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Abstract

An Ore extension over a polynomial algebra F[x] is either a quantum plane,
a quantum Weyl algebra, or an infinite-dimensional unital associative algebra
A}, generated by elements x,y, which satisfy yx — xy = h, where h € Flz]. We
investigate the family of algebras A, as h ranges over all the polynomials in
Flz]. When h # 0, the algebras A;, are subalgebras of the Weyl algebra A;
and can be viewed as differential operators with polynomial coefficients. We
give an exact description of the automorphisms of A, over arbitrary fields F
and describe the invariants in Aj under the automorphisms. We determine the
center, normal elements, and height one prime ideals of Aj, localizations and Ore
sets for Ay, and the Lie ideal [Ap, Ay]. We also show that Aj, cannot be realized
as a generalized Weyl algebra over F[z], except when h € F. In two sequels to
this work, we completely describe the irreducible modules and derivations of Aj
over any field.

1 Introduction

The focus of this paper is on a family of infinite-dimensional unital associative
algebras A, parametrized by a polynomial h = h(x) € F[z], where F is an arbi-
trary field. The algebra Ay has generators z,y, which satisfy the defining relation
yr = xy + h, or equivalently, [y,z] = h, where [y,z] = yx — xy. The Ore exten-
sions whose underlying ring is F[x] fall into three specific types. They are quantum
planes, quantum Weyl algebras, or one of the algebras A, (compare Lemma 2.2 be-
low). Quantum planes and quantum Weyl algebras are examples of generalized Weyl
algebras, and as such, have been studied extensively. It is the aim of our work to
investigate the family of algebras A, as h ranges over all the polynomials in F[x].
The algebras Ay, are left and right Noetherian domains. As modules over F[x], they
are free with basis {y" | n € Z>o}. Each algebra A; with h # 0 can be viewed as
a subalgebra of the Weyl algebra A; and thus has a representation as differential
operators on F[z], where z acts by multiplication and y by h%, so that [h%, x]=h
holds.
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There are several widely-studied examples of algebras in this family. The algebra
Ag is the polynomial algebra F[x, y]; A; is the Weyl algebra; and A, is the universal
enveloping algebra of the two-dimensional non-abelian Lie algebra (there is only one
such Lie algebra up to isomorphism). The algebra A2 is often referred to as the
Jordan plane. It arises in noncommutative algebraic geometry (see for example,
[SZ] and [AS]) and exhibits many interesting features such as being Artin-Schelter
regular of dimension 2. In a series of articles [SI]-[S3], Shirikov has undertaken an
extensive study of the automorphisms, derivations, prime ideals, and modules of the
algebra A, 2. These investigations have been extended by Iyudu in recent work [I]
to include results on varieties of finite-dimensional modules of A 2 over algebraically
closed fields of characteristic zero. Cibils, Lauve, and Witherspoon [CLW]| have used
quotients of the algebra A,2 and cyclic subgroups of their automorphism groups to
construct new examples of finite-dimensional Hopf algebras in prime characteristic
which are Nichols algebras.

There are striking similarities in the behavior of the algebras A, as h ranges
over the polynomials in F[z]. For that reason, we believe that studying them as one
family provides much insight into their structure, derivations, automorphisms, and
modules. In this paper, we determine the following;:

e embeddings of A, into Ay (Section 3)

e localizations and Ore sets for A, (Section 4)

e the center of Aj,  (Section 5)

e the Lie ideal [Ap, Ay] of Ay (Section 6)

e the normal elements and the prime ideals of A;, (Section 7)

e the automorphism group 2 = Autp(Aj,) and its center, and the subalgebra A%l
of YA-invariants in A, (Section 8)

e the relationship of Aj, to generalized Weyl algebras  (Section 9).

In the sequel [BLOIT], we determine the irreducible modules and the primitive ide-
als of Ay in arbitrary characteristic and construct indecomposable Aj,-modules of
arbitrarily large dimension. In further work [BLO2|, we completely describe the
Lie algebra Derp(Ap,) of F-linear derivations and the first Hochschild cohomology
HH(A,) = Derp(Ay,)/Inderr(Ay) of Aj over arbitrary fields F. Our investigations
extend earlier results of Nowicki [N]. In particular, we determine the Lie bracket in
HH(A) := Derg(Ay,)/Inderr(Ay), construct a maximal nilpotent ideal of HHY(Ay,),
and explicitly describe the structure of the corresponding quotient in terms of the
Witt algebra (centreless Virasoro algebra) of vector fields on the unit circle when
char(F) = 0.



2 Ore Extensions

2.1 Generalities

An Ore extension A = R[y, 0, 4] is built from a unital associative (not necessarily
commutative) algebra R over a field F, an F-algebra endomorphism o of R, and
a o-derivation of R, where by a o-derivation J, we mean that J is [F-linear and
d(rs) = 0(r)s + o(r)d(s) holds for all ;s € R. Then A = R[y,0,d] is the algebra
generated by y over R subject to the relation

yr =o(r)y + o(r) for all r € R.

The endomorphisms o considered in this paper will be automorphisms of R. The
following are standard facts about Ore extensions.

Theorem 2.1. Let A = R[y,0,d] be an Ore extension over a unital associative
algebra R over a field F such that o is an automorphism.

(1) A is a free left and right R-module with basis {y"™ | n > 0}.

)
2) If R is left (resp. right) Noetherian, then A is left (resp. right) Noetherian.
) If R is a domain, then A is a domain.
)

(
(3
(4

The units of A are the units of R.

2.2 Ore Extensions with Polynomial Coefficients

We are concerned with Ore extensions A = R[y, 0, 0] with R = F[z], a polynomial
algebra in the indeterminate x, and ¢ an automorphism of R. In this case, ¢ has the
form o(x) = ax + (B for some a, € F with a # 0. Hence, A is isomorphic to the
unital associative algebra over F with generators x,y subject to the defining relation
yr = (ax + B)y + h, where h is the polynomial given by h(x) = d§(z). The next
lemma reduces the study of such Ore extensions to three specific types of algebras.
This result is essentially contained in Observation 2.1 of the paper [AVV] by Awami,
Van den Bergh, and Van Oystaeyen (compare also [AD2 Prop. 3.2]), although the
division into cases here is somewhat different from that given in those papers.

Lemma 2.2. Assume A = R[y,0,0] is an Ore extension with R = F[z], a polynomial
algebra over a field F of arbitrary characteristic, and o an automorphism of R. Then
A is isomorphic to one of the following:

(a) a quantum plane
(b) a quantum Weyl algebra

(¢) a unital associative algebra Ay, with generators x,y and defining relation yxr =
xy + h for some polynomial h = h(z) € F[z].



Quantum planes and quantum Weyl algebras are generalized Weyl algebras in
the sense of 1.1] and their structure and irreducible modules have been studied
extensively in that context.

Our aim in this paper is to give a detailed investigation of the algebras that arise
in (c) of Lemma The algebra Ay, is the Ore extension R[y,idg, d] obtained from
the polynomial algebra R = F[z] over the field IF by taking h € R, o to be the identity
automorphism idg on R, and § : R — R to be the F-linear derivation with §(f) = f'h
for all f € R, where f’ denotes the usual derivative of f with respect to x.

It is convenient to regard Ay as the unital associative algebra over F with gener-
ators z, y and defining relation [y,z] = h. Then [y, f] = §(f) = f'h holds in Ay, for
all f € R. Theorem 2.1 implies that Ay is both a left and right Noetherian domain
with units F*1 and that

Ap = @ Rylv

i>0

where R = F[z]. Hence, {27y’ | j,i € Z>o} is a basis for A, over F, and Aj has
Gelfand-Kirillov (GK) dimension 2 by [McR) Cor. 8.2.11].

3 The Embeddings A, C Ay

Fix nonzero f,g € R = F[z]. In order to distinguish generators for the algebras
Ay and A,4, we will assume those for Ay are x,, 1, and those for A, are x,7, 1.

Lemma 3.1. For f,g,€ R, suppose that f | g and g = fr. Then the map 1 : Ay — Ay
with
T, Y= yr

gives an embedding of Ay into Ay.
Proof. This follows directly from the observation that [yr, x] = [y,z|r = fr=g. O

Corollary 3.2. For all nonzero h € F[z], there is an embedding of the algebra Ay,
into the Weyl algebra A;.

Because we often use the embedding in Corollary as a mechanism for proving
results, and because the structure of Ay = F|x,y] is very well understood, for the
remainder of this paper we adopt the following conventions:

Conventions 3.3.
e R =TF[z], and the polynomial h € R is nonzero;
e the generators of the Weyl algebra Ay are x, y, 1;
e the generators of the algebra Ay are x, 4, 1;

o when Ay is viewed as a subalgebra of Ay, then y = yh.



The following result provides an important tool for recognizing elements of Ay,
inside of Aj.

Lemma 3.4. Regard A, C Aq as in Conventions[3.3. Then

A, = @ Rhty' = @yihiR.

i>0 i>0

Proof. We show that @, §'R = @], y'h'R for all n > 0, and from that we can
immediately conclude A, = @izo y*h'R. Observe for j € Z,

(4 jh")h = h(G+ (j + 1)h'). (3.5)

Also note that yh = § and y?h? = yjgh = yh(y + h') = §(j + k') hold. It follows
easily from (B3] and induction that

YRt =G5+ )G+ 20) - (§+ (i — 1)I) € Ap. (3.6)

This implies that y*h’'R C @;L:O 7R for 0 < i < n. For the other containment, we
argue that " € @, y'h'R by induction on n, with the n = 1 case simply being the
definition, § = yh. Now from (B.6) with i = n, we have that y"h" = §" + a, where
a € Z?;ol 7/R. Thus by induction, §" = y"h™ — a where a € @?:_01 y'h'R, and the
containment P!, §'R C P, y'A'R holds.

The anti-automorphism of A; with x — z and y — —y sends 3 to —+h’. Hence,
it restricts to an anti-automorphism of Aj,. When applied to A, = @,~, y'h'R, it

gives Ay, = @izo Rh%y* and shows that
Wy = (g —ib') (G — (i = Dh') - (§ — B) € Ap. (3.7)

O

4 Localizations and Ore Sets

The embedding A;, C A; suggests that there is a strong relationship between the
skew fields of fractions of A, and A;. In this section, we will see that in fact these
skew fields are identical. To show this result, we describe certain Ore sets in A; and
Ap. Our starting point is a computational lemma.

