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HIGGS BUNDLES FOR THE NON-COMPACT DUAL OF THE

SPECIAL ORTHOGONAL GROUP

STEVEN B. BRADLOW, OSCAR GARCÍA-PRADA, AND PETER B. GOTHEN

Abstract. Higgs bundles over a closed orientable surface can be defined for any
real reductive Lie group G. In this paper we examine the case G = SO∗(2n). We
describe a rigidity phenomenon encountered in the case of maximal Toledo invariant.
Using this and Morse theory in the moduli space of Higgs bundles, we show that the
moduli space is connected in this maximal Toledo case. The Morse theory also allows
us to show connectedness when the Toledo invariant is zero. The correspondence
between Higgs bundles and surface group representations thus allows us to count
the connected components with zero and maximal Toledo invariant in the moduli
space of representations of the fundamental group of the surface in SO∗(2n).
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1. Introduction

Higgs bundles over a Riemann surface are intrinsically holomorphic objects. Their
moduli spaces can nevertheless be identified with representation varieties for the fun-
damental group of the surface even if the target group for the representations, or
equivalently the group defining the Higgs bundles, is a real reductive Lie group G. If
G is of hermitian type, i.e. if the homogeneous space G/H (where H is a maximal
compact subgroup) is a hermitian symmetric space, then the associated G-Higgs bun-
dles have especially rich structure. The connected semisimple classical groups with
this property are SU(p, q), Sp(2n,R), SO(2, n), and SO∗(2n). In this paper we exam-
ine the case G = SO∗(2n). Some of our results were previously announced without
details in [4].

The general theory for G-Higgs bundles has evolved largely as a result of a series
of case-by-case analyses, and in some ways the work described in this paper is one
more in that series. Adding to its interest, however, is the fact that the analysis of
SO∗(2n)-Higgs bundles unavoidably involves other reductive groups. Any discussion
of SO∗(2n)-Higgs bundles is thus a showcase for several types of G-Higgs bundles.

The most direct way that other groups enter the picture is through the structure of
polystable SO∗(2n)-Higgs bundles. In general (see Theorem 3.25) such Higgs bundles
decompose as a sum of G-Higgs bundles where G can be one of a number of different
groups, including SO∗(2m) for m < n, but also U∗(m),U(p, q), and U(m) for suitable
values of m, p, q. At the level of Lie theory, these are the groups which appear as
factors in Levi subgroups of SO(2n,C) intersected with SO∗(2n). Note that this list
of groups includes both compact and non-compact real forms. In the latter case the
corresponding symmetric space may be Hermitian or not.

The group U∗(m) appears in a second way that depends on a key feature of G-
Higgs bundles for non-compact real forms of hermitian type. In these cases a discrete
invariant known as the Toledo invariant can be defined. The invariant has several
interpretations (see [20, 8, 7, 4, 6]) but all lead to a bound that generalizes the Milnor
inequality on the Euler class of flat SL(2,R)-bundles. The G-Higgs bundles with
maximal Toledo invariant all have special properties but these fall into two categories,
depending on whether the Hermitian symmetric space is of tube type or not. In
the tube cases, a correspondence emerges between polystable G-Higgs bundles with
maximal Toledo invariant and objects called K2-twisted G′-Higgs bundles, where G′

is a new reductive group. We call G′ the Cayley partner to G. In the non-tube cases,
the maximal G-Higgs bundles do not have Cayley partners but decompose into two
parts, one of which has a Cayley partner and the other of which corresponds to a
compact group. This imposes constraints which we refer to as ‘rigidity’ on the moduli
spaces. For G = SO∗(2n) we see both types of phenomena, depending on whether
n is even or odd. In the odd case, the group is not of tube type and we see rigidity
(see Section 4.2). For n = 2m, the group is of tube type and the Cayley partner to
SO∗(2n) is the group U∗(n).

There is one more group that enters the discussion, namely Sp(2n,R). While the
nature of the relation between SO∗(2n)-Higgs bundles and Sp(2n,R)-Higgs bundles
is more subtle than in the case of the groups which appear in Levi subgroups, the
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comparison between the two cases is instructive and unavoidable. In both cases the
maximal compact subgroups are isomorphic to U(n), and the complexified isotropy
representations are

(1.1)

{

Λ2(Cn)⊕ Λ2((Cn)∗) for SO∗(2n)

Sym2(Cn)⊕ Sym2((Cn)∗) for Sp(2n,R)

These structural similarities between SO∗(2n) and Sp(2n,R) carry over to the the-
ory of Higgs bundles. In both cases a G-Higgs bundle over a Riemann surface is
defined by triple (V, β, γ) where V is a rank n holomorphic bundle, and β and γ are
homomorphisms

β : V ∗ −→ V ⊗K and γ : V −→ V ∗ ⊗K.

The difference between the cases G = SO∗(2n) andG = Sp(2n,R) is that in the former
case the maps β and γ are skew-symmetric, while in the latter case the maps are sym-
metric. However in both cases, the quadruple (V, V ∗, β, γ) defines a SU(n, n)-Higgs
bundle.1 (see Section A.2.1, where U(n, n)-Higgs bundles (V,W, β, γ) are defined. One
has here the extra condition detW = (det V )−1 since the group is SU(n, n)). Indeed
both types of Higgs bundles appear in the moduli space of SU(n, n)-Higgs bundles as
fixed points of involutions, namely

(V,W, β, γ) 7→ (W ∗, V ∗,±βt,±γt).

The similarities between the two cases mean that many of the details worked out
in [10] for Sp(2n,R)-Higgs bundles require only minor modification in order to be
applied to SO∗(2n)-Higgs bundles. The main results of this paper show however
that the outcomes in the two cases are significantly different in at least two respects.
First, the parity of n plays a role if G = SO∗(2n) (but not if G = Sp(2n,R)), and
second the moduli space of Higgs bundles with maximal deg(V ) has just one connected
component if G = SO∗(2n) but has several connected components distinguished by
‘hidden’ topological invariants in the case G = Sp(2n,R).

We now describe the contents of the paper in a bit more detail. Let X be a
Riemann surface of genus g > 2. After some general definitions in Section 2, in
Section 3 we describe the main features of the groups SO∗(2n) and SO∗(2n)-Higgs
bundles. We give structure results for stable and polystable objects. As in the case
G = Sp(2n,R), the moduli space of polystable SO∗(2n)-Higgs bundles, denoted by
M(SO∗(2n)), is not connected. The Toledo invariant, which in the case of SO∗(2n)-
Higgs bundles corresponds to the the degree of the bundle V , separates the moduli
space into components Md (where d = deg V ). In Section 3.7 we establish the bounds
on this invariant, namely

(1.2) 0 6 |d| 6 ⌊n
2
⌋(2g − 2) .

1 This corresponds to the fact that both SO∗(2n) and G = Sp(2n,R) embed as subgroups in
SU(n, n)
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In Section 4 we study the case d = ⌊n
2
⌋(2g − 2) (the case d = −⌊n

2
⌋(2g − 2) is

analogous). The special feature in this maximal situation is that the component

γ : V −→ V ∗ ⊗K

of the Higgs field has maximal rank. Since γ is skew-symmetric, this means that it
defines a symplectic structure on either V ⊗K−1/2 (if n is even) or on a rank n − 1
quotient of this (if n is odd). This leads to the Cayley correspondence we describe in
Section 4.1 and to the rigidity result in Section 4.2.

The moduli spaces of Higgs bundles come equipped with a natural function that
can be used in a Morse-theoretic way to detect topological properties. First described
by Hitchin, this function measures the L2-norm of the Higgs field. For each d, the
function provides a proper map from Md to R and thus attains its minimum on each
connected component. In Section 5 we examine the minima and show that they are
precisely the polystable Higgs bundles in which β = 0 or γ = 0 (depending on the
sign of d). This reduces the problem of the connectivity of the components to one
of the connectivity of the locus of minima. Unfortunately for most values of d this
is itself a difficult problem. The only exceptions are the cases where d = 0 or where
|d| has its maximum value. In Section 5 we also examine these exceptional cases and
show the following.

Theorem 1.1. For d = 0 or |d| maximal, the components Md(SO
∗(2n)) of the moduli

space of polystable SO∗(2n)-Higgs bundles are connected.

In Section 6 we invoke the non-abelian Hodge theory correspondence between the
moduli space of SO∗(2n)-Higgs bundles over X and the moduli space of representa-
tions of the fundamental group of X in SO∗(2n) to count the number of connected
components of the latter in the zero and maximal Toledo invariant cases, and to give
a rigidity result for maximal representations when n is odd.

In Section 7 we examine some special features of SO∗(2n)-Higgs bundles and their
moduli spaces in the low rank cases, i.e. for n = 1, 2, 3. These features are mostly
reflections of special low rank isomorphisms between Lie groups, but they yield inter-
esting relations between Higgs bundle moduli spaces.

Finally, in the Appendix we summarize salient features of G-Higgs bundles for the
groups other than SO∗(2n) which come up in the discussion of the case G = SO∗(2n).
In particular we make precise and prove certain results that were only stated in [3].

Acknowledgments. The authors thank Olivier Biquard, Ignasi Mundet and Roberto
Rubio for useful discussions.

The authors also thank the following institutions for their hospitality during various
stages of this research: Centre for Quantum Geometry of Moduli Spaces (Aarhus Uni-
versity), The Institute for Mathematical Sciences (National University of Singapore),
Centro de Investigación en Matemáticas (Guanajuato) and the Centre de Recerca
Matemàtica (Barcelona).

2. G-Higgs bundles
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2.1. Moduli space of G-Higgs bundles. Let G be a real reductive Lie group.
By this we mean 2 that we are given the data (G,H, θ, B), where H ⊂ G is a maximal
compact subgroup, θ : g → g is a Cartan involution and B is a non-degenerate bilinear
form on g, which is Ad(G)-invariant and θ-invariant. The data (G,H, θ, B) has to
satisfy in addition that

(1) the Lie algebra g of G is reductive
(2) θ gives a decomposition (the Cartan decomposition)

g = h⊕m

into its ±1-eigenspaces, where h is the Lie algebras of H ,
(3) h and m are orthogonal under B, and B is positive definite on m and negative

definite on h,
(4) multiplication as a map from H × expm into G is an onto diffeomorphism.

We will refer sometimes to the data (G,H, θ, B), as the Cartan data.

Remark 2.1. If G is semisimple, then B can be taken to be the Killing form and the
defining data (G,H, θ, B) can be recovered from the choice of a maximal compact
subgroup H ⊂ G. While this is the case for G = SO∗(2n), we give the more general
definition in anticipation of non-semisimple cases which arise in later sections (see
Section 3.6)

The Lie algebra structure on g satisfies

(2.1) [h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h .

The group H thus acts linearly on m through the adjoint representation. Complex-
ifying to get

gC = hC ⊕mC

the summands hC and mC satisfy the same relations as (2.1). Also, hC is the Lie
algebra of the complexification of H , denoted HC, and gC is the Lie algebra of the
complexification of G, denoted GC. The adjoint action extends to a linear holomorphic
action of HC on mC = m⊗ C. This is the isotropy representation:

(2.2) ι : HC → GL(mC).

Furthermore, the bilinear form B on g induces on mC a Hermitian structure which is
preserved by the action of H .

Definition 2.2. A G-Higgs bundle on X is a pair (E,ϕ), where E is a holomorphic
HC-principal bundle over X and ϕ is a holomorphic section of E(mC) ⊗ K, where
E(mC) = E ×HC mC is the mC-bundle associated to E via the isotropy representation
and K is the canonical bundle of X . The section ϕ is called the Higgs field. Two G-

Higgs bundles (E,ϕ) and (E ′, ϕ′) are isomorphic if there is an isomorphism f : E
≃−→

E ′ such that ϕ = f ∗ϕ′ where f ∗ is the obvious induced map.

2Our definition follows Knapp [17, p. 384], except that we do not impose the condition that every
automorphism Ad(g) of gC is inner for every g ∈ G. In fact this condition, which plays a role only if
non-connected groups must be considered, is automatically satisfied by the groups which appear in
this paper.
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Remark 2.3. We will also consider more general pairs in which we will twist by an
arbitrary line bundle L over X instead of the canonical line bundle. More precisely,
a L-twisted G-Higgs pair on X is a pair (E,ϕ), where E is a holomorphic HC-
principal bundle over X and ϕ is a holomorphic section of E(mC) ⊗ L. Two L-
twisted G-Higgs pairs (E,ϕ) and (E ′, ϕ′) are isomorphic if there is an isomorphism

E : V
≃−→ E ′ such that ϕ = f ∗ϕ′.

Remark 2.4. If HC is a classical group, the principal HC bundle can be replaced with
the associated vector bundle determined by the standard representation.

If G is compact them m = {0} and a G-Higgs bundle is equivalent to a holomorphic
GC-bundle.

There are notions of stability, semistability and polystability for G-Higgs bundles
(and more generally for L-twisted Higgs pairs) which are a bit involved to state in full
generality. We refer the reader to [11] for the general definitions of these properties. In
this paper we consider only the particular cases we need (cf. Section 3). We point out
though that the two key features of the properties in general are that they identify the
objects for which there is a moduli space and that they correspond to the existence
of solutions to a set of equations known as Hitchin’s equations.

Henceforth, we shall assume that G is connected. Then the topological classification
of HC-bundles E on X is given by a characteristic class

c(E) ∈ π1(H
C) = π1(H) = π1(G) .

Definition 2.5. For a fixed d ∈ π1(G), the moduli space of polystable G-Higgs

bundles Md(G) is the set of isomorphism classes of polystable G-Higgs bundles
(E,ϕ) such that c(E) = d.

The moduli space Md(G) has the structure of a complex analytic variety. This
can be seen by the standard slice method (see, e.g., Kobayashi [18]). Geometric
Invariant Theory constructions are available in the literature for G real compact
algebraic (Ramanathan [22]) and forG complex reductive algebraic (Simpson [26, 27]).
The case of a real form of a complex reductive algebraic Lie group follows from the
general constructions of Schmitt [23, 24]. We thus have the following.

Theorem 2.6. The moduli space Md(G) is a complex analytic variety, which is
algebraic when G is algebraic.

The following result can be found in [11].

Theorem 2.7. [Theorem 3.21 in [11]] Let (E,ϕ) be a G-Higgs bundle. The bundle E
admits a reduction of structure group from HC to H satisfying the Hitchin equation
for a G-Higgs bundle3 if and only if (E,ϕ) is polystable.

2.2. Deformation theory of G-Higgs bundles. In this section we recall some stan-
dard facts about the deformation theory of G-Higgs bundles. The results summarized
here are explained in more detail in [10] and [11].

3See section 3.3 for the form of the Hitchin equation in the case of G = SO∗(2n)
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Definition 2.8. Let (E,ϕ) be a G-Higgs bundle. Let dι : hC → End(mC) be the
derivative at the identity of the complexified isotropy representation ι = Ad|HC : HC →
Aut(mC) (cf. (2.2)). The deformation complex of (E,ϕ) is the following complex
of sheaves:

(2.3) C•(E,ϕ) : E(hC)
dι(ϕ)−−−→ E(mC)⊗K.

This definition makes sense because ϕ is a section of E(mC)⊗K and [mC, hC] ⊂ mC.
The hypercohomology groups of this complex fit in a natural long exact sequence

0 → H0(C•(E,ϕ)) → H0(E(hC))
dι(ϕ)−−−→ H0(E(mC)⊗K)

→ H1(C•(E,ϕ)) → H1(E(hC))
dι(ϕ)−−−→ H1(E(mC)⊗K) → H2(C•(E,ϕ)) → 0.

(2.4)

Proposition 2.9. The space of infinitesimal deformations of a G-Higgs bundle (E,ϕ)
is naturally isomorphic to the hypercohomology group H1(C•(E,ϕ)). The Lie algebra
of Aut(E,ϕ), i.e. aut(E,ϕ), can be identified with H0(C•(E,ϕ))

Let ker dι ⊂ hC be the kernel of dι and let E(ker dι) ⊂ E(hC) be the corresponding
subbundle. Then there is an inclusion H0(E(ker dι)) →֒ H0(C•(E,ϕ)).

In order to study smoothness of the moduli space in the general case of reductive
(i.e. for non-semisimple G), we introduce a reduced deformation complex.

Let z be the center of g and zC be the center of gC.

Lemma 2.10. There are decompositions

z = (h ∩ z)⊕ (m ∩ z) and zC = (hC ∩ zC)⊕ (mC ∩ zC)

Proof. See [17] page 388. �

In view of this Lemma, we can decompose as H-modules

h = (h ∩ z)⊕ h0,

m = (m ∩ z)⊕m0,

where we have defined

h0 = h/(h ∩ z),

m0 = m/(m ∩ z).

Analogously we define hC0 and mC
0 and we have similar decompositions of hC and mC.

Note also that

[mC, hC ∩ zC] = 0,

[mC
0 , h

C
0 ] ⊂ mC

0 .

We can thus define the following reduced complex.

Definition 2.11. Let (E,ϕ) be a G-Higgs bundle. The reduced deformation complex
of (E,ϕ) is the following complex of sheaves:

(2.5) C•
0 (E,ϕ) : E(h

C
0 )

ad(ϕ)−−−→ E(mC
0 )⊗K.
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Remark 2.12. (i) If G is semisimple the reduced deformation complex coincides with
the non-reduced complex.

If G is a complex reductive group, then the reduced complex C•
0(E,ϕ) can be identi-

fied with the (non-reduced) deformation complex for the PG-Higgs bundle associated
to (E,ϕ), where PG = G/Z(G).

Definition 2.13. A G-Higgs bundle (E,ϕ) is called simple if

(2.6) Aut(E,ϕ) = Z(HC) ∩ ker(ι)

where Z(HC) denotes the center.

Definition 2.14. A G-Higgs bundle (E,ϕ) is said to be infinitesimally simple if
the infinitesimal automorphism space aut(E,ϕ) is isomorphic to H0(E(ker dι∩Z(hC))
where Z(hC) denotes the Lie algebra of Z(HC).

Remark 2.15. It is clear that a simple G-Higgs bundle is infinitesimally simple. If G is
complex then ι is the adjoint representation and (E,ϕ) is simple (resp. infinitesimally
simple) if Aut(E,ϕ) = Z(G) (resp. aut(E,ϕ) = Z(hC)).

Let (E,ϕ) be a G-Higgs bundle. Let

(2.7) Ẽ = E ×HC GC

be the principal GC-bundle associated by extension of structure group. Note that

Ẽ(gC) = E(gC) = E(hC)⊕ E(mC).

Hence we can let ϕ̃ be the image of ϕ under the inclusion

H0(E(mC)⊗K) →֒ H0(Ẽ(gC)⊗K).

Definition 2.16. The GC-Higgs bundle (Ẽ, ϕ̃) is called the GC-Higgs bundle associ-
ated to the G-Higgs bundle (E,ϕ).

Proposition 2.17. (1) If (E,ϕ) is stable and ϕ 6= 0 then it is infinitesimally
simple.

(2) If (E,ϕ) is stable and simple and H2(C•
0(E,ϕ)) = 0 then (E,ϕ) represents a

smooth point in the moduli space.
(3) If G is complex and (E,ϕ) is stable and simple then (E,ϕ) represents a smooth

point in the moduli space.
(4) If G is a real form of GC, we can associate to a G-Higgs bundle (E,ϕ) a

GC-Higgs bundle (Ẽ, ϕ̃). If (E,ϕ) is stable then (Ẽ, ϕ̃) is polystable. If (E,ϕ)
is stable, simple and stable as a GC-Higgs bundle then it represents a smooth
point in the moduli space.

Proof. (1) See [11, Proposition 3.11].

(2) If (E,ϕ) is simple, there are no singularities coming from automorphisms of the
pair. Therefore the obstruction to smoothness lies in H2(C•(E,ϕ)). Analyzing the
Kuranishi model (as done in Kobayashi [18] in the case of vector bundles on higher
dimensional manifolds, cf. also Friedman–Morgan [9, p. 301]), one sees that the image
of the Kuranishi map in fact lies in the hypercohomolgy of the reduced deformation
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complex, i.e. in H2(C•
0(E,ϕ)) = 0. The point is that the Kuranishi map is given by

the quadratic part of the holomorphicity condition

0 = ∂̄A+Ȧ(ϕ+ ϕ̇) = ∂̄Aϕ+ ∂̄Aϕ̇+ [Ȧ, ϕ] + [Ȧ, ϕ̇],

which lies in Ω0,1E(mC
0 ). This leads to the result. (An alternative method of proof

would be to go through the proof of Theorem 3.1 of [2] and see that the vanishing of
H2(C•

0(E,ϕ)) = 0 is really what is required in this case.)

(3) By stability we have the vanishing H0(C•
0(E,ϕ)) = 0 and Serre duality of

complexes implies H2(C•
0(E,ϕ)) = 0. The result now follows by (2).

(4) Stability of (Ẽ, ϕ̃) implies that it is infinitesimally simple, i.e., H0(C•(Ẽ, ϕ̃)) =
Z(gC), where

C•(Ẽ, ϕ̃) : Ẽ(gC)
ad(ϕ̃)−−−→ Ẽ(gC)⊗K.

It follows that H0(C•
0 (Ẽ, ϕ̃)) = 0. Moreover,

C•
0(Ẽ, ϕ̃) = C•

0(E,ϕ)⊕ C•
0(E,ϕ)

∗ ⊗K

and hence, by Serre duality of complexes, we obtain the vanishing

H2(C•
0(E,ϕ)) = 0.

Again the result is now a consequence of (2). �

3. SO∗(2n)-Higgs bundles

3.1. Preliminaries: the group SO∗(2n). In this section we collect together some
basic facts about the group SO∗(2n) (See [14] for more details). We concentrate on
the features that are needed to describe SO∗(2n)-Higgs bundles and to understand
their relation to G-Higgs bundles for related groups such as SL(2n,C) and SU(n, n).
The group SO∗(2n) may be defined as the the set of matrices g ∈ SL(2n,C) satisfying

(3.1) gtJng = Jn and gtg = I2n ,where Jn =

(

0 In
−In 0

)

.

It is thus a subgroup of SO(2n,C) which leaves invariant a skew-hermitian form. The
group is connected, semisimple, and a non-compact real form of SO(2n,C). The
maximal compact subgroups are isomorphic to U(n). The map

(3.2) Θ(g) = JngJ
−1
n

defines a Cartan involution on SO∗(2n). The fixed point set of this involution is the
image of U(n) in SO∗(2n) embedded via the map

(3.3) A+ iB 7→
(

A B
−B A

)

,

where A and B are real n × n matrices such that A + iB ∈ U(n). Since the map Θ
is linear, the induced map on the Lie algebra so∗(2n), i.e. the derivative θ = dΘ, is
given by the same formula, i.e.

