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ABSTRACT. This article spotlights the problem of characterizing a non-orthogonal polynomial sequence that
is simultaneously connected to the moments of the modified Bessel function and the Ditkin-Prudnikov weight
function. Integral relations with the Bernoulli numbers and the Euler polynomials, along with an analog of the
Rodrigues type formula and generating functions, will as well be established.

1. INTRODUCTION AND PRELIMINARY RESULTS

Throughout the text, N will denote the set of all positive integers, N0 = N∪{0}, whereas R and C the
field of the real and complex numbers, respectively. The notation R+ corresponds to the set of all positive
real numbers. The present investigation is primarily targeted at analysis of sequences of polynomials whose
degrees equal its order, which will be shortly called as PS. Whenever the leading coefficient of each of its
polynomials equals 1, the PS is said to be a MPS (monic polynomial sequence). A PS or a MPS forms a
basis of the vector space of polynomials with coefficients in C, here denoted as P . Further notations are
introduced as needed.

The operational calculus associated to the differential operator d
dt gives rise to the Laplace transform

having the exponential function as a kernel, which we are going to represent in terms of the Mellin-Barnes
integral [7, Vol.I]

e−x =
1

2πi

∫ a+i∞

a−i∞
Γ(s)x−sds , x,a > 0.

Meanwhile the operator d
dt t

d
dt leads to the Meijer transform [26] involving the modified Bessel function (also

known as MacDonald’s function) 2K0(2
√

x) as a positive kernel given by the formula [7, Vol.II]

2K0(2
√

x) =
1

2πi

∫ a+i∞

a−i∞
Γ

2(s)x−sds , x,a > 0.

In the seminal work of 1966 [5], bearing in mind that e−x is the weight function of the very classical
Laguerre polynomials (of parameter 0) [18, 12], Ditkin and Prudnikov posed the problem to find a new
sequence of orthogonal polynomials related to the weight 2K0(2

√
x). The problem at issue encompasses

the characterization of an Orthogonal Polynomial Sequence (OPS) (or a Monic Orthogonal Polynomial
Sequence - MOPS, when deg(Vn(x)− xn) = n−1 for n ∈ N and V0(x) = 1), say {Vn}n>0, such that∫

∞

0
2K0(2

√
x)Vm(x)Vn(x)dx = Nnδn,m , n,m ∈ N0,
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where δn,m represents the Kronecker symbol, and with Nn > 0. Hereafter, we will shortly refer to {Vn}n>0 as
the Ditkin-Prudnikov MOPS.

This problem was later on broaden to other ultra-exponential weights (see [14]) and in the sequel, other
approaches were considered, largely focused on the investigation of polynomial sequences being either
multiple orthogonal [19] or d-orthogonal [3] with respect to these ultra-exponential weights.

However we do not unravel the characterization of this Ditkin-Prudnikov MOPS, in the present work
we enlighten the investigation of a MPS {Pn}n>0 that is simultaneously associated to the moments of the
MacDonald function of pure imaginary subscript, Kiτ(2

√
x) where x,τ > 0, and to the Ditkin-Prudnikov

problem. The function Kiτ(2
√

x) is real valued and can be defined by integrals of Fourier type

Kiτ(2
√

x) =
∫

∞

0
e−2
√

xcosh(u) cos(τu)du , x ∈ R+, τ ∈ R.(1.1)

In addition, it is an eigenfunction of the operator

(1.2) A = x2 d2

dx2 + x
d
dx
− x = x

d
dx

x
d
dx
− x

insofar as

(1.3) A Kiτ(2
√

x) =−
(

τ

2

)2
Kiτ(2

√
x) .

Entailed in the analysis on the moments of this function, comes out the central factorial numbers of even
order (also called as modified Stirling numbers or Jacobi-Stirling numbers), which will be the issue on §2.
This triggers the introduction of the MPS {Pn}n>0 whose elements have as coefficients these central factorial
numbers, up to a sign. In §3 the arisen MPS will be thoroughly expounded in several aspects, beginning
with (in §3.1) the characterization of its elements by means of the integral composite powers of the Bessel
operator (1.2), a relation resembling a Rodrigues-type formula, which also compels a differential-difference
equation. Later on, in §3.2, we will bring integral representations for this MPS along with the representation
via generating function (in §3.3), which will enable us to relate it to the Bernoulli numbers and the Euler
polynomials, in §3.4. Behind these procedures, the modified Kontorovich-Lebedev transform is an asset
which has Kiτ(2

√
x) as a kernel [23, 26].