Lemma 4.1. Fiz f,h € R, with f #0. If 0 < j < m, then 97 f™ € fmIA.

Proof. Observe that
B = g+ (Y hE A
Repeated application of this gives the claim. O



Lemma 4.2. Fiz f,h € R, with f # 0. Then the set ¥ = {f" | n > 0} is a left and
right Ore set of reqular elements in Ay,.

Proof. That ¥ consists of regular elements follows from the fact that Aj, is a domain.
Let a € Aj, and s € 3. We must show that there exist a; € Aj, and s1 € ¥ such that

as1 = saj. It is enough to consider the case s = f. Write a = Zf:o riy’ and set
51 = f*1. By Lemma [1] we see that

k z
asy =Y v [ €D rif AL C fAL = sAn.
=0 i=0

A similar argument shows that ¥ is a left Ore set. O

Corollary 4.3. Regard Aj as a subalgebra of A1 as in Conventions T3 Let ¥ =
{h™ | n > 0}. Then X is a left and right Ore set of reqular elements in both A1 and
Ay, and the corresponding localizations are equal:

At =A2L

Proof. By applying Lemma to Ay with X = {h"™ | n > 0}, and then to Ay
with f = h, we see that X is a left and right Ore set in both A; and Aj. Clearly
ALYt C A;X! since Ay, € A;. That A2~ C A,2! follows from the fact that
ApY~! contains the element gh™! = yhh~! = y. O

Corollary 4.4. The skew field of fractions of Ay, is isomorphic to the skew field of
fractions of the Weyl algebra Ay (commonly referred to as the Weyl field).

Corollary 4.5. Assume A;, C Ay as in Conventions [3.3. Then the following are
equivalent:

(1) h e F*.
(2) Ay is a Noetherian (left or right) Ap-module.
(3) A1 is a free (left or right) Ap-module.

Proof. If h € F*, then the embedding A, C A; considered in this section is an
equality. Thus as an Ap-module, Ay is free of rank one, and it is Noetherian.
Now assume h ¢ F. For each k > 0, consider the right Ap-submodule

Y = Ap +yAL + -+ YA, C AL

If ZZZO riyt € Yi, with 7; € R, it is easy to conclude that h divides r; for all i > k+1.
Thus, y**! € Yp41 \ Y& and the chain of submodules

O)CcAL=Y%CY1CYC---



does not terminate. In particular, A; is not a Noetherian Ap-module. Since Ay is
a Noetherian ring, it follows that A; is not a finitely generated Aj-module either.
Assume there exist elements 0 # t; € Ay, i € I, such that

A1 = PtiAn.

iel
Consider the Ore set ¥ = {h" | n > 0}. It follows that A;X™' = @, ; tL;ALE ™ .
By Corollary we have A;X7! = A,X~! =: B and thus B = P,cr t:B. This
implies that I must be finite, as the decomposition of 1 € B uses only finitely many
summands. This contradicts the fact that Ay is not a finitely generated Aj-module.
Hence, A; is not a free right Ap-module. This proves the corollary for when A; is
considered as a right Ap-module. The left-hand version is analogous. O

5 The Center of A,

In this section, we describe the center Z(Ap) of Ay, and show in Proposition
that Ay is free over Z(Ay). In the case of the Weyl algebra, the center is F1 when
char(F) = 0. When char(F) = p > 0, the center has been described by Revoy in [R]
(see also [ML]) as follows:

Lemma 5.1. Suppose char(F) = p > 0. Then the center of Ay is the unital subalgebra
generated by the elements xP and yP.

In determining Z(Ay) for arbitrary h, we will use the following result which can
be shown by a straightforward inductive argument.

Lemma 5.2. Regard A, C Ay as in Conventions[3.3 Let § : R — R be the derivation
with 6(f) = hf’ for all f € R. Then

n

1= (1) i A (53)

j=1
y", f] = EH: <?> f@yni in Ay (5.4)
j=1

where fU) = (%)j(f).
Theorem 5.5. Regard A, C Ay as in Conventions[3.3.
(1) If char(F) = 0, then the center of Ay, is F1.

(2) If char(F) = p > 0, then the center of Ay is isomorphic to the polynomial
algebra FlzP hPyP], where

hPyP = yPh? = (g + ') (G +2h') - (G + (p— DA') = P —



Proof. We first observe that Z(A1) N A, C Z(An), as A, € A;. Conversely, given
z € Z(Ap), then [z,z] = 0 and 0 = [y, 2] = [yh, z] = [y, z]h + y[h, 2] = [y, z]h. Since
h # 0 it follows that [y, z] = 0 and z € Z(A;) N Ap,. Hence

Z(Al) NA, = Z(Ah) (57)

If char(IF) = 0 then Z(Ap) =

Now suppose that char(F) = p > 0. Then o, hPy? € Z(A1)NAy. For every k > 0,
hkPykr = (hP)k(yP)E = (RPyP)*, thus the elements xP and hPyP are algebraically
independent, and it follows that F[aP, hPyP] C Z(Ap). Let z € Z(Ap). By (1),
Lemma 34, and Lemma Bl we can write z = )., modpriyi with r; € F[aP] such
that h®|r; for all i = 0 mod p. Since h' € F[zP] for i = 0 mod p, there exist ¢; € F[z?]
so that z =) cih'y' € FlaP, hPyP], and therefore Z(Ay) = F[zP, hPyP].

i=0modp
The relation hPy? = yPh? = g(g + R')(§ + 21')--- (g + (p — 1)I') is just ([B.0)
with ¢ = p. To show this expression equals gP — &;}(l)y, use Lemma [B.4] to write

hPyP =P fn9", where f, € F[z] for all n and f, = 1. Then

0 = [y Zhyw ang) @i by €&

_ n n . i
:fwm+2nz(ﬁwwﬂ
n=1 j=1 J
p—1 ~p—2
= 0(x)+ 1 fp—10(x)yP~* + lower terms.
Since §(x) = h # 0, we see that f,_; = 0. Then the above gives

0=0"(z)+ ( B >fp 20(x)7P 3 + lower terms.

Proceeding in this way, we obtain f, =0 foralln =p—1,p—2,...,2. As a result,
we have 0 = 6P(x) + f15( ) or f1 —&%(x) since h always divides 6% (z) for k > 1.

Consequently, . Then
0=1[g,4" — ‘“’,S% + fol = 9, —Z2g) + (9, fol = ~[9. Z21g + nfs,

and it follows that [y, 5p(x)] = 0. But then

= WPy? = 9@+ h') - (G + (p = D) € §An,

z)p—y D 4 fo =P —

and he{l():e fo € 9Ap. The only way that can happen is if fo = 0 and hPyP =
0P (x)
9P — =9 U



Example 5.8. Assume char(F) = p > 0 and h(xz) = 2" for some n > 1. Then it is
easy to verify that

p—1
P (x) = (H k(n—1)+ 1) g"PPTL
k=1

Hence, if n # 1modp, we can find 1 < k < p with k(n — 1) = —1modp so that
0P(x) = 0. This implies that when h(z) = z",
oP(z) )0 if n#lmodp
h gD if n=1modp.

In particular, Z(A,) = F[zP, §P] whenever h(z) = 2™ and n #Z 1 mod p. When n = 2,
this was shown by Shirikov in [S3].

Proposition 5.9. Assume char(F) =p > 0 and regard A, C Ay as in Conventions
3.3 Then Ay is a free module over Z(Ay,), and the set {x'hiy/ | 0 <i,j < p} is a
basis.

Proof. Suppose that
0= > ¢ a'hlyl, (5.10)
0<i,j<p

where ¢; ; € Z(Ay) = FlaP, hPyP]. For 0 < j < p,

Z ci,jxihjyje EB Ryk.

0<i<p k=jmodp

Thus, (EI0) and Theorem 2] imply that > o, cija'hlyl = 0. As h # 0, it
follows that Zogi <p cmxi = 0 for every 0 < j < p. The direct sum decomposition
Flx, hPyP] = @‘Z’:—Ol F[xP, hPyP]z* then implies ¢; ; = 0 for all 4, ;.
It remains to show that {z'h/y’ | 0 < 4,5 < p} generates A;, over Z(A;). Let
a,b > 0 and write
a=ap+i, b=0bp+j,

for some nonnegative integers a, band 0 < 1,7 < p. Then,

2hlyb = (2P)” (hpyp)gznihjyj € Z(Ap)z'hiy’.
As {2%hPy® | a,b > 0} is a basis for A, by Lemma [34] the result is established. [
Remark 5.11.

(i) The algebra anti-automorphism x — x, y — —y of A; can be applied to the
basis above to show that {y/h/z? | 0 < i,j < p} is a basis for Aj, over Z(Ap).

(ii) A standard inductive argument can be used to prove that {z'y/h? | 0 <i,j <
p} is also a basis for A, over Z(Ap,).



6 The Lie Ideal [A;, Aj)

Lemma 6.1. Let h € Flz|. Then [Ap,Ap] C hA,.

Proof. Recall that A, is spanned by elements of the form agj’ for ¢ > 0 and a € R.
Thus it suffices to show that [ag’, by™] € hAy, for all £,m > 0 and a,b € R. Observe
that

[ag”,05™] = [ag”, 0™ + blag’, 5] = alg", b]g™ — D™, aly",
so it is enough to show that [¢", f] € hAy for all n > 0 and f € R. This follows
directly from (5.3)) as 67(f) € kR for all j > 1. O
We have the following simple description of [Ay, Ap] for fields of characteristic 0.

Proposition 6.2. Suppose that char(F) = 0. Then hAy, = [z,An] = [1,An] =
(An, An].

Proof. By Lemma [6.] it suffices to prove that hA, C [§,Ay]. Note that hA, =
h (@izo Rg}i), and by the linearity of the adjoint map ady (where ad;(a) = [7,a), it

is enough to show that hgy® € [§,Ay] for every i > 0 and g € R. Since char(F) = 0,
the element g € R has the form f’ for some f € R, and therefore

[0, f9') = 9, /19" = hf'9" = hgy'.
It remains to show that hA;, C [z, Ap]. It will be more convenient to work inside Ay,

where hAp = h <@i20 Rhiyl) Then, for 7 > 0 and g € R we have ; gh”’1 e,
and

e

[H_lghz-i-l i+1 l’]

The linearity of ad, implies that hA, C [Ap, 2| = [z, An]. O

H_lghz-i-l[ i+1 ZE] — hghzyz

In the next result, we determine the centralizer Ca, (x) = {a € A | [a,z] = 0} of
x in Aj, and then use that to describe the commutator [Ap, Ap] when char(F) = p > 0.