(3.4) θ(X) = JnXJ
−1
n
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where X ∈ so∗(2n). This defines an involution on so∗(2n) whose ±1-eigenspaces
determine the Cartan decomposition

so∗(2n) = u(n) +m

with
(3.5)






















u(n) =

{(

X1 X2

−X2 X1

)

| X1, X2 ∈ Matn,n(R), X t
1 +X1 = 0, X t

2 −X2 = 0

}

m = i

{(

Y1 Y2
Y2 −Y1

)

| Y1, Y2 ∈ Matn,n(R), Y t
1 + Y1 = 0, Y t

2 + Y2 = 0

}

Remark 3.1. It follows immediately from (3.5) that

u(n) + im =

{(

A B
−Bt D

)

| A,B,D ∈ Matn,n(C), A + At = D +Dt = 0

}

,

which can be identified with the Lie algebra of SO(2n). This shows that the real form
SO∗(2n) is the non-compact dual to the compact real form SO(2n) ⊂ SO(2n,C).

The embedding (3.3) extends to the complexification of U(n), i.e. to GL(n,C), as

(3.6) Z 7→ 1

2

(

Z + (Z−1)t i(Z − (Z−1)t)
−i(Z − (Z−1)t) Z + (Z−1)t

)

The complexification of the Cartan decomposition is

(3.7) so∗(2n)⊗ C = gl(n,C) +mC

where

gl(n,C) =

{(

Z−Zt

2
−Z+Zt

2i
Z+Zt

2i
Z−Zt

2

)

|Z ∈ Matn,n(C)

}

(3.8)

mC =

{(

Y1 Y2
Y2 −Y1

)

|Y1, Y2 ∈ Matn,n(C), Y
t
1 + Y1 = 0, Y t

2 + Y2 = 0

}

(3.9)

It follows that if T is the complex automorphism of C2n defined by T =

(

I iI
I −iI

)

,

then

Tgl(n,C)T−1 =

{(

Z 0
0 −Zt

)

| Z ∈ Matn,n(C)

}

TmCT−1 =

{(

0 β
γ 0

)

| β, γ ∈ Matn,n(C), β
t + β = 0, γt + γ = 0

}

(3.10)

This reflects the following fact.

Proposition 3.2. With T as above,

(3.11) TSO∗(2n)T−1 ⊂ SU(n, n)

where SU(n, n) ⊂ SL(2n,C) is the subgroup defined by

(3.12) SU(n, n) = {A ∈ SL(2n,C) | At
In,nA = In,n, det(A) = 1}
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with In,n =

(

In 0
0 −In

)

.

Proof. Using T
t
In,nT = 2iJ it follows that if g ∈ SO∗(2n) then A = TgT−1 satisfies

A
t
In,nA = In,n. Also det(A) = det(g) = 1. �

Remark 3.3. If g ∈ SO∗(2n), i.e. g satisfies (3.1), and A = TgT−1 then a simple
calculation shows that AtIn,nJA = In,nJ . Combined with Proposition (3.2) we can
thus identify SO∗(2n) ⊂ SU(n, n) ⊂ SL(2n,C) as the subgroup defined by the relation
AtIn,nJA = In,nJ . This is the definition given in [17].

3.2. SO∗(2n)-Higgs bundles and stability. When HC is a classical group we prefer
to work with the vector bundle V associated to the standard representation rather
than the HC-principal bundle. Taking this point of view for SO∗(2n)-Higgs bundles,
for which HC = GL(n,C), Definition 2.2 then becomes the following:

Definition 3.4. A SO∗(2n)-Higgs bundle over X is a pair (V, ϕ) in which V is
a rank n holomorphic vector bundle over X , and the Higgs field ϕ = (β, γ) has
components β ∈ H0(X,Λ2V ⊗ K) and γ ∈ H0(X,Λ2V ∗ ⊗ K). We will sometimes
write ϕ = β + γ, where the sum is interpreted as being in the endomorphism bundle
for V ⊕ V ∗.

In order to state the (semi,poly)stability condition for a SO∗(2n)-Higgs bundle we
need to introduce some notation (see [11] for details).

Let V → X be a holomorphic vector bundle. Then there is an isomorphism V ⊗V ≃
Λ2V ⊕ S2V . Let U and W be subbundles of V . We define U ⊗A W to be the sheaf
theoretic kernel of the projection V ⊗ V → S2V restricted to U ⊗ V :

0 → U ⊗A W → U ⊗W → S2V.

Since U ⊗W is locally free and X is a curve, U ⊗A W can be viewed as a subbundle
of Λ2V . We also define U⊥ ⊂ V ∗ to be the kernel of the restriction map V ∗ → U∗.

Definition 3.5. Let k be an integer satisfying k > 1. We define a filtration of V
of length k − 1 to be any strictly increasing filtration by holomorphic subbundles

V = (0 ( V1 ( V2 ( · · · ( Vk = V ).

Let λ = (λ1 < λ2 < · · · < λk) be a strictly increasing sequence of k real numbers.
Define the subbundle

(3.13) N(V , λ) =
∑

λi+λj60

K⊗Vi⊗AVj⊕
∑

λi+λj>0

K⊗V ⊥
i−1⊗AV

⊥
j−1 ⊂ K⊗(Λ2V ⊕Λ2V ∗).

Define also

(3.14) d(V , λ) = λk deg Vk +
k−1
∑

j=1

(λj − λj+1) deg Vj .

We say that the pair (V , λ) is trivial if the length of V is 0 and λ1 = 0.

We say that the pair (V , λ) is ϕ-invariant if ϕ = β + γ ∈ H0(N(V , λ)).
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The general results of [10] allow us to express stability, semistability and polysta-
bility for SO∗(2n)-Higgs bundles in a way that is more practical than the general
definition, and is easier to compare to the familiar notions of slope stability for Higgs
vector bundles.

Definition 3.6. The Higgs bundle (V, ϕ) is semistable if for any integer k > 1,
any filtration V of length k − 1 of V and any strictly increasing sequence λ of k real
numbers such that (V , λ) is ϕ-invariant we have

(3.15) d(V , λ) > 0.

The Higgs bundle (V, ϕ) is stable if under the same conditions as above with the
additional condition that (V , λ) be non-trivial we have the strict inequality

(3.16) d(V , λ) > 0.

The Higgs bundle (V, ϕ) is polystable if it is semistable and for any integer k > 1,
any filtration V of length k − 1 of V and any strictly increasing sequence λ of k real
numbers such that (V , ϕ) is ϕ-invariant and d(V , λ) = 0 there is an isomorphism of
holomorphic bundles

V ≃ V1 ⊕ V2/V1 ⊕ · · · ⊕ Vk/Vk−1

with respect to which

β ∈ H0(
⊕

λi+λj=0

K ⊗ Vi/Vi−1 ⊗A Vj/Vj−1)

and
γ ∈ H0(

⊕

λi+λj=0

K ⊗ (Vi/Vi−1)
∗ ⊗A (Vj/Vj−1)

∗).

We follow the convention that a direct sum of vector bundles over an empty indexing
set is the zero vector bundle.

Remark 3.7. In general the notion of (semi,poly)stability depend on a real parameter
related to the fact that the centre of the maximal compact subgroup of SO∗(2n)
is isomorphic to U(1) (see [10]). However, since our main interest is in relation to
representations of the fundamental group, we have the value of this parameter to be
zero.

As in [11] the (semi-)stability condition can be simplified as follows.

Definition 3.8. Let (V, ϕ = (β, γ)) be a SO∗(2n)-Higgs bundle. A filtration of
subbundles

0 ⊂ V1 ⊂ V2 ⊂ V

such that

(3.17) β ∈ H0(K ⊗ (Λ2V2 + V1 ⊗A V )), γ ∈ H0(K ⊗ (Λ2V ⊥
1 + V ⊥

2 ⊗A V
∗)),

is called a ϕ-invariant two-step filtration.

Remark 3.9. We allow equality between the terms of the filtration in order to avoid
having to consider separately filtrations that are length one or zero. For example the
filtration 0 ⊂ V1 ⊂ V is included as the two-step filtration in which V1 = V2
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It is sometimes convenient to reformulate the ϕ-invariance condition using the fol-
lowing lemma, which is easily proved.

Lemma 3.10. Let (V, ϕ = (β, γ)) be a SO∗(2n)-Higgs bundle. A two-step filtration

0 ⊂ V1 ⊂ V2 ⊂ V

is ϕ-invariant if and only if the following conditions are satisfied:

β(V ⊥
2 ) ⊂ V1 ⊗K

β(V ⊥
1 ) ⊂ V2 ⊗K

γ(V2) ⊂ V ⊥
1 ⊗K

γ(V1) ⊂ V ⊥
2 ⊗K.

�

There is yet another useful interpretation of the ϕ-invariance of a two step filtration
that will be used later. To explain this, let Ωγ : V × V → K be the K-twisted
skewsymmetric bilinear pairing defined by γ as

Ωγ(u, v) := (γ(v))(u), for u, v ∈ V,

and denote, for a subbundle V ′ ⊂ V ,

V ′⊥γ := {v ∈ V | Ωγ(u, v) = 0 for every u ∈ V ′}.
The following is immediate.

Lemma 3.11. For any filtration 0 ⊂ V1 ⊂ V2 ⊂ V , we have that γ(V1) ⊂ K ⊗ V ⊥
2 is

equivalent to V1 ⊂ V
⊥γ

2 . This is equivalent to V2 ⊂ V
⊥γ

1 which, in turn, is equivalent
to γ(V2) ⊂ K ⊗ V ⊥

1 . Similar reasoning applies to β.

The following simplified version of the (semi/poly)stability conditions follows in the
same way as the analogous results for Sp(2n,R)-Higgs bundles (see [11]).

Proposition 3.12. A SO∗(2n)-Higgs bundle (V, β, γ) is semistable if and only for
every ϕ-invariant two-step filtration 0 ⊂ V1 ⊂ V2 ⊂ V we have that

(3.18) deg(V )− deg(V1)− deg(V2) > 0.

A SO∗(2n)-Higgs bundle (V, β, γ) is stable if and only if for every ϕ-invariant two-
step filtration 0 ⊂ V1 ⊂ V2 ⊂ V except the filtration 0 = V1 ⊂ V2 = V we have
that

(3.19) deg(V )− deg(V1)− deg(V2) > 0.

A SO∗(2n)-Higgs bundle (V, β, γ) is polystable if is semistable and for any ϕ-
invariant filtration 0 ⊂ V1 ⊂ V2 ⊂ V , distinct from the filtration 0 = V1 ⊂ V2 = V
such that

deg(V )− deg(V1)− deg(V2) = 0,

there exists an isomorphism of holomorphic vector bundles

V ≃ V1 ⊕ V2/V1 ⊕ V/V2

with respect to which we have:



HIGGS BUNDLES FOR SO∗(2n) 15

(a) V2 ≃ V1 ⊕ V2/V1,
(b) β ∈ H0(K ⊗ (Λ2(V2/V1)⊕ V1 ⊗A (V/V2)),
(c) γ ∈ H0(K ⊗ (Λ2(V2/V1)

∗ ⊕ V ∗
1 ⊗A (V/V2)

∗).

Remark 3.13. If β = γ = 0 then the semistability condition is equivalent to the
requirements that deg V = 0 and V is semistable.

3.3. The SO∗(2n) Hitchin equation.

In general, i.e. for any real reductive group G, the Hitchin equations for a G-Higgs
bundle, say (E,ϕ), can be regarded as conditions for a reduction of the structure
group of E. Recall that E is a principal holomorphic HC-bundle, where HC is the
complexification of H (a maximal compact subgroup of G). A reduction of structure
group to H defines a principal H-bundle, EH , such that E = EH ×H HC. Then,
together with the holomorphic structure on E, the reduction to EH defines a unique
connection (the Chern connection) on E. We denote the curvature of this connection
by Fh. Assume now that G is a real form of its complexification GC, and let τ :
gC −→ gC denote the involution which defines the compact real form of GC. The
relation between τ , the involution which defines the real form G, and the Cartan
involution on g, ensures that the combination [mC, τ(mC)] takes values in h. Using the
reduction E(gC) = EH ×H gC we can extend τ to a bundle map τh : E(gC) −→ E(gC).
Combined with conjugation on K this defines a bundle map (also denoted by τh) on
E(gC) ⊗ K. Applying this map to the Higgs field ϕ allows us to form a h-valued
(1,1)-form [ϕ, τ(ϕ)].

Definition 3.14. If G is semisimple the Hitchin equation for a reduction of structure
group to H of a G-Higgs bundle (E,ϕ) is

(3.20) Fh − [ϕ, τh(ϕ)] = 0

where Fh and τh are as above.

We now examine what this means in the case of G = SO∗(2n). In this case the
involution τ : so(2n,C) −→ so(2n,C) is given by

(3.21) τ(A) = A = −At
.

We use the vector bundle picture in which (see Definition (3.4)) a SO∗(2n)-Higgs
bundle is specified by data (V, β, γ). A reduction of structure group to H = U(n)
thus corresponds to a choice of hermitian bundle metric on the holomorphic bundle
V . The curvature Fh is then the curvature for the usual Chern connection on V . We
denote this by F h

V .

In order to evaluate the term [ϕ, τh(ϕ)] in (3.20), we use the embedding of so∗(2n)⊗
C in sl(2n,C) given by (3.10), i.e. we work with

(3.22) ϕ =

(

0 β
γ 0

)

: V ⊕ V ∗ −→ (V ⊕ V ∗)⊗K,

where here we are interpreting β and γ as maps

β : V ∗ −→ V ⊗K , and γ : V −→ V ∗ ⊗K.
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The metric on V and the metric it induces on V ∗ allow us define adjoints

β∗ : V −→ V ∗ ⊗K , and γ∗ : V ∗ −→ V ⊗K.

If we fix a local coordinate on X , fix a frame for V and use the metric to define the
dual frame for V ∗, then β and γ are represented by

β = βhdz, and γ = γhdz

where βh and γh are n × n skew-symmetric matrices. The adjoints are then defined
locally by

β∗ = βh
t
dz, and γ∗ = γh

tdz

We thus find that

[ϕ, τh(ϕ)] =

(

−ββ∗ − γ∗γ 0
0 −β∗β − γγ∗

)

=

(

−βhβ
t

h + γthγh 0

0 β
t

hβh − γhγ
t
h

)

dz ∧ dz

where the last expression is with respect to the local frames and co-ordinates, as
above. We thus see that the Hitchin equations on V ⊕ V ∗ become

(

F h
V + ββ∗ + γ∗γ 0

0 −(F h
V )

∗ + β∗β + γγ∗

)

= 0

or, equivalently, on V ,

(3.23) F h
V + ββ∗ + γ∗γ = 0

In a local frame as above, with respect to which F h
V = Fhdz ∧ dz where Fh is a

skew-hermitian matrix, the equation becomes

(3.24) Fh + βhβh
t − γh

tγh = 0

We refer to equation (3.23) as the SO∗(2n)-Hitchin equation. Theorem 2.7 thus
becomes

Theorem 3.15. Let (V, β, γ) be a SO∗(2n)-Higgs bundle. The bundle V admits a met-
ric satisfying the SO∗(2n)-Hitchin equation (3.23) if and only if (V, β, γ) is polystable.

3.4. The moduli spaces.

The topological invariant attached to a SO∗(2n,R)-Higgs bundle (V, β, γ) is an
element in the fundamental group of U(n) (see Section 2.1). Since π1(U(n)) ≃ Z, this
is an integer. This integer coincides with the degree of V . Under the correspondence
between Higgs bundles and surface group representations (see Section 6), this integer
corresponds to the Toledo invariant. Following Definition 2.5 we let Md(SO

∗(2n))
denote the moduli space of polystable SO∗(2n)-Higgs bundles (V, β, γ) with

deg(V ) = d. For brevity we shall sometimes write simply Md for this moduli space.

The deformation complex C•(V, ϕ) for a SO∗(2n)-Higgs bundle (E,ϕ) is

(3.25)
C•(V, ϕ) : End(V )

ad(ϕ)−−−→ Λ2V ⊗K ⊕ Λ2V ∗ ⊗K .

ψ 7→ (−βψt − ψβ, γψ + ψtγ)
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From the resulting long exact sequence of hypercohomology groups (as in (2.4))
and the Riemann-Roch theorem we can compute the expected dimension of Md.
Combining this with Theorem 2.6 we get

Proposition 3.16. The moduli space Md of SO∗(2n)-Higgs bundles over a compact
Riemann surface X of genus g > 2 is a complex algebraic variety of dimension at most
n(2n−1)(g−1) (where g is the genus of X). The dimension is exactly n(2n−1)(g−1)
if the stable locus is nonempty.

One has the following easy to prove duality result.

Proposition 3.17. The map (V, β, γ) 7→ (V ∗, γ, β) gives an isomorphism Md ≃
M−d.

3.5. Structure of stable SO∗(2n)-Higgs bundles.

The kernel of the isotropy representation

ι : GL(n,C) → Aut(Λ2Cn ⊕ Λ2(Cn)∗

for SO∗(2n) is formed by the central subgroup {±I} ⊂ GL(n,C). Moreover the
infinitesimal isotropy representation has injective differential: ker(dι) = 0. Thus
Definitions 2.14 and 2.13 yield the following.

Definition 3.18. A SO∗(2n)-Higgs bundle (V, β, γ) is simple if Aut(V, β, γ) = {±I}
and it is infinitesimally simple if aut(V, β, γ) = 0.

Contrary to the cases of vector bundles and U(p, q)-Higgs bundles, stability of
an SO∗(2n)-Higgs bundle does not imply that it is simple. However, we have the
following.

Theorem 3.19. Let (V, ϕ) be a stable SO∗(2n)-Higgs bundle. If (V, ϕ) is not simple,
then one of the following alternatives occurs:

(1) The bundle V is a stable vector bundle of degree zero and ϕ = 0. In this case
Aut(V, ϕ) ≃ C∗.

(2) There is a nontrivial decomposition, unique up to reordering,

(V, ϕ) = (

k
⊕

i=1

Vi,

k
∑

i=1

ϕi)

with ϕi = βi + γi ∈ H0(K ⊗ (Λ2Vi ⊕Λ2V ∗
i )), such that each (Vi, ϕi) is a stable

and simple SO∗(ni)-Higgs bundle. Furthermore, each ϕi 6= 0 and (Vi, ϕi) 6≃
(Vj, ϕj) for i 6= j. The automorphism group of (V, ϕ) is

Aut(V, ϕ) ≃ Aut(V1, ϕ1)× · · · × Aut(Vk, ϕk) ≃ (Z/2)k.

Proof. The proof is precisely the same as for the corresponding result for Sp(2n,R)-
Higgs bundles (Theorem 3.17 in [10]). �
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In view of Theorem 3.19 we can shift our attention to SO∗(2n)-Higgs bundles which
are stable and simple. Unlike in the case of G-Higgs bundles for complex reductive G,
the combination of stability and simplicity is not necessarily sufficient to guarantee
smoothness in the moduli space. Our analysis involves the relation between SO∗(2n)-
Higgs bundles and G-Higgs bundles for various other 4 groups G. We begin by noting
that a SO∗(2n)-Higgs bundle can be viewed as a Higgs bundle for the larger complex
groups SO(2n,C) and SL(2n,C).

Theorem 3.20. Let (V, ϕ = (β, γ)) be a SO∗(2n)-Higgs bundle. Let (E,Φ) be the
SL(2n,C)-Higgs bundle given by

(3.26) E = V ⊕ V ∗, Φ =

(

0 β
γ 0

)

and let ((E,Q),Φ) be the SO(2n,C)-Higgs bundle given by E and Φ as above and with

(3.27) Q
(

(v, ξ), (w, η)
)

= ξ(w) + η(v).

Then

(1) The following are equivalent:
(a) (E,Φ) is semistable (resp. polystable).
(b) ((E,Q),Φ) is semistable (resp. polystable).
(c) (V, ϕ)is semistable (resp. polystable).

(2) (E,Φ) stable =⇒ (V, ϕ) stable.
(3) If (V, ϕ) is stable and simple then

(a) (E,Φ) is stable unless there is an isomorphism f : V
≃−→ V ∗ such that

βf = f−1γ;

(b) ((E,Q),Φ) is stable unless there is an isomorphism f : V
≃−→ V ∗ which is

skew-symmetric and with βf = f−1γ.

Proof. The equivalences in (1) can be proved in exactly the same way as done for
Sp(2n,R)-Higgs bundles in [10] (see Theorems 3.26 and 3.27). Although the equiva-
lence analogous to the equivalence (a) ⇐⇒ (b) is not explicitly stated there in the
case of semistability, it is implicit in the proof of the equivalence analogous to (a)
⇐⇒ (c).

The first implication in (2) follows directly from the stability conditions. The proof
of the second implication is analogous to the case of Sp(2n,R)-Higgs bundles (see
Theorem 3.26 in [10]).

Again the statements in (3) can be proved in the same way as the analogous result
for Sp(2n,R) (see Theorem 3.27 in [10] and also Theorem A.14 for the case U(p, q)).

�

Remark 3.21. If deg V 6= 0, then it follows from (3) of Theorem 3.20 that (E,Φ) (and
hence ((E,Q),Φ)) is stable if (V, ϕ) is stable and simple. Similarly, if the rank n is
odd, then ((E,Q),Φ) is stable if (V, ϕ) is stable and simple.

4See Appendix for a summary of results for the relevant groups
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Proposition 3.22. Let (V, ϕ) be a SO∗(2n)-Higgs bundle which is stable and simple

and assume that there is no skewsymmetric isomorphism f : V
≃−→ V ∗ intertwining

β and γ . Then (V, ϕ) represents a smooth point of the moduli space of polystable
SO∗(2n)-Higgs bundles. In particular, if d = deg V is not zero or n is odd, then all
stable and simple SO∗(2n)-Higgs bundles represent smooth points of the moduli space
Md.

Proof. By (3b) of Theorem 3.20 the SO(2n,C)-Higgs bundle corresponding to (V, ϕ)
is stable and hence by (4) in Proposition 2.17 it represents a smooth point in Md. �

It remains to analyze the case in which (V, ϕ) is stable and simple but admits a

skewsymmetric isomorphism f : V
≃−→ V ∗ intertwining β and γ. By (3b) of Theorem

3.20 this is equivalent to the associated SO(2n,C)-Higgs bundle being non-stable.
Furthermore d = deg V = 0 and n is even.

