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Abstract

Dependence of magnetic field generation on the rotation rate is explored by direct numerical simulation
of magnetohydrodynamic convective attractors in a plane layer of conducting fluid with square periodicity
cells for the Taylor number varied from zero to 2000, for which the convective fluid motion halts (other
parameters of the system are fixed). We observe 5 types of hydrodynamic (amagnetic) attractors: two
families of two-dimensional (i.e. depending on two spatial variables) rolls parallel to sides of periodicity
boxes of different widths and parallel to the diagonal, travelling waves and three-dimensional “wavy” rolls.
All types of attractors, except for one family of rolls, are capable of kinematic magnetic field generation.
We have found 21 distinct nonlinear convective MHD attractors (13 steady states and 8 periodic regimes)
and identified bifurcations in which they emerge. In addition, we have observed a family of periodic, two-
frequency quasiperiodic and chaotic regimes, as well as an incomplete Feigenbaum period doubling sequence
of bifurcations of a torus followed by a chaotic regime and subsequently by a torus with 1/3 of the cascade
frequency. The system is highly symmetric. We have found two novel global bifurcations reminiscent of the
SNIC bifurcation, which are only possible in the presence of symmetries. The universally accepted paradigm,
whereby an increase of the rotation rate below a certain level is beneficial for magnetic field generation, while
a further increase inhibits it (and halts the motion of fluid on continuing the increase) remains unaltered,
but we demonstrate that this “large-scale” picture lacks many significant details.
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1. Introduction

Magnetic field of stars, planets and other astrophysical objects is often attributed to the motion of
electrically conducting melted substance in their interior (Parker, 1979; Priest, 1984; Soward et al., 2005;
Hughes et al., 2007; Dormy and Soward 2007), which is usually sustained by compositional and thermal
convection. Convective flows in a plane layer, ranging from very simple (Matthews, 1999) to turbulent
(Meneguzzi and Pouquet, 1989; Cattaneo et al. 2003) ones, are capable of magnetic field generation. In
simulations of the dynamo in the Earth’s liquid core (Glatzmaier and Roberts, 1995; Roberts and Glatzmaier,
2000), a magnetic field of the approximately correct strength was produced, which had the dipole structure
and exhibited reversals similar to the natural ones. Dynamos in spherical shells were also simulated by
Grote and Busse (2001), Ishinara and Kida (2002), Takahashi and Matsushima (2005) and other authors.
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Magnetohydrodynamic thermal convection is characterised in the dimensionless form by the Rayleigh
number, R (indicating the magnitude of thermal buoyancy forces); the Prandtl number, P (the ratio of
kinematic viscosity to thermal diffusivity), the magnetic Prandtl number, P, (the ratio of kinematic viscosity
to magnetic diffusivity), and the Taylor number, Ta (measuring the speed of rotation). Usually no-slip or
stress-free boundary conditions for the flow velocity and perfectly conducting or insulating boundaries for
magnetic field are considered.

How magnetic field generation by convection depends on parameter values, is not yet explored in full.
Large Rayleigh numbers are beneficial for generation (the critical P, decreases monotonically with the
increasing R) in spherical shells (Busse, 2000). Podvigina (2006) found a similar dependence in plane layer
dynamos on increasing R over the critical value, but for R over a certain threshold the behaviour of the
critical P, ceased to be monotonic; Podvigina (2008) also examined the influence of the Prandtl number.

Rotation, which is a common feature of the majority of astrophysical bodies, can also assist magnetic
field generation. Rotation of the Earth is relatively rapid; it is believed, that geodynamo operates in the
outer core in the magnetostrophic regime, in which the strength of the Coriolis force is comparable to that
of other primary forces - the Lorentz force, pressure and buoyancy. Rotation is also an important factor in
physics of the Solar tachocline (Christensen-Dalsgaard and Thompson, 2007), where apparently the solar
dynamo is located. Differential rotation gives rise to w—effect dynamos (Moffatt, 1978). Although they are
slow, as opposed to fast ones, which are believed to operate in stars, this mechanism is regarded as a key
element of the dynamo of the Sun (Tobias and Weiss, 2007). Boundary layers and shear flows developing in
rapidly rotating fluids are the structures controlling the dynamics of fluid and planetary dynamo processes
(Busse et al., 2007). Therefore, how the processes of generation are affected by the rate of rotation is an
interesting question for astrophysical applications.

Dependence of magnetic field generation on the rate of rotation was explored in a number of papers.
Meneguzzi and Pouquet (1989) observed that rotation could be beneficial for nonlinear dynamos — the
critical magnetic Reynolds number decreased and the ratio of magnetic to kinetic energies significantly
increased, when rotation was on. By contrast, Cattaneo and Hughes (2006) found that rotation was not a
significant factor: they reported “similar growth rates and similar saturation levels” in rotating and non-
rotating systems. Only several runs were presented in each of the two papers, and hence the observations
were inconclusive. Whilst turbulent convective nonlinear dynamos do not require rotation, near the onset of
convection in a plane layer rotation is essential for both kinematic (Matthews, 1999) and nonlinear dynamo
action (Demircan and Seehafer, 2002) — in both regimes considered by these authors dynamos failed in the
absence of rotation.

Our paper is devoted to investigation of the dependence of magnetic field generation on Ta. A fluid
heated from below in a plane horizontal layer rotating about the vertical axis is considered in the Boussinesq
approximation, whereby the buoyancy depends linearly on temperature, density variation is neglected in
the mass conservation equation and the flow is incompressible. Perfectly electrically conducting stress-free
horizontal boundaries of the layer are held at constant temperatures; periodicity in horizontal directions
with the same period L (measured in the units of the layer depth) is assumed.

We fix all parameter values except for the Taylor number and investigate numerically attractors of
the system for Ta increasing from zero, and bifurcations delimiting branches of the attractors. Along
the branches we trace average magnetic, E,,, and kinetic, Ej, energies, as well as their ratio, E,,/E, in
saturated regimes; the latter quantity is a measure of dynamo efficiency of prime concern in astrophysics
(although we are clearly not in the astrophysical range of parameter values). The system is also of interest
from the point of view of equivariant bifurcation theory, because it has a large symmetry group.

We employed the same values as in Podvigina (2006): P =1, P,, = 8, R = 2300 and L = 2v/2 (this is the
period of the first mode becoming unstable in a non-rotating layer on increasing R). The Rayleigh number
is not far from the critical value for the onset of convection; hence, convective attractors have a simple
roll structure, which simplifies a detailed investigation of the attractors and bifurcations. The P,, value is
not far from its critical values for the kinematic dynamo problem for convective attractors, hence flows in
convective MHD attractors (when dynamos operate) are qualitatively similar to flows in non-magnetic ones.
(Note, that in steady MHD states flows can be reconstructed from the structure of the generated magnetic
field, see Zheligovsky, 2009a.)

2



2. Statement of the problem

The system is governed by the Navier-Stokes equation

ov

VX (Vxv)+ PAv+ PRfe, + Prv xe, —Vp—b x (V xb), (l.a)
the magnetic induction equation
88—1; =V x (vxb)+ PP, 'Ab (1.b)
for solenoidal fields
V-v=0, V-b=0, (l.e)
and the heat transfer equation
% =—(v-V)0+uv,+ Af. (1.d)

Here v denotes the flow velocity, b the magnetic field, 6 the difference between the temperature of fluid and
the linear temperature profile, and 7 = v/T'a is twice the angular speed of rotation of the fluid.
The following boundary conditions on the horizontal boundaries:

%:%:w:o, =0 atz=0,1 (2.a)
%:%:@:0 at z =0,1 (2.0)
and periodicity in horizontal directions with the same period
v(z,y,z) =v(x + mL,y+nL,z), 0(z,y,z)=0(x+mL,y+nL,z), (3.a)
b(z,y,2) =b(z +mL,y + nL,2) (3.0)
Vm,n € Z

are assumed.
The equations are solved numerically by the standard pseudospectral methods (Boyd, 2001; Peyret,
2002). Fields are represented as Fourier series satisfying the boundary conditions (2):

0% cos(mngz) B
v = Z oY cos(mngz) | eT (matnay)
n 02 sin(mngz)

2mi

On sin (nie-+nzy),

(mn3z) _
b= Z ( bY cos(mngz) | et (mztnay),
n (Tn3z)
6= D Onsin(mnsz)
n
The resolution of 31 x 31 x 17 Fourier harmonics has been employed for computation of hydrodynamic
convective attractors, and 63 x 63 x 33 in simulations of kinematic dynamos (without dealiasing in both
cases). These simulations have been checked against runs with the double resolution without dealiasing, and
computations of kinematic magnetic modes also against runs with the resolution of 41 x 41 x 21 harmonics
with dealiasing. We have been employing the standard method of dealiasing in computation of all products
in (1) (requiring to evaluate fields on a uniform 64 x 64 x 33 mesh in the physical space in order to compute
41 x 41 x 21 Fourier harmonics of the products).



Simulation of nonlinear hydromagnetic convective regimes has been performed with the resolution of
41 x 41 x 21 Fourier harmonics with dealiasing. We note that computation with a coarser resolution of
31 x 31 x 16 Fourier harmonics without dealiasing in earlier MHD convection simulations by Gertsenshtein
et al. (2007, 2008) yielded a wrong classification of some regimes (a typical error consisted of obtaining a
periodic regime instead of a convective MHD steady state). Although from the conservative point of view
it thus may be also unsafe to employ the resolution of 41 x 41 x 21 harmonics, the huge amount of runs
has forced us to use it in the main bulk of computations. For this resolution magnetic energy spectrum
decreased] by at least four orders of magnitude and the flow and temperature energy spectra decrease by
about nine orders of magnitude. Some computations of nonlinear hydromagnetic regimes (including at least
one attractor on each MHD branch) have been checked against runs with the resolution of 127 x 127 x 65
Fourier harmonics without dealiasing, the results remaining visibly unaffected (the energies being reproduced
with the accuracy better than 0.001%).