Lemma 6.3. Regard A, C A1 as in Conventions [3.3.
(i) If char(F) =0, then Cp, (z) = R =F[z].
(ii) If char(F) = p > 0, then the following hold:

(a) Ca,(z) =F[z,h""] = €D Ry

i=0mod p

p—2
(b) [z,Al]= €D BREY = EHhCa, (x)h'y'".
i=0

iZ—1modp
() [1,Al) =EPim (L)hi' = €  ha'Flg).
>0 jZ—1modp

10



Proof. We first determine the centralizer Ca, (z). Suppose a = > i riy’ € Ca, (),
where r; € R for all i. Then 0 = [a,2] = Y 1, ir;y’~!. When char(FF) = 0, this forces
r; = 0foralli > 1, sothat a = ry € R. Since R C Ca, (2) is clear, we have Ca, (z) = R.
But then Ca, (z) = Ca, () N Ay = R to give (i). When char(F) = p > 0, we deduce
from this calculation that ; = 0 for all ¢  Omodp. Then a = >, modpriyi €
Flx,y?], so Ca,(z) C F[z,y?]. The reverse containment F[z,y?] C Ca,(z) holds
trivially, so Ca, (z) = F[x, y?] (compare [KAlL Proof of Prop. 1]). Now since Ca, (z) =
D=0 mod » Ry, it follows that

Ca,(x) =Ca,(x)NAL = { Z rif

i=0mod p

r; € Rh’}.

This establishes (a) of part (ii).
(b) To describe [z,An] = [Ap,x] when char(F) = p > 0, note that for a =
Zizo rih'y* € Ay, we can compute in A; that

[a, ] :Zrlhly Zrl [y, z] Z irihiytt = Z ihrh Lyt

>0 >0 1Z0mod p 1Z0mod p

Since ¢ # 0 in F as long as i Z Omod p, we see that im(ad,) is Eii_lmodthh"yi,
and this sum is evidently direct. The fact that

p—2
B rRuY = P hCh, (x)hy’
1=0

iZ—1modp

follows since Ca, (z) = F[z, hPyP].
(c) Fora=73 5, ri§' € Ay, we have

[9,a] = Z 7,77 Zhr

>0 i>0

and thus im(ady) = @;>qim (L) hg'. Since im (L) = @j;‘é—lmodpF‘Tj7 it follows
that im(ady) = @;% 1 modp M’ FlY. O

7 The Normal Elements and Prime Ideals of A,

Recall that an element v € Ay is normal if vA, = Apv. In the polynomial
algebra Ay = F[z,y] every element of Ay is normal. Similarly, the normal elements
of the Weyl algebra A; are precisely the central elements (compare Theorem [[3]).
In general, for h ¢ F, there are non-central normal elements in Aj. In this section,
we determine the normal elements of Ay for arbitrary h # 0. Our starting point is

Lemma 7.1. Let g be a factor of h in R =TF[z]. Then g is a normal element of Ay,.

11



Proof. Write h = gf for f € R. Then
99 =9y +hg' =gy+9fg =g(§+ fd) € gAn

and gy = (§ — fg')g € Ang. As Ap = D;>0 Ry, it follows that A,g C gA; and
gAp C Apg, and so gA, = Apg. O

Since the product of two normal elements is normal, it is clear at this stage that
products of powers of the prime factors of kA are normal elements of Ay,.

Suppose
h = Auft'---ul, (7.2)

where A € F*, a; > 1 for all 7, and the u; € F[z] are distinct monic prime polynomials.
We can assume that the factors have been ordered so that the first ones u;, for
i < ¢ < t, are the non-central prime divisors of A. Our aim is to establish the
following which generalizes (and includes) the result for the Weyl algebra.

Theorem 7.3. Let uq,...,us be the distinct monic prime factors of h in R = F[z]
that are not central in Ay. Then the normal elements of Ay, are the elements of the
form ufl e uflz, where z € Z(Ay). If char(F) = p > 0, then the B; may be taken so
that 0 < B; < p for all i.

The proof will use the next lemma.

Lemma 7.4. Let uq,...,uy be the distinct monic prime factors of h in R that are
not central in Ay. If f divides 0(f) = hf' for f € R, then there exist w € RN Z(Ap)
and B; € Z>q fori=1,...,¢ so that f = ufl---uflw. If char(F) = p > 0, the j;
may be chosen so that 0 < 3; < p for all i.

Proof. The result is clear if f € F, so assume deg f > 1 and write f = pq{* - q3"
where p € F*, v, > 1 for all ¢, and q1,...,q, are distinct monic prime polynomials

in F[z]. Then f divides
n
hf'=uhYy valt---q Tt
i=1
This implies that q; divides ’yjq;h for all j. Then either q; divides ’yjq;- or q; divides
. N/
h. 1If q; divides v;q} then 7;q; = 0 which forces q;’ € RNZ(Ap), as <q;/3) =

yjq;-q;/j_l = 0. Otherwise, q; = uj, for some non-central prime factor of h. The last
assertion in the lemma follows from the observation that when char(F) = p > 0, then
rP € F[zP] for all r € R. O

Proof of Theorem[7.3. Assume v # 0 is normal in Ay, and write v = Y1, fihiy?,
where f; € R and f, # 0. Then there exists a € Ap so that v = av, and from
considering the coefficient of y", we see that ¢ € R, and in fact « = x. Thus vz = xv,
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and v € Cp, (z). Since hy € A, by Lemma[3.4] there exists b € Ay, so that v(hy) = bv
and, as above, we conclude that b = hy — r, for some r € F[x]. The latter implies
[hy, v] = rv.

Recall that Ca,(z) = R = Fz] if char(F) = 0. Hence, in this case v € R,
and rv = [hy,v] = hv', which implies by Lemma [Z4] that v = Cu}"--- uft, where
¢ € Z(Ay) =F1 and §; € Z> for all 1.

Thus, for the remainder of the proof, we assume that char(F) = p > 0, and
because v € Ca, (z), we can write v =) ,_, mod p fih'y*. We now know that

0=y o] —rv= > ((hfil—rf)bhiy' = > (hfl—rfi) 'y,

i=0modp i=0mod p

which forces r f; = hf! for all i = 0mod p. This implies that f; divides hf; for all such
i, so by Lemma[.4] there exist w; € F[zP] and integers fy;,...,08; € {0,1,...,p—1}
such that
fi= uf” e uf“wi.
Fix 4,j and note hfjf; = rfif; = hf}fi holds, so that f/f; = f}fi since h # 0.
Now

4
0= fif; = fifi = wiw; Y (Bri — Brj)us' -+ ughug Thugh - gt
k=1
where e, = B + fi; for k€ {1,..., ¢} If f;, f; # 0, then wyw; # 0, and as a result

we have .

Ef— —1 €
D (Bri = B )ut - T g =0,
k=1
which implies that (8k; — B;)u}, is divisible by uy for each k. Since uy is not central,

uj, # 0, and thus Sy; = By, for all k and all ¢, j. Letting 3 be that common exponent,

we have f; = u?l ---u?‘wi for each 4, which says

v = Z fib'y' = U?l”-uf‘Z Z w;h'y' € ufl-'-uf‘Z(Ah).
i=0mod p i=0mod p

O

Several authors have studied the problem of determining simplicity criteria for
Ore extensions Ry, idg, ], and it is possible to address the simplicity of the algebras
A, by using the results of [J] or [CF, Thms. 3.2 and 3.2a] for example. Instead, we
apply our results on normal and central elements of Ay, to determine when an algebra
A}, is simple.

Corollary 7.5. The algebra Ay, is simple if and only if char(F) =0 and h € F*.
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Proof. Suppose Ay, is simple. If b # 0 is a normal element of Ay, then bA, = Apb = Ay,
by simplicity, so b is a unit. Since the units of Aj, are the elements of F*, we see that
h € F* by Lemma [T} and also Z(A,) = F1. But then char(F) = 0 by Lemma
Conversely, if char(F) = 0 and h € F*, then Ay, is isomorphic to the Weyl algebra,
and it is well known that A; is simple. O

A (noncommutative) Noetherian domain is said to be a unique factorization ring
(Noetherian UFR for short), if every nonzero prime ideal contains a nonzero prime
ideal generated by a normal element. The height of a prime ideal is the largest length
of a chain of prime ideals contained in it (or is oo if no bound exists). A Noetherian
UFR is said to be a unique factorization domain (Noetherian UFD for short) if every
height one prime factor is a domain. These notions were introduced by Chatters and
Jordan in [CL[CJ]. If a Noetherian domain satisfies the descending chain condition on
prime ideals (e.g. if it has finite Gelfand-Kirillov dimension [McR], Cor. 8.3.6]), then
it is a Noetherian UFR if and only if every height one prime ideal is generated by a
normal element. Recently, Goodearl and Yakimov [GY] have used the properties of
noncommutative Noetherian UFDs to construct initial clusters for defining quantum
cluster algebra structures on a noncommutative domain.

Since R = F[z] is a principal ideal domain, [CJ, Thm. 5.5] trivially implies the
first part of the following observation. The second part follows by [GW], Thm. 9.24].

Lemma 7.6. Ay is a Noetherian UFR. If char(F) = 0, then Ay is a Noetherian
UFD.

The algebra Ag = F[z, y] is a Noetherian UFD for any field F. We will see shortly
that A, is not a Noetherian UFD when char(F) = p > 0 and h # 0.

The next result describes the height one prime ideals of Ap. It is known that
over a field of prime characteristic the Weyl algebra A; is Azumaya over its center
(see [Rl, Thé. 2]), so in this case the prime ideals of A; are in bijection with the prime
ideals of Z(A1). If deg h > 1, there may be prime ideals of Aj which are not centrally
generated.

Theorem 7.7. Let uq,...,u; be the distinct monic prime factors of h in R, as in
[2). For every 1 <i <t, the normal element u; generates a height one prime ideal
of Ay, and the corresponding quotient algebra is a domain.

(i) If char(F) = 0, these are all the height one prime ideals.

(ii) If char(F) =p > 0, then any nonzero irreducible polynomial in Z(Ay) that (up
to associates) is not of the form u? for any 1 < i <t generates a height one
prime ideal. These, along with the ideals generated by some u;, constitute all
the height one prime ideals.