Proposition 3.23. Let (V, ϕ) be a SO∗(2n)-Higgs bundle which admits a skewsym-

metric isomorphism f : V
≃−→ V ∗ such that βf = f−1γ. Then with ψ := βf , the data

((V, f), ψ) defines a U∗(n)-Higgs bundle (as defined in Section A.2.3).

Let (V, ϕ) be stable. Then ((V, f), ψ) is stable. Assume that (V, ϕ) moreover is
simple. Then ((V, f), ψ) is stable and simple and the corresponding GL(n,C)-Higgs
bundle (V, ψ) is stable. Hence ((V, f), ψ) represents a smooth point in the moduli space
of U∗(n)-Higgs bundles.

Proof. The fact that ((V, f), ψ) defines a U∗(n)-Higgs bundles follows directly from
the definition given in SectionA.2.3). The argument to prove the stability result
is similar to the one given in the proof of Theorem 3.22 in [10]. The statement
about simplicity follows directly from the fact that for both SO∗(2n)- and U∗(n)-
Higgs bundles simplicity means that the only automorphisms are ± Identity. �

Notation. We shall, somewhat imprecisely, say that a SO∗(2n)-Higgs bundle of the
form described in Proposition 3.23 is a U∗(n)-Higgs bundle.

3.6. Structure of polystable SO∗(2n)-Higgs bundles.

Proposition 3.24. An SO∗(2n)-Higgs bundles (V, ϕ = β+γ) is polystable if and only
if there are decompositions

V = V1 ⊕ · · · ⊕ Vk,

ϕ = ϕ1 + · · ·+ ϕk,

such that each (Vi, ϕi) is a SO∗(2ni)-Higgs bundle i.e. ϕi = βi+γi with βi ∈ H0(Λ2Vi⊗
K) and γi ∈ H0(Λ2V ∗

i ⊗K), and is of one of the following mutually exclusive types:

(1) a stable SO∗(2ni)-Higgs bundle with ϕ 6= 0;

(2) Vi = Ṽi ⊕ W̃ ∗
i , with respect to this decomposition βi =

(

0 β̃i
−β̃t

i 0

)

and γi =
(

0 −γ̃ti
γ̃i 0

)

where β̃i ∈ H0(Hom(W̃i, Ṽi)⊗K) and γ̃i ∈ H0(Hom(Ṽi, W̃i)⊗K),
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and (Ṽi, W̃i, β̃i, γ̃i) is a stable U(pi, qi)-Higgs bundle in which piqi 6= 0, deg Ṽi+

deg W̃i = 0 and at least one of β̃i, γ̃i is non-zero.
(3) ϕi = 0 and Vi is a degree zero stable vector bundle.

Proof. Suppose (V, β, γ) is polystable. If it is stable then the result is trivially true
(with k = 1). Suppose that (V, β, γ) is not stable. Then by Definition 3.6 we can find
a non trivial filtration (i.e. with l > 2) V = (0 ( V ′

1 ( V ′
2 ( · · · ( V ′

l = V ) and a
sequence of weights λ = (λ1 < λ2 < · · · < λl) such that

• ϕ ∈ H0(N(V , λ))
• d(V , λ) = 0
• there is a splitting of vector bundles

V ≃ V ′
1 ⊕ V ′

2/V
′
1 ⊕ · · · ⊕ V ′

l /V
′
l−1

with respect to which

β ∈ H0(
⊕

λi+λj=0

K ⊗ V ′
i /V

′
i−1 ⊗A V

′
j /V

′
j−1)

and

γ ∈ H0(
⊕

λi+λj=0

K ⊗ (V ′
i /V

′
i−1)

∗ ⊗A (V ′
j /V

′
j−1)

∗).

We can write the set of weights as a disjoint union

{λ1, . . . , λl} = I1 ∪ I2 ∪ I3,
where each of the sets, if non-empty, can be written as follows:

I1 = {0},
I2 = {µ1,−µ1, . . . , µr,−µr},
I3 = {η1, . . . , ηs},

where µi > 0 and ηi 6= 0 for all i, and |ηi| 6= |ηj | for i 6= j. In other words, I2 contains
pairs of non-zero weights ±µi and I3 contains non-zero weights that cannot be paired.
Note that I2 ∪ I3 6= ∅ since at least one weight is non-zero.

We can now rewrite the splitting of V as

(3.28) V ≃ U0 ⊕ (U−µ1
⊕ Uµ1

)⊕ · · · ⊕ (U−µr ⊕ Uµr)⊕ Uη1 ⊕ · · · ⊕ Uηs ,

where Uν = V ′
i /V

′
i−1 if ν = λi for some i = 1, . . . , l and zero otherwise.

If I1 is not empty, let β0 be the component of β in H0(K⊗U0⊗A U0) and similarly
define γ0. If both β0 = 0 and γ0 = 0 then the vector bundle U0 is a U(n0)-Higgs
bundle. Otherwise, (U0, β0, γ0) defines an SO∗(2n0)-Higgs bundle, where n0 = rk(U0).

For each positive element µi ∈ I2, let β̃i be the component of β in H0(K ⊗ Uµi
⊗A

U−µi
) and similarly define γ̃i. If both β̃i = 0 and γ̃i = 0 then the vector bundles Uµi

and U−µi
are U(pi)- and U(qi)-Higgs bundles respectively, where pi = rk(Uµi

) and
qi = rk(U−µi

). Otherwise,

(Ṽi, W̃i, β̃i, γ̃i)) = (Uµi
⊕ U∗

−µi
, β̃i, γ̃i)
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defines a U(pi, qi)-Higgs bundle, where pi = rk(Uµi
) and qi = rk(U−µi

). In order to see

that that deg Ṽi +deg W̃i = 0, we note that we can write the decomposition (3.28) as

V = U−µi
⊕ V ′ ⊕ Uµi

,

where we have pulled out U−µi
and Uµi

(3.28) and we denote the rest by V ′. Now
consider the induced filtration V ′ of V with the weights λ′ = (−1 < 0 < 1). Clearly
ϕ ∈ H0(N(V ′, λ′)). Hence semistability implies that

d(V ′, λ′) = deg(Uµi
)− deg(U−µi

) > 0.

Similarly, considering the filtration induced by V = Uµi
⊕ V ′ ⊕ U−µi

with weights
(−1 < 0 < 1) we obtain deg(U−µi

)− deg(Uµi
) > 0, and hence we conclude that

deg Ṽi + deg W̃i = deg(Uµi
)− deg(U−µi

) = 0

Finally, for each ηi ∈ I3, the vector bundle Uηi is a U(ni)-Higgs bundle and we see
that deg(Uηi) = 0 by a similar argument, using the decomposition V = Uηi ⊕ V ′.

Altogether, this leads to a decomposition with summands of the type in the Propo-
sition. Now we show that each summand is polystable as a G-Higgs bundle, where
G is the appropriate group, i.e, G = SO∗(2n0), G = U(pi, qi) or G = U(ni). Suppose
one of the summands is not polystable. Then there is a filtration and weight system
violating polystability of this summand. (In the cases G = U(pi, qi) and G = U(n)
see Appendix A.) This filtration and weight system can be extended by adding the
remaining summands in V to each term and by taking the same weights. The result-
ing filtration and weight system violates polystability for the original SO∗(2n)-Higgs
bundle (V, ϕ).

By Proposition A.11, it follows that the U(pi, qi) and U(ni) summands are direct
sums of stable ones. Moreover, n0 < n because I2 ∪ I3 6= ∅. Hence we can iterate the
procedure until all summands are stable.

Finally, we show that the three types are mutually exclusive. The conditions on ϕ
clearly make (1) and (3) mutually exclusive. Suppose that (Vi, βi, γi) is of type (2).
Since it is stable, it must have ϕi 6= 0 and hence cannot be of type (3). Suppose that
(Vi, βi, γi) is also stable as an SO∗(2n)-Higgs bundle. Then it is infinitesimally simple
and thus aut(Vi, βi, γi) = 0. But if (Vi, βi, γi) is of type (2) then C∗ ⊂ aut(Vi, βi, γi).
Thus cases (1) and (2) are mutually exclusive. �

Notation. We shall write (V, ϕ) = (V, ϕ1)⊕ · · · ⊕ (V, ϕk) for a SO∗(2n)-Higgs bundle
of the kind described in Proposition 3.24.

Moreover, somewhat imprecisely, we shall say that an SO∗(2n)-Higgs bundle of the
form described in (2) of Proposition 3.24 is a U(p, q)-Higgs bundle (here n = p+ q).

By Theorem 3.19 and Propositions 3.22 and 3.23, case (1) in Proposition 3.24
divides further into two cases. The resulting refinement, given in the next proposition,
will be essential for proving our connectedness results in Section 5.

Proposition 3.25. An SO∗(2n)-Higgs bundles (V, ϕ = β+γ) is polystable if and only
if there is a decomposition (V, ϕ) = (V1, ϕ1)⊕ · · · ⊕ (Vk, ϕk) such that each (Vi, ϕi) is
a SO∗(2ni)-Higgs bundle of one of the following mutually exclusive types:
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(1) (Vi, ϕi) is a stable and simple SO∗(2ni)-Higgs bundle with ϕi 6= 0 which is
stable as an SO(2ni,C)-Higgs bundle;

(2) (Vi, ϕi) is a stable and simple SO∗(2ni)-Higgs bundle with ϕi 6= 0 which admits
a skewsymmetric isomorphism as in Proposition 3.23 and thus defines a stable
U∗(ni)-Higgs bundle;

(3) (Vi, ϕi) is as described in (2) of Proposition 3.24) and thus defines a stable
U(pi, qi)-Higgs bundle where piqi 6= 0, deg Ṽi + deg W̃i = 0 and ϕi 6= 0;

(4) ϕi = 0 and Vi defines a degree zero stable vector bundle.

Remark 3.26. The summands listed in Proposition 3.25 are all necessarily simple
objects in their own categories. Indeed the objects of type (3) are simple since (see
Lemma A.13) stable U(p, q)-Higgs bundles with non-zero Higgs field are necessarily
simple, while the objects of type (4) are simple since stable bundles are necessarily
stable.

Except for the summands of type (3), the summands listed in Proposition 3.25
correspond to smooth points in their own moduli spaces, i.e. in the moduli space
of Gi-Higgs bundles, where Gi is one of the groups SO∗(2ni,R), U(ni), or U∗(ni).
Though we will not need it, it is interesting to note that by Theorem A.16, if a
summand of type (3) does not correspond to a smooth point in the moduli space of
U(pi, qi)-Higgs bundles then it has pi = qi, its structure group reduces to GL(pi,C)
and it represents a smooth point in the moduli space of GL(pi,C)-Higgs bundles.

3.7. Bounds on d = deg(V ). In this section we give an inequality which bounds the
number of non-empty Md. The inequality corresponds to the Milnor-Wood inequality
for surface group representations into SO∗(2n) (see Section 6).

Proposition 3.27. Let (V, β, γ) be a semistable SO∗(2n)-Higgs bundle. Then

(3.29) rank(β)(1− g) 6 deg(V ) 6 rank(γ)(g − 1).

In particular,

(3.30) |deg(V )| 6 n(g − 1)

where deg(V ) = n(g−1) if and only if γ is an isomorphism, and deg(V ) = −n(g−1)
if and only if β is an isomorphism.

Proof. This is proved by first using the equivalence between the semistability of
(V, β, γ) and the SL(2n,C)-Higgs bundle (W,Φ) associated to it (see (1) in Theo-
rem 3.20), and then applying the semistability numerical criterion to special Higgs
subbundles defined by the kernel and image of Φ (see Section 3.4 in [3], and also
[13]). �

Notice that since β and γ are skew-symmetric, they cannot be isomorphisms if n is
odd. If n = 2m+ 1 then 2m is the upper bound on rank(β) and rank(γ). Denote by
⌊

n
2

⌋

the integer part of n
2
. As a corollary of Proposition 3.27, we obtain the following.

Proposition 3.28. The moduli space Md is empty unless

(3.31) |d| 6
⌊n

2

⌋

(2g − 2).
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In view of this result, we say that d = deg(V ) is maximal when equality holds in
(3.31).

4. The case of maximal d

4.1. Cayley correspondence for n = 2m. In this section we will assume that n
is even and we will describe the SO∗(2n) moduli space for the extreme value |d| =
n(g − 1). In fact, for the rest of this section we shall assume that d = n(g − 1).
This involves no loss of generality, since, by Proposition 3.17 there is an isomorphism
between the moduli spaces for d and −d. The main result is Theorem 4.3, which we
refer to as the Cayley correspondence.

Let (V, β, γ) be a SO∗(2n)-Higgs bundle such that γ ∈ H0(K⊗Λ2V ∗) is an isomor-
phism. Let L0 = K−1/2 be a fixed square root of K−1, and define W := V ⊗L0. Then
ω := γ ⊗ IL0

: W → W ∗ is a skew-symmetric isomorphism defining a non-degenerate
symplectic Ω on W , in other words, (W,Ω) is a Sp(n,C)-holomorphic bundle. The
K2-twisted endomorphism ψ : W → W ⊗ K2 defined by ψ := β ⊗ IL−1

0

◦ (γ ⊗ IL0
)

is Ω-skewsymmetric and hence (W,Ω, ψ) defines a K2-twisted U∗(n)-Higgs pair (in
the sense of Section A.2.3, see Remark A.38), from which we can recover the original
SO∗(2n)-Higgs bundle.

Definition 4.1. With (V, β, γ) and (W,Ω, ψ) as above, we say that (W,Ω, ψ) is the
Cayley partner to (V, β, γ).

Theorem 4.2. Let (V, β, γ) be a SO∗(2n)-Higgs bundle with d = n(g − 1) such that
γ is an isomorphism. Let (W,Ω, ψ) be the corresponding K2-twisted U∗(n)-Higgs
pair. Then (V, β, γ) is semistable (resp. stable, polystable) if and only if (W,Ω, ψ) is
semistable (resp. stable, polystable).

Proof. The proof is similar to that of Theorem 4.2 in [10], so we will just sketch the
main arguments. We will used the simplified stability notions given in Propositions
3.12 and A.36. We first show that if (V, β, γ) is semistable then the corresponding
U ∗ (n)-Higgs pair is semistable. Suppose otherwise, then there exists an isotropic
ψ-invariant subbundle W ′ ⊂ W such that degW ′ > 0. Let V1 := W ′ ⊗ L−1

0 and let

V2 = V
⊥γ

1 (see Lemma 3.11 for the definition of ⊥γ). We can check that the filtration
0 ⊂ V1 ⊂ V2 ⊂ V is ϕ-invariant and deg(V ) − deg(V1) − deg(V2) < 0, contradicting
the semistability of (V, β, γ).

To prove the converse, i.e., that (V, β, γ) is semistable if the corresponding U∗(n)-
Higgs pair is semistable, suppose that there is ϕ-invariant filtration 0 ⊂ V1 ⊂ V2 ⊂ V
such that deg(V ) − deg(V1) − deg(V2) < 0. From this filtration we cannot immedi-
ately obtain a destabilizing isotropic subbundle of the U∗(n)-Higgs pair, but we can
construct an appropriate filtration giving the destabilizing subobject of the U∗(n)-
Higgs pair. To do this, we first observe that the ϕ-invariance condition for γ (second

condition in (3.17) is equivalent, by Lemma 3.11, to V2 ⊂ V
⊥γ

1 . We define two new
filtrations as follows:

(0 ⊂ V ′
1 ⊂ V ′

2 ⊂ V ) := (0 ⊂ V1 ⊂ V
⊥γ

1 ⊂ V )
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(we indeed have V1 ⊂ V
⊥γ

1 because V1 ⊂ V2 and V2 ⊂ V
⊥γ

1 ) and

(0 ⊂ V ′′
1 ⊂ V ′′

2 ⊂ V ) := (0 ⊂ V2 ∩ V ⊥γ

2 ⊂ V2 + V
⊥γ

2 ⊂ V ).

One can check (see Theorem 4.2 in [10]) that these two filtrations are ϕ-invariant and
that one of the two inequalities

deg V − deg V1 − deg V
⊥γ

1 < 0, deg V − deg(V2 ∩ V ⊥γ

2 )− deg(V2 + V
⊥γ

2 ) < 0

holds. These two filtrations give ψ-invariant isotropic subbundles W ′ := V ′
1 ⊗ L0

and W ′′ := V ′′
1 ⊗ L0 such that either degW ′ > 0 or degW ′′ > 0, contradicting the

semistability of (W,Ω, ψ).

The proof of the statement for stability is basically the same, observing that the
trivial filtration 0 = V1 ⊂ V2 = V corresponds to the trivial subbundle 0 ⊂ W .
The proof of the equivalence of the polystability conditions follows word by word the
argument for Sp(2n,R) given in Theorem 4.2 in [10].

�

Theorem 4.3. Let Mmax(SO
∗(2n)) be the moduli space of polystable SO∗(2n)-Higgs

bundles with d = n(g − 1) and let M′(U∗(n)) be the moduli space of polystable K2-
twisted U∗(n)-Higgs pairs. The map (V, β, γ) 7→ (W,Ω, ψ) defines an isomorphism of
complex algebraic varieties

Mmax ≃ M′.

Proof. Let (V, β, γ) be a semistable Sp(2n,R)-Higgs bundle with d = n(g − 1). By
Proposition 3.27, γ is an isomorphism and hence the map (V, β, γ) 7→ (W,Ω, ψ) is well
defined. The result follows now from Theorem 4.2 and the existence of local universal
families (see [24]). �

Remark 4.4. Note that a maximal SO∗(2n)-Higgs bundle (V, β, γ) has β = 0 if and
only if the Cayley partner (W,Ω, ψ) has ψ = 0. Thus, in particular, Theorem 4.2
implies that a maximal SO∗(2n)-Higgs bundle of the form (V, 0, γ) is polystable if and
only if the corresponding Sp(n,C)-bundle (W,Ω) is polystable. Hence, the isomor-
phism of Theorem 4.3 restricts to an isomorphism between the subspace of SO∗(2n)-
Higgs bundles with β = 0 in Mmax and the moduli space of polystable Sp(n,C)-
bundles (note that there is only one topological class of such bundles, since Sp(n,C)
is simply connected.)

4.2. Rigidity for n = 2m+ 1.

In this section we consider the case in which n = 2m+ 1 and describe the SO∗(2n)
moduli space for the extreme value |d| = m(g − 1). As in Section 4.1, we assume
without loss of generality that d is positive. The main result is following Theorem5.

Theorem 4.5. Let Mmax(SO
∗(4m + 2)) be the moduli space of polystable SO∗(2n)-

Higgs bundles with n = 2m+1 and d = m(g− 1). If m > 0 and g > 2 then the stable
locus of Mmax(SO

∗(4m+ 2)) is empty and

Mmax(SO
∗(4m+ 2)) ∼= Mmax(SO

∗(4m))× J(X),

where J(X) is the Jacobian of X.

5Announced without proof as Theorem 4.8 in [4]
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Proof. Let (V, β, γ) be a polystable SO∗(2n)-Higgs bundle with n = 2m+1. The map
γ : V −→ V ∗ ⊗K defines kernel and image sheaves:

(4.1) 0 −→ ker(γ) −→ V −→ im(γ) −→ 0

The kernel ker(γ) is a subbundle of V , while im(γ) is in general a subsheaf of V ∗⊗K.
Let Wγ denote the saturation of im(γ)⊗K−1 ⊂ V ∗, so that we have

(4.2) 0 −→ im(γ)K−1 −→Wγ −→ T −→ 0,

where T is a torsion sheaf.

Let ker(γ)⊥ denote the annihilator of ker(γ), i.e. let it be defined by

(4.3) 0 −→ ker(γ)⊥ −→ V ∗ −→ ker(γ)∗ −→ 0

The skew-symmetry of γ has the following implication.

Lemma 4.6.

(1) ker(γ)⊥ =Wγ.
(2) rank(γ) 6 2m.

Combining part (1) of Lemma 4.6 with (4.3), we get

(4.4) deg(ker(γ))− deg(Wγ) = d

In addition, we get linear relations from (4.1) and (4.2), namely

(4.5) deg(ker(γ)) + deg(im(γ) = d

and

(4.6) deg(im(γ)− deg(Wγ) = l(2g − 2)− t

where t = deg(T ) and l = rank(γ). The system (4.4), (4.5), (4.6) can be solved,
giving in particular

(4.7) deg(ker(γ)) = d+ deg(Wγ) = d− l(g − 1) +
t

2
.

Consider now the subobject V ⊕Wγ ⊂ V ⊕ V ∗. This clearly satisfies

(1) W⊥
γ ⊂ V ,

(2) β(Wγ) ⊂ V ⊗K,
(3) γ(V ) ⊂Wγ ⊗K.

Thus, setting V1 = W⊥
γ and V2 = V , we get a filtration which is ϕ-invariant, i.e.

satisfies condition (3.17) in Definition 3.8. The semistability condition thus yields the
inequality deg(W⊥

γ ) 6 0 or, equivalently,

(4.8) d+ deg(Wγ) 6 0.

Combined with (4.7) this gives

(4.9) d− l(g − 1) +
t

2
6 0.

It follows immediately from (4.9) and (4.7) — and the non-negativity of t —- that:

Lemma 4.7. If d = 2m(g − 1) = l(g − 1) then
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(1) T = 0, i.e. im(γ)⊗K−1 is a subbundle of V ∗, and
(2) deg(ker(γ)) = 0.

By Theorem (2.7) the SO∗(2n)-Higgs bundle (V, β, γ) is polystable if and only if V
admits a hermitian metric satisfying the SO∗(2n)-Hitchin equations. As described in
Section 3.3, these equations take the form

(4.10) FV + ββ∗ + γ∗γ = 0

where FV is the curvature of the metric connection determined by h, and the adjoints
β∗ and γ∗ are with respect to h. Fix a local frame for V and take the dual frame for V ∗.
With respect to these frames, β and γ are represented by a skew-symmetric matrices.
If the frame for V is compatible with the smooth decomposition V = ker(γ) ⊕ V⊥,
where V⊥ denotes the complement to ker(γ), then the matrices have the form

(4.11) γ =

(

0 0
0 γ

)

, β =

(

β1 β2
−β2 β3

)

with respect to the decompositions V = ker(γ)⊕ V⊥ and V ∗ = (ker(γ))∗ ⊕ (V⊥)
∗.