By Ex and E,, we denote kinetic and magnetic energies, respectively, averaged over the fluid layer:

1 1 L L |V|2 1 1 L L |b|2
E,=— — B, =— — .
k=12 /0 /0 /0 5 drdydz, 72 /0 /0 /0 5 drdydz

For non-steady convective MHD regimes, time averaging is also performed.

Branches of attractors are traced by continuation in parameter: computations are done for initial con-
ditions, which are a point (in the phase space) on the attractor for a “nearby” Ta. Typically the distances
between such “nearby” Ta vary between 0.1 and 100. Also, for some T'a runs have been performed for
“random” initial conditions, comprised of fields with pseudorandomly generated Fourier coefficients and an
exponentially decaying spectrum, with either small (~ 107°), or large (~ 102 — 10%) initial kinetic, magnetic
and thermal energies, in order to check whether multiple attractors coexist for the value of the Taylor num-
ber under consideration. Bifurcations of steady states are located by solving the eigenvalue problem near
the endpoints of the branches and extrapolating the eigenvalues or their real parts to zero.

3. Symmetries

The symmetries of the rotating hydromagnetic convective system under consideration constitute a sub-
group of the group of symmetries of the system in the absence of rotation. We list them here for reader’s
convenience, using the notation of Podvigina (2006).

The symmetry group of the convective system (1) with the boundary conditions (2), (3) is Zy4 x T2 x Zs.
The group Z4 consists of rotations

s1: (z,y,2) = (y, —,2),
82 ¢ (xvyaz) = (—33, _yvz)v
S3 ! (xvyaz) = (_y,ﬂf,z)

and the identity sg = e. T, and T, are the groups of translations in the z and y directions, respectively:

Ve (Y, 2) = (T +a,y, 2),
vy (2,y,2) = (2, + @, 2)

where 0 < a < L (7§ =¥ =e€). Ty, is the group of translations along the diagonal:
Vs (2,9,2) (@ + @y +a, 2).
The group Z- is generated by reflections about the horizontal midplane:

r: (z,y,2) — (z,y,1 — 2).

1The ratio of energy in the spherical shell of width one in the Fourier space with the largest energy content to the energy
in the last considered spherical shell is reported.
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If magnetic field is present, the group of symmetries of the system is augmented by the symmetry
reversing magnetic field
q: (Vvovb) = (Vvov _b)

The symmetry about a vertical axis, s2, and parity invariance about a centre (located on the midplane)
which is a composition of sy and r, are of special interest, since in such MHD states the global a—effect is
zero: In the presence of the global a—effect the system is inherently unstable to large-scale perturbations,
while in its absence the instability, if present, develops on time scales of a higher order (see Zheligovsky,
2009b). Although we have not studied spatio-temporal symmetries of non-steady attractors in detail, we note
that we have encountered periodic orbits possessing the symmetry about a vertical axis or parity invariance
with a time shift (equal to a half of the temporal period). A spatio-temporal symmetry with a time shift
differs from the respective spatial symmetry in that it relates fields at two time instances, separated by an
interval whose length is equal to the time shift; for instance, the symmetry so about a vertical axis through
the point (az, ay,0) with a time shift T' of a vector field f is defined by the conditions

f$(a$_x7ay_y727t) _fw(aw+xaay+y727t+T)7
fy(ar - maay - y,Z,t) = _fy(ar +maay +Z/72’7t+T)7
folag —zay —y, 2, t) = f.(az + 2,0y +y, 2, + T).

Note that compositions so7? and sery? are the symmetry about a vertical axis and parity invariance, in
which the axis (the centre, respectively) of symmetry is displaced in the direction d by —«/2; changing the
order of factors in these compositions to the opposite one results in the displacement of the axis and the
centre, respectively, in the reverse direction. s, is used as a generic notation for the symmetry about a
vertical axis with no specific axis indicated; consequently, we do not distinguish notationally sov? from s,
(except for in Table 5). In what follows, for construction of figures displaying vector fields which possess
the symmetry so we employ a coordinate system with the origin lying on the axis of ss.

4. Hydrodynamic convective attractors

For a small Rayleigh number, i.e. a small temperature difference between the upper and lower boundaries,
the fluid is not moving and heat is transported by thermal diffusion only. When R exceeds the critical value
(which increases with T'a), a fluid motion sets in. For P = 1 considered here, the instability is monotonic, the
primary motion has the form of rolls. The wave number (in the horizontal direction) of the most unstable
mode monotonically increases with Ta. If periodicity in horizontal directions is imposed, the horizontal
wave number must be compatible with the periodicity cell size and it can take only discrete values, and for
an increasing T'a the wave numbers of the emerging rolls constitute a piecewise constant growing function.
At very high rotation rates an array of very thin rolls emerges (Bassom and Zhang, 1994).

Five types of attractors of hydrodynamic convection (governed by the system (1)—(3) for b = 0), that
we have found in computations, are shown on the bifurcation diagram Fig. [Il (see also Table[]). Since the
Rayleigh number is not far from the critical value for the onset of convection, the flows are of a simple
spatial structure (see Fig. [2]).

Three types of attractors are steady rolls of different spatial periods. In agreement with the linear
stability theory, their wave numbers increase with T'a (remaining the same within each branch). The rolls
obtained in computations are parallel to a side of the periodicity cell with either the same period as the
periodicity cell size, or a half of it; or they are parallel to the diagonal of the cell. The branches are labelled
R1, Re2 and Rp, respectively.

In a non-rotating layer, bifurcations of rolls are well documented. However, these results cannot be
directly applied to convection in a rotating layer, even if the rotation rate is small — this can only be done
after unfolding of bifurcations of rolls is performed, i.e. after it is determined how the bifurcations alter, if
small terms breaking the reflection symmetry are added. This is an interesting problem in its own right,
but it is beyond the scope of the paper.

On increasing R, in a non-rotating layer rolls can bifurcate to travelling waves in a Hopf bifurcation
for P < 2.5 (Getling, 1998). This bifurcation, with the O(2) symmetry group, was studied in detail in
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Figure 1: Kinetic energy (vertical axis) of hydrodynamic attractors for 0 < T'a < 2000 (horizontal axis). Labelling of attractors
is explained in Section 4 (see also Table [I). Note that R; does not bifurcate from Rp: energies of the two flows at the point,
where R1 becomes unstable, differ by about 0.5, which is not seen in the scale of the figure.

Golubitsky et al. (1988). In it, branches of standing and travelling waves emerge; if both branches bifurcate
supercritically, one of them is stable. A travelling wave, TW, is time-periodic in a coordinate frame at
rest and it is steady in a frame moving with the speed of the pattern. In a non-rotating convection such
bifurcation from R4 to a stable travelling wave takes place near R ~ 898 (Podvigina, 2006). The instability
causes a sinusoidal bending of rolls, the pattern travelling along the axis of a roll.

We also observe the TW: On decreasing T'a, Ry loses stability and the stable travelling wave emerges
in a similar supercritical Hopf bifurcation with the O(2) symmetry group. Due to rotation, no reflection
symmetries are present, enabling the travelling wave to drift in the direction perpendicular to axes of rolls.
All other bifurcations of rolls of the three types are subcritical pitchfork bifurcations, with no stable branches
emerging. On increasing T'a, the branch Ry terminates at T'a = 1969.67 (this number is in a good agreement
with the value of the Taylor number, obtained from the Chandrasekhar’s (1961) formula for the critical value
of the Rayleigh number for the onset of convection in a layer with free boundaries) on the trivial steady
state; no non-trivial convective regimes exist for higher rotation rates.

Another attractor, distinct from rolls, is wavy rolls, WR. In a non-rotating layer emergence of WR, from
R, is a consequence of the 1 : /2 mode interaction (Podvigina and Ashwin, 2007). Similar arguments
show that in a rotating layer WR can also bifurcate from rolls. On decreasing T'a, WR disappear in a
saddle-node bifurcation — the branch turns back and becomes unstable. Apparently, it bifurcates from R;
at Ta = 725.45: WR and R; have similar shapes and close energy values, and by the equivariant branching
lemma (Golubitsky et al., 1988) the action of the symmetry group of Ry (see Table[I]) implies that a branch
with the symmetries of WR bifurcates from R;.

5. Magnetic field generation

We have investigated whether the flows that are convective hydrodynamic attractors are capable of
kinematic magnetic field generation. For steady hydrodynamic states we have been computing (applying the
algorithm of Zheligovsky, 1993a,b) dominant eigenvalues of the magnetic induction operator. For travelling
waves, equation (2.b) in the co-moving reference frame yields a similar eigenvalue problem (see Podvigina,
2006).
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Figure 2: Isolines (step 2) of v, on the horizontal midplane z = 1/2 for hydrodynamic attractors TW, Ta = 50 (a); Rq,
Ta = 500 (b); WR, Ta = 720 (c); Rp, Ta = 685 (d); Re, Ta = 1100 (e). Solid lines indicate non-negative, dashed lines
negative values. x: horizontal axis, y: vertical axis.
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Figure 3: Growth rates (vertical axis) of magnetic field generated kinematically by hydrodynamic attractors as a function of
Ta (horizontal axis).