The last section §4 is devoted to explain the connection between the MPS {Pn(x)}n>0 and the Ditkin-
Prudnikov MOPS {Vn(x)}n>0, which arises while analyzing the canonical element of their dual sequences.
Regarding this and for a more clear understanding, we recall a few concepts, of the utmost importance for
this goal.

The dual sequence {un}n>0 of a given MPS {Pn(x)}n>0, whose elements are called forms (or linear
functionals) belong to the dual space P ′ of P and are defined according to

〈un,Pk〉 := δn,k, n,k > 0,

where δn,k represents the Kronecker delta function. Its first element, u0, earns the special name of canonical
form of the MPS. Here, by 〈u, f 〉we mean the action of u∈P ′ over f ∈P , but a special notation is given to
the action over the elements of the canonical sequence {xn}n>0 – the moments of u∈P ′: (u)n := 〈u,xn〉,n>
0. Any element u of P ′ can be written in a series of any dual sequence {vn}n>0 of a MPS {Pn}n>0 [11]:

(1.4) u = ∑
n>0
〈u,Pn〉 un .

Differential equations or other kind of linear relations realized by the elements of the dual sequence can be
deduced by transposition of those relations fulfilled by the elements of the corresponding MPS, insofar as a
linear operator T : P →P has a transpose tT : P ′→P ′ defined by

(1.5) 〈tT (u), f 〉= 〈u,T ( f )〉 , u ∈P ′, f ∈P.
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For example, for any form u and any polynomial g, let Du = u′ and gu be the forms defined as usual by
〈u′, f 〉 :=−〈u, f ′〉 , 〈gu, f 〉 := 〈u,g f 〉, where D is the differential operator [11]. Thus, D on forms is minus
the transpose of the differential operator D on polynomials.

The investigation about the orthogonality of a MPS can be performed in a purely algebraic point of view.
Precisely, a form v ∈P ′ is said to be regular if we can associate a PS {Qn}n>0 such that 〈v,QnQm〉= knδn,m
with kn 6= 0 for all n,m ∈ N0 [11, 12]. The PS {Qn}n>0 is then said to be orthogonal with respect to v and
we can assume the system (of orthogonal polynomials) to be monic. Therefore, there exists a dual sequence
{vn}n>0 and the original form is proportional to v0. The remaining elements of the corresponding dual form
can be represented by

vn+1 =
(
〈v0,Q2

n+1(·)〉
)−1

Qn+1(x)v0 , n ∈ N0.(1.6)

When v ∈P ′ is regular, let Φ be a polynomial such that Φv = 0, then Φ = 0 [11, 12].
This unique MOPS {Qn(x)}n>0 with respect to the regular form v can be characterized by the popular

second order recurrence relation{
Q0(x) = 1 ; Q1(x) = x−β0

Qn+2(x) = (x−βn+1)Qn+1(x)− γn+1 Qn(x) , n ∈ N0.
(1.7)

As it will be concluded in the last section 4 the MPS {Pn(x)}n>0, despite non-orthogonal, share with the
Ditkin-Prudnikov MOPS {Vn(x)}n>0 the same canonical form. An analogous relation occurs between the
Bernoulli polynomials, which also happen to be non-orthogonal, and the (orthogonal) Legendre polynomials
[13].

2. ON THE MOMENT SEQUENCE OF Kiτ(2
√

x)

When evaluating the Mellin transform of the function Kiτ(2
√

x) at positive integer values (i.e., the mo-
ments of this function), the output is a product of an elementary function by a polynomial whose degree is
exactly the order of the moment increased by one unity. To be more specific, for positive real values of τ ,
we recall relation (2.16.2.2) in [15]

(2.1)
∫

∞

0
Kiτ(2

√
x)xndx =

π

τ sinh(πτ/2)

n

∏
σ=0

(
σ

2 +
τ2

4

)
, n ∈ N0,

while as τ → 0, the moments become much more simpler

(2.2)
∫

∞

0
K0(2
√

x)xndx =
1
2
(n!)2 .

By means of the central factorial numbers of even orders, expounded in the book [17, Ch. 6], we will bring
to analysis a MPS, denoted by {Pn}n∈N0 , that is in deep connection with the moments of Kiτ(2

√
x).

Thus we consider the polynomials in the variable z = τ2/4 of degree k, to what we call as the k-th order
modified rising factorial of the variable z, denoted by [z ]k and defined by

(2.3) [z ]k :=


1 i f k = 0,

k−1

∏
ν=0

(z+ν
2) i f k ∈ N .