The metric connection decomposes as

(4.12) DV =

(

Dker A

−AT
D⊥

)

where A ∈ Ω0,1(Hom(V⊥, ker(γ))) is the second fundamental form for the embeddings
of the subbundles ker(γ) ⊂ V . The corresponding decomposition of the curvature is

(4.13) FV =

(

Fker − A ∧ AT ∗
∗ FV⊥

− A
T ∧ A

)

.

Applying iΛTr to equation (4.10), and using (4.11) thus yields

deg(ker(γ)) + Π + ||β1||2 + ||β2||2 = 0(4.14)

deg(V⊥)−Π + ||β2||2 + ||β3||2 − ||γ||2 = 0(4.15)

(4.16)

where Π = −iΛTr(A ∧ AT
). Notice that, since the second fundamental forms are of

type (0, 1), we get that

(4.17) Π > 0 .

But if d = 2m(g − 1) and rank(γ) = 2m then deg(ker(γ) = 0. It thus follows from
(4.14) that Π = 0 and also that β1 = β2 = 0. This immediately implies that the
SO∗(2n)-Higgs bundle (V, β, γ) decomposes as a sum

(4.18) (V, β, γ) = (ker(γ), 0, 0)⊕ (V⊥, β3, γ)

Notice that with V1 = 0 and V2 = V⊥ we get a ϕ-invariant two-step filtration (see
definition 3.8) with

(4.19) deg(V )− deg(V1)− deg(V2) = 0
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By Proposition 3.12 (V, β, γ) is thus not stable. Moreover, ker(γ) is a holomorphic
line bundle, while (V⊥, β3, γ) is a SO

∗(4m)-Higgs bundle. The data thus define a Higgs
bundle with structure group

SO∗(4m)× SO(2) = SO∗(4m)× U(1) .

This completes the proof of Theorem 4.5. �

Remark 4.8. It follows from Theorem 4.5 that Mmax(SO
∗(4m + 2)) has dimension

2m(2m − 1)(g − 1) + g. Comparing with the expected dimension given in Theorem
3.16 we see that dim(Mmax(SO

∗(4m + 2))) is smaller than expected if g > 2 and
m > 0. This explains why we refer to Theorem 4.5 as a rigidity result.

5. Connected components of the moduli space

5.1. The Hitchin functional and connected components of the moduli space.

The method we shall use for studying the topology of the moduli space goes back
to Hitchin [15]. In the following, we very briefly outline the general aspects of this
approach, applied to the count of connected components (more details can be found in,
for instance, [16, 3, 4, 10]). We then apply this programme to show that M0(SO

∗(2n))
and Mmax(SO

∗(2n)) are connected (Theorem 5.2 below).

The method rests on the gauge theoretic interpretation of the moduli space (pro-
vided by Theorem 2.7) as the moduli space of solutions to the Hitchin equations
(3.20). Given defining data for a SO∗(2n)-Higgs bundle, namely (V, β, γ), the solu-
tion to the equations is a hermitian metric on the vector bundle V . Thus it makes
sense to define the Hitchin function

(5.1)
f : Md(SO

∗(2n)) → R

(V, β, γ) 7→ ‖β‖2 + ‖γ‖2

where the L2-norms of β and γ are computed using the metric which satisfies the
Hitchin equation. The function f is proper and therefore attains a minimum on each
connected component of Md(SO

∗(2n)). Hence, if the subspace of local minima of f
restricted to Md(SO

∗(2n)) can be shown to be connected, then it will follow that
Md(SO

∗(2n)) itself is connected.

Theorem 5.1. Let (V, β, γ) be a poly-stable SO∗(2n)-Higgs bundle.

(1) If d > 0, then (V, β, γ) represents a local minimum on Md(G) if and only if
β = 0.

(2) If d < 0, then (V, β, γ) represents a local minimum on Md(G) if and only if
γ = 0.

(3) If d = 0, then (V, β, γ) represents a local minimum on Md(G) if and only if
β = 0 and γ = 0.

Before giving the proof of this result (at the end of Section 5.2 below), we apply it to
prove our main theorem on the connectedness of M0(SO

∗(2n)) and Mmax(SO
∗(2n)).

Theorem 5.2. The moduli space Md is non-empty and connected if d = 0 or |d| =
[n
2
](2g − 2).
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Proof. Consider first the case d = 0. From (3) of Theorem 5.1 it is immediate that
the subspace of local minima of the Hitchin function on M0 consists of polystable
SO∗(n)-Higgs bundles (V, β, γ) with β = γ = 0. Furthermore, we conclude from
Proposition 3.25 that such an SO∗(n)-Higgs bundle is polystable if and only if V is
a polystable vector bundle. Therefore, the subspace of local minima of the Hitchin
function on M0 can de identified with moduli space of polystable vector bundles of
degree zero, which is known to be connected. This completes the proof of the case
d = 0.

Next we turn to the case |d| = [n
2
](2g−2), i.e., the proof of connectedness of Mmax.

By Proposition 3.17 we may assume, without loss of generality, that d > 0. From (1)
of Theorem 5.1, we have that the subspace of local minima of the Hitchin function on
Mmax can be identified with the subspace of (V, β, γ) with β = 0. Suppose now that
n is even. Then, using Remark 4.4, we have that this subspace is isomorphic to the
moduli space of polystable Sp(n,C)-bundles. This space is connected by Ramanathan
[21, Proposition 4.2] and hence Mmax is connected when n is even. The connectedness
of Mmax for odd n now follows from the rigidity result of Theorem 4.5 and the
connectedness of Mmax for even n.

Finally, non-emptiness of the moduli spaces follows from the non-emptiness of the
subspaces of local minima of the Hitchin functional, which in turn follows from the
identifications given in the course of the present proof.

�

5.2. Minima of the Hitchin functional. The purpose of this section is to prove
Theorem 5.1. For this we need to show various preliminary results and, using these,
we give the proof of the Theorem at the of the section.

The following result is completely analogous to [3, Proposition 4.5].

Proposition 5.3. The absolute minimum of the Hitchin functional restricted to
Md(SO

∗(2n)) is |d|. This minimal value is attained at a point in represented by
(V, β, γ) (with deg(V ) = d) if and only if β = 0 (if d > 0) or γ = 0 (if d 6 0).

Proof. Using the Hitchin equation and Chern–Weil theory we get that

(5.2) d+ ‖β‖2 − ‖γ‖2 = 0

and hence the Hitchin function can be expressed as

(5.3) f(V, β, γ) =

{

d+ 2‖β‖2
−d+ 2‖γ‖2

The result follows immediately from (5.3). �

Of course not all local minima are necessarily absolute minima. We thus need to
examine more closely the structure of the local minima.

On the smooth locus ofMd(SO
∗(2n)), the Hitchin functional f arises as the moment

map of the S1-action given by multiplication of the Higgs field φ by complex numbers
of modulus one. Considering the moduli space from from the algebraic or holomor-
phic point of view, this action extends to the C∗-action given by (V, φ) 7→ (V, wφ)
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for w ∈ C∗. The moment map interpretation shows that, on the smooth locus of
Md(SO

∗(2n)), the critical points of f are exactly the fixed points of the C∗-action.
On the full moduli space, the fixed point locus of the C∗-action coincides with the
locus of Hodge bundles (this can be easily seen by arguments like the ones used in
[15, 16, 25]), which are defined as follows.

Definition 5.4. A SO∗(2n)-Higgs bundle (V, β, γ) is called a Hodge bundle if

• there is a decomposition of V into holomorphic subbundles

(5.4) V =
⊕

i

Fi

and, with respect to this decomposition,
• β : F ∗

−i −→ Fi+1 ⊗K, and γ : Fi −→ F ∗
−i+1 ⊗K.

The weight of Fi is i and the weight of F ∗
i is −i.

Thus, in view of (4) of Proposition 2.17, we have the following.

Proposition 5.5. A simple SO∗(2n)-Higgs bundle, which is stable as an SO(2n,C)-
Higgs bundle, represents a critical point of f if and only if it is a Hodge bundle.

If (V, φ) is a Hodge bundle, then the decomposition (5.4) of V induces corresponding
weight decompositions

E(hC) = End(V ) =
⊕

U+
k and E(mC) = Λ2V ⊕ Λ2V ∗ =

⊕

U−
k

where

(5.5) U+
k =

⊕

j−i=k

F ∗
i ⊗ Fj, and U−

k =
⊕

i+j=k

Fi ⊗A Fj ⊕
⊕

i+j=−k

F ∗
i ⊗A F

∗
j .

Moreover, since the Higgs field φ has weight one, the deformation complex (3.25)
decomposes accordingly as

C•(V, φ) =
⊕

k

C•
k(V, φ),

where we let C•
k(V, φ) : U

+
k

ad(φ)−−−→ U−
k+1 ⊗K. If we write C•

−(V, φ) =
⊕

k>0C
•
k(V, φ) we

then have the corresponding positive weight subspace

H1(C•
−(V, φ)) ⊂ H1(C•(V, φ))

of the infinitesimal deformation space. When (V, φ) represents a smooth point of the
moduli space, the hypercohomology H1(C•

−(V, φ)) is the negative eigenvalue subspace
of the Hessian of f and so (V, φ) is a local minimum of f if and only if H1(C•

−(V, φ)) =
0.

The key result we need for identifying the minima of f on the smooth locus of the
moduli space is the following ([4, Corollary 5.8]).

Proposition 5.6. Assume that (V, φ) is a SO∗(2n)-Higgs bundle which is stable as a
SO(2n,C)-Higgs bundle. Then (V, φ) represents a local minimum of f inMd(SO

∗(2n))
if and only if it is a Hodge bundle and

ad(φ) : U+
k −→ U−

k+1 ⊗K
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is an isomorphism for all k > 0.

Using this result, we can prove the following lemma.

Lemma 5.7. Let (V, β, γ) be a simple SO∗(2n)-Higgs bundle which is stable as a
SO(2n,C)-Higgs bundle and assume that (V, β, γ) represents a local minimum of f on
Md(G). Then, if d = deg(V ) > 0 the vanishing β = 0 holds and, if d = deg(V ) 6 0
the vanishing γ = 0 holds.

Proof. Let (V, β, γ) = (V, φ) be a minimum. Then Proposition 5.5 implies that
(V, β, γ) is a Hodge bundle. Moreover, arguing as in [10, Section 6], we see that
(V, β, γ) being simple implies the following: there is a decomposition of V into 2p+1
non-zero holomorphic subbundles (for some p ∈ 1

2
Z), which is either of the form:

(5.6)

V = F−p+ 1

2

⊕ F−p+2+ 1

2

⊕ · · · ⊕ Fp−2+ 1

2

⊕ Fp+ 1

2

,

β : F ∗
p−2j+ 1

2

−→ F−p+2j+ 1

2

⊗K, for 0 6 j 6 p, and

γ : F−p+2j+ 1

2

−→ F ∗
p−2(j+1)+ 1

2

⊗K, for 0 6 j 6 p.

or of the form

(5.7)

V = F−p− 1

2

⊕ F−p+2− 1

2

⊕ · · · ⊕ Fp−2− 1

2

⊕ Fp− 1

2

,

β : F ∗
p−2j− 1

2

−→ F−p+2j− 1

2

⊗K, for 0 6 j 6 p, and

γ : F−p+2j− 1

2

−→ F ∗
p−2(j+1)− 1

2

⊗K, for 0 6 j 6 p.

Let k0 be the largest index such that U+
k0

6= 0. Since otherwise there is nothing to
prove, we may assume that k0 > 0. For definiteness, assume that the decomposition of
V is of the form (5.6) — a similar argument applies when V is of the form (5.7). Using
(5.5), we see that k0 = 2p and thus (by Proposition 5.6) we have an isomorphism

(5.8) ad(ϕ) : F ∗
−p+ 1

2

⊗ Fp+ 1

2

−→ Λ2Fp+ 1

2

⊗K.

In this case, since γ = 0 on Fp+ 1

2

, the map ad(φ) is given explicitly by

x 7→ φ ◦ x− x ◦ φ = −x ◦ β,
where

(5.9) β : F ∗
p+ 1

2

→ F−p+ 1

2

.

for a local section x : F ∗
−p+ 1

2

−→ Fp+ 1

2

. Denote the ranks of Fp+ 1

2

and F−p+ 1

2

by a and

b respectively. Then (5.8) implies that ab = a(a−1)
2

and hence that

(5.10) a = 2b+ 1 > b.

But then the map β in (5.9) must have a non-trivial kernel and, therefore, the map

−x ◦ β : F ∗
p+ 1

2

−→ F−p+ 1

2

−→ Fp+ 1

2

vanishes on ker(β) for any local section x. Now, (5.10) implies that

a = rk(Fp+ 1

2

) > 2.
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Hence there are non-zero antisymmetric local sections y of Λ2Fp+ 1

2

⊗ K which do

not vanish on the kernel of β. This is in contradiction with the existence of the
isomorphism (5.8). �

In order to show that certain singular points of the moduli space are not minima,
we need the following lemma (cf. Hitchin [16, §8]).
Lemma 5.8. Let (V, φ) be a polystable SO∗(2n)-Higgs bundle which is a Hodge bundle.
Suppose there is a family (Vt, φt) of polystable SO∗(2n)-Higgs bundles, parametrized
by t in the open unit disk D ⊂ C, such that (V0, φ0) = (V, φ) and the corresponding
infinitesimal deformation is a non-zero element of H1(C•

−(V, φ)). Then (V, φ) is not
a local minimum of f on Md(SO

∗(2n)).

Using this criterion and Proposition 3.25, we can now extend the result of Lemma 5.7
to cover all polystable SO∗(2n)-Higgs bundles.

Lemma 5.9. Let (V, β, γ) be a polystable SO∗(2n)-Higgs bundle and assume that
(V, β, γ) represents a local minimum of f on Md(G). Then, if d = deg(V ) > 0 the
vanishing β = 0 holds and, if d = deg(V ) 6 0 the vanishing γ = 0 holds.

Proof. Let (V, ϕ) = (V1, ϕ1) ⊕ · · · ⊕ (Vk, ϕk) be the decomposition given in Proposi-
tion 3.25. As observed by Hitchin [16], the Hitchin function (5.1) is additive in the
sense that

f(V, ϕ) =
k
∑

i=1

f(Vi, ϕi).

It follows that each summand (Vi, ϕi) represents a local minimum for the Hitchin
functional on its own moduli space.

If a summand (Vi, ϕi) is of type (1) in Proposition 3.25, then Lemma 5.7 shows that
βi = 0 or γi = 0. Similarly, if a summand (Vi, ϕi) is of type (3), then it is shown in
[3, Theorem 4.6] that βi = 0 or γi = 0. With regard to summands of type (2), it is
shown in [12, Proposition 4.6] that a stable U∗(ni)-Higgs bundle (Vi, ϕi) representing
a local minimum on the corresponding moduli space has ϕi = 0. Finally we note that
the summands (Vi, ϕi) of type (4) have ϕi = 0.

Thus each of the summands (Vi, ϕi) of type (1) or (3) has either βi = 0 or γi = 0
and each of the summands of type (2) or (4) has ϕi = 0.

To complete the proof, assume that there are summands (V ′, β ′, γ′) and (V ′′, β ′′, γ′′)
with β ′ = 0, γ′ 6= 0, β ′′ 6= 0 and γ′′ = 0, and that each of these summands is either of
type (1) or of type (3). If we can construct a family (Vt, ϕt) of polystable SO∗(2n)-
Higgs bundles such that

(V0, ϕ0) = (V ′, β ′ + γ′)⊕ (V ′′, β ′′ + γ′′)

and satisfying the hypothesis of Lemma 5.8, this proposition guarantees that (V ′, β ′+
γ′)⊕(V ′′, β ′′+γ′′) is not a minimum (on its own moduli space) and hence (V, ϕ) cannot
be a minimum. In the analogous case of Sp(2n,R)-Higgs bundles, such a family is
constructed Lemmas 7.2 and 7.3 of [10]. Inspection of the proofs of these two lemmas
shows that they are not sensitive to the symmetry properties of β and γ and so go
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through unchanged in the present case of SO∗(2n)-Higgs bundles. This completes the
proof.

�

Finally we are in a position to prove Theorem 5.1.

Proof of Theorem 5.1. The “if” part is immediate from Proposition 5.3.

Observe now that, if d = 0 and one of the Higgs fields β and γ vanishes, then
polystability of (V, β, γ) forces the other Higgs field to vanish. Given this observation,
the “only if” part follows from Lemma 5.9. �

6. Representations of π1(X) in SO∗(2n)

Let X be a compact Riemann surface of genus g and let

π1(X) = 〈a1, b1, . . . , ag, bg |
g
∏

i=1

[ai, bi] = 1〉

be its fundamental group. By a representation of π1(X) in SO∗(2n) we mean a
homomorphism ρ : π1(X) → SO∗(2n). The set of all such homomorphisms,

Hom(π1(X), SO∗(2n)),

can be naturally identified with the subset of SO∗(2n)2g consisting of 2g-tuples

(A1, B1 . . . , Ag, Bg)

satisfying the algebraic equation
∏g

i=1[Ai, Bi] = 1. This shows that Hom(π1(X), SO∗(2n))
is a real algebraic variety.

The group SO∗(2n) acts on Hom(π1(X), SO∗(2n)) by conjugation:

(g · ρ)(γ) = gρ(γ)g−1

for g ∈ SO∗(2n), ρ ∈ Hom(π1(X), SO∗(2n)) and γ ∈ π1(X). Recall that a represen-
tation is reductive if its composition with the adjoint representation is semisimple. If
we restrict the action to the subspace Homred(π1(X), SO∗(2n)) consisting of reductive
representations, the orbit space is Hausdorff. By a reductive representation we mean
one for which to the Zariski closure of the image of π1(X) in SO∗(2n) is a reductive
group. Define the moduli space of representations of π1(X) in SO∗(2n) to be the
orbit space

R = Homred(π1(X), SO∗(2n))/SO∗(2n).

Since U(n) ⊂ SO∗(2n) is a maximal compact subgroup, we have

π1(SO
∗(2n)) ≃ π1(U(n)) ≃ Z,

and there is a topological invariant attached to a representation ρ ∈ R given by an
element d = d(ρ) ∈ Z. This integer is called the Toledo invariant and coincides
with the first Chern class of a reduction to a U(n)-bundle of the flat SO∗(2n)-bundle
associated to ρ.

Fixing the invariant d ∈ Z we consider,

Rd := {ρ ∈ R such that d(ρ) = d}.
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Proposition 6.1. The transformation ρ 7→ (ρt)
−1

in R induces an isomorphism of
the moduli spaces Rd and R−d.

As shown by Domic–Toledo [7], the Toledo invariant d of a representation satisfies
the Milnor–Wood type inequality:

Proposition 6.2. The moduli space Rd is empty unless

|d| 6
⌊n

2

⌋

(2g − 2).

As a special case of of the non-abelian Hodge theory correspondence (see [5, 10])
we have the following.

Proposition 6.3. The moduli spaces Rd and Md are homeomorphic.

From Proposition 6.3 and Theorem 5.2 we have the main result of this paper re-
garding the connectedness properties of R given by the following.

Theorem 6.4. The moduli space Rd is non-empty and connected if d = 0 or |d| =
⌊n
2
⌋(2g − 2).

From Proposition 6.3 and Theorem 6.4 we also have the following rigidity result for
maximal representations.

Theorem 6.5. Let Rmax(SO
∗(4m+2)) be the moduli space of maximal representations

in SO∗(2n) with n = 2m+ 1 and d = m(g − 1). If m > 0 and g > 2 then the locus of
irreducible representations of Rmax(SO

∗(4m+ 2)) is empty and

Rmax(SO
∗(4m+ 2)) ∼= Rmax(SO

∗(4m))×Hom(π1(x),U(1)).

7. Low rank cases

In this section we exploit well known Lie-theoretic isomorphism to examine SO∗(2n)-
Higgs bundles for low values of n.

7.1. The case n = 1. The group SO∗(2) is isomorphic to SO(2) and hence, in partic-
ular, it is compact. A SO∗(2)-Higgs bundle is thus simply a bundle (with zero Higgs
field). Identifying the maximal compact subgroup (in this case the group itself) with
U(1), we see that a SO∗(2)-Higgs bundle consists of a GL(1,C)-bundle, or equivalently,
a holomorphic line bundle. Using the usual identification GL(1,C) ≃ SO(2,C), we
see that the associated SO(2,C)-Higgs bundle (as in (2.7)) is equivalent to the vector
bundle L⊕ L−1 with the standard off-diagonal quadratic form.

Proposition 7.1. As a SO∗(2)-Higgs bundle, a line bundle L is semistable if and only
if deg(L) = 0. Moreover, semistability implies stability for SO∗(2)-Higgs bundles.
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Proof. We apply Proposition (3.12). The only two-step filtrations are:

0 ⊂ 0 ⊂ 0 ⊂ L

0 ⊂ 0 ⊂ L ⊂ L

0 ⊂ L ⊂ L ⊂ L

All are ϕ-invariant since the Higgs field is zero. Applying (3.18) to these filtrations
in turn yields deg(L) 6 0, 0 6 0, and deg(L) > 0. The first result follows from this.
The second result is a consequence of the fact that there are no ϕ-invariant two-step
filtrations in which at least one of the subbundles is proper. �

Remark 7.2. Since L and L−1 are isotropic subbundles of L ⊕ L−1, it follows that
L ⊕ L−1 is semistable as a SO(2,C)-bundle if and only if deg(L) = 0. This gives an
alternative proof for Proposition (7.1).

It follows that the moduli space of Md(SO
∗(2)) is non-empty only for d = 0, in which

case we can identify

M0(SO
∗(2)) ≃ Jac0(X)

where Jac0(X) denotes the Jacobian of degree zero line bundles over X .

Remark 7.3. It may look paradoxical that we do not obtain the whole moduli space
of line bundles of arbitrary degree over X , i.e. Pic(X). This is because, as indicated
in Remark 3.7, we are fixing the parameter of stability to be zero. In order to obtain
the other components of Pic(X) we have to consider stability for other integral values
of the parameter.

7.2. The case n = 2. In this section we examine the SO∗(2n)-Higgs bundles (V, β, γ)
in which rank(V ) = 2. The low rank and the isomorphism

(7.1) so∗(4) ≃ su(2)⊕ sl(2,R)

lead us to descriptions that are more explicit than in the general case.