Table 1: Attractors found numerically for hydrodynamic (b = 0) convection. Column 2 presents the interval, where existence
of branches of attractors is confirmed numerically, column 3 presents the symmetry group for which an attractor is pointwise
invariant, column 4 generators of the group (for an appropriately chosen Cartesian coordinate system); if a group is a product
of several subgroups, generators of the subgroups are separated by semicolons. Column 5 presents locations (T'a) and types of
bifurcations in which a steady state becomes unstable (S denotes a steady-state bifurcation, H a Hopf bifurcation), column 6
the dimension of the respective center eigenspace, column 7 the action of the symmetry group on the null eigenspace, and the
last column elements of the group which act trivially. 1 denotes a trivial group of symmetries.

Type Interval of Symmetry Generators Bifurcation | D | Action | Kernel
existence (T'a) group
TW [1,187] Z, VI /2
R, [188,725] Do x T | 7]y 52,77 | 18719, H | 4| O(2) )0
72545, | 2| O(2) | i,
WR [719,750] D, VL 2> S2 718.16,S | 1 1 YL 2> 52
750.82,S | 1 Z, S2TYT /o
Ro [684,1373] Dy x T | 17f 9, 52; 97 | 683.64,S | 2| O(2) VI /2
1373.32,S | 2 | O(2) .Y
R» [999, 1969] DyxT | m,,s59% | 99818,S [ 2] OQ) | ™’

All the hydrodynamic attractors have non-trivial symmetry groups and magnetic modes can be classified
in the terms of the action of their symmetries. Symmetry groups of rolls are continuous, they include shifts
along the axis of rolls, and bifurcating modes can have arbitrary periods in this direction. We restrict our
attention to magnetic modes that have the periodicity of the hydrodynamic convective attractors. The
computed growth rates are shown on Fig. 3] and symmetries of dominant modes are presented in Table[2l It
turns out that all the attractors, except for Ra, can generate magnetic field. Note, that since TW bifurcates
from R;, the steady magnetic mode of R; becomes a time-periodic mode of TW, whose frequency at the
point of bifurcation coincides with the one of TW and the eigenvalue becomes the real part of the TW
magnetic eigenvalue.

There is no obvious relation between the structure of magnetic field generated by TW and stagnation
(in the co-moving reference frame) points of the flow (Podvigina, 2006, found that the same was true for
convective dynamos without rotation). The spatial structure of growing magnetic modes is shown on Fig. [l
and Bl For all convective flows capable of magnetic field generation, in dominant magnetic modes the field
concentrates near horizontal boundaries in flattened half-ropes. A plausible underlying physical mechanism
for this kind of behaviour in the case of perfectly conducting boundaries was proposed by St Pierre (1993).
For steady flows, in agreement with the kinematic dynamo theory (Galloway and Zheligovsky, 1994), each
half-rope is centered at a stagnation point of the flow and oriented along the one-dimensional unstable
manifold of the flow at this point (see Fig. [l (a), (c) and (e) ). Magnetic field is advected by the flow and,
accordingly, the ropes are stretched along the trajectories of fluid particles on the upper boundary; however,
advection is affected by magnetic diffusion, which must be responsible for a (rather modest) deviation of
the direction of half-ropes near their ends from the direction of the trajectories (see Fig. [ (a), (c)). The
half-ropes extend till they begin to feel the influence of the adjacent stagnation points in the direction of
their stretching, which results in termination of the ropes. Magnetic field is advected by the flow into the
layer; it is redistributed to form vertical two-dimensional magnetic flux sheets (shown on Fig.[dl (d) and (f))
in the plane of the unstable/neutral directions of the stagnation points.

Sample trajectories of fluid particles inside the rolls, also shown on Fig. [l (a), (c), (e), attest that
the motion is not planar (and hence the Zeldovich, 1956, antidynamo theorem is unapplicable). In Ry
and Ry the fluid moves along closed loops, because the flows are two-dimensional (i.e. independent of a
horizontal Cartesian coordinate, which in our notation is y) and possess two symmetries, so (more precisely,
the symmetry about any vertical line on the boundary between two adjacent rolls, rotating in opposite
directions) and rv7 /2 (Due to solenoidality and two-dimensionality, v, and v, are associated with a stream

8



U
i

PN
SN
i) )

N
/

LIRSS
IEREANN
N
(AN
/A AN

/
(%
|
|
|

Qi g

() (h)

Figure 4: Isolines step 0.2 of b on the horizontal midplane z = 1/2 for dominant magnetic modes: T'a = 50, TW (a); T'a = 150,
TW (b); Ta = 500, R1 (c); Ta = 720, WR (d); Ta = 685, Rp (e); Ta = 1200, Rp (f); Ta = 1100, Rz (g); Ta = 1700, Rz (h).
Solid lines indicate non-negative, dashed lines negative values. x: horizontal axis, y: vertical axis.




Figure 5: Isosurfaces of magnetic energy density of the dominant magnetic modes, at the level of a half of the maximum, for
Ta =50, TW (a); Ta = 150, TW (b); Ta = 500, R1 (c); Ta = 720, WR (d); T'a = 685, Rp (e); T'a = 1200, Rp (f); T'a = 1100,
R2 (g); Ta = 1700, Rz (h). Isolated stagnation points and lines of stagnation points of the flow on the horizontal boundaries
are shown by dots and bold lines. Four periodicity cells are displayed. On each panel, coordinate axes are as shown on (a).
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Figure 6: Isosurfaces of magnetic energy density of the dominant kinematic magnetic modes generated by Rj for T'a = 500 at
the 50% level of the maximum (a) and at 3.5% (b); by WR for T'a = 720 at 50% (c) and 10% (d); by Rz at T'a = 1700 at 50%
(e) and 12% (f). Stable and unstable directions of some stagnation points are shown by lines with arrows, neutral directions
associated with zero and imaginary eigenvalues by lines without arrows. (See location of isolated stagnation points of the flow
on the horizontal boundaries and lines of stagnation points on Fig.[E]and note that axes of rolls R; and Rg are also comprised
of stagnation points.) Sample trajectories of fluid particles on the upper boundary and in the interior of the fluid layer are
shown by thin lines. One periodicity cell is displayed. On each panel, coordinate axes are as shown on Fig. [l (a).
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Table 2: Dominant kinematic magnetic modes of the hydrodynamic convective attractors. Column 2 presents generators for
symmetry groups of the hydrodynamic attractors, column 3 the interval of T'a where a magnetic mode is dominant, column
4 dimension of the eigenspace associated with the dominant eigenvalue, column 5 the action of the symmetry group on the
eigenspace, column 6 the symmetries which act trivially, the last column the eigenvalue A of the magnetic induction operator
for which the maximal growth rate is attained in the interval of Ta specified in column 3.

Flow Generators Ta D | Action Kernel A

™ VL2 [1,84] 2 Z, L 0.97 + 28i
85,187) | 2| s " 118 & 19i

Ry 52, Y5 195 VY [188,725] 2 1 02 TYE 195 A7 /o 1.53

WR 52, Y] 9 [719,750] 1 Z- qs2, 7 /o 0.45

Rp | s2, 177 03 7™ [684,925] 2 1 0 T4V o5 q*yi% 0.49

930,1373] | 2 | O(2) | rq7f 0, 4VL)s 0.13

Rs 2, TV a5 VY [999,1420] | 2 | O(2) YL 40 q'yg/2 -0.48

[1430,1969] | 2 | O(2) | rgvi. aVi s -0.62

function, say, ¥(zx, z), and equations of motion for the particles imply that their trajectories are spirals
residing on the surfaces v(z, z) = const, topologically equivalent to infinite cylinders. The two symmetries
of the flow imply ¥ (x, 2) = (-2, —2) and vy (z, z) = —vy(—x, —2), in a coordinate system with the origin on
the axis of the roll; hence the helical trajectories degenerate into closed loops.) The structure of trajectories
in WR is by far more complex (two trajectories in the interior of the volume of fluid are shown on Fig.
(¢)), however, visibly this does not affect the complexity of the magnetic field — neither at large magnetic
energy levels, nor at small ones.

Fig.[@l (b), (d), (f), showing isosurfaces of magnetic energy density at low levels, expose two-dimensional
structures of magnetic field apparently related to stagnation points (for which eigenvectors of the stress
tensor ||0vg y,./0{x,y, 2}| are also shown) of the flows. Formation of a magnetic flux sheet tangent to the
two-dimensional unstable manifold of a stagnation point of a flow was investigated analytically by Childress
(1979) and Childress and Soward (1985). The structures that we observe are peculiar in that magnetic
energy density increases not in between the isosurfaces, as it does in magnetic flux sheets, but, on the
contrary, outside them, i.e. the isosurfaces reveal two-dimensional “magnetic flux sheet gaps”.

At first glance, emergence of such “antistructures” can be linked to the fact that in most cases the
respective stagnation points have neutral eigendirections along lines of stagnation points (note that lines of
stagnation points reside not only on the horizontal boundaries, as shown on Fig. Bl but also constitute the
axes of the rolls R; and Rg) — at such stagnation points the two-dimensional antistructures are associated
with the unstable and neutral eigendirection. In the presence of a neutral direction the theory of Childress
(1979) and Childress and Soward (1985) may be unapplicable. This argument, however, breaks for isolated
stagnation points of WR in the middle of upper edges parallel to the y axis (see Fig. [l (d)), which do
not possess neutral eigendirections, but have genuine two-dimensional unstable manifolds. By contrast,
formation of “bells of trombones”, the antistructures on Fig. [l (b), is not related to any unstable direction
— they are oriented along the eigenplane associated with two imaginary eigenvalues of the stress tensor.
Dynamics of fluid in this case is significantly different from that considered ibid.: the trajectories are closed
oval loops centered at the axis of the roll. Fig. [l (c) reveals, that the “bells of trombones” constitute
boundaries between blobs of magnetic field of the opposite orientation.