Proof. First notice that each u; generates a prime ideal of Ay, as the quotient algebra
A /u;Ayp is isomorphic to the commutative polynomial algebra (R/u;R) [g] over the
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field R/u;R. In particular, Aj,/u;Ap, is a domain, and the prime ideal u;A;, has height
one by the Principal Ideal Theorem (see [McRlL Thm. 4.1.11]).

Let P be a height one prime ideal. Since Ay, is a Noetherian UFR, it follows that
P = vAy, for some normal element v # 0. Moreover, the primality of P implies that
v is not a (non-trivial) product of normal elements. Thus, Theorem implies that
either v is an irreducible factor of i or a central element which is irreducible as an
element in Z(Ap). When char(F) = 0, then v must be an irreducible factor of h, as
Z(Ay,) = F1, which proves (i).

For the remainder of the proof assume char(F) = p > 0. Note that if z € Z(A)
is of the form &u? for some i and some & € F*, then zAj, is not a prime ideal. So
it remains to show that if z is an irreducible polynomial in Z(Ay), which is not of
the form &u for 1 < i < ¢ and £ € F*, then zA; is a height one prime ideal. We
can further assume z is not an irreducible factor of h, as this case has already been
considered. Let P D zAj, be a minimal prime over zAjy. By the Principal Ideal
Theorem, P has height one, and thus P = vAy for some normal element v.

Suppose first that v is an irreducible factor of h, say v = u,. Then z € P = vAy,
so z = upa for some a € A, Write a = ) .-, rih'y" with r; € F[z], so that
Z = upa = Y upr;hiy’. As z is central, we must have r; = 0 if i Z Omodp
and u,r; € F[zP] for all i = Omodp. Fix j with j = Omodp and ri # 0. Let
q,' ---qm" be the prime decomposition of u,r; in F[z], with q; = u,. Then ; > 1
and since u,r; € FlaP], it follows that q)* € F[z?] for all 1 < i < m. In particular,
uy € F[zP], so that either 44 = Omodp or u, € F[zP]. If the latter holds, then
z = upa implies that a € Z(Ap,). The irreducibility of z in Z(Ay) implies that a € F*,
and thus z is an irreducible factor of h, which contradicts our previous assumption.
So it must be that v; = Omodp. As v; > 1, it follows that v; > p and uf, divides
u,rj. Since j = Omodp was arbitrary subject to the restriction that r; # 0, we
deduce that z = ufc for some ¢ € Z(Ap). The irreducibility of z in Z(A,) again
implies that z is a scalar multiple of u?,, which violates our assumptions on z.

It follows from the arguments in the preceding paragraph that v is not an ir-
reducible factor of h. Hence v € Z(A), and again we deduce that z = wa for
some a € Z(Ap). Thus, as z is irreducible in Z(Ap), it must be that a € F* and
zAp = vAp = P is a height one prime ideal. O

Corollary 7.8. Assume char(F) =p > 0. Then Ay is not a Noetherian UFD.

Proof. By Theorems .5 and [ the element hPyP generates a height one prime ideal
of Ay, as it is irreducible in Z(Ay) and it is not a power of a factor of h. However,

by (5.6 we have hPyP = <g}p_1 - WT(I)) 7. Yet neither one of these two factors is in

hPyPAp, by considering the degree in y of an element in hPyPAj,. Thus, the prime
ring Ay, /hPyPA}, is not a domain. O

Remark 7.9. Since A has Gelfand-Kirillov dimension 2, it follows from [McR], Cor.
8.3.6] that the possible values for the height of a prime ideal P of A, are 0,1, and
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2. The zero ideal is prime and is thus the unique prime ideal of height zero. The
height one prime ideals are given in Theorem [Z.71 The height two prime ideals of
Aj, must be maximal, and no height one prime ideal of Aj;, can be maximal. Indeed,
for the height one prime ideals of the form u;A,, 1 < i < t, the quotient Ay /u;Ap
is a commutative polynomial algebra. When char(F) = p > 0, the center Z(A) is a
polynomial algebra in two variables, so if v is an irreducible polynomial in Z(Ap) as
in Theorem [T7] (ii) above, it follows that any maximal ideal of Z(Ay) containing v
induces a maximal ideal of Ay strictly containing vAp,.

Hence, the height two prime ideals of Aj, are precisely the maximal ideals of Ay,
and can be identified with the maximal ideals of A/P, as P ranges through the
height one prime ideals. In particular, if char(F) = 0 and the prime factors of h
in F[z] are linear, then the height two prime ideals of A, are the ideals generated
by z — A\ and ¢(¢), where A € F is a root of h and ¢(y) € F[g] is an irreducible
polynomial.

8 Awutomorphisms of A

Extending results of Dixmier [D] on the automorphisms of the Weyl algebra Aq,
Bavula and Jordan [BJ] considered isomorphisms and automorphisms of generalized
Weyl algebras over polynomial algebras of characteristic 0. Alev and Dumas
initiated the study of automorphisms of Ore extensions over the polynomial algebra
R = F[z], and the results in have been further developed in the recent work
[G] of Gaddis. In Theorem B2 we summarize results from [AD2] that pertain to
the algebras Ay, studied here, but suitably interpreted in the notation of the present
paper. Since one of those results assumes that char(F) = 0, we first prove Lemma
Bl which can be used to remove that characteristic assumption. This will enable us
to prove our main results, Theorems [R.7] and B.13] which give a complete description
of the automorphisms of Ay over arbitrary fields.

Lemma 8.1. If 0 : Ay, — A, is an isomorphism, then §(h) = \g for some X € F*.

Proof. Let By, be the ideal of Ay, minimal with the property that A, /By, is commuta-
tive. Then [y, z] = 0 in the quotient Ay /By, so it follows that h € Bj,. The element
h is normal in Aj, and hA; C By, so the minimality of By, with the fact that Ay /hAp,
is commutative, implies that hA; = Bj,. Similar reasoning shows that B, = gA, is
the ideal of A; minimal with the property that A;/B, is commutative. As Bj, and By,
are obviously characteristic ideals, it follows that 6(Bj,) = B,. Since A, is a domain
and gA, = B, = 0(B,) = 6(h)A,, we have that §(h) = \g for some X € F*. O

Now with Lemma[81] the argument in the proof [AD2] Prop. 3.6] can be extended
to arbitrary fields, and as a result, we have the following.

Theorem 8.2. Let g, h € F|x].
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(i) Ay is isomorphic to Ay if and only if there exist o, 5,v € F, with av # 0 such
that vg(x) = h(ax + (). In particular, if Ay, is isomorphic to Ay, then g and h
have the same degree.

(ii) Suppose degh > 1. Let w be an automorphism of Ay,. Then there exist o, 5 € F,
with o # 0, and f(x) € F[z] such that

w(z)=axr+ 8, w@)=a" "y 1 f(x), and h(az+ B) = a8 "h(z).
8.1 Automorphisms of A,

Definitions and the Decomposition

If h € F, the automorphism group of A, is known [VDK] [Dl [MT] (see also the
discussion in Sec. below), so in what follows, we assume degh > 1. In view of
Theorem [R.2] we introduce the following definitions. Let

P = {(a,B) € F* xF | h(az + B) = a8 h(z)}. (8.3)

It is easy to verify that each pair (o, ) € P determines an automorphism 7, g of Ap,
whose values on x and g are given by

Tap(T) = az + B, Tap(§) = a8y, (8.4)

The pair (o', —Ba~!) belongs to P whenever («, ) does, and T;é = Ta-1 _Ba-1-
Each f € F[z] C Ay determines an automorphism ¢5 of Ay, defined by

Gp(x) =z, ¢r(@) =9+ [ (8.5)

and having inverse ¢_¢. Furthermore, {¢; | f € F[z]} is a subgroup of Autr(Ap),
isomorphic to the additive group F[z]. One important example is the automorphism
¢p with ¢p/(2) = x and ¢p/ (§) = § + h'. The normality of the element h € Ay (see
Lemma [TT]) implies that this automorphism has the property that

ah = hop (a) (8.6)

for all a € Ay, (compare ([B.3)).
Theorem 8.7. Suppose degh > 1, and let the set P and the automorphisms 7, g for

(o, B) € P be as in B3) and [BQ).

(i) If w is an automorphism of Ay, then there exist (o, 3) € P and f € Flz] such
that w = ¢y o7y .

(ii) 7a,8 = ¢y for some (o, ) € P and f € Flz] if and only if « = 1,8 = 0 and
f=0.

(iii) If (o, B) € P, a # 1, and of =1 for some £ > 2, then Tﬁﬂ = ida, -
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(iv) The abelian subgroup {¢¢ | f € Flz|}, which we identify with (F[z],+), is a
normal subgroup of Autp(Ap).

(v) Autp(Ap) = Flz] x 7p, where mp := {75 | (o, 8) € P} and 1p is a subgroup of
Aut]F(Ah).

Proof. Part (i) is immediate from Theorem B2 If 7, 3 = ¢ for some (o, §) € P and
f € Flz], then ax + 8 = 74 8(z) = ¢¢(x) = x, which implies &« = 1 and 8 = 0. Then,
§ = a¥8h=1lg = 7, 5(9) = ¢4(9) = § + f(z), to force f = 0. The converse is clear,
since T1,0 = |dAh = ¢0-

Suppose («, 3), (7,&) € P. Then (ay, 5y +¢) € P, as

h(ayz + By + &) = h(y(az + B) + ) = 1*"h(az + B) = (ay)*E"h(z).
Moreover,
Ta, B © Tye = Tary,Byte- (8.8)

Consequently, 7p = {73 | (a, B) € P} is a subgroup of Autr(Ap). Now (B8] implies
Tféﬁ = Tal (1+a+-tat-1)g for all £ > 1. Hence, if of =1and a # 1, then Téﬁ =Ti0=

ida, -
Direct calculation shows that

T(;éo(ﬁfoTa,ﬁ(x) =, T(;l O¢foTa,ﬁ(g) :@"’_adegh_lf(a_l(x_/@))’ (89)

Thus, T;é 0 ¢foTapg = g, where g(x) = adegh_lf(ofl(x - ﬁ)) Since every au-
tomorphism is a product of automorphisms in the subgroups F[z] and 7p, we have
that the subgroup F|[z] is normal in Autg(Ap). Part (v) follows then, since the two
subgroups have trivial intersection by (ii). O

The automorphism group Autp(Ap) will be completely determined once we es-
tablish conditions for a pair («, ) to belong to P. This will of course depend on the
polynomial h.