7.2.1. Stability conditions. If rank(V ) = 2 there are no two-step filtrations 0 ⊂ V1 ⊂
V2 ⊂ V in which all the inclusions are strict. The only two-step filtrations with at
least one non-zero proper subbundle are thus of the form

(1) V1 = 0 and V2 = L where L is a line subbundle, or
(2) V2 = V and V1 = L where L is a line subbundle, or
(3) V1 = V2 = L where L is a line subbundle.

The conditions in Lemma 3.10 for such two-step filtration to be ϕ-invariant thus
become:

(1) β(L⊥) = 0 if V1 = 0 and V2 = L,
(2) γ(L) = 0 if V1 = L and V2 = V , and
(3) β(L⊥) ⊂ L⊗K and γ(L) ⊂ L⊥ ⊗K if V1 = V2 = L.
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Remark 7.4. The condition β(L⊥) = 0 implies that β : V ∗ → V ⊗ K has rank less
than two. The skew symmetry of β thus forces β = 0. Similarly, γ(L) = 0 implies
that γ = 0. Moreover, the skew symmetry of β and γ ensure that the conditions
β(L⊥) ⊂ L⊗K and γ(L) ⊂ L⊥ ⊗K apply for all line subbundles L ⊂ V . Since L is
one dimensional then any two non-zero vectors in a fiber are related by a scale factor.
This plus the skew symmetry of β lead to the result.

The (semi)stability condition for SO∗(4)-Higgs bundles thus reduces to the follow-
ing:

Proposition 7.5. An SO∗(4)-Higgs bundle (V, β, γ) with deg(V ) > 0 is (semi)stable
if and only if V is (semi)stable as a bundle and γ 6= 0.

An SO∗(4)-Higgs bundle (V, β, γ) with deg(V ) < 0 is (semi)stable if and only if V
is (semi)stable as a bundle and β 6= 0.

An SO∗(4)-Higgs bundle (V, β, γ) with deg(V ) = 0 is (semi)stable if and only if V
is (semi)stable as a bundle.

Proof. Suppose that (V, β, γ) is a (semi)stable SO∗(4)-Higgs bundle with deg(V ) = d.
By (3.29), if d > 0 then γ cannot be zero and if d < 0 then β cannot be zero. If
d = 0 then ( see Remark (3.13)) there is no restriction on β or γ. Any line subbundle
L ⊂ V defines a ϕ-invariant two-step filtration in which V1 = V2 = L. Applying
Proposition (3.12) we see that if (V, β, γ) is semistable then deg(L) 6 deg(V )/2, and
the inequality is strict if (V, β, γ) is stable. This proves the ‘only if’ direction.

To prove the converse it remains to check that the inequalities (3.18) and (3.19)
are satisfied by ϕ-invariant two-step filtrations of the form (a) V1 = 0, V2 = L or (b)
V1 = L, V2 = V . By Remark (7.4), the first case occurs only if β = 0 and hence, by
(3.29), deg(V ) > 0. Thus in this case

(7.2) deg(L) 6 deg(V )/2 =⇒ deg(L) 6 deg(V ) .

Similarly, the second case occurs only if γ = 0 and hence deg(V ) 6 0. Thus

(7.3) deg(L) 6 deg(V )/2 =⇒ deg(L) 6 0 .

The requisite inequalities thus follow from the (semi)stability of V . �

From Proposition (3.24) we have the following.

Proposition 7.6. A SO∗(4)-Higgs bundle (V, β, γ) is polystable if and only if

(1) it is stable with ϕ 6= 0,
(2) V decomposes as a sum of two line bundles of degree zero and β = γ = 0, or
(3) V = L1 ⊕L∗

2 with deg(L1) = − deg(L2) and with respect to this decomposition

β =

(

0 β̃

−β̃ 0

)

and γ =

(

0 γ̃
−γ̃ 0

)

.

Corollary 7.7. Let Md(2) denote the moduli space of rank 2, degree d semistable
bundles and let Ms

d (2) ⊂Md(2) be the stable locus. There is a map
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Md(SO
∗(4)) −→Md(2)(7.4)

[V, β, γ] 7→ [V ]

(1) If d > 0 then the image of the map is the locus of bundles for which h0(det(V )−1⊗
K) is greater than zero. The fiber over [V ] ∈ Ms

d(2) can be identified with
OPs(1)⊕r where r = h0(det(V )⊗K) and s = h0(det(V )−1 ⊗K).

(2) If d < 0 then the image is the locus of bundles for which h0(det(V ) ⊗ K) is
greater than zero. The fiber over [V ] ∈ Ms

d(2) can be identified with OPr(1)⊕s

where r = h0(det(V )⊗K) and s = h0(det(V )−1 ⊗K).
(3) If d = 0 then the map is surjective.

Proof. Everything is immediate from Propositions 7.5 and 7.6 except for the descrip-
tion of the fibers.

Suppose that d > 0 and consider the fiber over a point in Md(2) represented
by the bundle V . The SO∗(4)-Higgs bundles (V, β, γ) are semistable for all (β, γ) ∈
H0(det(V )⊗K)⊕(H0(det(V )−1⊗K)−{0}. However, since the points inMd(SO

∗(4))
are isomorphism classes of objects, we need to consider when two objects, say (V, β, γ)
and (V, β ′, γ′), are isomorphic as SO∗(4)-Higgs bundles. By definition the object are
isomorphic if there exists a bundle automorphism f : V → V such that f ∗(β ′) = β
and f ∗(γ′) = γ. But if V is stable, then the only automorphisms are multiples of the
identity, say f = tI, and the induced map on β and γ is

(7.5) f ∗(β) = t2β , f ∗(γ) = t−2γ

The fiber over [V ] ∈ Md(2) is thus given by (H0(det(V )⊗K)⊕ (H0(det(V )−1⊗K)−
{0}))/C∗ where the C∗-action is given by t(β, γ) = (t2β, t−2γ). The results follows
from this.

The description of the fibers in the d < 0 case is similar. �

Remark 7.8.

(1) Brill-Noether theory shows that in fact the map is surjective for all d < (g−1).
(2) If deg(V ) is odd then Md(2) = Ms

d(2), so all fibers are direct sums of copies
of the degree one line bundle over a suitable projective space. Note, though,
that the number of summands and the dimension of the projective space need
not be constant.

(3) In the case d = 0, the fiber over a point [V ] ∈Md(2) is the quotient

(H0(det(V )⊗K)⊕H0(det(V )−1 ⊗K))/C∗ .

7.2.2. Simplicity and smoothness in Md(SO
∗(4). Applying Theorem (3.19) to the

case of SO∗(4)-Higgs bundles yields:

Theorem 7.9. Let (V, ϕ) be a stable SO∗(4)-Higgs bundle. If (V, ϕ) is not simple,
then V is a stable vector bundle of degree zero and ϕ = 0. In this case Aut(V, ϕ) ≃ C∗.

Proof. Case (2) in Theorem (3.19) cannot occur since the Higgs field necessarily van-
ishes in a SO∗(2)-Higgs bundle. �
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By Proposition (3.22) a stable and simple SO∗(4)-Higgs bundle (V, β, γ) repre-
sents smooth points in Md(SO

∗(4) (where d = deg(V )) unless d = 0 and there is

a skewsymmetric isomorphism f : V
≃−→ V ∗ intertwining β and γ. By Lemma (7.11)

such an isomorphism can exist only if det(V ) = O. We thus get:

Proposition 7.10. (1) If d is odd then Md(SO
∗(4) is smooth.

(2) If d is even and d 6= 0 then Md(SO
∗(4) is smooth except possibly at points rep-

resented by SO∗(4)-Higgs bundles (V, β, γ) where V = L1 ⊕L∗
2 with deg(L1) =

− deg(L2) and with respect to this decomposition β =

(

0 β̃

−β̃ 0

)

and γ =
(

0 γ̃
−γ̃ 0

)

.

(3) If d = 0 then Md(SO
∗(4) is smooth except possibly at points represented by

SO∗(4)-Higgs bundles (V, β, γ) with
(a) β = γ = 0, or
(b) V = L1 ⊕ L∗

2 with deg(L1) = deg(L2) = 0 and with respect to this decom-

position β =

(

0 β̃

−β̃ 0

)

and γ =

(

0 γ̃
−γ̃ 0

)

, or

(c) det(V ) = O and fβ = f−1γ where f : V → V ∗ is a skew-symmetric
isomorphism.

Proof. (1) If d is odd then all semistable and polystable Higgs bundles are sta-
ble, simple and do not admit a skew-symmetric isomorphism intertwining the
components of the Higgs field.

(2) If d is even and d 6= 0 then all stable Higgs bundles are simple and do not admit
a skew-symmetric isomorphism intertwining the components of the Higgs field.
The non-smooth points can occur only at points represented by polystable
Higgs bundles.

(3) The cases (a)-(c) correspond to polystable Higgs bundles (cases (a) and (b)),
stable but not simple Higgs bundles (case (a)), or stable and simple bundles
which admit a skew-symmetric isomorphism intertwining the components of
the Higgs field (case (c)).

�

7.2.3. The even degree case. Notice that if V is a rank 2 bundle, then Λ2(V ) = det(V ).
Furthermore if deg(V ) is even then V can be decomposed as

V = U ⊗ L , with

{

det(U) = O
L2 = det(V )

Lemma 7.11. If U is a rank 2 holomorphic bundle then the following are equivalent:

(1) det(U) = O,
(2) the structure group of U reduces to SL(2,C),
(3) U∗ ≃ U , with the isomorphism defined by a symplectic form
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Proof. The equivalence of (1) and (2) is straightforward. The equivalence of (2) and
(3) follows from the fact that SL(2,C) ≃ Sp(2,C). �

Lemma 7.12. Let V = U⊗L as above, and as in Section 3.2 let β ∈ H0(X,Λ2V ⊗K)
and γ ∈ H0(X,Λ2V ∗ ⊗ K). Let Ω ∈ H0(Λ2U∗) be the symplectic form on U , with
induced symplectic form Ω∗ ∈ H0(Λ2U) on U∗. Then we can write

β = Ω⊗ β̃ , where β̃ ∈ H0(L2 ⊗K) ,(7.6)

γ = Ω∗ ⊗ γ̃ , where γ̃ ∈ H0(L−2 ⊗K)

Proof. Using the identification Λ2U = det(U) ≃ O we see that Ω can be taken to

be the identity. Moreover, Λ2V = Λ2U ⊗ L2 ≃ L2 and hence β = 1 ⊗ β̃ where
β̃ ∈ H0(L2 ⊗K). This can be seen more concretely as follows. Fix a local frame, say
{e1, e2}, for U and a local frame f for L. Let Ω be represented by matrix [Ω]ij with
respect to {e1, e2}. In fact, since

(7.7) At

[

0 1
−1 0

]

A =

[

0 1
−1 0

]

for all A ∈ SL(2,C), we can assume that Ω is represented by J =

[

0 1
−1 0

]

. But with

respect to the local frame {e1 ⊗ f, e2 ⊗ f} for V (and suitable local frame for K) β is
represented by a skew symmetric 2× 2 matrix, i.e. a matrix of the form

(7.8) β =

[

0 β̃

−β̃ 0

]

= β̃J

where β̃ is the local form of a section in H0(L2⊗K).The computation for γ is similar.
�

Remark 7.13. If we use dual frames for U and U∗, then Ω∗ is represented by the
inverse of the matrix representing Ω.

Proposition 7.14. Let (V, β, γ) be a SO∗(4)-Higgs bundle with deg(V ) even. Pick L
such that L2 = det(V ) and define U = V ⊗ L−1. Then

(1) U is a SL(2,C)-bundle and

(2) (L, β̃, γ̃) defines a SL(2,R)-Higgs bundle

where β̃, γ̃ are as in Lemma 7.12. The SO∗(4)-Higgs bundle (V, β, γ) is (semi)stable if

and only if U is (semi)stable as a bundle and (L, β̃, γ̃) is (semi)stable as a SL(2,R)-
Higgs bundle.

Proof. Properties (1) and (2) follow from Lemmas 7.11 and 7.12, and the fact that a

triple (L, β̃, γ̃) (as in Lemma 7.12) defines a SL(2,R)-Higgs bundle. The statement
about (semi)stability follows from Proposition 7.5 and the fact that (semi)stability

for a SL(2,R)-Higgs bundle (L, β̃, γ̃) with deg(L) > 0 is equivalent to the condition
that γ̃ 6= 0 (if deg(L) > 0).
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�

Remark 7.15. The isomorphism (7.1) is the infinitesimal version of a 2:1 homomor-
phism

(7.9) η : SU(2)× SL(2,R) −→ SO∗(4)

Proposition 7.14 shows that if deg(V ) is even then the structure group of the SO∗(4)-
Higgs bundle lifts via η to SU(2)×SL(2,R). If deg(V ) is odd, then the structure group
does not lift. The obstruction to the lift can be viewed as an element ofH2(X,Z/2). In
fact, the homomorphism η is induced by the homomorphism Spin(4,C) −→ SO(4,C).
To see this, recall that

Spin(4,C) ≃ Spin(3,C)× Spin(3,C) ≃ SL(2,C)× SL(2,C).

Under this homomorphism, the real form SU(2) × SL(2,R) of SL(2,C) × SL(2,C)
maps to SO∗(4).

7.2.4. The Cayley partner. Applying Proposition 3.27 with n = 2, we see that

| deg(V )| 6 2g − 2

and that γ is an isomorphism if (and only if) deg(V ) = 2g − 2. As in Proposition
7.14 we write V = U ⊗ L with det(U) = O and L2 = det(V ). In particular, if
deg(V ) = 2g − 2 then deg(L−2 ⊗ K) = 0. Moreover, since γ is an isomorphism, it
follows that γ̃ is a non-zero section of L−2 ⊗K and thus L2 = K. Proposition 7.14
thus becomes

Proposition 7.16. Let (V, β, γ) be a SO∗(4)-Higgs bundle with deg(V ) = 2g − 2.
Pick L such that L2 = K and define U = V ⊗ L−1. Then

(1) U is a SL(2,C)-bundle and

(2) (L, β̃, γ̃) defines a SL(2,R)-Higgs bundle where γ̃ is a non-zero section in

H0(O), and β̃ ∈ H0(K2). In particular, (L, β̃, γ̃) defines a Higgs bundle in a
Teichmüller component of Mg−1(SL(2,R).

Moreover, the polystability of (V, β, γ) is equivalent to the polystability of U .

Remark 7.17. With Ω as Lemma 7.12, the data (U,Ω; β̃) as in Proposition 7.16 de-
fines a K2-twisted U∗(2)-Higgs bundle. Indeed if (V,Ω;ϕ) is a L-twisted U∗(2)-Higgs
bundle then we can assume that Ω = J with respect to suitable local frames. Since,
by definition of a U∗(2n)-Higgs bundle, ϕtΩ = −Ωϕ, we get that ϕ = ϕ̃I with respect
to the same frames. It follows that locally ϕ = ϕ̃I, where ϕ̃ ∈ H0(L) (see Appendix

A and [12] for details on U∗(2n)). The polystability of the (U, β̃) as a K2-twisted
U∗(2)-Higgs bundle is equivalent to the polystability of U .

Remark 7.18. The ambiguity in the decomposition V = U ⊗ L corresponds, in this
case, to the choice of a square root of K. This is the same choice as the one which
distinguishes the Teichmüller component of Mg−1(SL(2,R).
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Combining Propositions (7.14) and (7.5) gives rise to a 22g : 1 map

T :M0(2)×Ml(SL(2,R)) −→ M2l(SO
∗(4))

([U ], [L, β̃, γ̃]) 7→ [U ⊗ L, β, γ](7.10)

where M0(2) denotes the moduli space of polystable rank 2 bundles with trivial de-
terminant, Ml(SL(2,R)) denotes the component of the moduli space of polystable
SL(2,R)-Higgs bundles in which deg(L) = l, and M2l(SO

∗(4)) denotes the compo-
nent of the moduli space of polystable SO∗(4)-Higgs bundles in which deg(V ) = 2l.
This is the Higgs bundle manifestation of the Lie algebra isomorphism (7.1).

Proposition 7.19. For each 0 6 l 6 g−1 the moduli space M2l(SO
∗(4)) is connected.

Proof. Under the map T , the 22g Teichmüller components in Mg−1(SL(2,R) are all
identified in the component M2g−2(SO)∗2(4). For 0 6 l < g − 1 the moduli spaces
Ml(SL(2,R) are connected. �

7.3. The case n = 3.

The Lie algebra of SO∗(6) is isomorphic to su(1, 3), the Lie algebra of SU(1, 3).
The groups differ because they have different centers, with Z(SO∗(6)) ≃ Z2 and
Z(SU(1, 3)) ≃ Z4. Both groups are finite covers of PU(1, 3), the adjoint form of the
Lie algebra. The relationships among the groups SO∗(6), SU(1, 3), and PU(1, 3) leads
to relations among the corresponding Higgs bundles for the groups (see Proposition
(7.30)). As for SO∗(4), the relation can also be explained in terms of the spin group.
Namely, the 2:1 homomorphism Spin(6,C) −→ SO(6,C) restricts to a 2:1 homomor-
phism Spin∗(6) −→ SO∗(6). But under the isomorphism Spin(6,C) ≃ SL(4,C), one
has the isomorphism of the corresponding real forms Spin∗(6) and SU(1, 3).

The key to understanding the relation between the Higgs bundles is the isomorphism

Λk(V∗)⊗ Λn(V) −→ Λn−k(V) .

where V is a vector space of dimension n > k, and the map is defined by the interior
product. This extends to exterior powers of vector bundles of rank n. In particular,
if n = 3 and k = 2 we get Λ2V ∗ ⊗ det(V ) ≃ V or

(7.11) Λ2V ∗ ≃ det(V )∗ ⊗ V ≃ Hom(det(V ), V ) .

Hence a section γ ∈ H0(Λ2V ∗K) defines a holomorphic bundle map γ̃ : det(V ) →
V ⊗K by

(7.12) γ̃(ω) = ιγ(ω)

where ιγ denotes the interior product. Similarly a section β ∈ H0(Λ2V ⊗K) defines

a map β̃ : V → det(V )⊗K.

Proposition 7.20. A SO∗(6)-Higgs bundle defines a U(1, 3)-Higgs bundle via the
map

(7.13) (V, β, γ) 7→ (det(V ), V, β̃, γ̃)

where β̃ and γ̃ are related to β and γ as above.
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Proof. This follows immediately from the definitions. In general, a U(p, q)-Higgs
bundle is defined by a tuple (V,W, β, γ) where V and W are bundles of rank p and
q respectively, and β, γ are maps β : V → W ⊗K and γ : W → V ⊗K (see [3] and
Section A.2.1 for more details). �

Remark 7.21. We refer the reader to [3] and Section A.2.1 for more details but note
here the following key features:

(1) The tuple (V,W, β, γ) represents a SU(p, q)-Higgs bundle if it satisfies the
determinant condition det(V ⊕W ) = O. In particular, SU(1, 3)-Higgs bundles

are represented by tuples (L,W, β̃, γ̃) with L a line bundle, W a rank three

bundle, β̃ : W → L ⊗K and γ̃ : L → W ⊗ K and such that det(L ⊕W ) is
trivial.

(2) While a PU(p, q)-Higgs bundle is defined by a principal P(U(p)×U(q))-bundle
together with an appropriate Higgs field, the structure group of the bundle can
always be lifted to U(p) × U(q). Together with the Higgs field, the principal
U(p)×U(q)-bundle defines a U(p, q)-Higgs bundle. The lifts are defined up to
a twisting by a line bundle.

(3) The notion of polystability and the corresponding Hitchin equations for U(p, q)-
Higgs bundles are described in Section A.2.1 and in [3]. The notions for
SU(p, q) and PU(p, q) are similar.

(4) (a) The components of the moduli space of polystable U(p, q)-Higgs bundles
are labeled by the integer pair (a, b) where a = deg(V ) and b = deg(W ).
We will denote these components by Ma,b(U(p, q)).

(b) For a PU(p, q)-Higgs bundle, the components of the moduli spaces are
label-led by the combination τ = 2aq−bp

p+q
, where (V,W, β, γ) represents

a U(p, q)-Higgs bundles obtained by lifting the structure group. This
combination, known as the Toledo invariant, is independent of the lifts
to U(p, q). We will denote the components with Toledo invariant τ by
Mτ (PU(p, q)).

(c) For SU(p, q)-Higgs bundles, for which deg(V ) = − deg(W ), the compo-
nents of the moduli space can be labeled by the single integer a = deg(V ).
We will denote these components by Ma(SU(p, q)).

Proposition 7.22. Let (V, β, γ) and (det(V ), V, β̃, γ̃) be a SO∗(6)-Higgs bundle and
corresponding U(1, 3)-Higgs bundle, as above. Then the following are equivalent:

(A) The bundle V admits a metric, say H, satisfying the SO∗(6)-Hitchin equation
on (V, β, γ), namely (see (3.23))

(7.14) FH
V + ββ∗H + γ∗Hγ = 0.

(B) The bundles V and det(V ) admit metrics, say K and k, satisfying the U(1, 3)-

Hitchin equation on (det(V ), V, β̃, γ̃), namely (see [3])

(7.15)
FK
V + β̃∗K,k β̃ + γ̃γ̃∗K,k = −

√
−1µIV ω,

F k
det(V ) + β̃β̃∗K,k + γ̃∗K,k γ̃ = −

√
−1µω.

In these equations
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• the first terms denote the curvature of the Chern connection with respect to
the indicated metrics,

• the adjoints in (7.14) are with respect to H and the metric it induces on V ∗,
• the adjoints in (7.15) are with respect to K and k

• µ =
√
−1

∫
X Tr(FH

V )

2V ol(X)
= π deg(V )

V ol(X)
,

• IV is the identity map on V , and
• ω denotes the Kähler form of the metric on the Riemann surface X.

The proof of Proposition 7.22 uses the following technical Lemma.

Lemma 7.23. Let (det(V ), V, β̃, γ̃) be a U(1, 3)-Higgs bundle, as above. Let H and h
be any metrics on V and det(V ) respectively. Let K be a metric on V which is related
to H by a conformal factor eu, i.e. K(φ, ψ) = euH(φ, ψ) for any sections φ and ψ of
V . Similarly let k be a metric on det(V ) which is related to h by the same conformal
factor eu. Then (in the notation of Proposition 7.22)

(1) γ̃∗K,k = γ̃∗H,h

(2) β̃∗K,k = β̃∗H,h,
(3) FK

V = FH
V −

√
−1∆(u)ωIV , and

(4) F k
det(V ) = F h

det(V ) −
√
−1∆(u)ω.

where in (3) and (4) ω denotes the Kähler form on X.