The integral relation (2.1) may now be re-expressed as follows

(2.4)
∫

∞

0
Kiτ(2

√
x)xndx =

π

τ sinh(πτ/2)
[τ2/4 ]n+1 , n ∈ N0.
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Just like the set of the standard rising factorials (also commonly called as Pochammer) {(z)k}n>0, the set
of polynomials {[z ]k}n>0 forms a basis of P . Notwithstanding their resemblance, they are considerably
different specially in what concerns the connection coefficients between these two MPS and the canonical
sequence {zk}n>0. The pair of Stirling numbers (of first and second kind), widely known, is the bridge
between {(z)k}n>0 and {zk}n>0. To this purpose we refer to [4, Ch.V][16, 17], not disregarding the extensive
list of work within this matter. Indeed, the connection coefficients, i.e. the set of numbers permitting to pass
from one basis to the other, between {[z ]k}n>0 and {zk}n>0 mimics the pair of Stirling numbers, as they also
fulfill a triangular relation of the same type but with slight differences. These coefficients are a specialization
of a wider class of coefficients, depending on a complex parameter α , that were considered in [10] but also
in [8]. They arose in the expansion of the integral composite powers of a second order differential operator
having the classical polynomials of Jacobi as eigenfunctions and for this reason the authors in [8] decided
to denominate them as the pair of Jacobi-Stirling numbers. However, as pointed out in [10], such numbers
also perform an analogous situation for the classical Bessel polynomials, so the author in [10] dubbed this
pair “α-modified stirling numbers”.

Regarding the problem we are handling, the choice of α = 0 is required (which, in the light of [8], we
should be dealing with the Tchebyshev of first kind Stirling numbers). Following the notation carried in [10],
we will denote this pair of connection coefficients by (ŝ0(n,k), Ŝ0(n,k)). To set in concrete what we have
just described, they realize the (inverse) relations

[z ]k =
k

∑
ν=0

(−1)k+ν ŝ0(k,ν) zν , k ∈ N,(2.5)

zk =
k

∑
ν=0

(−1)k+ν Ŝ0(k,ν) [z ]ν , k ∈ N,(2.6)

which naturally compel the pair (ŝ0(n,k), Ŝ0(n,k)) to fulfill the triangular relations

(2.7)

{
ŝ0(k+1,ν +1) = ŝ0(k,ν)− k2 ŝ0(k,ν +1) ,

ŝ0(k,0) = ŝ0(0,k) = δk,0 , ŝ0(k,ν) = 0 , ν > k+1 ,

and

(2.8)

{
Ŝ0(k+1,ν +1) = Ŝ0(k,ν)+(ν +1)2Ŝ0(k,ν +1) ,

Ŝ0(k,0) = Ŝ0(0,k) = δk,0 , Ŝ0(k,ν) = 0 , ν > k+1 ,

for k,ν ∈ N0. A closed form expression for the latter set of numbers was also revealed [10], namely,

(2.9) Ŝ0(n,k) := T (2n,2k) =
k

∑
σ=1

2(−1)k+σ σ2n

(k+σ)!(k−σ)!
, 06 k 6 n.

Actually, the set of these 0-modified Stirling numbers is a subset of the central factorial numbers: a thorough
account on this matter may be followed in [17, pp. 212-216], not disregarding the comments pointed out
in [9] (specially Theorem 1 therein). They are indeed the central factorial numbers of even indices, namely
ŝ0(n,k) = t(2n,2k) while Ŝ0(n,k)) = T (2n,2k), where t(n,k) and T (n,k) are, respectively, the central facto-
rial number of first and second kind. Another relation between the central factorial numbers and the standard
Stirling numbers of second kind, S(n,k), can be reached in [1, p.824][17, (30), p. 216], namely

Ŝ0(n,k) := T (2n,2k) =
n−k

∑
σ=1

(
2n
σ

)
(−2)σ S(2n−σ ,2k)kσ , 06 k 6 n , n,k ∈ N0.
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The Jacobi-Stirling numbers have received a combinatorial interpretation, first for the specialization of
the value α = 1 − the so called Legendre-Stirling numbers − taken in [2], and later on, to the wider class
given in [9], with the pair (ŝ0(n,k), Ŝ0(n,k)) included.