8.2 The Subgroup 7
In the following, we adopt the notation

G={veF|(l,v)eP} and 7= {m,|veG} (8.10)

Lemma 8.11. Suppose degh > 1. Let the set P and the automorphisms 7o for

(o, B) € P be as in (B3) and [B4).
(1) G is a finite subgroup of (F,+), which is equal to {0} when char(F) = 0.
(2) If (e, B) € ]Ii’ and (a,B) €P, then 7, 53 = Tap 0 T1,, where v = B—B€eG. In
particular, 5 = 8 must hold when G = {0}.
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(3) If (a, B) € P and v € G, then

1 _
Ta,3° v °Ta,B = Tav,

so av € G.

(4) N := Flz] x 11.¢ is a normal subgroup of Autr(Ap), which equals Flx] when
char(F) = 0.

Proof. (1) It follows from (B8] that 71, o 71 5 = 71+ Whenever v, 7 € G, so G is a
subgroup of (F,+). Let F denote the algebraic closure of F, and let A € F be a root
of h(z). Then {\ +v | v € G} consists of roots of h(z), so it is evident that G is
finite provided h ¢ F. When char(F) = 0, then G = {0}, as this is the only finite
subgroup of (F,+).

(2) Assume (o, B) € P and (o, §) € P. Because 7p is a group,

—1 o o B
Ta,ﬁ o) Toc,ﬁ = Tafl’_aflﬁ 9] Toc,ﬁ = TLB_B € Tp.

Thus v:= 3 — 8 € G.
(3) Suppose («, 8),(1,v) € P. Then since 7'07}3 =Ta1_a-14, (BI) gives that

1 _
Ta,3 ° Ty © Ta,8 = Tlav;

as desired.
(4) From (89) we know that

T;,é 0Qf0Tap = Qg

where g = odegh=1f (a‘l(az — B)), which implied the normality of the subgroup
{¢s | f € Flz]} in Autp(Ap). (We identified this subgroup with F[z].) Part (3) shows
that conjugation by the elements 7, 3 for (o, 3) € P leaves 1y ¢ = {11, | v € G}
invariant. Hence, F[x] % 71 ¢ a normal subgroup of Autr(Ap). Since 71 ¢ just consists
of 719 = ida, whenever G = {0}, this normal subgroup equals F[z] when G = {0}
(for example, when char(F) = 0). O

Remark 8.12. From (3) of Lemma [BIT] it follows that 7| ¢ is a normal subgroup
of 7p and that 7p/71,g acts on G via (7,,871,¢).v = av. If G\ {0} is nonempty, then
this formula shows that mp/7 ¢ acts faithfully on G\ {0}, and therefore |G| — 1 is
divisible by |mp/71 G|

The group Flz]| x 71, may not be all of Autp(Ap), and in that situation, there
exists some (o, 3) € P with a # 1 so that 7, 3 € Autg(Ay). The next result draws
conclusions in that case.
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Theorem 8.13. Assume h has k distinct roots in F for k > 1.
(Case k = 1) Let \ be the unique root of h in F.

(a) If A\ €T, thenP = {(a,(1—a)N) | a € F*}, 7p = F*, and Autp(Ay) = Fla] xF*,
where for all f € Flx] and o € F*,

Ta,zl—a))\ 0QfOTa (1—a)r = Qg with
g(z) = a1 f(a e — (a7t = 1D)N).
(b) If A ¢ F, then Autp(A,) = Flz].

(Case k > 2) The group tp/T1 G s a finite cyclic group. In particular, when Tp #
T1.G, then Tp = T1 g X (7o), for some (a, B) € P with o # 1 such that either afF—1 =1
oro® =1, and T;é 0Ty 0Tap = Tiaw for all v € G. Thus, Autp(Ap) = N x (7, 3)
where N = Flz] x 7 g.

Proof. Assume («, 3) € P. By the definition of P, the affine bijection o, g of F given
by 04,8(A\) = aA+ 3 permutes the roots of h(x) in such a way that the corresponding
multiplicities are preserved. Thus A+ v is a root of h(z) whenever A is a root of h(z)
and v € G, so it follows that G = {0} when k = 1.

When h(z) has the form h(x) = y(x — )" with A € F, then («, (1 — a)\) € P for
any o € F*, as h(az+ (1—a)A) = y(ax—aN)” = a"y(z— )" = o’ h(x). Conversely,
if (o, &) € P, for some &, then £ = (1 — a)A must hold because («, (1 — a)\) € P and
G = {0}. Since T, (1-a)2 © Ty, (1—p)A = Tap,(1—ap)r, We may identify the group 7p with
F* in this case. Thus, Autr(Ap) = F[z] x F*. The product formula appearing in (a)
follows from (8.9]). Hence, the theorem holds when £ =1 and A € F.

Suppose now that k = 1 and A ¢ F. Then o, 3(\) = A whenever (o, ) € P, so
that (1—a)\ = 8. If & # 1 then A = 3/(1—a) € F, which contradicts our hypothesis.
Thus, o = 1 and 8 = 0, which proves that 7p is trivial and Autp(Ap) = F[z] in this
case.

We now assume k > 2. Suppose A € F is a root of h(z). Orbits under the Ta,B
are finite, so if (o, 3) € P, there must be a minimal j > 1 so that aiﬁ()\) =\ It
follows that A = &/ A+ (1+a+---+a/~1)B; that is, (1—af)A = (1+a+---+af71)3.
If v is not a jth root of 1, then we obtain A = 5/(1—«). Since the root A was chosen
arbitrarily, this shows that if («, 8) € P for some « which is not a root of unity, then
h(z) has a unique root \ = % € F, and h(z) = y(x — \)"™ for some v € F* and
n > 1.

Assume that m7p # 71 ¢ and that (o, §) € P with o a primitive ¢th root of unity
for some ¢ > 2. We want to show that ¢ divides k or kK — 1. As before, let A € F be
a root of h, and suppose the orbit of A under the action of the cyclic group (o4 3)
generated by o, g has cardinality j. We will argue that j € {1,¢}. The integer j > 1
is the smallest positive integer such that Ugu 5()\) = A\, which is equivalent to

(& — DA+ B(L+a+ - +al 1) =0,
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as we have seen above. If j < £, then o/ # 1, so we can divide by o/ — 1 and get
A= % and 7 = 1. Now notice that af;’ﬁ()\) =afA+ (11__'2‘5/) B = A, s0j <{ Thus

«
Jje {1t}

Hence, the orbits of this action of (5, ) on the roots of h(z) have size either 1
or £. Let r be the number of orbits of size 1 and ¢ the number of orbits of size £. It
follows that k = r + ¢/, so ¢ divides k — r. If the orbits of two roots A and A have
size 1, then \ = li = )\ so r < 1. Thus, either » = 0 and ¢ divides k or r = 1 and
¢ divides k — 1.

By ([&3), the projection map ¢ : 7p — F* given by 9(7,,) = p is a group
homomorphism with kernel 71 g. The image is a finite subgroup of F*, since F* has
only finitely many k& and k& — 1 roots of unity. As finite subgroups of F* are cyclic,
we have that 7p/71 g is generated by a coset 7, 5 71,¢ for some (a, 3) € P such that
o1 =1 or o =1 (but not both). The rest of the statements follow from Lemma
and Theorem O

In the next result, we will use the notation op = {o¢. | (¢,€) € P} for the group
of affine maps on F determined by P, and oy g for the subgroup determined by G,
along with the fact that these groups act on the set of roots of h in F.

Corollary 8.14. Assume h has k distinct roots in F for k > 1.
(Case k = 1) Let X be the unique root of h in F.
(a) If A € F, then Autp(Ap) = Flz] x F*, where F* is identified with the group
{Ta,—a)r | € F*}.
(b) If X\ ¢ F, then Autrp(Ay) = Flz].
(Case k > 2) Fither

(a) Autp(Ap) = Flz] x 71,6, and there exist orbit representatives X\;,i € I, for the

action of o1,g on the roots of h, so that h = v [[;c; b, where v € F*, n; > 1,

and hi(z) = [T,eq (z — 010(N)) = [Leq (2 — (N +v)) foralli € 1;

or there exists (o, ) € P, where « is a primitive £th root of unity for some £ > 1
such that £ divides k — 1 or k, and Autr(Ap) = (Flz] x 71.6) % (Ta3)-

(b) If ¢ divides k — 1, then Ao := /(1 — ) is a root of h(x) in F. There are roots
Ni, i €1, of h in F so that {\; | i € I} U{\o} are orbit representatives for the
action of op on the roots of h; integers n; > 1 fori € TU{0}; and v € F* so
that h = yh{° [1;c; b, where

ho(x) = [] (= = oru(0) = [] (&= (ho +v)) (8.15)
veG veG

hi(r) = [ (2= oc(A (HH<3}— (a? ) +V+(1—a3))\0)>) . (8.16)
(Ce)eP veG j=0
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(¢c) If ¢ divides k, then there are orbit representatives \;, © € I, for the action of op
on the roots of h so that h = y[[;c; " for some v € F* and integers n; > 1,
where

hi(z) = H (z—0ce(N)) = (H ﬁ (m— <aj)\i +rv+(1 —aj)%) >>"l
(C)eP veG=o (8.17)

If char(F) =0, then G = {0}, and 71, = {ida, }.

Proof. We may assume k > 2, since the first case follows directly from Theorem B3l

Recall that G is a finite subgroup of (F,+) and G = {0} when char(F) = 0 by
(1) of Lemma [RIIl Thus, whenever G # {0}, we can suppose char(F) =p > 0.

Now if (a) holds, then either G = {0} and Autr(Ay) = Flz], or else G = Fpv; +
-+ -+ Fpyg for some d. Assume \;, ¢ € I, are roots of h in F, which are representatives
for the orbits of roots of h in F under the affine bijections o1, for v € G. Since each
orbit is of size p?, we have k = ¢gp?. Then h has the form displayed in (a). When
G = {0}, then Autg(Ay,) = F[z], \;,i € I, are the distinct roots of hin F, and k = |I|
in this case.

Now suppose that Autr(Ap) 2 Fz] X 7 g. By Theorem BI3] Autr(Ap) = (Flz]
T1,G) X (T 3), Where « is primitive ¢th root of unity for some £ > 1 that divides k or
k—1.