Proof. Let a be a point in the fiber of V over a point x ∈ X and let b be a point in
the fiber over x of det(V )K. Then

h(b, γ̃∗K,k(a)) =e−u(x)k(b, γ̃∗K,k(a))

=e−u(x)K(γ̃(b), a)

=e−u(x)eu(x)H(γ̃(b), a) = h(b, γ̃∗H,h(a))

This proves (1). The proof of (2) is similar. The proof of (3) and (4) follows di-
rectly from the definition of the Chern connection. Indeed, if metrics H1 and H2 on
a holomorphic bundle E are related by H1 = H2s where s is a (positive definite)
automorphism of E, then the curvatures of the Chern connections are related by

(7.16) FH1
= FH2

+ ∂E(s
−1D′

H1
(s))

where ∂E and D′
H1

are the antiholomorphic and holomorphic parts of the Chern

connection for H1. If s = euI then the second term reduces to −
√
−1∆(u)ω. �

We now prove Proposition 7.22 .

Proof of Proposition 7.22. Fix a local frame for V and use the dual frame for V ∗.
Also, fix a local complex coordinate on the base. Then γ, as a map from V to V ∗⊗K
is given locally by a matrix of holomorphic 1-forms, which we write as

(7.17) γ =





0 γ1 γ2
−γ1 0 γ3
−γ2 −γ3 0



 dz .
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Using the the induced frame for det(V ), the map γ̃ is then given by

(7.18) γ̃ =





γ3
−γ2
γ1



 dz .

Similarly, if β as a map from V ∗ to V ⊗K is given locally by a matrix of holomorphic
1-forms of the form

(7.19) β =





0 β1 β2
−β1 0 β3
−β2 −β3 0



 dz .

then the map β̃ is then given by

(7.20) β̃ =
[

β3 −β2 β1
]

dz .

Given a metric, say H , on V , we can pick the local frame to be unitary with respect
to h. Then locally

(7.21) γ∗H =





0 −γ1 −γ2
γ1 0 −γ3
γ2 γ3 0



 dz .

The metric H induces a metric on det(V ), which we denote by h. With respect to
the metrics H on V and h on det(V ), the adjoint of γ̃ is given locally by

(7.22) γ̃∗H,h =
[

γ̃3 −γ̃2 γ̃1
]

dz̃ .

Using the metrics H and h, and taking into account that the entries in the matrix
are 1-forms, we get that

γ∗Hγ = γ̃γ̃∗H,h + γ̃∗H,h γ̃IV

ββ∗H = β̃∗H,hβ̃ + β̃β̃∗H,hIV(7.23)

and also

Tr(γ̃γ̃∗H,h) = −γ̃∗H,h γ̃

Tr(β̃∗H,hβ̃) = −β̃β̃∗H,h(7.24)

Suppose that V admits a metric which satisfies the SO∗(6)-Hitchin equations for
(V, β, γ), namely equation (7.14). Because of (7.23) this is equivalent to

(7.25) FH
V + β̃∗H,hβ̃ + γ̃γ̃∗H,h = −(γ̃∗H,h γ̃ + β̃β̃∗H,h)IV

Taking the trace of this, and using (7.24), we also get

(7.26) Tr(F h
V ) + γ̃∗H,h γ̃ + β̃β̃∗H,h = −(γ̃∗H,h γ̃ + β̃β̃∗H,h)

We can write the (1, 1) form γ̃∗H,h γ̃ + β̃β̃∗H,h as

(7.27) γ̃∗H,h γ̃ + β̃β̃∗H,h =
√
−1tω = −(

3
∑

i=1

|γ̃i|2 −
3
∑

i=1

|β̃i|2)dz ∧ dz



44 S. B. BRADLOW, O. GARCÍA-PRADA, AND P. B. GOTHEN

where the last expression is in local coordinates. Notice that by (7.26) we get

(7.28) − 2
√
−1

∫

X

tω =

∫

X

Tr(F h
v ) = −2π

√
−1 deg(V )

Since Tr(FH
V ) = F h

det(V ), equations (7.25) and (7.26) can thus be written as

FH
V + β̃∗H,hβ̃ + γ̃γ̃∗H,h = −

√
−1tωIV

F h
det(V ) + γ̃∗H,h γ̃ + β̃β̃∗H,h = −

√
−1tω(7.29)

where

(7.30)

∫

tω

V ol(X)
=
π deg(V )

V ol(X)
= µ

Equations (7.29) differ from the required U(1, 3)-Hitchin equations only in that the
right hand side is not constant, but instead involves a function whose average value is
the required constant. Lemma 7.23 allows us to remove this discrepancy by rescaling
the metrics on V and det(V ). Indeed if we pick a function u such that it satisfies the
condition

∆(u) = t− µ

and define metric K = Heu on V and k = heu on det(V ) then

FK
V + β̃∗K,k β̃ + γ̃γ̃∗K,k = −

√
−1µωIV

F k
det(V ) + γ̃∗K,k γ̃ + β̃β̃∗K,k = −

√
−1µω

as required.

Conversely, suppose that V and det(V ) admit metrics H and h which satisfy the

U(1, 3)-Hitchin equations on (det(V ), V, β̃, γ̃), namely (7.15). In general h will differ
from the metric induced by H on det(V ). Denoting the latter by det(H), we can
write

(7.31) h = det(H)eu

where u is a smooth function on X . Now define new metrics on V and det(V ) which
are related to H and h by the conformal factor eu/2, i.e. set

(7.32) K = Heu/2 , and k = heu/2

Notice that det(K) = det(H)e3u/2 = k. Moreover, since both metric are modified

by the same conformal factor, the adjoints β̃∗ and γ̃∗ are unaffected (see Lemma
7.23). By parts (3) and (4) of Lemma 7.23 and the fact that H and h satisfy the
U(1, 3)-Hitchin equations, we thus get

FK
V + β̃∗K,k β̃ + γ̃γ̃∗K,k = −

√
−1(µ− ∆(u)

2
)ωIV = −

√
−1tωIV

F k
det(V ) + γ̃∗K,k γ̃ + β̃β̃∗K,k = −

√
−1(µ− ∆(u)

2
)ω = −

√
−1tω

where t = µ − ∆(u)
2

and k = det(K). Exactly as above (see equation (7.25)-(7.30) )
we find that these two equations combine to yield

FK
V + ββ∗K + γ∗Kγ = 0
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as required. �

Corollary 7.24. Let (V, β, γ) and (det(V ), V, β̃, γ̃) be as above. Then (V, β, γ) defines

a polystable SO∗(6)-Higgs bundle if and only if (det(V ), V, β̃, γ̃) defines a polystable
U(1, 3)-Higgs bundle. Moreover, the map (7.13) defines an embedding

(7.33) Md(SO
∗(6)) →֒ Md,d(U(1, 3))

where Md,d(U(1, 3)) denotes the component in the moduli space of polystable U(1, 3)-
Higgs bundles in which the bundles both have degree d.

Proof. The first part follows immediately from Proposition 7.22 because of the Hitchin-
Kobayashi correspondence for G-Higgs bundles, i.e. Theorem 2.7. The map defined
by (7.13) is clearly injective, with image given by the subvariety in which the U(1, 3)-
Higgs bundles are defined by tuples (L, V, β, γ) in which L = det(V ). �

Remark 7.25. By Proposition 3.16 the dimension of Md(SO
∗(6)) is 15(g − 1), while

the dimension of Md,d(U(1, 3)) is 16(g−1)+1 (see [3]). The image of the embedding
give by (7.33) thus has codimension g in Md,d(U(1, 3)).

Proposition 7.26. Let (det(V ), V, β̃, γ̃) be a U(1, 3)-Higgs bundle in which deg(V )
is even. Pick L such that L2 = det(V ) and define maps

β̃L = β̃ ⊗ 1L : V ⊗ L−1 → L⊗K

γ̃L = γ̃ ⊗ 1L : L→ V ⊗ L−1 ⊗K(7.34)

where 1L : L−1 → L−1 is the identity map. Then (L, V ⊗ L−1, β̃L, γ̃L) defines an
SU(1, 3)-Higgs bundle and, with the same notation as in Proposition 7.22, the follow-
ing are equivalent:

(A) The bundles V and det(V ) admit metrics, say H and h, satisfying

FH
V + β̃∗H,hβ̃ + γ̃γ̃∗H,h = −

√
−1µIV ω

F h
det(V ) + β̃β̃∗H,h + γ̃∗H,h γ̃ = −

√
−1µω(7.35)

(B) The bundles V ⊗ L−1 and L admit metrics, say K and k, satisfying

FK
V⊗L−1 + (β̃L)

∗K,k(β̃L) + (γ̃L)(γ̃L)
∗K,k = 0

F k
L + (β̃L)(β̃

∗K,k

L ) + (γ̃L)
∗K,k(γ̃L) = 0(7.36)

Proof. Since L2 = det(V ) it follows that

(7.37) det(L⊕ V ⊗ L−1) = det(V )⊗ L−2 = O .

and hence (L, V ⊗ L−1, β̃L, γ̃L) defines a SU(1, 3)-Higgs bundle.

Let h0 be the Hermitian-Einstein metric on L−1, so that the curvature of the
corresponding Chern connection satisfies F h0

L =
√
−1 deg(L)ω. Given metrics H

and h which satisfy (A), define K = H ⊗ h0 on V ⊗ L−1 and k = h ⊗ h0 on
L = det(V ) ⊗ L−1. Conversely, given metrics K and k which satisfy (B), define
H = K ⊗ h−1

0 on V = V ⊗ L−1 ⊗ L and h = k ⊗ h−1
0 on det(V ) = L2. �
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Remark 7.27. The equations (7.36) are not exactly the SU(1, 3)-Hitchin equations. If
(L,W, b, c) is any SU(1, 3)-Higgs bundle, the Hitchin equations for metrics k and K
on L and W respectively are equivalent to the condition

(7.38)

[

FK
W + b∗K,kb+ cc∗K,k 0

0 F k
L + bb∗K,k + c∗K,kc

]

0

= 0

where [A]0 denotes the trace free part of the matrix [A]. The pair (7.36) (for the

SU(1, 3)-Higgs bundle (det(V ), V, β̃, γ̃)) is equivalent to (7.38) together with the extra
condition Tr(FK

V⊗L−1) + F k
L = 0. In fact this condition can always be achieved by a

simultaneous conformal transformation of the metrics K and k, as in (7.32). As
explained above, such conformal transformations affect only the curvature terms in
the equation but do not change the trace-free parts of those terms.

Remark 7.28. By defining V = W ⊗ L, any SU(1, 3)-Higgs bundle (L,W, β, γ) can

be represented by a tuple (L, V ⊗ L−1, β̃L, γ̃L), where the Higgs fields are maps β̃L :
V ⊗ L−1 → L⊗K and γ̃L : L→ V ⊗ L−1 ⊗K. Notice that

• L2 = det(V ), and hence

• β̃L : V ⊗ L−1 → L⊗K defines β ∈ H0(V ∗ det(V )⊗K) ≃ H0(Λ2V ⊗K)
• γ̃L : L→ V ⊗ L−1 ⊗K defines γ ∈ H0(V det(V )∗K) ≃ H0(Λ2V ∗ ⊗K)

Corollary 7.29. With notation as in Remark 7.28, the map

(7.39) (L, V ⊗ L−1, β̃L, γ̃L) 7→ (L2, V, β, γ)

defines a map

(7.40) Ml(SU(1, 3)) → M2l,2l(U(1, 3)) ,

and the map

(7.41) (L, V ⊗ L−1, β̃L, γ̃L) 7→ (V, β, γ)

defines a 22g : 1 surjective map

(7.42) Ml(SU(1, 3)) → M2l(SO
∗(6)) ,

Here l = deg(L), τ denotes the Toledo invariant, and the notation for the moduli
spaces is as in (4) of Remark 7.21 .

Proof. The tuple (L2, V, β, γ) clearly defines a U(1, 3)-Higgs bundle with deg(L2) =
deg(V ) = 2l, while remark 7.28 shows that (V, β, γ) defines a SO∗(6)-Higgs bundle. In
order to show that the given maps induces maps between the indicated moduli spaces
we need to show that the maps preserves polystability. We do this by invoking the
Hitchin-Kobayashi correspondences for SU(1, 3)-, U(1, 3)-, and SO∗(6)-Higgs bundles,
i.e. we show that the map preserves the conditions for existence of solutions to
the Hitchin equations for the Higgs bundles. But, by Proposition 7.26 together with
remark 7.27, (L, V ⊗L−1, β̃L, γ̃L) admits a solution to the SU(1, 3)-Hitchin equations if
and only if (L2 = det(V ), V, β, γ) admits a solution to the U(1, 3)-Hitchin equations;
and by Proposition 7.22, (det(V ), V, β, γ) admits a solution to the U(1, 3)-Hitchin
equations if and only if (V, β, γ) admits a solution to the SO∗(6)-Hitchin equations.
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Finally, take any point inM2l(SO
∗(6)), represented say by (V, β, γ). For any L such

that L2 = det(V ), the SU(1, 3)-Higgs bundles (L, V ⊗L−1, β̃L, γ̃L) is in the pre-image
of (V, β, γ) under the map. This shows that the map is surjective. The multiplicity
comes from choices of square roots of det(V ). �

In addition to the maps (7.33), (7.40), and(7.42), the map

(7.43) (L,W, β, γ) 7→ (P(L⊕W ), β, γ)

defines (see [3]) a surjective map

(7.44) Ml,b(U(1, 3)) 7→ Mτ (PU(1, 3)) .

where l = deg(L), b = deg(W ), and τ = (3l − b)/2. Conversely, any PU(p, q)-Higgs
bundle in Mτ (PU(1, 3)) is in the image of such a map, where the degrees (l, b) are
determined only up to the Z-action (l, b) 7→ (l + k, b + 3k). This corresponds to
twisting L⊕W by a line bundle of degree k.

These maps lead to the following relations among Higgs bundles for the groups
SO∗(6), SU(1, 3), and PU(1, 3).

Proposition 7.30.

(1) The composition of maps (7.44) and (7.33) defines a surjective map

(7.45) Md(SO
∗(6)) 7→ Md(PU(1, 3)) .

Moreover a PU(1, 3)-Higgs bundle in Mτ (PU(1, 3)) is in the image of such a
map if and only if τ is an integer.

(2) The composition of maps (7.44) and (7.40) defines a surjective map

(7.46) Md(SU(1, 3)) 7→ M2d(PU(1, 3)) .

Moreover a PU(1, 3)-Higgs bundle in Mτ (PU(1, 3)) is in the image of such a
map if and only if τ is an even integer.

(3) A SO∗(6)-Higgs bundle in Md(SO
∗(6)) lies in the image of a map of the

form(7.42) if and only if d is an even integer.

Proof. (1) The map to Mτ=d(PU(1, 3)) is surjective since PU(1, 3)-Higgs bundles
with τ = d lift to U(1, 3)-Higgs bundles of the form (L,W, β, γ) with 3 deg(L) −
deg(W ) = 2d. After twisting with a line bundle if necessary, we can assume that
deg(L) = deg(W ) = d. Furthermore, we can assume that L = det(W ) since if not,
then twisting by a square root of det(V )⊗ L−1 will make it so. The assertion that τ
must be an even integer is clear from the definitions of the maps (7.44) and (7.40).

(2) As in (1), any PU(1, 3)-Higgs bundles with τ = 4d lift to U(1, 3)-Higgs bundles
of the form (det(W ),W, β, γ). Such a Higgs bundle is in the image of (7.40) if and
only if deg(det(W )) is even. This condition is satisfied precisely when deg(W ) = 2d.

(3) This follows from the fact that the map is defined by (7.41) in which det(V ) = L2

and hence deg(V ) = 2 deg(L). �

Expressed in terms of the corresponding surface group representations, Proposi-
tion 7.30 gives conditions under which reductive surface group representations into
PU(1, 3), SO∗(6) or SU(1, 3) lift from one group to another.
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Proposition 7.31.

(1) A reductive surface group representation into PU(1, 3) lifts to a representation
into SO∗(6) if and only if the Toledo invariant of the associated PU(1, 3) -Higgs
bundle is an integer.

(2) A reductive surface group representation into PU(1, 3) lifts to a representation
into SU(1, 3) if and only if the Toledo invariant of the associated PU(1, 3)
-Higgs bundle is an even integer.

(3) A reductive surface group representation into SO∗(6) lifts to a representation
into SU(1, 3) if and only if the Toledo invariant of the associated SO∗(6)-Higgs
bundle is an even integer.

7.3.1. Maximal components. By Proposition 3.28, the moduli spaces Md(SO
∗(6)) are

non-empty for |d| 6 2g−2. The maximal components are thus those with |d| = 2g−2.
We discuss here only the case d = 2g − 2, but the case d = −(2g − 2) is analogous.

By Theorem 4.5, the components M2g−2(SO
∗(6)) exhibit a rigidity which leads to

the factorization

(7.47) M(2g−2)(SO
∗(6)) ∼= M(2g−2)(SO

∗(4))× Jac(X)

given by

(7.48) (V, β, γ) = (V⊥, β, γ)⊕ ker(γ) ,

Furthermore by (7.10) there is a 22g-fold covering

(7.49) T4 :M0(2)×Mg−1(SL(2,R)) −→ M2g−2(SO
∗(4))

given by

(7.50) (U, (K1/2, β, 1K1/2)) 7→ (U ⊗K1/2, ω ⊗ β, ω∗ ⊗ 1K1/2) ,

where β ∈ H0(K2), 1K1/2 denotes the identity map on K1/2, and ω : U∗ ≃ U is as in
Lemma 7.11.

We thus get a 22g-fold covering of M2g−2(SO
∗(6))

(7.51) T6 :M0(2)×Mg−1(SL(2,R))× Jac(X) −→ M2g−2(SO
∗(6))

Remark 7.32. A choice of K1/2 defines a section for the map T4 – and hence for T6 –
and picks out a Teichmüller component of Mg−1(SL(2,R)).

We get a different description of the maximal components if we exploit the embed-
ding of M2g−2(SO

∗(6)) in M(2g−2,2g−2)(U(1, 3)) given (see (7.33)) by

(V, β, γ) 7→ (det(V ), V, β̃, γ̃)

As shown in [4], the component M(2g−2,2g−2)(U(1, 3)) has maximal Toledo invariant
for U(1, 3)-Higgs bundles and thus itself exhibits a rigidity. Indeed (see Theorem 3.32
in [4]) the component M(2g−2,2g−2)(U(1, 3)) factors as

(7.52) M(2g−2,2g−2)(U(1, 3)) ∼= M(2g−2,0)(U(1, 1))×M (2g−2)(2)

where Md(2) denotes the moduli space of polystable rank 2 bundles of degree d. The
factorization is given by

(7.53) (L,W, β, γ) = (L, L⊗K−1, β, 1L)⊕Q
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where W = L⊗K−1⊕Q. Notice that L = det(W ) if and only if det(Q) = K. In that
case, for any choice of K−1/2 the determinant of Q⊗K1/2 is trivial and we can write
Q = U ⊗K1/2 with det(U) = O. The image of the embedding of M2g−2(SO

∗(6)) in
M(2g−2,2g−2)(U(1, 3)) is thus characterized by the condition that Q = U ⊗K1/2 with
det(U) = O in (7.53). We define

(7.54) MK(2) = {Q ∈M2g−2(2) | det(Q) = K}
The Toledo invariant is maximal for M(2g−2,0)(U(1, 1)) and hence, by Proposition 3.30
in [4] we can identify M(2g−2,0)(U(1, 1)) with the moduli space of degree zero, rank
one K2-twisted Higgs bundles, i.e.

(7.55) M(2g−2,0)(U(1, 1)) ≃ Jac(X)×H0(K2)

Putting together (7.54), (7.55) and (7.52) we thus get an identification of the image
of M2g−2(SO

∗(6)) in M(2g−2,2g−2)(U(1, 3)) as

(7.56) M2g−2(SO
∗(6)) ≃ Jac(X)×H0(K2)×MK(2)

Comparing (7.51) and (7.56) we see that the two descriptions match up via the
map

(U, (K1/2, β, 1), L0) −→ (L0, β, Q = U ⊗K1/2)

The fibers of this map are the 22g points of order 2 in Jac(X).

We note finally that the dimension of M±(2g−2)(SO
∗(6) can be computed from the

isomorphism (7.47). We find

(7.57) dim(M±(2g−2)(SO
∗(6)) = 2(2.2− 1)(g − 1) + g = 7g − 6

whereas the expected dimension is 3(3.2− 1)(g − 1) = 15(g − 1).

Appendix A. G-Higgs bundles for other groups

We collect here some basic results about G-Higgs bundles for groups other than
SO∗(2n) which play a role in our analysis of SO∗(2n)-Higgs bundles. The groups
include three complex reductive groups (GL(n,C), SL(n,C) and SO(n,C)) and two
non-compact real forms (U(p, q) and U∗(2n)). In all cases the basic definitions of
stability properties follow from the general definition formulated for G-Higgs bundles
in [11].

A.1. The groups GL(n,C), SL(n,C) and SO(n,C).

We begin by recalling how the notion of G-Higgs bundle specializes when G is
a complex group. In this case, the complexified isotropy representation is just the
adjoint representation of G on g. Thus, a G-Higgs bundle for a complex group G is a
pair (E,ϕ), where E → X is a holomorphic principal G-bundle and ϕ ∈ H0(AdE ⊗
K); here AdE = E ×Ad g is the adjoint bundle of E. We shall use this observation
for all three groups considered in this section.
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Consider first the case of G = GL(n,C). A GL(n,C)-Higgs bundle may be viewed
as a pair consisting of a rank n holomorphic vector bundle E overX and a holomorphic
section

Φ ∈ H0(K ⊗ EndE).

We refer the reader to [11] for the general statement of the stability conditions
for GL(n,C)-Higgs bundles. The notions of (semi-,poly-)stability in this case are
equivalent to the original notions given by Hitchin in [15] (see [11]). Denote by
µ(E) = deg(E)/ rk(E) the slope of E.

Proposition A.1. A GL(n,C)-Higgs bundle (E,Φ) is semistable if and only if for
any subbundle E ′ ⊂ E such that Φ(E ′) ⊂ E ′⊗K we have µ(E ′) 6 µ(E). Furthermore,
(E,Φ) is stable if for any nonzero and strict subbundle E ′ ⊂ E such that Φ(E ′) ⊂
E ′ ⊗ K we have µ(E ′) < µ(E). Finally, (E,Φ) is polystable if it is semistable and
for each subbundle E ′ ⊂ E such that Φ(E ′) ⊂ E ′ ⊗ K and µ(E ′) = µ(E) there
is another subbundle E ′′ ⊂ E satisfying Φ(E ′′) ⊂ E ′′ ⊗ K and E = E ′ ⊕ E ′′. In
particular (E,Φ) = ⊕(Ei,Φi) where (Ei,Φi) is a stable GL(ni,C)-Higgs bundle with
µ(Ei) = µ(E).