6. Nonlinear magnetic field generation

Kinematic magnetic growth rates are not large (see Fig. Bl). In agreement with this, for all convective
MHD attractors that we have computed, magnetic energy, E,,, is smaller (at least seven times) than the
kinetic one, Fj (see Figs. [[HA). Consequently, all the MHD attractors can be regarded as perturbations
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Figure 7: Kinetic Ej energy (vertical axis) of convective MHD attractors (solid line) and of hydrodynamic attractors (dashed
line) for 0 < T'a < 2000 (horizontal axis). Labelling of attractors is explained in Sections 4 and 6 (see also Table [2).
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attractors is explained in Section 6 (see also Table [2]).
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of hydrodynamic attractors (note that the plot of the ratio E,,/Ej is quite similar in shape to the plot of
magnetic energy, cf. Figs. [0 and R also suggesting that we are close to the onset of both convective motions
and of magnetic field generation) and the spatial structure of the flows is similar to that in the absence of
magnetic field (cf. Figs. 2 and[I0). Hence, we label branches of MHD attractors as follows: The main label
denotes the type of an attractor: S for a steady state, P for periodic, Q for quasiperiodic (in assigning these
labels we disregard temporal periodicities due to drifts along the = and y axes). The superscript denotes
the hydrodynamic attractor, the MHD attractor is genetically related to. The subscript is the consecutive
number within the collection of attractors of the specified morphology (e.g., there are eight different MHD
steady states with spatial structure similar to that of R;). The numbering of branches is in the order of
increasing T'a.

Despite hydrodynamic attractors of just four types generate magnetic field in the kinematic regime and
magnetic field growth rates are not large, we have observed a large variety of MHD attractors (see Table
and bifurcation diagrams Figs. [ and [{). In the description of branches of convective MHD attractors and
bifurcations bounding them we follow the ordering of hydrodynamic attractors in Table [I, and for each of
them we start with unstable magnetic modes. When on increasing P,, a magnetic mode eigenvalue crosses
the imaginary axis, an MHD steady state or periodic orbit appears; for supercritical bifurcations these objects
are stable. We refer to them as primary magnetic attractors. For P,, = 8, for which the problem is solved
here, these objects are not necessarily stable; for a varying T'a they constitute a branch, and somewhere along
the branch can gain stability. Because of emergence of the branches of unstable convective MHD states,
in the present problem identification of hydrodynamic attractors with neutral kinematic magnetic modes,
giving rise to the branches of primary convective MHD attractors, is not straightforward. We perform
this identification by comparing the spatial structure of the fields in the attractor with the respective
hydrodynamic attractor and the magnetic mode, including their symmetry groups.

To identify bifurcations of steady states we calculate eigenvalues and the associated eigenspaces of the
operator of linearisation of the system (1)-(3). Hence for each bifurcation of a steady state we know the
dimension and the action of the steady state symmetry group on the eigenspace (see Table [l), which is a
necessary information for application of the general theory of bifurcations for symmetric systems (Golubitsky
et al., 1988).

For each growing magnetic mode there exists a primary MHD attractor. At points of bifurcations from
rolls, dimension of the kernel of the magnetic induction operator is two due to the presence of translation
symmetries (see Table[Z]). The action of the symmetry group on the eigenspace is O(2) generated by so and
translations. Along axes of rolls eigenmodes can have periods ¢/n with an integer n > 0, where for rolls
parallel to coordinate axes £ = L and for rolls parallel to a diagonal ¢ = v/2L. If a magnetic mode has a
period £/n, the shift by £/(2n) acts as —I, hence the superposition of the shift by ¢/(2n) and ¢ maps the
mode into itself. Bifurcations from rolls are pitchfork with the symmetry group O(2). Thus a continuum
of steady states emerges, the symmetry group of each of them is a product of Z, generated by s3 and the
subgroup which acts trivially. Bifurcations from TW are Hopf ones, and for WR it is pitchfork.

The spatial structure of magnetic fields is shown on Fig.[TTl A common dominant feature in the majority
of nonlinear convective hydromagnetic regimes is concentration of magnetic field flux in half-ropes located
near the horizontal boundaries. In the primary attractors this structure is inherited from the respective
kinematic dynamo modes. Concentration of magnetic field near boundaries of the layer was observed by St
Pierre (1993) in simulations of subcritical magnetic field generation by thermal convection of rapidly rotating
fluid (for the same boundary conditions, as employed here). Such behaviour of magnetic field was observed
in many computations (see a discussion and references in Zheligovsky, 2009¢) and it is usually expected
for electrically perfectly conducting boundaries (although Zheligovsky, 2009¢, found for these boundary
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Table 3: MHD attractors found in computations. Column 3 presents the symmetry group for which an attractor is pointwise
invariant, column 4 generators of the group (for appropriately chosen location of the origin of the coordinate system); if a
group is a product of several subgroups, generators of the subgroups are separated by semicolons. Columns 5 and 6 present

time-averaged kinetic and magnetic energies, respectively.

Type Interval of Group of Generators Ey E,,
existence (T'a) | symmetries
(frequency)
PTW [1,81] Z 4 9 22832125 | 810
f=429—-4.19
FTW [36,80] Z Y, 234.1-232.7 | 9.4-11.3
[l [78,126] Z Y 236.6-239.9 | 17.0-13.3
SKI [127,169] D, YL o, 452 239.8-217.0 | 13.426.0
S [170,216] Do X Zy | 1] ) 525 477 | 216.3-198.7 | 26.2-32.3
PRI [217,223.3] D, 9V] g 752 198.3-196.1 | 32.2-31.8
f =0.056 — 0.041
SKI [219,271] D, avY 50 52 197.7-183.6 | 32.1-28.6
SHI [223.11,466] D, aVY o0 752 196.0-156.2 | 31.9-16.1
pit [343,377] D, 4L, 452 177.6-175.4 | 19.9-15.2
f=0.44—-0.45
SRt [378,505] D, QY1 g, 452 175.5-163.5 | 15.0-3.1
pit [505.1,506.0] Zs VL, 163.5-163.0 | 3.1-3.2
f=0.05-0.004
SR [506.1,667] DyxZy | qv),,. 5257478 5 | 159.2-130.3 | 4.7-1.4
SERI [668,682] D, QYL s S2 129.9-125.7 | 1.3-1.9
SRI [674,704] D, YT gy S2 119.5-116.8 | 3.4-1.1
PRI [705,718] D, VY jar 52 116.5-118.7 | 0.9-0.4
f=0.06—0.01
SWR [721,725] D, TYE o, 452 98.9-102.0 | 1.9-0.2
Shb [685,697] D¢ x Zo QL) $2: ™7 | 120.8-120.5 [ 1.3-0.7
SRb [698, 764] D, rqYY g, S2 120.4-112.7 | 0.7-1.7
SED [765, 787] DyxZy | a7,y 525 707y | 11261120 [ 1.6-0.
SEb [1118,1355] D, x Zo Yy gy 52 rqVg e | 74.3-39.2 0-2.9

conditions an example of a time-periodic nonlinear convective magnetic dynamo, in which magnetic field

always remains concentrated inside the layer of fluid).

In what follows we overview the MHD attractors found in computations and their bifurcations.

6.1. MHD attractors emerging from TW, 0 < Ta < 81
The bifurcation diagram of MHD regimes at the interval 0 < T'a < 200 is shown on Fig.

The interval of T'a, where TW exists, consists of two subintervals of kinematic dynamo action, separated
by a window 82 < Ta < 86 of non-generating TW regimes. Growing magnetic modes generated in the
two subintervals differ, for instance, in their symmetries (see Table [2]). This results in emergence of MHD
attractors of different types. At the lower subinterval of Ta the primary MHD attractor is PV, similarly
to TW drifting along both horizontal axes, z and y, and periodic in the co-moving reference frame. At the
right end the MHD branch P'W terminates on TW at T'a = 81.80, where the respective magnetic eigenvalue
of TW crosses the imaginary axis; to the left it continues to T'a = 0.
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Table 4: Families of attractors FTW and CSW. Column 2 presents the type of attractors (disregarding drift frequencies):
P periodic, Q quasiperiodic, C chaotic, column 3 basic frequencies of periodic and quasiperiodic regimes, columns 5 and 6
time-averaged kinetic and magnetic energies, respectively, the last column the list of individual runs as pairs Ta(integration

time).

