality # D(m + ρr) = m + ρr + 1− 2g (Proposition 3). �

Now that we know that D(m + ρr) ∩ [m,∞) is an optimal configuration with r elements, computing
E(S, r) is an easy task.

Theorem 43. Let S = {0 = ρ1 < ρ2 < · · · < ρn < · · · } be an embedding dimension two numerical
semigroup. Then E(S, r) = ρr.

Proof. Follows from the definition of E(S, r), Proposition 9 and Lemma 42. �

Since embedding dimension two numerical semigroups are symmetric, by using the fact that δrFR(m) ≥
m+ 1− 2g + E(S, r) for m ≥ c, and equality holds if m = 2g − 1 + ρk for some k ≥ 2, one easily obtains
the following consequence.

Corollary 44. Let S = {0 = ρ1 < ρ2 < · · · < ρn < · · · } be an embedding dimension two numerical
semigroup. Then

1. δrFR(m) = ρr + ρk if m = 2g − 1 + ρk with k ≥ 2,
2. δrFR(m) ≥ ρr + `i if m = 2g − 1 + `i, where `i ∈ G(S) is a gap of S, for i ∈ {1, . . . , g}.
Remark 45. The above result, together with [17, Theorem 5.5] suggests the question of whether the
following formula holds for m ≥ c in a numerical semigroup generated by two elements:

δrFR(m) = min{ρr + ρk | ρk ≥ m+ 1− 2g}.
However, this question has in general a negative answer. In fact, consider the semigroup S = 〈2, 5〉
(hyperelliptic) with genus g = 2 and conductor c = 4. If we take r = 3 and m = 4 = (2g − 1) + 1, the
Feng-Rao number is E3 = ρ3 = 4, so that the Feng-Rao distance is

δ3
FR(4) ≥ 5,
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and the result of applying the above formula is 6. Nevertheless, the Feng-Rao distance is actually δ3
FR(4) =

5, since

D(4, 5, 7) = {0, 2, 4, 5, 7}.

4. Examples and conclusions

The results of the previous section, in particular Corollary 44, allows easily to prove the following
Theorem 46, improving the Theorem 2.8 in [17]. We first recall the definition of the generalized (Hamming)
weights. In fact, we define the support of a linear code C as

supp(C) := {i | ci 6= 0 for some c ∈ C}.
Thus, the rth generalized weight of C is defined by

dr(C) := min{] supp(C ′) | C ′ is a linear subcode of C with dim(C ′) = r}.
Of course, the above definition only makes sense if r ≤ k, where k is the dimension of C. The set of
numbers

GHW(C) := {d1, . . . ,dk}
is called the weight hierarchy of the code C (see [19]).

Theorem 46. Let S = {0 = ρ1 < ρ2 < · · · < ρn < · · · } be an embedding dimension two numerical
semigroup. Then

dr(Cm) ≥ δFR(m+ 1) + ρr

for r = 1, . . . , km, where Cm is a code in an array of codes as in [17] (for example, Cm being a one-point
AG code associated to a divisor of the form G = mP ), and km is the dimension of Cm.

Proof. Since E(S, r) = ρr and δrFR(m) ≥ m + 1 − 2g + E(S, r) for m ≥ c, we just apply that dr(Cm) ≥
δrFR(m+ 1). �

Note that km depends not only on m, but also on the length of Cm in the array of codes. For example,
if Cm ≡ CΩ(D,mP ) is again a one-point AG code, it depends on the number of points n that are used
for evaluation, that is

km = n− ]{ρ ∈ S | ρ ≤ m} = n−m+ g − 1,

provided 2g − 2 < m < n and m ∈ S.

Remark 47. Theorem 46 improves [17, Theorem 2.8], which states

dr(Cm) ≥ δFR(m+ 1) + (r − 1).

This inequality is actually a consequence of the inequality δrFR(m) ≥ m+ 1− 2g+ E(S, r), by taking into
account that E(S, r) ≥ r − 1. In fact E(S, r) ≥ r if the genus of S is g > 0 (see [10]). The improvement
follows from the fact that E(S, r) = ρr is larger than r − 1 if r ≥ 2 and g ≥ 1.

On the other hand, the generalized Griesmer bound for the generalized Hamming weights states that

dr(C) ≥
r−1∑
i=1

⌈
d(C)

qi

⌉
,

where d(C) ≡ d1(C) is the minimum distance of the code C, which is defined over the finite field Fq

(see [15]). In particular, for r = 2 one has

d2(C) ≥ d(C) +

⌈
d(C)

q

⌉
.