The group SL(n,C) is the subgroup of GL(n,C) defined by the usual condition
on the determinant. A SL(n,C)-Higgs bundle may thus be viewed as a GL(n,C)-
Higgs bundle (E,Φ) with the extra conditions that E is endowed with a trivialization
detE ≃ O and Φ ∈ H0(K ⊗ End0E) where End0E denotes the bundle of traceless
endomorphisms of E. The (semi-,poly-)stability condition is the same as the one for
GL(n,C)-Higgs bundles given in Proposition A.1.

Finally we consider the case G = SO(n,C). A principal SO(n,C)-bundle on X
corresponds to a rank n holomorphic orthogonal vector bundle (E,Q), where E is
a rank n vector bundle and Q is a holomorphic section of S2E∗ whose restriction
to each fibre of E is non degenerate. The adjoint bundle can be identified with
Λ2

QE ⊂ End(E), the subbundle of End(E) consisting of endomorphisms which are
skew-symmetric with respect to Q. A SO(n,C)-Higgs bundle is thus a pair consisting
of a rank n holomorphic orthogonal vector bundle (E,Q) over X and a section

Φ ∈ H0(Λ2
QE ⊗K).

The general notions of (semi-,poly-)stability specialize in the case of SO(n,C)-Higgs
bundles to the following (see [1]).

Proposition A.2. A SO(n,C)-Higgs bundle ((E,Q),Φ) is semistable if and only if
for any isotropic subbundle E ′ ⊂ E such that Φ(E ′) ⊂ K ⊗ E ′ we have degE ′ 6 0.
Furthermore, ((E,Q),Φ) is stable if for any nonzero and strict isotropic subbundle
0 6= E ′ ⊂ E such that Φ(E ′) ⊂ K ⊗ E ′ we have degE ′ < 0. Finally, ((E,Q),Φ) is
polystable if it is semistable and for any nonzero and strict isotropic subbundle E ′ ⊂ E
such that Φ(E ′) ⊂ K ⊗ E ′ and degE ′ = 0 there is a coisotropic subbundle E ′′ ⊂ E
such that Φ(E ′′) ⊂ K ⊗ E ′′ and E = E ′ ⊕ E ′′.

Remark A.3. Recall that if (E,Q) is an orthogonal vector bundle, a subbundle E ′ ⊂ E
is said to be isotropic if the restriction of Q to E ′ is identically zero, and coisotropic
if E ′⊥Q is isotropic.
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Remark A.4. For complex groups G, Definition 2.13 implies that a G-Higgs bundle
(E,ϕ) is simple if Aut(E,ϕ) = Z(HC). For G = GL(n,C) or SL(n,C) it is well
known that stability implies simplicity. This is not so for SO(n,C)-Higgs bundles.
For instance it is possible for a stable SO(n,C)-Higgs bundle to decompose as sum
of stable SO(ni,C)-Higgs bundles (with Σni = n). In all cases though, the Higgs
bundles which are stable and simple represent smooth points in their moduli spaces
(see Proposition 2.17).

A.2. The groups U(p, q) and U∗(2n).

A.2.1. U(p, q)-Higgs bundles.

The maximal compact subgroups of U(p, q) are isomorphic to H = U(p)×U(q) and
hence HC = GL(p,C)× GL(q,C). The complexified isotropy representation space is
mC = Hom(Cq,Cp) ⊕ Hom(Cp,Cq). A U(p, q)-Higgs bundle may thus be described
by the data (V,W, ϕ = β + γ), where V and W are vector bundles of rank p and q,
respectively, β ∈ H0(Hom(W,V ) ⊗ K) and γ ∈ H0(Hom(V,W ) ⊗ K). In order to
describe the general (semi-,poly-)stability notions, we need some preliminaries.

Consider strict filtrations by holomorphic subbundles

V = (0 =( V1 ( V2 ( · · · ( Vr = V ),

W = (0 =(W1 (W2 ( · · · (Ws = W ),

with k, l > 1 and strictly increasing sequences of real numbers

λ = (λ1 < λ2 < · · · < λr),

ν = (ν1 < ν2 < · · · < νs).

We say that V and W have length r−1 and s−1, respectively and that (V ,W ;λ, ν)
is trivial if V and W have length 0 and λ1 = ν1.

For any such (V ,W ;λ, ν) define the subbundles

Nβ(V ,W ;λ, ν) = {β | β(Wi) ⊂ K ⊗ Vj−1 if λj − νi > 0} ⊂ K ⊗ Hom(W,V )
(A.1)

Nγ(V ,W ;λ, ν) = {γ | β(Vi) ⊂ K ⊗Wj−1 if νj − λi > 0} ⊂ K ⊗Hom(V,W ).
(A.2)

and let

(A.3) N(V ,W ;λ, ν) = Nβ(V ,W ;λ, ν)⊕Nγ(V ,W ;λ, ν).

Let µ = µ(V ⊕W ) = (deg(V ) + deg(W ))/(rk(V ) + rk(W )). Define6 also
(A.4)

d(V ,W ;λ, ν) = λr(deg(V )− µ rank(V )) +

k−1
∑

i=1

(λi − λi+1)(deg(Vi)− µ rank(Vi))

+ νs(deg(W )− µ rank(W )) +
l−1
∑

i=1

(νi − νi+1)(deg(Wi)− µ rank(Wi)).

6Note that all the concepts introduced here can equally well be defined for filtrations and sequences
which are not necessarily strict.
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Definition A.5. A U(p, q)-Higgs bundle (V,W, β, γ) is semistable if for any data
(V ,W ;λ, ν) as above with the property that ϕ ∈ H0(N(V ,W ;λ, ν)) the inequality

d(V ,W ;λ, ν) > 0

holds.

A U(p, q)-Higgs bundle (V,W, β, γ) is stable if for any non-trivial data (V ,W ;λ, ν)
as above with the property that ϕ ∈ H0(N(V ,W ;λ, ν)) the inequality

d(V ,W ;λ, ν) > 0

holds.

A U(p, q)-Higgs bundle (V,W, β, γ) is polystable if it is semistable and for any
data (V ,W ;λ, ν) as above, such that ϕ ∈ H0(N(V ,W ;λ, ν)) and d(V ,W ;λ, ν) = 0,
there are splittings of vector bundles

V ≃ V1 ⊕ V2/V1 ⊕ · · · ⊕ Vr/Vr−1,

W ≃W1 ⊕W2/W1 ⊕ · · · ⊕Ws/Vs−1,

with respect to which7

β ∈ H0(
⊕

λi−νj=0

K ⊗ Hom(Wj/Wj−1, Vi/Vi−1)

and
γ ∈ H0(

⊕

νi−λj=0

K ⊗Hom(Vj/Vj−1,Wi/Wi−1)).

Remark A.6. If the data (V ,W ;λ, ν) is trivial, then d(V ,W ;λ, ν) = 0. Note also
that the semi- and polystability conditions are empty for trivial data.

Remark A.7. The stability conditions depend on a real parameter. The parameter
is determined through Chern-Weil theory from the topological data (the ranks and
degrees of V and W ) and equals µ = µ(V ⊕W ). Representations of the fundamen-
tal group of X correspond to polystable U(p, q)-Higgs bundles with µ = 0, while
other parameter values correspond to representations of a central extension of the
fundamental group (cf. Remark 3.7).

In the case of U(p, q)-Higgs bundles, the Hitchin equation (3.20) becomes the fol-
lowing pair of equations for hermitian metrics h on V and k on W :

(A.5)
F h
V + ββ∗ + γ∗γ = −iµ IdV ω,

F k
W + β∗β + γγ∗ = −iµ IdW ω.

Here β∗ ∈ Ω0,1(X,Hom(V,W )) and γ∗ ∈ Ω0,1(X,Hom(W,V )) are obtained by taking
adjoints with respect to the metrics h and k and conjugating the form component (cf.
Section 3.3). The Kähler form ω on X is normalized so that

∫

X
ω = 2π.

The (semi-,poly-)stability conditions can be simplified (similarly to the case of other
groups, cf. [11]) to the following notions used in [3].

7By a slight abuse of notation, we are denoting the section induced by β under the isomorphism
by the same symbol, and similarly for γ.
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Proposition A.8. A U(p, q)-Higgs bundle (V,W, ϕ = β + γ) is semistable if

µ(V ′ ⊕W ′) 6 µ(V ⊕W ),

is satisfied for all ϕ-invariant pairs of subbundles V ′ ⊂ V and W ′ ⊂W , i.e. for pairs
such that

β : W ′ −→ V ′ ⊗K

γ : V ′ −→W ′ ⊗K.

A U(p, q)-Higgs bundle (V,W, ϕ) is stable if the slope inequality is strict whenever
V ′ ⊕W ′ is a proper non-zero ϕ-invariant subbundle of V ⊕W .

A U(p, q)-Higgs bundle (V,W, ϕ) is polystable if it is semistable and for any ϕ-
invariant pair of subbundles V ′ ⊂ V and W ′ ⊂W satisfying µ(V ′ ⊕W ′) = µ(V ⊕W )
there is another ϕ-invariant pair of subbundles V ′′ ⊂ V and W ′′ ⊂ W such that
V = V ′ ⊕ V ′′ and W = W ′ ⊕W ′′.

We shall give a proof of Proposition A.8 in Section A.2.2 below, since it does not
appear elsewhere in the literature.

For the remainder of the present section, we shall make precise and prove certain
results that were only stated in [3].

Remark A.9. Given a U(p, q)-Higgs bundle (V,W, ϕ = β + γ), any ϕ-invariant pair of
subbundles V ′ ⊂ V and W ′ ⊂ W defines a U(p′, q′)-Higgs bundle with β ′ and γ′ given
by the restrictions of β and γ to the subbundles.

Remark A.10. In the case q = 0, the group is U(p) and hence ϕ = 0. Thus a U(p)-
Higgs bundle is an ordinary vector bundle and we obtain a stability condition for
vector bundles stated in terms of filtrations and weights. Proposition A.8 shows that
this coincides with the usual one.

Proposition A.11. Let (V,W, β, γ) be a polystable U(p, q)-Higgs bundle. Then there
is a decomposition

(V,W, β, γ) =
⊕

(Vi,Wi, βi, γi),

where V =
⊕

Vi,W =
⊕

Wi, β = Σβi, γ = Σγi and (Vi,Wi, βi, γi) is a stable U(pi, qi)-
Higgs bundle with µ(Vi ⊕Wi) = µ(V ⊕W ).

Proof. This is a consequence of the general Jordan-Hölder reduction theorem for G-
Higgs bundles proved in [11]. Here we give a simple direct proof.

If (V,W, β, γ) is not stable, Proposition A.8 gives a decomposition

(V,W, β, γ) = (V ′,W ′, ϕ′ = β ′ + γ′)⊕ (V ′′,W ′′, ϕ′′ = β ′′ + γ′′).

Each summand is polystable, since a ϕ′-invariant pair of subbundles violating polysta-
bility of (V ′,W ′, β ′, γ′) can be extended (by adding (V ′′,W ′′, β ′′, γ′′)) to a ϕ-invariant
pair violating polystability of (V,W, β, γ), and similarly for (V ′′,W ′′, β ′′, γ′′).

The result follows by iterating this procedure. �
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The kernel of the isotropy representation

ι : GL(p,C)×GL(q,C) → Aut(Hom(Cq,Cp)⊕ Hom(Cp,Cq))

for U(p, q) is formed by the central subgroup

C∗ ∼= {(λIp, λIq) |λ 6= 0} ⊂ GL(p,C)×GL(q,C) .

Moreover ker(dι) = C ∼= {(λIp, λIq)}. Thus Definitions 2.13 and 2.14 become the
following.

Definition A.12. A U(p, q)-Higgs bundle (V,W, β, γ) is infinitesimally simple if
aut(V, ϕ) ∼= C, and it is simple if Aut(V, ϕ) ∼= C∗.

Lemma A.13. Let (V,W, β, γ) be a U(p, q)-Higgs bundle. If (V,W, β, γ) is infinitesi-
mally simple then it is simple. Hence if (V,W, β, γ) is stable and ϕ = β+γ is non-zero
then it is simple.

Proof. Since 0 is not an automorphism, the first statement is immediate from Defini-
tion A.12. The second statement is now a consequence of the fact that if ϕ 6= 0 then
stability implies infinitesimal simplicity (see Proposition 2.17). �

For G = U(p, q), stability together with simplicity is not enough to ensure that a G-
Higgs bundle represents a smooth point in the moduli space. The next results explore
this phenomenon. The comparison between U(p, q)-Higgs bundles and GL(p+ q,C)-
Higgs bundles given in the following theorem8 is important in this regard.

Theorem A.14. Let (V,W, β, γ) be a U(p, q)-Higgs bundle, and let (E,Φ) be the

GL(p+ q,C)-Higgs bundle defined by taking E = V ⊕W and Φ =

(

0 β
γ 0

)

.

(1) (E,Φ) is semistable if and only if (V,W, β, γ) is semistable.
(2) If (E,Φ) is stable then (V,W, β, γ) is stable.
(3) If (V,W, β, γ) is stable then (E,Φ) is stable unless there is an isomorphism

f : V −→ W such that βf = f−1γ. In this case (E,Φ) is polystable and
decomposes as

(E,Φ) = (E1,Φ1)⊕ (E2,Φ2)

where each summand is a stable GL(n,C)-Higgs bundle isomorphic to (V, βf)
(with n = p = q).

Proof. It is clear that the semistability (respectively stability) of (E,Φ) implies the
semistability (respectively stability) of (V,W, β, γ). To prove (3) and the ‘if’ direction
in (1) we adapt as follows the argument given in the proof of Theorem 3.26 of [10]
(which is the analogous result for Sp(2n,R)-Higgs bundles).

Let E ′ ⊂ E be any Φ-invariant subbundle. The projections from E = V ⊕W onto
V and W define short exact sequences

(A.6)
0 −→ W ′′ −→ E ′ −→ V ′ −→ 0

0 −→ V ′′ −→ E ′ −→ W ′ −→ 0

8This corrects an imprecision in [13, Theorem 2.3]
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whereW ′′, V ′′ are the kernels and V ′,W ′ are the image of the projections. The kernels
are subbundles of W and V respectively while the images V ′ and W ′ are in general
subsheaves of V and W respectively. From these sequences we get

degW ′′ + deg V ′ =degE ′ = deg V ′′ + degW ′(A.7)

rkW ′′ + rkV ′ = rkE ′ = rkV ′′ + rkW ′(A.8)

It is straightforward to verify that (V ′′,W ′′, β|W ′′, γ|V ′′) and (V ′,W ′, β|W ′, γ|V ′) define
subobjects of (V,W, β, γ). If (V,W, β, γ) is semistable we thus get inequalities

(A.9) deg V ′ + degW ′
6 µ(E)(rkV ′ + rkW ′)

and

(A.10) deg V ′′ + degW ′′
6 µ(E)(rkV ′′ + rkW ′′)

Adding (A.9) and (A.10), and using (A.7) yields

(A.11) µ(E ′) 6 µ(E).

It remains to prove part (3). If (V,W, β, γ) is stable then by (1) (E,Φ) is semistable
and is stable if the inequality in (A.11) is strict for all proper subbundles E ′ ⊂ E. To
get equality in (A.11) we need equality in both (A.9) and (A.10). If (V,W, β, γ) is
stable then (A.9) is strict unless

V ′ ⊕W ′ = V ⊕W or V ′ ⊕W ′ = 0

and similarly (A.10) is strict unless

V ′′ ⊕W ′′ = V ⊕W or V ′′ ⊕W ′′ = 0.

If V ′⊕W ′ = 0 then E ′ = 0, while if V ′⊕W ′ = V ′′⊕W ′′ = V ⊕W then E ′ = E. Thus
the only way in which a proper subbundle 0 6= E ′ ⊂ E can yield equality in (A.11) is
to have

V ′ ⊕W ′ = V ⊕W and V ′′ ⊕W ′′ = 0.

In this case the short exact sequences (A.6) give isomorphisms

ν : E ′ −→ V

ω : E ′ −→W

Combining these we get an isomorphism

f = ν ◦ ω−1 : V −→W

such that

(A.12) βf = f−1γ.

It follows that if no such isomorphism between V and W exists then (E,Φ) is stable.

Suppose now that such an isomorphism f : V −→W exists and define

E1 ={(v, f(v)) ∈ E |v ∈ V } and Φ1 = Φ|E1

E2 ={(v,−f(v)) ∈ E |v ∈ V } and Φ2 = Φ|E2

It follows from (A.12) that (for i = 1, 2) Ei is Φi-invariant and hence that (Ei,Φi)
define GL(n,C)-Higgs bundles isomorphic to (V, βf). Moreover

(E,Φ) = (E1,Φ1)⊕ (E2,Φ2)
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with

µ(E1) = µ(E2) = µ(E).

It remains to prove that (E1,Φ1) and (E2,Φ2) are stable. But any Φi-invariant sub-
bundle of Ei, say E ′, is also a Φ-invariant subbundle of E. Hence, by the above
argument either µ(E ′) < µ(E) or rkE ′ = rkEi, i.e. E

′ = Ei. �

Proposition A.15. Let (V,W, β, γ) be a stable U(p, q)-Higgs bundle. If there is no
isomorphism f : V −→W such that βf = f−1γ, then (V,W, β, γ) represents a smooth
point in the moduli space of U(p, q)-Higgs bundles. Otherwise, if such an f exists, then
(V, βf) defines a smooth point in the moduli space of GL(n,C)-Higgs bundles.

Proof. By (3) in Theorem A.14, if there is no isomorphism f : V −→ W such that
βf = f−1γ, then the GL(p + q,C)-Higgs bundle associated to (V,W, β, γ) is stable,
and hence by (4) in Proposition 2.17, (V,W, β, γ) represents a smooth point in the
moduli space of U(p, q)-Higgs bundles. Otherwise,by (3) in Theorem A.14, if such
and f exists, (V, βf) defines a stable GL(n,C)-Higgs bundle. Since stability implies
smoothness for GL(n,C)-Higgs bundles (see [15]), (V, βf) represents a smooth point
of the moduli space of GL(n,C)-Higgs bundles. �

As an immediate corollary of this result we get:

Theorem A.16. Let (V,W, ϕ = β + γ) be a polystable U(p, q)-Higgs bundle. Then
there is a decomposition (V,W, ϕ = β+γ) = (V1,W1, ϕ1 = β1+γ1)⊕· · ·⊕(Vk,Wk, ϕk =
βk + γk), unique up to reordering, such that each summand defines a smooth point in
the moduli space of Gi-Higgs bundles, where Gi is either U(pi, qi) or GL(ni,C). More
precisely, each (Vi,Wi, ϕi = βi + γi) is a stable U(pi, qi)-Higgs bundle of one of the
following types:

(1) the associated GL(pi + qi,C)-Higgs bundle is stable and hence (Vi,Wi, ϕi =
βi+γi) represents a smooth point in the moduli space of U(pi, qi)-Higgs bundles;

(2) there is an isomorphism f : Vi −→ Wi such that βif = f−1γi, in which case
(Vi, βif) defines a stable GL(pi,C)-Higgs bundle and thus represents a smooth
point in the moduli space of GL(pi,C)-Higgs bundles.

Finally assume that p = q. In this case, the Toledo invariant of a U(p, p)-Higgs
bundle (V,W, β, γ) is d = deg(V )−deg(W ) and the Milnor–Wood inequality says that
|d| 6 p(g− 1). A maximal U(p, q)-Higgs bundle is one for which equality holds, and

it is shown in [3, Lemma 3.24] that d = p(g − 1) if and only if γ : V
≃−→ W ⊗K is an

isomorphism, while d = −p(g − 1) if and only if β : W
≃−→ V ⊗K is an isomorphism.

The following result is is stated without proof in [3]. It is the essential step in the
proof of the Cayley correspondence for maximal U(p, p)-Higgs bundles ([3, Proposi-
tion 3.30]). We thus give a proof here.

Theorem A.17. Let (V,W, β, γ) be a (maximal) U(p, p)-Higgs bundle such that γ : V →
W ⊗K is an isomorphism. Define a K2-twisted GL(p,C)-Higgs bundle (V, θ) by set-
ting

θ = (β ⊗ 1K) ◦ γ : V → V ⊗K2.
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Then (V, θ) is stable (respectively semistable, polystable) if and only if (V,W, β, γ) is
stable (respectively semistable, polystable).

Proof. We shall use the simplified stability condition for U(p, q)-Higgs bundles given
in Proposition A.8.

We first prove that the stability conditions for (V,W, β, γ) imply those for (V, θ).

Suppose that (V,W, β, γ) is semistable. Let V ′ ⊂ V be a θ-invariant subbundle of
V . The pair

V ′ ⊂ V and W ′ = γ(V ′)⊗K−1 ⊂W.

then defines a φ-invariant pair of subbundles. Note that µ(W ′) = µ(V ′) − (2g − 2)
and µ(V ⊕W ) = µ(V )− (g− 1). These observations plus the semistability inequality
for V ′ ⊕W ′ yield that

µ(V ′) 6 µ(V )

and hence that (V, θ) is semistable.

If (V,W, β, γ) is stable and V ′ is non-zero and proper, then V ′⊕W ′ is non-zero and
proper in V ⊕W . The stability of (V,W, β, γ) thus implies the stability of (V, θ).

If (V,W, β, γ) is polystable and V ′ is a θ-invariant subbundle such that µ(V ′) =
µ(V ), then the pair (V ′,W ′) is ϕ-invariant and satisfies µ(V ′⊕W ′) = µ(V ⊕W ). We
can thus find another ϕ-invariant pair (V ′′,W ′′) such that V = V ′ ⊕ V ′′ and W =
W ′ ⊕W ′′. Moreover W ′′ = γ(V ′′) ⊗K−1 and hence V ′′ is a θ-invariant complement
to V ′, i.e. (V, θ) is polystable.

We now prove that the stability conditions for (V, θ) imply those for (V,W, β, γ).