Fa- | Type Basic Interval of E E,, Individual
mily frequencies existence runs
FT™W | PTW 12.86-2.87 [36,57] |234.10-235.93 | 9.43-11.82 36(351),41(22),
45(29),48(59),
54(251),57(1274)
Q |2.87-2.94{0.209-0.151 | [60,68] |235.95-235.11|12.01-12.20 60(337),63(370),
65(2378),68(352)
Q 2.93 0.071 70 235.24 12.03 70(1646)
Q 2.93 0.034 71.5 235.20 12.05 71.5(2022)
Q 2.93 0.016 72 235.16 12.08 72(1696)
C 73,74 234.76-234.60 | 11.91-11.81 | 73(1032),74(2620)
Q |2.92-2.94 | 0.035-0.030 75,77 234.05-233.31 | 11.86-11.30 75(457),77(2413)
Q 291 0.015 [78,78.5] |233.90-233.62|11.62-11.60 | 78(2602),78.5(1427)
Q 291 0.069-0.061 | [79,80] |232.62-232.74 | 11.04-11.25 79(223),80(1784)
W C 78 236.55 17.00 78(2796)
Q 2.86 0.048-0.051 80,81 236.76-236.86 | 16.63-16.62 | 80(1681),81(1379)
C 82,84 237.35-237.91 | 16.68-16.49 | 82(2558),83(3174),
84(1950)
Q 2.90 0.017 85 237.83 16.39 85(4052)
C [87,96.5] | 238.27-240.01 | 16.22-15.01 | 87(1812),90(2851),
95(3582),96(953)
96.5(1379)
Q 2.93 0.016-0.021 | [97,98] |241.13-240.94 | 14.52-14.58 97(928),98(2511)
C [99,100] |239.86-239.85| 15.02-15.05 | 99(1682),100(1999)
Q 2.88 0.026 101,102] | 239.98-240.05 | 14.91-14.83 | 101(979),102(3607)
Q 2.88 0.052-0.056 | [103,105] | 240.12—240.38 | 14.73—-14.41 | 103(1339),105(3847)
P | 2.90-2.89 [106,119] | 239.59-239.93 | 13.42-13.04 | 106(1177),107(199),
110(511),115(571),
117.5(3768),119(1181)
P5W | 2.89-2.88 [120,126] | 239.82-239.90 | 13.03-13.31 | 120(675),121.5(517),
123(411),126(1002)

6.2. MHD attractors emerging from TW, mode interaction

As noted in Section 3, TW bifurcates supercritically in a Hopf bifurcation from Ry as T'a decreases below
188. For the employed value of P,,, at the point of bifurcation R; generates magnetic field kinematically.
The respective magnetic eigenvalue is real and not large, hence attractors observed for T'a not far from 188
can be related to interaction of two instability modes of R;, hydrodynamic and magnetic ones.

The symmetry group of Ry is generated by s, ] /2 7Y and g. In the hydrodynamic eigenspace the
symmetries so and 7Y act non-trivially, and in the magnetic eigenspace the action of the symmetries s, ¢
and 7Y is non-trivial. Hence, the results of Golubitsky et al. (1988) (Section XX §2) on Hopf / steady-state
mode interaction with the O(2) symmetry group are applicable. (The symmetry ¢ plays no role, since, in
the notation bid., ¢ = (m,m) is a superposition of two shifts, in ¢ = 7 and § = 7, which are elements
of SO(2) and S!, respectively. In our problem, the action of SO(2) is generated by the shifts ¥ along
the direction of the rolls.) According to Golubitsky et al. (1988), the trivial steady state (R; in our case)
bifurcates with emergence of an se-symmetric steady state, when a real eigenvalue becomes positive, and
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Table 5: Bifurcations of MHD steady states. Column 2 presents the symmetry group of a steady state, column 3 the generators
of the symmetry group, column 4 the critical T'a, column 5 the type of a bifurcation (S.P. denotes subcritical pitchfork, S.H.
subcritical Hopf and S. saddle-node bifurcations), column 6 the dimension of the respective center eigenspace, column 7 the
action of the system symmetry group on the eigenspace, and the last column elements of the group which act trivially. Note
that s2 mentioned in columns 3 and 8 have the same axis.

Type | Symmetry Generators Ta B D | Action Kernel
group

Skt D, YL 25 452 126.55 to PPV [ 2 Z, VL2
169.27 | from SH!

SHI Dy x Zy | 7759, 823 qu/g 169.27 to SHI 1 Zs VL 20 qsyyz/g
216.13 | to PR' | 2 | Zy 752Y% 95 4V1 /5

SIT D, Y 3 52 21864 | SH | 2| Z "7
271.66 S.P. 1 Z, a7y

SF | D o sz | 22310 | S. [ 1] 1 Py 152
466.50 S.P. 1 Z qrsay o

SRt D, rqwi%, qs2 377.89 to PRI 2 1 rqwﬁi, qs2
505.05 to P 2 Zo gL,

St Dy X Zo qwg/4, $2; 14y 5 | 506.07 S. 1 1 qﬂy%M, $25 T4V jo
667.37 | toSET | 2| Dy TqYLY,

SR D, rq'yz%, S9 667.37 | from SH
682.26 S.P. 1 Zs So

Syt D, TV 20 52 673.55 S.P. 1] Z S2
704.29 | to P} | 2 1 TYY gy S2

qWR D, YL 25 452 720.25 S. 1 1 YL 20 452
725.71 | from WR

SEP | Dg x Zo qwf%, $25 1Yy o | 68451 S.P. 2 Dg ™V /2
697.49 | toSRP | 2 Ds rqYy

SRb D, s2, rqu/z 697.49 | from S|P
764.05 | from SEP

SEP T Dy x Zo qwi%, $25 14y o | T64.05 to SKP 2 Dy rqu/z
787.82 | from RD

SEP | Dy x Zs 7’7%/27 $2; 14 jp | 1117.47 | from RD
1355.20 | from RD

with a simultaneous emergence of rotating (i.e. travelling, in our parlance), TW, and standing waves, SW,
when a complex pair of eigenvalues crosses the imaginary axis. The rotating wave can further bifurcate to
a modulated rotating wave (which in fact is a 2-torus).

In our system, in agreement with this general theory, Ry bifurcates to TW (in the hydrodynamic sub-
space) and to S}. TW further bifurcates to a modulated travelling wave, PTW (which we classify as a
periodic orbit, since we omit drift frequencies in the description of attractors). At T'a = 87 the bifurcation
where PTW emerges is subcritical, and close to the point of bifurcation the periodic orbit is unstable. It
gains stability as it turns back in a saddle-node bifurcation at T'a = 36. We classify the stable periodic
orbit observed in computations as the modulated rotating wave predicted by the theory, because 1) of the
similarity of the spatial structure of TW and the flow in PIW, as well as of the dominant magnetic mode
of TW and magnetic field in P7W; 2) the symmetry group of P7W is the one expected on the theoretical
grounds for the branch emerging at T'a = 87 from TW due to the mode interaction (note that it includes a
spatio-temporal symmetry: the symmetry about a vertical axis with a shift in time by a half of a period);
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Figure 10: Isolines (step 2) of v, on the horizontal midplane z = 1/2 for some steady convective MHD attractors: 8?17 Ta = 150
(a); SR, T'a = 250 (b); SBL, Ta = 680 (c); SWE, T'a = 721 (d). Solid lines indicate non-negative, dashed lines negative values.
x: horizontal axis, y: vertical axis.

and 3) the temporal frequency of PTW is close to the Hopf frequency of TW.

The steady state S} bifurcates as T'a is decreased to a less symmetric steady state ST, which is outside
the Hopf / steady-state mode interaction center manifold. As Ta is decreased further, S}! becomes unstable
in a Hopf bifurcation with a stable periodic orbit emerging. We label it PSW | because its spatial structure and
temporal frequency are similar to those of the unstable standing wave SW emerging from R4 simultaneously
with the travelling wave TW, and its symmetry group is a subgroup of the one of SW. The general theory of
Hopf / steady-state mode interaction predicts two types of periodic orbits bifurcating from SW, but judging
by its symmetries none of them is our PSW. The conjectured relation of PSW with SW is shown by thin

dashed lines on Fig.

6.3. MHD attractors emerging from TW, 36 < Ta < 127

Both periodic orbits, PTW and PSW  give rise to complex families of attractors, FTW and CSW, discussed
in this subsection (see TableH). Like PTW all attractors constituting F*W drift along both horizontal axes
and thus have two drift frequencies. The family FTW starts from the primary periodic MHD attractor P2V
at T'a = 36.

As Ta is increased beyond T'a = 60, the second frequency, f2, appears in a Hopf bifurcation, i.e. a stable
torus emerges. Afterwards, a sequence of bifurcations of halving of fs takes place (often such a sequence
is called a cascade of period doubling bifurcations for a torus; we prefer to abstain from the use of this
terminology, since the concept of a period applied to a torus is not all too transparent). This sequence of
bifurcations is analogous to the Feigenbaum (1978) scenario of period doublings for a logistic map, and we
label this family of attractors by F.

20



(2)

Figure 11: Isosurfaces of magnetic energy density of magnetic fields, at the level of a half of the maximum, in steady convective
MHD attractors: Ta = 150, SF! (a); Ta = 200, S8 (b); Ta = 250, S§! (c); Ta = 300, S§*! (d); T'a = 430, SE* (e); T'a = 600,
SR (f); Ta = 675, SR (g); Ta = 680, S§! (h); Ta = 721, SWR (i); Ta = 690, SRP (k); Ta = 740, SKP (1); Ta = 775, SEP
(m); Ta = 1175, SRP (n). Stagnation points of the flow on the horizontal boundaries are shown by dots. Four periodicity cells
are displayed.
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Fig. [T} continuation.
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56 57 /8 80 82 8/ 120127179188

Figure 12: Bifurcation diagram of the MHD system for 0 < T'a < 200. Solid lines denote stable branches, dashed unstable,
thin dashed conjectured.

Logistic map is defined by the recurrent relation x,41 = rz,(1 + z,), 0 < < 1. When r is increased
over 3, a stable 2-cycle is created in a flip bifurcation. Subsequent flip bifurcations result in emergence of
cycles of lengths 4, 8, .... The bifurcations accumulate at » = 3.57. For larger r, chaotic behaviour sets in,
alternating with windows of periodic orbits of periods (2m + 1)2*. For r > 4, x,, escapes from the interval
0 <z < 1 and diverges.