When ¢ divides k& — 1, then as we have seen previously, there is one orbit of size
one under the action of o, g generated by the root \g := /(1 — a) € F. Either the
group G = {0}, or char(F) = p > 0 and G has order p? for some d > 1, and G is
invariant under multiplication by the cyclic group generated by « by (3) of Lemma
Under this action of the group («), there is one orbit of size 1 (namely {0}),
and all the other orbits have size ¢. Thus, ¢+ 1 = p® for some r > 0.

Consider the orbits of roots under the group generated by the maps o, g and o1,
as v ranges over the elements of G. One such orbit is {\g+v | ¥ € G}. Assume \; for
i € T are the representatives for the other orbits. Then h has the factorization into
linear factors given in (8I5]) for some v € F*, and n; > 1. Counting roots of h in F, we
have ¢/+1 = k when G = {0}, and ¢fp?+p? = (ré+1)(ql+1) = L(r+q+rgl)+1 =k,
when G # {0} and char(F) =p > 0.

The case when ¢ divides k is similar and follows the same line of reasoning
- just omit the factors of h involving Ao, and use the fact that O’i’ﬁ()\i +v) =
(N +v)+ (1 +a+---+a/~HA. In this case, counting roots gives either ¢/ = k
(G = {0}) or gqpl = q(rt + 1)t = k (G # {0}, char(F) = p > 0). O

Remark 8.18. Suppose a € F is an ¢th root of unity for £ > 1. Let G be a finite
subgroup of (F,+) invariant under multiplication by « (necessarily G = {0} when
char(F) = 0). By choosing \; for i in some index set I so that \g + v,a?(\; +
v) + Ao(1 — o) are distinct for v € G, 5 € TU{0}, and j = 0,1,...,¢ — 1, and
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taking arbitrary n; > 1 for i € T U {0}, we can construct h as in (&IH) with 7 g x
(Taxo(1-a)) C Autp(Ap). Similarly, if we choose 8 arbitrarily, G as above, and A; for
i € I sothat /(N +v)+ B(1 —a?)/(1 — ) are all distinct for v € G, i € I, and
j=0,1,...,£ — 1, and take arbitrary n; > 1, we can construct h as in (8I7) with
T1,G X <Ta7g> C AUtF(Ah).

Example 8.19. In this example, we compute Autp(Aj) for any monic quadratic
polynomial h(z) = x? — (i + (o € Flz]. Recall that (a,3) € P if and only if
h(ax + B) = ad8"h(z). Thus,

(,8) eP = (ax+B)%—Ciloax+B)+ G = a?(@? = G+ )
= 26— =—al and B2 — B+ G = %G
= B= 30— a) and $1-02¢ - 51— )G + (1 - a¥)g = 0.

Therefore, if (o, 8) € P, then either (a, 8) = (1,0), or a # 1 and (1 — a)¢? — 2¢% +
4(1 4+ a)lp = (1 + a)(4¢ — ¢?) = 0. In the second event, either ¢? # 4(, and
(a, 8) = (=1,¢1), or ¢o = 1¢F so that h(z) = (2 — 3¢1)% We conclude that there
are two possibilities: either P = {(1,0), (—1,{;)} which happens when A(z) has two
distinct roots, or h(z) = (v — 3¢1)? and P = {(a, (1 —@)1¢1)}. In the first situation,
Autgp(Ay) = Flz] x (1-1¢,) so that Autg(Ay)/Flz] is a cyclic group of order two; in
the second, Autp(Ay) = Flz] x F*.

In this calculation, we have tacitly assumed that char(F) # 2. When char(F) = 2,
then (a, 8) € P if and only if ¢; = a¢; and B2 — (18 + (o = a?(p. Either ¢; # 0 and
Autp(Ap) = Fz] x 7p, where P = {(1,0), (1,(1)}, or else ¢; = 0 and h(z) = 22 + (o.
If (o = A2 for some A € F, then h(z) = (z + \)? and (a, (1 —a))) € P for all a € F*,
so that Autp(Ap) = Flz] x F*. If no such X exists, then Autp(Ay) = Flzx].

8.3 The Autg(A,) Invariants

Throughout this section and the next, we let 2 = Autyp(Ap). In this section, we
determine the invariants under 2 in Ay:

A ={acAy|wa)=a YweA}.
Lemma 8.20. For any h € R, A} =R*=RF = {r e R| 7¢.(r) =7V (¢,e) € P}.

Proof. Let Flz] C 2 be the subgroup of automorphisms of A, of the form ¢,, for
r € F[z]. We will first show that R = AEM. The inclusion R C AI}FLM is clear, since
¢r(z) = x for all r € R. We will prove that the reverse inclusion holds as well.

Assume by contradiction that there is a € AEM \ R, say a = >I", fiyg® with
fi = fi(x) € R,m > 1, and f,, # 0. We can further assume fo = 0,s0a = Y 1", fi§".
Take g € RNZ(Ap). Then
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0=dg(a) —a=>_ fi((G+9) ~3).
=1

For 0 < k < m — 1, the coefficient of §* in the sum above is S chfigi_k, where
Cik = (;) if k < and ¢; ;, = 0 otherwise.

Assume first that char(F) = 0. Take g = 1 and k = m — 1 above. Then we get
m fm = 0, which is a contradiction. Now suppose char(F) = p > 0, and take g = 2",
where n is chosen so that np > max{deg f; | 1 < i < m}, and k = 0. We have
S figt = 0. For every i, either f; =0 or

inp < deg fig' < (i + 1)np.

This implies that f,,¢g™ = 0, so f,, = 0, which is a contradiction. Thus AEM CR,
and equality is proved.

The above shows that A% C R* C RP. However, since ¢,(z) = z for all r € R,
R* = RF, and the rest follows. O

Next we determine the invariants under 2 in R:
R'={rcRlw(r)=r VwedA} =R ={rcR | (r)=rV ((e) P}

Lemma 8.21. Suppose R¥ # F. Then there exists a unique monic polynomial s of
minimal degree in R* \ F with zero constant term such that R¥ = F[s].

Proof. Let s be a monic polynomial of minimal degree in RF \ F. We may assume
that s has zero constant term. Now for every r € RF, » = sf + ¢ for some f,g € R
with degg < degs. Applying 7¢ . to that relation gives

r=s1c(f) + 7c(9)

and subtracting that from the above gives 0 = s(f — 7¢ o(f)) + 9 — 7¢ c(g). Since this
is true for all (¢,e) € IP, and since 7¢ . preserves degree, we have that f € RF and
g €F. Thus RF = sRF @ F.

Clearly F[s] € R* = RP. For the other direction, we proceed by induction on the
degree of an element of R*; the case of degree 0 being obvious. Assuming the result
for degree < n, we suppose r € R* has degree n where n > 1. Then there exist
f € R¥* and &, € F such that r» = sf + &,. By induction, f € F[s]. Hence so is r, and
R¥* C F[s]. The uniqueness of such an s is clear. O

Theorem 8.22. Suppose 2 = Autp(Ay). Then
(i) R* =R ifA =TF[z], and R* =F if A =TF[z] x F* and |F| = .
(ii) R¥ = F[t], where the polynomial t € R can be taken as follows:

(a) If e =116, then t(z) =[], cq (z +v).
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(b) If Tp = T1.G X (Ta,8), where o is a primitive Lth root of unity for some

3 l
> 1, then t(z) = [[,cc <:E—|—m +1/) .

Proof. Assume r € R* and degr > 1, and let A be the set of roots of  in F. Since
every automorphism of the form ¢¢ leaves R pointwise fixed, the first part of (i) is
clear. We will assume we have nontrivial automorphisms in 7p. For any 7, € 711G,
the equality r(z +v) = 71, (r) = r(z) implies that p + v € A for all p € A. Thus G
acts faithfully on A, and roots of r in the same G-orbit have the same multiplicity.
This implies that degr is divisible by |G]|.

In particular, if 7p = 71 g, then we claim that the polynomial s in Lemma B.21]is
given by s(z) = t(z) —t(0), where t(z) = [[ g (z + v). Indeed, it is easy to see that
the polynomial ¢ belongs to R in case (a) of (ii). Moreover, t(x) — ¢(0) is a monic
polynomial of degree |G| in R* with zero constant term. Since every r € R* \ F has
degr > |G|, t(z) — t(0) is the polynomial s in LemmaB2Il Finally, F[t] = F[s] = R%
to give (ii)(a).

In all the remaining possibilities for 2 = Autp(A},), coming from Theorem [R13]
there exists an automorphism of the form 7, g, with (o, 8) € P and o # 1. Since
degr > 1, it follows from considering the leading coefficient of r = 7, 5(r) that
ad€” = 1, and thus when r ¢ F, degr is at least the multiplicative order of any
a € F* with («, 8) € P for some g € F.

Now when 21 = F[z] x F* in Theorem B.I3] F* is identified with 7p = {7, (1_a)x |
o € F*}, where A € F is the unique root of h. If » € R¥ with degr > 1, then by the
previous paragraph degr is greater than or equal to the multiplicative order of every
« € F*. If F is infinite, there is no upper bound on the order of elements of F*, so
no such r can exist. Hence, we have the second part of (i).

Assume now 7p = 71,g X (7a,3), Where o is a primitive ¢th root of unity for some
¢ > 1. It can be further assumed that = is not a root of r (if necessary, replace r

by 7+ 1). Recall from the proof of Theorem B.7 that 7 B = T izaig for alli > 0, so
’ Toa

|(Ta.5)] = £. Since r € R¥, we have 7(z) = r(ax + ) and au + 8 € A for all p € A.
Thus, we have an action of (14,) on A, defined by Té’ﬁ = Al 11%‘2‘;6. Given
our assumption that % ¢ A, this is a faithful action. Furthermore, the multiplicity
is constant within each G-orbit. The above shows that degr is divisible by /.

Finally, note that |G| and ¢ = |mp/7) g| are coprime by Remark Therefore,
in case (ii)(b) the degree of the polynomial r is divisible by the coprime integers |G|
and ¢, so degr > /|G|. Observe that

Ta,ﬁ(.il'—i-%—l-l/) = aa:—i—ﬂ—k%—i—u
= a$+%+1/:a<:p+%+a_ly>.
From Lemma BI1] we know that aG = G, hence a'v € G. Thus the polynomial

¢
t(x) = leq <a: + % + 1/> in (ii)(b) is invariant under the automorphisms in 7y ¢
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and also under 7, g, so t(x) is invariant under A. As above, since degt = (|G| and
any non-constant r € R® has degr > ¢|G|, we deduce that R* = [F[t]. O

8.4 The Center of Autr(Ay)

The explicit description of the automorphism group Autp(Aj) in Theorem
enables us to determine the center of this group.