Suppose that (V, θ) is semistable. Let (V ′,W ′) be a ϕ-invariant pair in (V,W, β, γ).
Then the pair V ′ and γ−1(W ′⊗K) both define θ-invariant subbundles of V and hence
satisfy the semistability inequality. Moreover, since γ is an isomorphism, it follows
that rank(W ′) > rank(V ′) and hence

(A.13)
µ(V ′ ⊕W ′) 6 µ(V )− rankW ′

rank(V ′) + rank(W ′)
(2g − 2)

6 µ(V )− (g − 1) = µ(V ⊕W ).

This proves that (V,W, β, γ) is semistable.

If (V, θ) is stable and V ′⊕W ′ is a proper, non-zero ϕ-invariant subbundle of V ⊕W ,
then either V ′ or W ′ is non-zero and proper unless (V ′,W ′) = (0,W ). In the latter
case, we know that the stability condition holds since µ(W ) = µ(V ) − (2g − 2) <
µ(V )− (g−1). In all other cases, the same calculation as for semistability shows that
the (V ′,W ′) satisfies the stability condition.

If (V, θ) is polystable and V ′ ⊕ W ′ is a ϕ-invariant subbundle of V ⊕ W with
µ(V ′ ⊕W ′) = µ(V ⊕W ), then (A.13) shows that rank(W ′) = rank(V ′) and hence
W ′ = γ(V ′) ⊗ K−1. The polystability of (V, θ) implies that there is a θ-invariant
complement V ′′ to V ′ in V out of which we can produce the ϕ-invariant complement
V ′′ ⊕W ′′ to V ′ ⊕W ′ in V ⊕W by letting W ′′ = γ(V ′′)⊗K−1.

�



58 S. B. BRADLOW, O. GARCÍA-PRADA, AND P. B. GOTHEN

A.2.2. Simplification of the stability condition for U(p, q)-Higgs bundles.

In this section we prove Proposition A.8. The proof relies on on the linear nature
of the function d(V ,W ;λ, ν) and follows from Lemmas A.27, A.31 and A.35.

Given filtrations V and W of length r and s respectively, and given β ∈ H0(Hom(W,V )⊗
K) and γ ∈ H0(Hom(V,W )⊗K), define

Λ(V ,W ; β, γ) = {(λ, ν) ∈ Rr × Rs | λ1 < λ2 < · · · < λr,

ν1 < ν2 < · · · < νs,

and (β, γ) ∈ N (V ,W , λ, ν)}.

The closure of Λ(V ,W ; β, γ) is

Λ(V ,W ; β, γ) = {(λ, ν) ∈ Rr × Rs | λ1 6 λ2 6 . . . 6 λr,

ν1 6 ν2 6 . . . 6 νs,

and (β, γ) ∈ N (V ,W , λ, ν)}.

In view of the definition of N(V ,W ;λ, ν) (see (A.1)–(A.3)), the conditions for weights
(λ, ν) to be in Λ or Λ are

(β-conditions) β(Wi) * Vj−1 =⇒ λj − νi 6 0

(γ-conditions) γ(Vi) *Wj−1 =⇒ νj − λi 6 0.

It will be convenient to consider pairs (V , λ) where the filtration

V = (0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V )

is not necessarily strict and the weight

λ = (λ1 6 λ2 6 . . . 6 λk)

is not necessarily strictly increasing. For brevity we shall say that a weight λ is strict
if it is strictly increasing and that a pair (V , λ) is strict if both V and λ are strict.
Note that the definitions of both the space N(V ,W ;λ, ν) and the degree d(V ,W ;λ, ν)
(see (A.3) and (A.4)) still make perfect sense when the filtrations and weights are not
necessarily strict.

Definition A.18. Let (V , λ) be a pair as above. We define the coarsened pair with

respect to the weight as follows: whenever λp = λp+1 for some p, we eliminate Vp
from the filtration and λp from the weight.

Definition A.19. Let (V , λ) be a pair as above. We define the coarsened pair

with respect to the filtration as follows: whenever Vp = Vp+1 for some p, we
eliminate Vp+1 from the filtration and λp+1 from the weight.

Let (V , λ) be a pair and let (V ′, λ′) be the coarsened pair with respect to the
weight. Then the weight λ′ is strict. Similarly, if (V , λ) is a pair and (V ′, λ′) is the
coarsened pair with respect to the filtration, then the filtration V ′ is strict.

The following two lemmas are immediate from the definitions.



HIGGS BUNDLES FOR SO∗(2n) 59

Lemma A.20. Let pairs (V , λ and (W , ν) be given and let (V ′, λ′) and (W , ν ′) be
the corresponding coarsened pairs with respect to the weight. Then

d(V ′,W ′;λ′, ν ′) = d(V ,W ;λ, ν) and N(V ′,W ′;λ′, ν ′) = N(V ,W ;λ, ν).

Lemma A.21. Let pairs (V , λ and (W , ν) be given and let (V ′, λ′) and (W , ν ′) be
the corresponding coarsened pairs with respect to the filtration. Then

d(V ′,W ′;λ′, ν ′) = d(V ,W ;λ, ν) and N(V ′,W ′;λ′, ν ′) = N(V ,W ;λ, ν).

The operations of coarsening with respect to the weight and with respect to the
filtration commute. To see this, note that the only potential differences that may
arise as a consequence of the order of the operations, happen for indices p such that
Vp = Vp+1 and λp = λp+1. But for such p, both operations produce the same result.
Hence the following definition makes sense.

Definition A.22. Let (V , λ) be a pair as above. The associated strict coarsened

pair is the strict pair obtained obtained by coarsening (V , λ) with respect to both
the weight and the filtration.

Lemma A.23. Let pairs (V , λ) and (W , ν) be given and let (V ′, λ′) and (W , ν ′) be
the corresponding strict coarsened pairs. Then

d(V ′,W ′;λ′, ν ′) = d(V ,W ;λ, ν) and N(V ′,W ′;λ′, ν ′) = N(V ,W ;λ, ν).

Proof. Immediate from Lemmas A.20 and A.21. �

Definition A.24. The data (V ,W ;λ, ν) is said to be trivial if the corresponding
strict coarsened data is trivial.

Proposition A.25. A U(p, q)-Higgs bundle is (semi-,poly-)stable if and only if the
respective conditions stated in Definition A.5 hold for (V ,W ;λ, ν) which are not nec-
essarily strict.

Proof. Immediate from Lemma A.23. �

Lemma A.26. The simplified (semi-,poly-)stability conditions of Proposition A.8 are
equivalent to the general (semi-,poly-)stability conditions in Definition A.5 applied to
(not necessarily strict) filtrations

V = (0 ⊂ V1 ⊂ V ),

W = (0 ⊂W1 ⊂W )

and weights λ = (0, 1) and ν = (0, 1).

Proof. There is a bijective correspondence between pairs of subbundles V ′ ⊂ V and
W ′ ⊂W and (not necessarily strict) filtrations:

V = (0 ⊂ V ′ ⊂ V ),

W = (0 ⊂W ′ ⊂W ).

Let λ = (0, 1) and ν = (0, 1). Then one has that (β, γ) ∈ N(V ,W , λ, ν) if and only if

β(W ′) ⊂ V ′ ⊗K and γ(V ′) ⊂W ′ ⊗K.
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Moreover,

d(V ,W , λ, ν) = µ(V ⊕W ) rk(V ′ ⊕W ′)− deg(V ′ ⊕W ′).

Note that V ′ ⊕ W ′ is non-zero and proper if and only if the data (V ,W ;λ, ν) is
non-trivial. Thus, the result is immediate in view of Proposition A.25. �

Now we can show that the full (semi-,poly-)stability conditions imply the simplified
(semi-,poly-)stability conditions.

Lemma A.27. Let (V,W, β, γ) be a (semi-,poly-)stable U(p, q)-Higgs bundle as de-
fined in Definition A.5. Then (V,W, β, γ) satisfies the simplified (semi-,poly-)stability
conditions of Proposition A.8.

Proof. Immediate from Lemma A.26 in view of Proposition A.25. �

We now turn to the proof that the simplified (semi-,poly-)stability conditions imply
the full (semi-,poly-)stability conditions.

The following notation will be useful. Given increasing weights λ = (λ1 6 . . . 6 λr)
and ν = (ν1 6 . . . 6 νs), we merge them (uniquely) to an increasing weight

(A.14) η = η(λ, ν) = (η1 6 . . . 6 ηr+s).

There is a (non-unique, in general) permutation σ = σ(λ, ν) ∈ Sr+s such that

ησ(i) = λi for 1 6 i 6 r,

ησ(i+r) = νi for r + 1 6 i 6 r + s.

Lemma A.28. Every pair (λ, ν) of increasing weights can be written as a linear
combination

(A.15) (λ, ν) =
r+s
∑

i=1

ai(λ
(i), ν(i))

where

(1) the coefficients are positive, i.e., ai > 0 and
(2) the vectors have at most two distinct components, in fact

(λ(1), ν(1)) = ±((1, 1, . . . , 1), (1, 1, . . . , 1))

and for i > 1

(λ(i), ν(i)) = ((0, . . . , 0, 1, . . . , 1), (0, . . . , 0, 1, . . . , 1)).

Proof. We can express the vector η = (η1, . . . , ηr+s) as

η =

{

η1(1, . . . , 1) + (η2 − η1)(0, 1, . . . , 1) + · · ·+ (ηr+s − ηr+s−1)(0, . . . , 0, 1)

|η1|(−1, . . . ,−1) + (η2 − η1)(0, 1, . . . , 1) + · · ·+ (ηr+s − ηr+s−1)(0, . . . , 0, 1)

depending on whether η1 is non-negative or not. Define

a1 = |η1|,
ai = ηi − ηi−1 for i > 2

Converting back with the permutation σ(λ, ν) we get the expression stated. �
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Remark A.29. Given data (V ,W ;λ, ν), write (λ, ν) as a linear combination as in
Lemma A.28. Then, for each i, we have new data (V ,W , λ(i), ν(i)). Clearly, this data
is trivial if i = 1.

Lemma A.30. Assume that (λ, ν) ∈ Λ(V ,W ; β, γ). For any i such that ai > 0 in
(A.15), the corresponding weights λ(i) and ν(i) belong to Λ(V ,W ; β, γ).

Proof. The crucial observation is that the definition of (λ(i), ν(i)) from (λ, ν) preserves
weak ordering: to be precise, we have for all i, j, k that

λ
(i)
j 6 ν

(i)
k ⇐⇒ λj 6 νk.

From this the result is immediate. �

Lemma A.31. Let (V,W, β, γ) be a U(p, q)-Higgs bundle which satisfies the simplified
(semi-)stability conditions of Proposition A.8. Then (V,W, β, γ) is (semi-)stable as
defined in Definition A.5.

Proof. Assume first that (V,W, β, γ) satisfies the simplified semistability condition.

Let V , W , λ and ν be filtrations and weights such that (λ, ν) ∈ Λ(V ,W ; β, γ) and
write (λ, ν) =

∑r+s
i=1 ai(λ

(i), ν(i)) as in Lemma A.28. By linearity of d(V ,W ;λ, ν) in λ
and ν, it suffices to prove that

d(V ,W ;λ(i), ν(i)) > 0.

for every i > 1 with ai > 0 (it is not necessary to consider i = 1 in view of Remarks A.6
and A.29). To see this, for any such i, we let (V ′,W ′;λ′, ν ′) be the corresponding
strict coarsened data associated to (V ,W ;λ(i), ν(i)). Note that the shape of λ(i) and
ν(i) means that the filtrations V ′ and W ′ have length at most 1. Now, by Lemmas
A.23 and A.30, we have that (λ′, ν ′) ∈ N(V ′,W ′; β, γ). Hence the result follows from
Lemma A.26.

For the simplification of the stability condition, it suffices to note that, if the data
(V ,W ;λ, ν) is non-trivial, then there must be at least one i such that ai > 0 and
(V ,W ;λ(i), ν(i)) is non-trivial. �

Lemma A.32. Let (V,W, β, γ) be a U(p, q)-Higgs bundle of the form

V = V ′ ⊕ V ′′ and W =W ′ ⊕W ′′

such that with respect to this decomposition

β = (β ′, β ′′) ∈ H0(Hom(W ′, V ′)⊗K)⊕H0(Hom(W ′′, V ′′)⊗K),

γ = (γ′, γ′′) ∈ H0(Hom(V ′,W ′)⊗K)⊕H0(Hom(V ′′,W ′′)⊗K).

If (V,W, β, γ) satisfies the simplified polystability condition of Proposition A.8 then the
U(p′, q′)-Higgs bundle (V ′,W ′, β ′, γ′) and the U(p′′, q′′)-Higgs bundle (V ′′,W ′′, β ′′, γ′′)
both satisfy the simplified polystability condition.

Proof. Note that the simplified polystability condition for (V,W, β, γ) implies that
µ(V ′ ⊕W ′) = µ(V ′′ ⊕ V ′′) = µ(V ⊕W ).
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We prove that (V ′,W ′, β ′, γ′) satisfies the simplified polystability condition. Let
V1 ⊂ V ′ and W ′

1 ⊂ W ′ be a pair of ϕ′-invariant subbundles such that µ(V1 ⊕ V2) =
µ(V ′ ⊕W ′). Then the subbundles

Ṽ1 = V1 ⊕ V ′′ ⊂ V and W̃1 =W1 ⊕W ′′ ⊂ W

is a pair of ϕ-invariant subbundles of V and W , and µ(Ṽ1 ⊕ W̃1) = µ(V ⊕W ). Hence
there are φ-invariant complements Ṽ2 ⊂ V and W̃2, such that V = Ṽ1 ⊕ Ṽ2 and
W = W̃1 ⊕ W̃2. Projecting these complements into V ′ and W ′ provides the required
φ′-invariant complements to V1 and W1. �

Lemma A.33. Let (V,W, β, γ) be a U(p, q)-Higgs bundle. Assume that there are
splittings

V ≃ V ′ ⊕ V ′′ and W ≃W ′ ⊕W ′′

with respect to which

β = (β ′, β ′′) ∈ H0(Hom(W ′, V ′)⊗K)⊕H0(Hom(W ′′, V ′′)⊗K),

γ = (γ′, γ′′) ∈ H0(Hom(V ′,W ′)⊗K)⊕H0(Hom(V ′′,W ′′)⊗K).

Then (V,W, β, γ) is polystable if and only if the U(p′, q′)-Higgs bundle (V ′,W ′, β ′, γ′)
and the U(p′′, q′′)-Higgs bundle (V ′′,W ′′, β ′′, γ′′) are both polystable.

Proof. Assume first that (V,W, β, γ) is polystable. In order to prove the polystability
of (V ′,W ′, β ′, γ′), say, we let (V ′,W ′;λ′, ν ′) be data with (β ′, γ′) ∈ N(V ′,W ′;λ′, ν ′)
and d(V ′,W ′;λ′, ν ′) = 0. Define filtrations V and W of V andW (of the same lengths
as V ′ and W ′) by adding V ′′ and W ′′ to each term off V ′ and W ′, respectively, and
define also weights λ = λ′ and ν = ν ′. Then, clearly, the data (V ,W ;λ, ν) has
(β, γ) ∈ N(V ,W ;λ, ν) and d(V ,W ;λ, ν) = 0. Now, the polystable U(p, q)-Higgs
bundle (V,W, β, γ) has a decomposition, which induces the desired decomposition of
(V ′,W ′, β ′, γ′) (by quotienting out by V ′′ and W ′′).

The converse is most easily proved by appealing to the Hitchin–Kobayashi corre-
spondence of Theorem 2.7. Indeed, if (V ′,W ′, β ′, γ′) and (V ′′,W ′′, β ′′, γ′′) are poly-
stable, then they support solutions to the Hitchin equation (A.5). But evidently these
solutions can be combined to a solution to the Hitchin equation on (V,W, β, γ), which
is therefore polystable. �

Remark A.34. The first implication shown in the preceding proof by algebraic means
could also be proved by showing the analogous statement for solutions to the Hitchin
equation.

Lemma A.35. Let (V,W, β, γ) be a U(p, q)-Higgs bundle which satisfies the simplified
polystability condition of Proposition A.8. Then (V,W, β, γ) is polystable as defined
in Definition A.5.

Proof. Let (V ,W ;λ, ν) be non-trivial data such that (λ, ν) ∈ Λ(V ,W ; β, γ) and as-
sume that

d(V ,W , λ, ν) = 0.

Arguing as in the proof of Lemma A.31 (and using the same notation) we find that
there is at least one i > 1, such that d(V ′,W ′;λ′, ν ′) = 0. Since the filtrations have
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length at most one, and in view of the shape of λ′ and ν ′ and the non-triviality
of the data, we see that the simplified polystability condition provides a non-trivial
decomposition as in the statement of Lemma A.32 with p′ + q′ < p+ q and p′′ + q′′ <
p + q. Moreover, by this lemma, each of the summands is simplified polystable.
By induction on p + q, we may now assume that each of these summands satisfies
the full polystability condition (the induction can be started since for sufficiently
low rank, all filtrations have length at most one). The conclusion now follows from
Lemma A.33. �

Proof of Proposition A.8. Immediate from Lemmas A.27, A.31 and A.35. �

A.2.3. U∗(2n)-Higgs bundles.

The group U∗(2n) is a non-compact real form of GL(2n,C) consisting of matricesM

verifying that MJn = JnM where Jn =

(

0 In
−In 0

)

. A maximal compact subgroup

of U∗(2n) is the compact symplectic group Sp(2n) (or, equivalently, the group of
n×n quaternionic unitary matrices), whose complexification is Sp(2n,C), the complex
symplectic group. The group U∗(2n) is the non-compact dual of U(2n), in the sense
that the non-compact symmetric space U∗(2n)/Sp(2n) is the dual of the compact
symmetric space U(2n)/Sp(2n) in Cartan’s classification of symmetric spaces (cf.
[14]).

The corresponding Cartan decomposition of the complex Lie algebra is

gl(2n,C) = sp(2n,C)⊕mC,

where mC = {A ∈ gl(2n,C) | AtJn = JnA}. Hence a U∗(2n)-Higgs bundle over X is a
pair (E,ϕ), where E is a holomorphic Sp(2n,C)-principal bundle and the Higgs field
ϕ is a global holomorphic section of E ×Sp(2n,C) m

C ⊗K.

Given a symplectic vector bundle (W,Ω), denote by S2
ΩW the bundle of endomor-

phisms ξ ofW which are symmetric with respect to Ω i.e. such that Ω(ξ ·, ·) = Ω(·, ξ ·).
In terms of vector bundles, we have that a U∗(2n)-Higgs bundle over X is a triple
(W,Ω, ϕ), where W is a holomorphic vector bundle of rank 2n, Ω ∈ H0(Λ2W ∗) is
a symplectic form on W , and the Higgs field ϕ ∈ H0(S2

ΩW ⊗ K) is a K-twisted
endomorphism W →W ⊗K, symmetric with respect to Ω.

Given the symplectic form Ω, we have the usual skew-symmetric isomorphism

ω :W
≃−→W ∗

given by

ω(v) = Ω(v,−).

The map f 7→ fω−1 defines an isomorphism between S2
ΩW and Λ2W . Hence we can

think of a U∗(2n)-Higgs bundle as a triple (W,Ω, ϕ) with ϕ ∈ H0(S2
ΩW ⊗K) or as a

triple (W,Ω, ϕ̃) with ϕ̃ ∈ H0(Λ2W ⊗K) given by

(A.16) ϕ̃ = ϕω−1.
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The general (semi-,poly-)stability conditions for U∗(2n)-Higgs bundles are studied
in [12], where simplified conditions (similarly to the case of other groups) are given.
We have the following ([12, Proposition 3.6]).

Proposition A.36. A U∗(2n)-Higgs bundle (W,Ω, ϕ) semistable if and only if
degW ′ 6 0 for any isotropic and ϕ-invariant subbundle W ′ ⊂W .

A U∗(2n)-Higgs bundle (W,Ω, ϕ) is stable if and only if it is semistable and
degW ′ < 0 for any isotropic and ϕ-invariant strict subbundle 0 6= W ′ ⊂ W .

The Higgs bundle is polystable if and only if it is semistable and, for any isotropic
(respectively coisotropic) and ϕ-invariant strict subbundle 0 6= W ′ ⊂ W such that
degW ′ = 0, there is another coisotropic (respectively isotropic) and ϕ-invariant sub-
bundle 0 6=W ′′ ⊂W such that W ≃W ′ ⊕W ′′.

We have the following ([12, Sections 3.3-3.4]).

Proposition A.37. (1) Let (W,Ω, ϕ) be a U∗(2n)-Higgs bundle and (W,ϕ) be the
underlying GL(2n,C)-Higgs bundle. Then (W,Ω, ϕ) is semistable (respectively
polystable) if and only if (W,ϕ) is semistable (respectively polystable).

(2) The Higgs bundle (W,Ω, ϕ) is stable if and only if

(W,Ω, ϕ) =
⊕

(Wi,Ωi, ϕi)

where (Wi,Ωi, ϕi) are U∗(rk(Wi))-Higgs bundles such that the GL(rk(Wi),C)-
Higgs bundles (Wi, ϕi) are stable and nonisomorphic.

(3) Let (W,Ω, ϕ) be a polystable U∗(2n)-Higgs bundle. There is a decomposition of
(W,Ω, ϕ) as a sum of stable Gi-Higgs bundles, where Gi is one of the following
subgroups of U∗(2n): U∗(2ni), GL(ni,C), Sp(2ni) or U(ni) (ni 6 n).

Proof. Everything is proved in Sections 3.3-3.4 of [12] , except the statement about
polystability in (1), but this follows easily from the simplified polystability condition
given in Proposition A.36. �

Remark A.38. The preceding Proposition applies more generally to L-twisted Higgs
pairs (see Remark 2.3), since the arguments are insensitive to the twisting.
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[5] S. B. Bradlow, O. Garćıa-Prada, and I. Mundet i Riera, Relative Hitchin-Kobayashi correspon-
dences for principal pairs, Quarterly J. Math. 54 (2003), 171–208.

[6] M. Burger, A. Iozzi and A. Wienhard, Surface group representations with maximal Toledo
invariant, Annals of Mathematics 172 (2010), 517–566.



HIGGS BUNDLES FOR SO∗(2n) 65

[7] A. Domic and D. Toledo, The Gromov norm of the Kaehler class of symmetric domains. Math.

Ann. 276 (1987), 425–432.
[8] J. L. Dupont, Bounds for characteristic numbers of at bundles, Springer LNM, 763, 1978, pp.

109–119.
[9] R. Friedman and J. W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der

Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27,
Springer-Verlag, Berlin, 1994.
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