Since we are just using the semigroup for estimating the generalized Hamming weights, we can substitute
d(Cm), Cm being in an array of codes as in [17], by the order bound δFR(m+ 1) obtaining the bound

dr(Cm) ≥
r−1∑
i=1

⌈
δFR(m+ 1)

qi

⌉
.
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We may call this bound the Griesmer order bound. For r = 2 this bound becomes

d2(C) ≥ δFR(m+ 1) +

⌈
δFR(m+ 1)

q

⌉
.

The maximum values of these bounds are achieved in the binary case q = 2.

Remark 48. We have previously remarked that our bound in Theorem 46 is better than the one in [17].
The difference of both bounds is constant in m ≥ c, when r is fixed.

In order to compare the bound in Theorem 46 with the Griesmer order bound, we first note that such
a comparison depends on several parameters, namely the cardinality q of the finite field, the order r and
the element m in the semigroup. Here we present some conclusions from our experimental results.

• We first note that in the following tables there will be a delay of one unit, because the bound for the
code Cm corresponds to m+ 1 in the Feng-Rao distances. More precisely, in the first row of the tables
m corresponds to the code Cm, whereas the Feng-Rao distances used in the second and third rows
correspond to m+ 1.

On the other hand, note that for a semigroup generated by two elements, the minimum formula

(6) δFR(m+ 1) = min{ρk | ρk ≥ m+ 2− 2g}

holds for m ≥ c (see [17]). Thus, the classical Feng-Rao distance comes in bursts of repeated values,
according to intervals of gaps (deserts) of the form m+ 2− 2g preceding the ρk achieving the minimum
in Formula (6). As a consequence, the corresponding Griesmer order bound also comes in bursts, and
jumps just after the corresponding ρk.
• Our bound is increasing one by one with m, while the Griesmer order bound jumps at values of m

corresponding to gaps of the form m+ 2− 2g starting a desert. Moreover, when there is no such a gap,
the Griesmer order bound increases by one or more. Therefore, this bound tends to improve our bound
as m becomes large, or if m corresponds to a gap at the beginning of a long desert. Nevertheless, our
bound seems to be better for small values of m of the form 2g − 2 + ρk, and also at the end of the
desert preceding to such a ρk. For example, for S = 〈7, 11〉 and r = 2 we obtain with GAP the following
results for q = 2,

m 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 · · ·
GFR 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 · · ·
GOB 11 11 11 11 11 11 17 17 17 17 21 21 21 27 27 27 27 · · ·

where the row GFR corresponds to our bound with the generalized Feng-Rao distance, and the row
GOB corresponds to the Griesmer order bound.
• On the other hand, if we increase r the difference of both bounds for m = c becomes larger, so that

our bound GFR remains better for more values of m. For instance, if we take r = 10 in the previous
example, GFR is better for m ≤ 50 and GOB is better for m ≥ 51:

m 30 31 32 33 34 35 36 37 38 39 40 · · · 50 51 52 53
GFR 31 32 33 34 35 36 37 38 39 40 41 · · · 51 52 53 54
GOB 20 20 20 20 20 20 28 28 28 28 33 · · · 49 56 56 56

• Finally, as the size q of the finite field increases, the jumps of the Griesmer order bound become smaller,
so that our bound is better for much more values of m. For example, if we switch in the last example
to q = 16, our bound is much better in the whole interval c ≤ m ≤ 2c− 1.
• In general, the experimental results above suggest that a good strategy to estimate the generalized

Hamming weights by means of the underlying numerical semigroup S is to combine both, the generalized
Feng-Rao distances and the Griesmer order bound, depending on the parameters q, r and m. Roughly
speaking, our bound GFR is better for q and r large, whereas the bound GOB is better otherwise,
provided m is large or it corresponds to a gap of the form m+ 1− 2g at the beginning of a long desert.

We finally test these bounds in the case of Hermitian codes.

Example 49. Consider the Hermitian codes over F16 (see [16] for further details). The involved semigroup
is S = 〈4, 5〉 and the length of the codes is n = 64. Since the conductor is c = 12 and the genus is g = 6,
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the dimension of the codes is 69−m, for 12 ≤ m ≤ 63. Our computations with GAP show that our bound
GFR is always better than (or equal to) the Griesmer order bound. For example, if r = 2 we obtain

m 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 · · · 58 59 · · · 63
GFR 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 · · · 52 53 · · · 57
GOB 5 5 5 6 9 9 9 10 11 13 13 14 15 16 17 19 20 · · · 51 53 · · · 57

and our bound GFR improves as r gets higher. In fact, for r ≥ 4 the GFR bound is strictly better than
the Griesmer one.
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