Proposition 8.23. Assume degh > 1. Then the center of 2 = Autp(Ap) is
Z(A) ={¢, | r€ Rz} where Rz={r eR|m.(r)=(*8""1r V() eP}.

In particular, Fh' is a subgroup of Z(A) (under our usual identification of r € Flx]
with the automorphism ¢, ).

Proof. We first argue that the centralizer of the normal subgroup Flz| in 2 is Fx]
itself, so Z(2) is a subgroup of F[z]. Take w € A such that w™' o ¢ ow = ¢y for all
f € Flz], and write w = ¢, o 7¢ . € Autp(Ap) = Flz] x 7p. Then by (83,

¢f:w_loqﬁfow:T_’alogb;logbfongOTga:T_’alo(ﬁfOTQa:(JSJZ,

where f(x) = ¢%8"=1f(¢(~'(z — €)). This implies that f(Cz +¢) = ¢4€"~1 f(z) for
all f € Fz]. Setting f = h gives (%8"~1h = h(Cx + ¢) = (98"h, which implies
¢ =1. Now set f(x) =x to get © + e =z, so e = 0. It follows that ) = ¢, € F[z].
This shows that the centralizer Cy(F[z]) C Flx], and the other containment is trivial,
so we have equality.

Now w = ¢, € Z() if and only if ¢, commutes with 7., for every (¢,e) € P.
Equation (89) gives that 7'_61 o ¢p 0T = ¢7, where F(z) = (8" 1p((TL(z — ¢)).
Thus the condition that ¢, = 7_61 o ¢p o T¢ . is equivalent to the condition that
r(Cx + ) = ¢98h~1r(2), from which follows the desired result,

Z(A) = {¢, | 7 €Rz}, where Rz = {r € R|7c(r) = ("€ "y vV (C,e) € P}

Let (¢,€) € P. Then, by definition, h((x +¢) = (9&"h(z). Taking the derivative
of both sides shows that ¢h/((x + ¢) = (98"W (z), so W (Cx + €) = (I8 —1p/ (z). If
we multiply both sides of this equation by an arbitrary A € F, we see that Fh' C Rz.
Under our identification of {¢f | f € Flz]} with F[z], we have Fh' C Z(), and FA/
is clearly a subgroup under addition. O

Lemma 8.24. Assume degh > 1 and Rz # {0}, where Rz = {r € R | 7c.(r) =
¢deeh=1r v () € ]P’}. Suppose q # 0 is the monic polynomial in R = Fx] of
minimal degree such that ¢ € Rz. Then Rz = qR¥.

Proof. If f = qr, where » € R¥, then for all (¢,e) € P, 7¢(r) = r, and we have
70 (f) = (@) o(r) = (48" gr = (481 f 50 f € Rz.
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For the other containment, assume f € Rz, and use the division algorithm to
write f = qr + g with r, g € F[z] and deg g < degq. Then for ((,e) € P, we have

T(,e(f) = Cdegh_lf = (degh_quﬁ,e(r) + TC,&(Q),

so that f = q7¢.(r) + (dee h+17'<,€(g). Subtracting f = qr + ¢ from this expression
gives 0 = q(7¢(r) —r) + (798 17 (g) — g. Since deg 7 -(g) = deg g < degg, this
forces 7¢o(r) = r, that is r € R%, and g = 0 by the minimality of deggq. Thus, we
have f € qR*. O

Combining these results with the description of the invariants R* in Theorem
R22 we obtain the main result of this section — a description of the center of
AUtF(Ah).

Theorem 8.25. Assume degh > 1. Let A = Autgp(Ap), the automorphism group of
Ap. The center Z(A) of A is Z(A) = {¢, | r € Rz}, where Rz = {r e R| r(Cx +¢) =
¢deeh=1p(z) V (¢,e) € P}, and Z(A) and Rz are as follows:

(1) If A =TF[z], then Rz =R and Z(A) = Flz] = 2.

(2) If A = Flz] x 11,6, then Rz = R¥* = F[t] where t(z) = [[,cq(z + v). Hence
Z(A) = {¢r | r € F[t]}.

(3) If A = Flz] x F* and |F| = oo, then h = ~v(x — \)" for some v € F* and

some A € F, and Rz = (x — \)""'R* = F(x — \)"~!. Hence Z(A) = {¢, | r €
F(z — A"t}

(4) If A = Flx] x 1p, where Tp = 71,6 X (Ta,8) and o is a primitive Lth root of unity
for some £ > 1, then Rz = qF[t], where

n l
q(a:):H<a:+%+u> , t(x)zH(:t—i—%—i—V)
veG veG
and 0 < n < £ is such that n|G| = degh — 1 mod {. Hence, Z(A) = {¢, | r €
qF[t]}.

Proof. Tt will be seen in the course of the proof that in all cases Rz # {0}, so
from Lemma 824, we know that Rz = ¢R*, where ¢ is the monic polynomial of
minimal degree in Rz. Since we have determined R¥ in Theorem B22 we need to

find the polynomial ¢. For all (¢,£) € P we have from q(Cz + ¢) = (48"~ 1g(x) that
Cdegq — Cdeg h—l.

Let’s consider the various cases arising from Theorem [RI3] and Corollary B.I4k

(i) If A = Flz] or % = Fz] x 716, then Rz = R* = A} (and ¢ = 1).
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(ii) If A = F[z] x F*, where |F| = oo and F* is identified with the group {7, 1—a)x |
a € F*}, then by the above, o989 = qd8"~1 for all a € F*, which forces
deg ¢ = deg h — 1. Recall that this case occurs when h(x) = y(x — A)" for some
v €F*, A€ F, and n > 1. The monic polynomial (z — A\)"~! has degree equal
to degh — 1, and it is in Rz. Thus, ¢(z) = (z — A\)"~!, and Rz = (z — \)"~'R%.

(iii) In all the remaining cases, the group 7p is finite. We may assume |p/71 | =
¢ > 1 or else we are in case (2). Write 7p = 71 ¢ X (7, 3) Where « is a primitive
¢th root of 1. Note that ¢ and |G| are coprime by Remark [R12]

)4
We have shown that R* = F[t] where t(z) = [[,cq (x + % + 1/> . Since |G|
is invertible mod ¢ we can find n so 0 < n < ¢ and n|G| = degh — 1 mod /.
Set u(z) = [[,cq (m + % + l/> . Now u(z 4+ &) = u(x) for all £ € G, and

u(ax + B) = a™Clu(z) = ad8r—ly(z). These expressions show that u € Rz.
Hence, there exists a polynomial f(¢) € F[t] so that u = ¢f(t). However, since
the degree of ¢ in x is |G| and the degree of u in x is n|G| and n < ¢, it must
be that f(t) € F. But since both ¢ and w are monic, this says ¢ = u.

O

Example 8.26. Assume h(z) = 2™ for some n > 1. Then by Theorem BI3] A =
Autp(Ap) = Flz] x F*, where F* is identified with the automorphisms {74 | o € F*}.
If F is infinite, the monic polynomial generator of Rz is g(z) = 2"~! by Theorem
B25] and according to Theorem B27 the invariants are given by R* = F. Thus, in
this case Rz = Fa"~1 and Z(A) = {¢7 | f € Fa"~'}. If [F*| = £ < oo, then part
(4) of Theorem shows that the monic polynomial generator of Rz is ¢(x) = 2™,
where 0 < m < £ and m = n — 1mod ¢. Now Theorem asserts that R* = [F[t],
where t(z) = 2%, thus Rz = 2™F[z%] and Z() = {¢ | f € 2™F[z*]}.

Remark 8.27. In the case of the Weyl algebra, the center of Autp(A;) is trivial
by [KAlL Prop. 3]. However, when h ¢ F*, we can have the opposite extreme. For
example, if h = 22(z— 1), then P = {(1,0)}, as any permutation of the roots of h has
to fix 0 and 1 (since they have different multiplicities), and the affine permutations
determined by elements of P can have at most 1 fixed point, except for the identity
map. So Autp(Ay) = Flz] is commutative, and its center is the entire automorphism
group in this case.

8.5 Automorphisms of the Weyl Algebra

In this section we contrast the previous results on automorphisms of Ay, for h & IF,
with known results on the automorphisms of the Weyl algebra A;. The Weyl algebra
has more automorphisms because of its high degree of symmetry.

Let SLy(F) denote the special linear group of 2 x 2 matrices over F of determinant
1. Each matrix S = (g Z) € SLo(F) determines an automorphism ¢s of A; given by
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T — ax + By, Y =y + ey. (8.28)

The matrix T := (_01 (1]) € SL(IF) corresponds to the automorphism 7 := ¢r of
A; given by z — —y, y — x. And 77! corresponds to the automorphism with
r—y, yr> —x. Notethat 72 =1, 7 =1 and 73 =7"1= ((1) _01).

For each f € [F[z], there is an automorphism ¢ ¢ with ¢¢(z) = x and ¢¢(y) = y+f,
just as for the algebras Aj;,. However, in the A; case, observe that

(rrogoyor)(@) = z+f()

(T_lo¢_fOT) (y) = .
Hence, the automorphisms 9 := T log_ gor for f € Flz] give the analogues of the
maps ¢y but with the roles of x and y interchanged.
Remark 8.29. Unlike the situation for Ay, with degh > 1, the subgroup F[x] fails

to be normal in Autp(A1), which can be seen from the above calculation.

The following provide generating sets of automorphisms for Autr(A;). (Compare
and [S], and see also [KA] for part (iii).)

Theorem 8.30. Fach of the following sets gives a generating set for the automor-
phism group Autp(Aq):

(i) {¢y [ f e Flal} U{ey | f € Flz},
(i) {ps |8 €SLa(F)}U{gy | f € Flal},
(iii) {7, o5 | f € Flal},

(iv) {77 | f € Fla]}.

8.6 Dixmier’s Conjecture

In [D] Problem 1], Dixmier asked if every algebra endomorphism of the nth Weyl
algebra must be an automorphism when char(F) = 0. This conjecture was shown
to be equivalent to the longstanding Jacobian conjecture (see and [BK]). In
this section, we explore whether monomorphisms for the algebra A; with degh > 1
necessarily are automorphisms.