In the convective hydromagnetic system, on increasing T'a we have detected three halvings of the fre-
quency fa =~ 0.15, followed by a chaotic behaviour. For larger T'a, lower basic frequencies set in, f2/3 for
75 < Ta < 77 and fo/6 for 78 < Ta < 78.5; their appearance agrees with the general theory. No more
halvings have been observed. This is consistent with the fact that a complete sequence of period doubling
bifurcations of tori is a structurally unstable scenario (see Coullet, 1984), and generically it is interrupted
by the onset of chaos. (We could also miss some halvings just having considered not enough values of Ta.)
For still larger Ta, a frequency fo ~ fo /2 is observed. On the one hand, emergence of this quasiperiodic
regime is clearly outside the framework of the Feigenbaum period doubling scenario (cf. Fig. (b) and
(h) ), suggesting that attractors for 79 < T'a < 80 do not belong to our Feigenbaum family. On the other,
the standard theory takes into account only two first terms in the Taylor expansion of the dynamical system
on the central manifold, and terms of higher order may be responsible for the birth of this new regime.

Plots of the energies (Fig. [3]), not affected by drift frequencies, clearly display the frequency halving.
By contrast, plots of the time dependencies of real or imaginary parts of individual Fourier coefficients (not
shown) are marred by the extra drift frequencies, making these plots by far more obscure. A similar effect
is observed in Poincaré sections. Frequency halving for tori usually shows itself unambiguously on Poincaré
sections, however, the standard Poincaré sections are not particularly enlightening when additional drift
frequencies are present. Their influence is eliminated in Poincaré sections, which are constructed with the
use of absolute values of Fourier coefficients (cf. Figs. [4 and [[H).

The family C3W exists for 78 < T'a < 126. It is comprised of chaotic attractors, alternating with windows
of periodic and quasiperiodic regimes (Fig. [6). The family starts with the periodic regime PSW, which is
stable for 120 < T'a < 126. The orbit possesses a symmetry, which is a combination of s; with a shift by
a half of its temporal period, hence, in agreement with Krupa (1990), the periodic orbit does not drift. As
Ta is decreased, the symmetry is lost, the emerging non-symmetric orbit and subsequent attractors of the
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Figure 13: Magnetic energy (vertical axis) versus time (horizontal axis) for FTW: Ta = 65 (a), Ta = 70 (b), Ta = 71.5 (c),

(2)

Ta=72(d) Ta="74(e), Ta="T7 (f), Ta =785 (g), Ta =80 (h).
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Figure 14: Poincaré sections of regimes in the family FTW on the (Refzfl’z,l, Refzgl 5.1) plane (horizontal and vertical axes,
respectively) defined by the condition Ret?, 5, = 0: Ta = 65 (a), Ta = 70 (b), Ta = 71.5 (c), Ta = 72 (d), Ta = 74 (e),
Ta="77(f), Ta="78.5 (g), Ta =280 (h).

25



® - (h)

Figure 15: Poincaré sections for regimes in the family FTW on the (1921,2.11, |0¥ 1 5 1]) quadrant (horizontal and vertical axes,
respectively) defined by the condition |9%; 5 ;| = 0.2: Ta = 65 (a); Ta = 70 (b); Ta = 71.5 (c); Ta = 72 (d); Ta = 74 (e);

Ta="77 (f); Ta="78.5 (g); Ta =280 (f).
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Figure 16: Poincaré sections for regimes in the family CSW on the (19%4 511 \ﬁ317271|) quadrant (horizontal and vertical axes,
respectively) defined by the condition [0Z; 5 1| = 0.1: Ta = 80 (a); Ta = 85 (b); Ta = 90 (c); Ta = 98 (d); Ta = 102 (e);

Ta = 105 (f).

family have two drifting frequencies (not discussed here). Subsequently, a second frequency appears in a
Hopf bifurcation, which is halved afterwards. On a further decrease of T'a, we observe an intermittency
of chaotic and quasiperiodic attractors. The sequence “a periodic orbit, a torus, chaos” is standard; it is
usually explained by appearance of the third basic frequency, which makes the system structurally unstable
and results in the onset of a chaotic behaviour (Ruelle and Takens, 1971). The observed windows of
quasiperiodicity can be attributed to frequency locking (see, e.g., Ott, 2002).

Notably, coexistence of attractors of different types is observed: two types of MHD attractors (FTW and
PTW) in the interval 36 < T'a < 81, and a (magnetically stable) hydrodynamic attractor (TW) with an MHD
attractor (CSW) in the interval 81.80 < T'a < 87. Coexistence of a hydrodynamic and MHD attractors can
be described in physical terms, as stiff excitation of a magnetic field: small magnetic perturbations of TW
decay to the hydrodynamic state, while large magnetic perturbations give rise to MHD regimes. Furthermore,
in the interval 78 < Ta < 80 three MHD attractors coexist: PTW, FT™W and C5W. From the point of view
of the theory of dynamical systems there is nothing extraordinary in coexistence of attractors in a nonlinear
system, however, to the best of our knowledge coexistence of three convective MHD attractors was never
observed before.

6.4. MHD attractors emerging from Ry, 127 < Ta < 506

Dominant magnetic modes of Ry are of the same type for all T'a. As attested by symmetries, the primary
MHD attractor is the steady state 82Rl detaching from R, at T'a = 725.3 in a subcritical pitchfork bifurcation.
It exists (i.e. the MHD states are stable) for 170 < T'a < 216. On decreasing T'a, a steady state S{“ with
a smaller group of symmetries emanates in a pitchfork bifurcation; it becomes unstable and bifurcates to
PIW in a Hopf bifurcation.
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Figure 17: Phase portrait of the MHD system on the interval 216 < T'a < 224.

On increasing T'a, in a small interval 216 < T'a < 224 four bifurcations occurring in the vicinity of S} (in
the phase space) are observed (see Fig.[7l (b) ). They take place in two distinct invariant subspaces, Fix(rs2)
and Fix(sz2) (Fix(s) denotes the set of fixed points under the action of a symmetry s). Developments in each
invariant subspace are mutually independent (see a sketch of geometry of the phase space shown on Fig. [I'7}
the vertical plane represents Fix(rss) and the horizontal one Fix(s2) ).

The first (on increasing T'a) one is a Hopf bifurcation in Fix(rsg) at T'a = 216.13, in which a periodic
orbit, PR emanates. Another one is a saddle-node bifurcation at T'a = 223.1 in the same invariant subspace,
in which a branch of steady states, SR!, terminates. Near the point of bifurcation the basin of attraction
of the steady states becomes vanishingly small, requiring short steps when continuing the branch in T'a
so that computed trajectories were not attracted by PR'. On decreasing T'a from, say, 224, eigenvalues of
stability modes are in the beginning imaginary, but both the real and imaginary parts decrease in magnitude,
apparently tending to zero. At Ta = Ta., 223.101 < Ta. < 223.10075, the discriminant of the quadratic
characteristic equation, defining the two eigenvalues, changes its sign. As a result, the dominant eigenvalue
exhibits a counterintuitive behaviour: Coefficients of the characteristic equation depend almost linearly on
Ta near this value T'a., but the change of sign of the discriminant implies, that the dominant real eigenvalue
is continuous, but non-smooth (see Fig. [[8). The graph of the growth rate of the dominant mode bends at
Ta. and for T'a < Ta. behaves like /T'a. — T'a. The largest real eigenvalue starts to grow much faster, and
a saddle-node bifurcation occurs between T'a = 223.09999 and 223.1. An almost simultaneous vanishing
of both real and imaginary parts of eigenvalues implies, that two parameters are necessary to describe this
bifurcation, i.e. we are in a vicinity of a codimension two bifurcation. Variation of T'a near the left end of
the branch S is equivalent to a motion along an one-dimensional curve on the plane of the parameters.

Vanishing of a pair of complex eigenvalues of linearisation of a dynamical system is an attribute of the
Takens-Bogdanov bifurcation (see Guckenheimer and Holmes, 1988). There are further indications that
the bifurcation occurring in Fix(rsy) close (in the parameter space) to the values, which are fixed in our
simulations, might be a Takens-Bogdanov bifurcation: in this interval, 216 < Ta < 224, a periodic orbit
emerges and afterwards becomes unstable or disappears and a steady state emerges, and they are close
neighbours in the same symmetric subspace. However, a more attentive inspection of the system convinces
that this conjecture is wrong.

Only SH! might be the trivial steady state suffering the bifurcation (although the behaviour of the
eigenvalues reminiscent of the Takens-Bogdanov bifurcation is registered for S}, this branch turns back in
a saddle-node bifurcation and thus can not serve as the trivial steady state, existing in the case of Takens-
Bogdanov bifurcation for all parameter values in the vicinity of the point of bifurcation). It is quite possible
that a pair of complex eigenvalues of linearisation of S} simultaneously become zero upon a variation
of Ta and a second parameter: S} does have small in magnitude complex eigenvalues in the interval
216 < Ta < 220 for the parameter values that we have employed; also it is not far from SE!, suggestive of a
similar behaviour of eigenvalues of the two branches. The structure of our system is compatible only with the
Takens-Bogdanov bifurcation (with the Zy symmetry group generated by s», which S¥! does not possess)
involving a stable periodic orbit and stable steady states, distinct from the trivial one; such a diagram is
shown on Figs. 7.3.7 and 7.3.9 ibid. On these Figures, the trivial steady state (the analogue of S§1) is stable
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Figure 18: Computed mean of the two dominant eigenvalues (black circles; coincides with the real part of the eigenvalues for
Ta > Tac =~ 223.101, where the two eigenvalues are complex conjugate) and the discriminant of the quadratic characteristic
equation (open circles) for the dominant eigenvalues of the operator of linearisation versus Ta (horizontal axis) near the left
end of the interval of existence of S4Rl. Padé extrapolation of the mean of the two eigenvalues (solid line), the discriminant of
the characteristic equation (dotted line) and the resultant extrapolated dominant real eigenvalue for T'a < Ta. (dashed line).

for uy < 0, po < 0 (using the parameter notation 4bid.), the other two steady states (the analogues of S§!
and its symmetric counterpart) for p; > max(0, u2), and a periodic orbit for pe > max(0, cu1), ¢~ 0.752.
Hence variation of T'a on the interval 216 < T'a < 224 must be equivalent to a motion along a curve on the
(1, p2) plane, beginning in the quadrant p; < 0, pe < 0, following to the quadrant p; < 0, pe > 0, and
passing to the region p1 > 0, po < cpy. Consequently, the curve must cross the line p; = 0, where in the
Takens-Bogdanov bifurcation a branch of steady states (analogues of S}'), stable or unstable depending on
the sign of u;, emanates from the trivial steady state in a pitchfork bifurcation. This is inconsistent with
the behaviour of eigenvalues of linearisation of S} (we have computed these unstable steady states after
the Hopf bifurcation, giving rise to P}!, by imposing the symmetries Yy /2 and s2) — the dominant and
subdominant eigenvalues do become real between T'a = 221 and 221.5, but they remain positive and do not
become small on the interval 221.5 < T'a < 224. Therefore we conclude, that bifurcations in our system are
not induced by a Takens-Bogdanov bifurcation (a finite perturbation of a bifurcation of this type, in which
more than two parameters are essential for the description of the bifurcation, is not ruled out). Further
analysis is necessary to understand it theoretically.