Proposition 8.31. Assume h = z™ for some n > 1, and fir k > 1. When
char(F) = p > 0 assume further that p does not divide k. Then there is an alge-
bra monomorphism ny, = A, — Ay, such that n(z) = 2F and (7)) = %x(k_l)("_l)gj.
If k > 2, then i is not an automorphism.
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Proof. Note that

[ (9), 1k (2)] = [a® D0V g,ak] = pat=Di=D g 24
_ %x(k—l)(n—l)kxk—l—%n — gphn — T]k(.%'n),

so there is an endomorphism 7, as stated. This endomorphism is injective because

m(z'y0) = Latk (x(k—l)(n—l)g)j
= Lagik=D(n-1)+ik

77 + lower order terms in .

The above also shows that im(n;) N R = 7, (R) = F[z¥]. If k > 2, then = ¢ im(n).
Thus n; fails to be surjective and consequently is not an automorphism. O

When char(F) = p > 0, it is known (e.g. Sec. 3.1 of [KA]) that Dixmier’s con-
jecture fails to hold for A;. The next result shows that the analogue of Dixmier’s
conjecture fails to hold for Ay, for any h with degh > 1.

Proposition 8.32. Assume char(F) = p > 0 and degh > 1. Let ¢ € Cp,(z) =
Flx, hPyP]. Then there is an algebra monomorphism k. : Ap — Ap such that k.(7) =
U+ c and ke(r) =r for all v € Flz]. If ¢ € Fz], then k. is not an automorphism of
Aj.

Proof. Note that

[ke(9), ke(2)] = [§ + ¢,2] = [§, 2] = h = Kkc(h),
S0 K¢ : Ap, — Ay, defines an algebra homomorphism. That . is injective follows from
the fact that (§ +c)' =§° + b for b € Do<;i Ry7.

Since k. is an algebra monomorphism of Ay, it follows that k. € Autp(Ay) if and
only if k. is surjective. If k. € Autp(Ap), then by Theorem B2 k.(7) € F*y + F[x].
But since k.(y) = y + ¢, which is not in F*y + F[z] whenever ¢ ¢ F[z], it follows that
ke cannot be surjective if ¢ & F[z]. O

8.7 Restriction and Extension of Automorphisms

We assume here that there is an embedding of A4 into Ay where f, g € Flz]. We
determine when an automorphism of A, extends to one of Ay, and in the opposite
direction, when an automorphism of A; restricts to one of A,.

Theorem 8.33. Assume deg f >0, degg > 1, and g =rf. Regard Ay = (z,7,1) C
Ar = (x,y,1) with g =yr.

(i) Suppose that w = ¢q 07,5 € Autp(Ay) so that
w(z) =az+ B, w(@) =a®I (G+q(2)), and a®g(z) = g(azx + B),
as in Theorem [§. Then w € Autp(Ay) extends to an automorphism of Ay if
and only if w(f) = a8 S f and q is divisible by r.
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(ii) Suppose that ¢ € Autp(Ay). Then 1) restricts to an automorphism of A, if and
only if ¥(g) = A\g for some \ € F*.

Proof. (i) Suppose that w = ¢4 0 7, 3 € Autp(A,) extends to an automorphism of
Aj. Then since w restricted to Flz] is 74,8, it must be that f(az + 8) = w(f(z)) =
ade/ f(x) (compare Theorem B.2)). Applying w to the equation g = rf, we have

a®89g = w(g) = w(rf) = w(rw(f) = wr)a®e!f,
and therefore w(r) = 9899 /- Moreover,
Q%R g1+ q) = wlyr) = wlyolr) = w(p) (0¥ (83)

Hence, w(y) = a8 /=1y + 5 for some s € R and ¢ = o' ~9& /15, so r divides q.

Conversely, suppose that w = ¢, 0 7,5 € Autp(A,), w(f) = a8/ f and q is
divisible by r. Write ¢ = rs for some s € R. Since f(azx+ ) = w(f) = a%&f f(z) and
w(g) = glax + B) = a%89g(x), it follows that r(ax + ) = ad€9I~%€ /1 (). We claim
that w agrees with the restriction of the automorphism ¢ = ¢, 0 7, 3 € Autp(Ay)
to the subalgebra A,. Indeed, p(y) = a%8/~l(y + 5), and ¢(§) = ¢(y)p(r) =
adee S =L(y 4 5)(d9—dee ) = qdeg9=1(j + rs) = a8 97L(§ + q) = w(§). Therefore,
¢ and w agree on the generators z,y of A;, and w extends to the automorphism ¢
of Af.

For (ii), assume ¢ € Autp(Ay). If 9 restricts to an automorphism of A,4, then by
Theorem B2, there is a € F* so that ¢(g) = ad%®9g. Conversely, suppose that 1
satisfies 1(g) = Ag for some \ € F*. As degg > 1, it follows from g(i(z)) = Ag(x)
that there are o € F*, 3 € F with ¢(z) = az + 8 € A,, and therefore ¢ ~1(z) =
a Yz — B) € Ay. Then it is easy to conclude that there exist 4 € F* and g € F[z] so
that ¥(y) = py + ¢. If we apply 1 to the defining relation of Ay, we further deduce
that f(azx + ) = auf(x), so in fact u = o9&~ and f(ax + B) = a8 f(z). Then
Ag(z) = g(axz + B) implies that A\ = o989, From this we deduce that ¢ (r(z)) =
r(ax + B) = ade€9798 r(z) = o487y (z). It remains to prove that ¢ (j) € A, and
(Ag) 2 Ay. Observe that

V() = Y()u(r) = (a8 7y + ) (a8 I74E ) = XI5 4 o€ Trg € A

Now if we let s € F[z] such that s(ax + 8) = ad%8"rq, it is straightforward to see
that 1(a!~9%89(§ — 5)) = 7, and thus the image of the restriction of ¢ to A, contains
the generators = and y.

]

Proposition 8.35. For 0 # h € Fz], the subgroup Hj, = {w € Autp(A;1) | w(Ap) =
Ap} is normal in Autp(Aq) if and only if h € F*.

Proof. That Hy, is a subgroup is clear. Suppose w € Hy, is defined by w(z) = = and
w(y) = y + z. Recall the automorphism 7 € Autp(A;) defined by 7(x) = —y and
7(y) = x, and observe that 7 ¢ Hy,. Then

(towor Nax)=1(y+z)=2—1.
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If Hy is normal in Autp(A;), then T ow o 77! restricts to an automorphism of Ay,
which is impossible unless h € F*, since automorphisms of A;, must map F[z] to itself
when h ¢ F*. The converse is clear, as Hj, = Autg(Ap,) if h € F*. O

9 Relationship of the Algebras A; to
Generalized Weyl Algebras

Given a ring D, an automorphism ¢ of D, and a central element ¢ € D, the
generalized Weyl algebra D(o,a) is the ring extension of D generated by u and d,
subject to the relations:

ub = o(b)u, bd = do(b), for all b € D; (9.1)

du = a, ud = o(a). (9.2)

Generalized Weyl algebras were introduced by Bavula [B], who showed that if D is a
Noetherian F-algebra which is a domain, the automorphism o is F-linear, and a # 0,
then D(o,a) is a Noetherian domain.

Lemma 9.3. [cf. Lemma [Z2] The following are generalized Weyl algebras over a
polynomial ring D = F[t]:

(i
(i
(i
(iv) the Weyl algebra.

a quantum plane
a quantum Weyl algebra

)
)
) the polynomial algebra in two variables
)

Proof. Cases (i), (ii), and (iv) follow from Examples 2, 4, and 1, respectively of [BOJ.
The remaining case can be seen by letting o be the identity automorphism of D and
a = t, so that D(o,a) = F[d, u). O

In view of Lemma[2.2]and the preceding result, it is natural to inquire whether the
algebras Ay, for h ¢ T, are generalized Weyl algebras. Theorem gives an answer
to this question (in the negative) when D is a polynomial ring in one variable.

Lemma 9.4. Assume D is a domain with 0 # a € D central, and let o : D — D be
an automorphism of D. If a & D*, then the only principal ideal of the generalized
Weyl algebra D(o,a) containing both u and d is D(o, a).

Proof. Consider the natural Z-grading on D(o,a) where the elements of D have
degree 0, d has degree —1 and u has degree 1.

Assume vD(o,a) is a principal ideal of D(o,a) generated by v and containing
u. Then, the equation vb = u, for b € D(o,a), implies that both v and b must be
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homogeneous with respect to the Z-grading. Assume v has degree n < 0. Then we
can write v = cd™" and b = éu!™", for some ¢, ¢ € D. We have:

u = (cd ™) (eu'™™) = (co™(&)d "u"")u.

The above equation implies that du = a is a unit in D, which is a contradiction.
Hence, v has degree n > 0. Similarly, assuming that d € vD(o,a), we conclude that
v has degree n < 0. It follows that if vD(o,a) contains both u and d, then v € D.
But then the equation véu = u, for ¢ € D, implies that vD(o,a) = D(o,a). O

Theorem 9.5. Assume h € F. Then the algebra Ay, is not a generalized Weyl algebra
over a polynomial ring in one variable.

Proof. Assume h # 0 and Ay = D(o,a), for D = F[t]. First, notice that a ¢ T,
as otherwise we would have ud = 0 = du, and A;, would not be a domain, or else
u = d~! and A, would have nontrivial units. By [RS, Prop. 2.1.1] we need only
consider three possibilities for o:

(A) o is the identity automorphism;
(B) ot) =t —1;
(C) o(t) = &t, for some & € F*) with £ # 1.

Notice that if o is the identity then D(o, a) must be commutative and thus h = 0,
so case (A) above does not occur. Cases (B) and (C) are usually referred to as the
classical and quantum cases, respectively.

Let Frac(Ay) be the skew field of fractions of Ay. By Corollary 4] Frac(Ap) is
the (first) Weyl field, i.e., the field of fractions of the Weyl algebra. Thus, it follows
by [RS, Prop. 2.1.1] and [ADI], Thé. 3.10] that D(c, a) must be of classical type, i.e.,
o(t)y=1t—1.

Let the ideal By, of Aj (resp. J of D(0,a)) be minimal with the property that
Ay /By, (resp. D(o,a)/J) is commutative. Then, by the defining relations of A;, and
the fact that h is normal, we have By, = hA;. In particular, By, is a principal ideal,
and it follows that J is also principal. In D(o, a), the relations v = [t, u] and d = [d, t]
show that u,d € J. But Lemma [0.4] implies that J = D(0,a), and thus hA, = Ay, so
h € F*. O
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