At Ta = 216.75 an eigenvalue of linearisation of (1) near S} with the associated eigenvector in Fix(s2)
(the dominant eigenvalue of the restriction of the operator of linearisation to this subspace) becomes positive.
In this supercritical pitchfork bifurcation a steady state S§! emerges. Since at the bifurcation S} is unstable
with respect to perturbations in Fix(rsz), the branching steady state is also unstable to such perturbations
near the point of bifurcation. S§!' gains stability at Ta = 218.64 in a subcritical Hopf bifurcation. The
branch is stable up to a subcritical pitchfork bifurcation at R = 271.66. S} is the only MHD steady state
that we have found, whose group of symmetries does not involve superpositions of the symmetry r with any
other symmetries. As a result, magnetic patterns on top and bottom of the layer are different (cf. Fig. [Tl
(¢) and other panels on this figure).

We again encounter coexistence of three distinct MHD attractors in the interval 223.11 < Ta < 223.3:
SR SRL and P}, The steady state S}! becomes unstable at T'a = 466.5 in a subcritical pitchfork bifurca-
tion.

The symmetry group of SE! is a subgroup of the one of S} (see Table Bl). That the steady states are
related and some symmetries are lacking, is seen on Fig. [Tl (b) and (e) displaying magnetic patterns of the
steady states. These facts suggest that SE! bifurcates from the unstable S§1. At both ends of the interval of
stability, S} undergoes supercritical Hopf bifurcations with stable periodic orbits, P}! and P}, emerging.
The periodic orbit P} with the same group of symmetries as that of SB! is observed for 343 < T'a < 374.
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Figure 19: Phase portrait of the MHD system near T'a = Ta. ~ 506.07 .

The other periodic orbit bifurcating from SE!, PRL| exists in a small interval 505.1 < T'a < 506 and it
has a much smaller symmetry group than S

6.5. MHD attractors emerging from Ry, Ta near 506

At the right end of the interval of existence of the periodic orbit P!, it terminates near T'a = 506 on a
steady state SK! in a bifurcation, which appears to be similar to a saddle-node bifurcation on invariant circle
(SNIC; see Izhikevich, 2006). However, since the symmetry group of the system is non-trivial, the details
of the bifurcation in our case differ from those of the canonical SNIC. In a generic system, a periodic orbit
emanates in a SNIC bifurcation subsequent upon a saddle-node bifurcation of a steady state. The SNIC
occurs under the condition that for any parameter value before the saddle-node bifurcation (we only consider
a small neighbourhood of the critical value of the bifurcation parameter), both parts of the one-dimensional
unstable manifold of the unstable steady state terminate on the stable one. At the point of bifurcation,
the two steady states collide and a homoclinic trajectory emerges. After the bifurcation, a periodic orbit is
formed from this homoclinic trajectory.

SNIC is generic in one-parameter dynamical systems and it is often observed in simulations, where a
parameter is varied. At Ta = Ta. ~ 506.07 the periodic orbit PX! terminates on a heteroclinic cycle;
occurrence of this upon variation of just one scalar parameter requires some degeneracy of the system, since
a heteroclinic (homoclinic) connection from an equilibrium to an unstable equilibrium in a generic system
occurs only for a singular parameter value (such connections are structurally unstable). For formation of a
heteroclinic cycle, several such connections must happen simultaneously.

Existence of a heteroclinic orbit at T'a = Ta. becomes possible due to the presence of a non-trivial
symmetry group. Structural stability of homoclinic and heteroclinic connections to an unstable equilibrium
in symmetric systems relies on the presence of symmetry-invariant subspaces (Guckenheimer and Holmes,
1988). A sketch of geometry of the phase space of our system is shown on Fig. The steady state Skt
possesses a symmetry group isomorphic to Dy X Zs. The plane represents the fixed point subspace for
the steady state symmetry group, the vertical direction the antisymmetric complement. We describe the
bifurcation starting from larger values of Ta slightly above the saddle-node bifurcation of S{'. Denote by
S&! the unstable counterpart of S§'; it belongs to Fix(Dy x Z3). The one-dimensional unstable manifold of
Sgﬂ also belongs to this subspace. A part ot the unstable manifold terminates on the stable S&!, another
one on Ry (this has been checked numerically), which is stable within this subspace. The connections from
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Figure 20: Kinetic (upper curve, left vertical axis) and magnetic (lower curve, right vertical axis) energies for T'a = 506, P§1
as a function of time (horizontal axis) for a trajectory starting at the steady state S?l, the MHD attractor for T'a = 505.

S&! to SB' and R, are structurally stable. The one-dimensional unstable manifold of R; terminates on the
stable Sf! (we have also checked this numerically).

At Ta = Ta, S§' and S collide, thus creating the structurally unstable heteroclinic cycle S§' — Ry —
SBL (it exists only for a single value of T'a). For Ta < Ta., S§* disappears and we observe a periodic orbit
in place of the heteroclinic cycle. The period of this orbit tends to infinity, as T'a approaches the point of
bifurcation Ta..

Kinetic and magnetic energies for the periodic orbit for T'a = 506, which is close to the point of the
saddle-node bifurcation (hence the period of the orbit is large) is shown on Fig. The minima of magnetic
energy are attained when the trajectory is close to Ry; from these steady states it jumps rapidly to the
former SE* (kinetic energy becoming close to 161), from where it slowly moves back towards R;.

Interestingly, close to the critical Ta we observe not a periodic, but rather a chaotic behaviour (see
Fig. 20). The non-periodicity (the behaviour is, loosely speaking, periodic, but “periods” significantly vary)
can be caused by reasons of numerical nature, such as round-off errors or other numerical noise accumulating
during the long periods.

6.6. MHD attractors emerging from Ry, 506 < T'a < 718

The primary steady state Sk', connected with the SE! branch by the periodic orbit PY!, is different
from SE! and other SR! steady states considered above in that it is related not to the dominant but a
subdominant magnetic mode of R;. The symmetry group of the steady state S§* is not a subgroup of the
symmetry group of S} (coinciding with the symmetry group of the dominant magnetic mode) and it has a
twice smaller period in the direction along the axis of rolls, indicating that S§! is unrelated to the dominant
magnetic mode (cf. Fig. Bl (¢) and Fig. [l (f) ). We have computed the subdominant magnetic mode by
restricting the kinematic dynamo problem for R; on the subspace Fix(qv} / 4)- The subdominant magnetic

mode, which is dominant in Fix(qu / 1), has the same group of symmetries as that of St and a spatial

structure similar to that of the magnetic field of S§! (see Fig. [Tl (f) ). The associated eigenvalue is real and
positive in the interval 509 < Ta < 682 and admits the maximum 0.4 at Ta = 598. On increasing T'a, S&!
becomes unstable in a pitchfork bifurcation with emergence of the steady state S&!, becoming unstable in
its turn in a subcritical pitchfork bifurcation at Ta = 682.26.

The symmetry group of S} is a subgroup of the symmetry group of S}, indicating that the former
state has possibly bifurcated from the latter one. On decreasing T'a, Si' becomes unstable in a subcritical
pitchfork bifurcation; in the interval 674 < Ta < 683 the steady state coexists with S®'. When Ta is
increased, a stable periodic orbit P} emanates in a Hopf bifurcation from S§'. On increasing Ta further,
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this periodic orbit terminates on a structurally unstable heteroclinic cycle. We discuss this bifurcation in
detail in the following subsection.

6.7. MHD attractors emerging from Ry, Ta near 718

We have discussed in subsection 4.3 a periodic orbit terminating on a structurally unstable heteroclinic
cycle involving connections between two steady states. At T'a = Ta. ~ 718.16 a similar bifurcation takes
place. The periodic orbit P! terminates on a structurally unstable heteroclinic cycle with three steady
states involved, when one of the steady states undergoes a saddle-node bifurcation.

A sketch of geometry of the phase space is shown on Fig. 21l The plane represents the hydrodynamic
subspace invariant under the symmetry ¢, and the vertical direction the complementary magnetic subspace.
We describe the bifurcation starting from the larger values of Ta slightly above the point Ta = Ta. of
the saddle-node bifurcation of WR. For such Ta, in the hydrodynamic subspace we observe R, stable in
the hydrodynamic subspace, stable WR and its unstable counterpart, WR. A part of the one-dimensional
unstable manifold of WR terminates on R;, the other one on WR (since WR emerges in a subcritical
bifurcation from Ry and it disappears in a saddle-node collision with WR)). Connections from WR to Ry and
WR are structurally stable, because R; and WR, are stable in the hydrodynamic subspace. The connection
from R; to S§' belongs to Fix(gvy /2) and it is structurally stable, because SR! is stable in this subspace

(this has been checked numerically). The unstable manifold of S}! belongs to Fix(ss) and it terminates on
WR, stable in this subspace.

At Ta = Ta., WR and WR collide creating the heteroclinic cycle WR — Ry — S® — WR in the
subspace Fix(s2). The cycle is asymptotically stable within this subspace, but not in the entire phase
space, because WR possesses a growing magnetic mode. The cycle is structurally unstable; it exists only
for Ta = Ta,.. For Ta < Ta., WR disappears and we observe a periodic orbit in place of the heteroclinic
cycle. The period of the orbit tends to infinity, as T'a approaches the point of bifurcation. Surprisingly, the
orbit is asymptotically stable, despite it has bifurcated from an asymptotically unstable heteroclinic cycle.

We illustrate the behaviour described above by plots of kinetic and magnetic energies and discrepancies
for the symmetries so and qv%/g for a periodic orbit at T'a = 717.9 (Fig. 22), near the point of bifurcation,
where the orbit is similar to the structurally unstable heteroclinic cycle. Plateaux of constant values of
kinetic energy on Fig. (such as 1870 < ¢t < 1930 and 1990 < t < 2060) represent time intervals when
the trajectory is near the steady states Ry and S}, respectively. The inflection point near ¢t = 2090 shows
where the trajectory is in the vicinity of the former steady state WR. Magnetic energy is small during the
transition from the former WR to Rj, attaining a minimum at ¢ = 2110. The symmetry qwg /2 is present

during the transition from R; to SR!. An exponential growth of the symmetry discrepancy takes place
during the departure from S}, The symmetry s is slightly broken near the former WR.

The discrepancy of the symmetry so is shown for an axis changing position in time (the position is
optimised to minimise the discrepancy). The y coordinate of the moving axis is plotted on Fig. (c); the
displacement in the = direction is by several orders of magnitude smaller, and it is described by a function
of a similar shape. The motion of the axis can be regarded as a drift of the cycle P! along a group orbit. In
accordance with the theory of Krupa (1990), the axis is steady when the symmetry s, is present; it moves,
when the discrepancy is maximal (for instance, at the time interval 2140 < ¢ < 2160).

For Ta = 719 a trajectory starting near S®! visits the following steady states: S§' — WR — Rp —
SRD _, SRD.

6.8. MHD attractors emerging from WR, 721 < Ta < 725

The primary steady state SWE emerges from WR in a pitchfork bifurcation at Ta ~ 725.71, when the
magnetic growth rate becomes positive on decreasing T'a. It is stable in a short interval of T'a and disappears
in a saddle-node bifurcation at T'a = 720.25.
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Figure 21: Phase portrait of the MHD system near T'a = Ta. ~ 718.16 .

6.9. MHD attractors emerging from Rp, 685 < Ta < 787

We have found numerically that Rp possesses two types of dominant magnetic modes (see Table 2] and
Fig.[d). In the interval of T'a where Rp exists there are two windows of kinematic dynamo action, resulting
in two intervals of nonlinear dynamos; the lower one is 684 < T'a < 787.

The first (on increasing Ta) attractor SFP is primary, but it is related to a subdominant magnetic mode.
The mode has the same spatial structure as the respective nonlinear steady state displayed on Fig. 1] (k).
The mode has the period L/3 along the axes of rolls (in contrast with periods L/2 and L for two other
magnetic modes, Fig. 1] (m) and (n)). The associated eigenvalue is real and positive for 685 < Ta < 711,
the maximum is 0.1.

Another primary MHD attractor is SRP bifurcating from RD in a pitchfork bifurcation when the respec-
tive eigenvalue of the kinematic dynamo problem crosses the imaginary axis. The two branches of primary
steady states are connected by the branch SRP, with a smaller symmetry group (cf. Fig. I (1), (k), (m)).

6.10. MHD attractors emerging from Rp, 1118 < T'a < 1355

The third primary branch emanating from Rp, the steady state S{P, is always stable when exists. Both
ends of the branch terminate on Rp at T'a = 1117.47 and T'a = 1355.20.

33



LTl B B M R R
L —10°
125 —
r 1072
120 /
7
-/
L/
7/ 7,‘0—4
115 = B
I | -6
110 — 7?0
(a) ;
1057“H‘\‘“‘““‘\"H"“‘\‘“““‘m““““‘\““w“ 107°
1700 1800 1900 2000 2100
10° === N -

1072

4 OTT5 fore e T eIl

S S S S S B T T S A S A S HA R AR
1700 1800 1900 2000 2100
2.587 —
2.586 [— —
2.585— —
(c)
20840 e T
1700 1800 1900 2000 2100

Figure 22: Kinetic (solid line) and magnetic (dashed line) energies (a), symmetry discrepancies (b) and the y coordinate
of the axis of the symmetry sz (c) versus time (horizontal axis) for Ta = 717.9, P4Rl. On (b), the following symmetry
discrepancies are traced: in the flow, ﬂ/g/Q (solid line), T"‘/z/Q (dotted line), s2 (dash-and-three-dots line); in magnetic field:

’yz/Qq (short-dash line), r'yf/2 (dash-and-dot line), s2 (long-dash line). Discrepancy of a symmetry s in a field f is measured

as \/f |f — s(f)|2dx/ [ |f|2dx, where integration over a periodicity cell is assumed.
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7. Conclusion

Our results demonstrate that the influence of rotation on magnetic field generation by thermal convection
is non-monotonic and in no way simple. Its nature can only be understood by a careful investigation of
attractors of the underlying dynamical system and bifurcations of branches of convective MHD regimes.
Such an investigation is made more exciting by the presence of a large group of symmetries of the dynamical
system. KEven close to the critical point for the onset of convective motion, in the terms of the Taylor
number, the bifurcation diagram is quite complex. There are several intervals of coexistence of two or three
convective MHD attractors (also sometimes with a hydrodynamic one).

An overall picture that we have obtained fits well the usual beliefs, that up to a point an increase of
the rate of rotation from zero benefits magnetic field generation both in linear and nonlinear regimes, and
after attaining a maximum of the mean magnetic energy (in our simulations, E,, = 32.35 in the regime S5
for Ta = 217) on a further increase of the rotation rate E,, gradually falls off till magnetic field generation
ceases, and at still higher angular velocities the fluid flow is arrested. However, the presence of many
individual branches and windows of nonlinear dynamo action (e.g., between the MHD steady states S{P
and SEP) adds a rich “small-scale structure” to this otherwise “smooth” general picture, on some intervals
of T'a even reversing it. For instance, an increase of the rate of rotation from zero inhibits magnetic field
generation in the periodic regime PTW, rather than enhances it.

We have observed a number of interesting bifurcations. To the best of our knowledge, two global
bifurcations were not observed before. They are similar to the SNIC (saddle-node on invariant circle)
bifurcation, and their peculiarity stems from the presence of a non-trivial symmetry group in the convective
MHD system. In these bifurcations, at Ta =~ 506.07 and Ta =~ 718.16, a periodic orbit terminates not
on a homoclinic (as in the SNIC), but a heteroclinic cycle, whose existence relies on the presence of the
symmetry group. Among more common, albeit rather seldom observed in natural systems families, that
we have encountered, an incomplete Feigenbaum sequence of “period doubling bifurcations of a torus”,
FT™W (occurring between T'a = 57 and 80) is notable, as well as an intermittent sequence of chaotic and
quasiperiodic regimes, CSW (occurring for 78 < T'a < 126), in which existence of the quasiperiodic regimes
can be apparently linked with frequency locking.

Another unusual set of bifurcations observed on the interval 216 < T'a < 224 is associated with a pair
of complex eigenvalues of the linearisation of the dynamical system, which are simultaneously vanishing.
Numerical examination of eigenvalues of the supposed trivial steady state SX! suggests that the observed
bifurcations in our convective magnetohydrodynamic system are not linked with a Takens-Bogdanov bifur-
cation occurring for nearby parameter values, but we do not rule out a finite perturbation of a bifurcation
of this type. We plan to perform a further investigation of the bifurcation in order to gain a mathematical
understanding of its nature.

We have found a number of branches of MHD steady states, which are parity-invariant (i.e. have the
symmetry 7sa) or possessing the symmetry about a vertical axis, so. Certain periodic orbits (T'a = 57, the
family FTW; Ta = 123, the family C5W; 216.13 < T'a < 223.3, branch P}!) are not pointwise symmetric,
but symmetric on average, i.e. the symmetry with a time shift by a half of temporal period is present.
Possession of such a symmetry is an important property of attractors, since in convective MHD systems
with this symmetry the global a—effect is zero. Whilst in the presence of the global a—effect the system
is inherently unstable to large-scale perturbations, in its absence the instability, when present, develops on
time scales of a larger order. In the latter case it is described by a highly complex nonlinear mixed system
of PDE’s of the second and third order (see Zheligovsky, 2009b), incorporating such physical effects, as
combined eddy diffusivity and eddy advection. We are planning to follow this line of research.

For the chosen values of the Rayleigh and magnetic Prandtl numbers, which are not particularly high, the
convective system is not far from the onset of convection and magnetic field generation, and the collection of
hydrodynamic and magnetic structures that we encounter is not rich (the flows take the form of rolls, which
are in some cases perturbed, and magnetic field concentrates in half-ropes located near the boundaries).
More interesting structures are produced in a more vigorous convection.
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