3. A MPS CONNECTED TO THE MOMENTS OF THE MODIFIED MACDONALD FUNCTION

Bearing these arguments in mind, we are able to thoroughly expound the polynomial sequence {Pn}n∈N0
given by

(3.1) Pn(x) =
n

∑
ν=0

(−1)n−k Ŝ0(n+1,k+1) xk , n ∈ N0,

not (regularly) orthogonal, as we will conclude later on, but whose corresponding canonical form is the one
of the Ditkin-Prudnikov MOPS, ergo regular.

P0(x) = 1
P1(x) = x−1
P2(x) = x2−5x+1
P3(x) = x3−14x2 +21x−1
P4(x) = x4−30x3 +147x2−85x+1
P5(x) = x5−55x4 +627x3−1408x2 +341x−1
P6(x) = x6−91x5 +2002x4−11440x3 +13013x2−1365x+1
P7(x) = x7−140x6 +5278x5−61490x4 +196053x3−118482x2 +5461x−1
P8(x) = x8−204x7 +12138x6−251498x5 +1733303x4−3255330x3 +1071799x2−21845x+1
P9(x) = x9−285x8 +25194x7−846260x6 +10787231x5−46587905x4 +53157079x3−9668036x2 +87381x−1
P10(x) = x10−385x9 +48279x8−2458676x7 +52253971x6−434928221x5 +1217854704x4−860181300x3 +87099705x2−349525x+1

TABLE 1. List of the first elements of the MPS {Pn}n∈N0 .

Meanwhile, the inverse relation of (3.1) can be achieved based on the properties of the modified Stirling
pair of numbers, namely, on account of (2.5)-(2.6), we obtain

(3.2) xn =
n

∑
k=0

(−1)n+k ŝ0(n+1,k+1)Pk(x) , n ∈ N0.

Remark 3.1. The analysis of the integrals
∫

∞

0
Kiτ(2

√
x)xn+1/2dx , n ∈ N0, instead of (2.1), would then

trigger the study of a MPS {P̂n}n>0 similar to {Pn}n>0 but with the central factorial numbers of odd order
playing the role of the ones of even order. Naturally this gives rise to other developments. We will defer this
to a further work, where the analysis of the functions resulting from the Mellin transform of Kiτ(2

√
x), will

be the foremost investigation issue.

3.1. Representation by means of integral composite powers of the modified Bessel operator. The ele-
ments of the MPS {Pn}n∈N0 that we are dealing with are actually represented by the action of the integral
composite powers of the operator A in (1.2) acting over x, after a division by x.

Lemma 3.2. The MPS {Pn}n>0 whose elements are defined in (3.1) can be equivalently represented by

(3.3) Pn(x) = (−1)n 1
x
A nxn , n ∈ N0.
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which amounts to the same as

(3.4) Pn+1(x) =−x2P′′n (x)−3xP′n(x)− (1− x)Pn(x) , n> 0.

with P0(x) = 1.

Proof. We begin by showing that the elements of the MPS {Pn}n>0 defined by (3.1) can be represented by
(3.3) to afterwards prove that they necessarily realize (3.4), which, in turn implies (3.1).

Let {Pn}n>0 be given by (3.1). Clearly, (3.3) is fulfilled for n = 0,1,2. Owing to the relation on the mod-
ified Stirling numbers (2.8), by induction, we prove that (3.3) holds for any n> 0. Indeed, we successively
have

Pn+1(x) =
n+1

∑
k=0

(−1)n+k+1 Ŝ0(n+2,k+1) xk

=
n+1

∑
k=0

(−1)n+k+1
(

Ŝ0(n+1,k)+(k+1)2Ŝ0(n+1,k+1)
)

xk

=
n

∑
k=0

(−1)n+kŜ0(n+1,k+1)xk+1−
n

∑
k=0

(−1)n+kŜ0(n+1,k+1)
(

d
dx

x
d
dx

x
)

xk, n ∈ N0,

because Ŝ0(n+1,0) = Ŝ0(n+1,n+2) = 0. Now, under the assumption we deduce from the latter equalities

Pn+1(x)=
(

x− d
dx

x
d
dx

x
)(

(−1)n 1
x
A nx

)
=(−1)n+1 1

x

(
x− x

d
dx

x
d
dx

)
A nx=(−1)n+1 1

x
A n+1x, n∈N0,

whence the conclusion.
The relation (3.4) is a consequence of (3.3) regarding the successive identities

Pn+1(x) = (−1)n+1 1
x
A x

1
x

A nx =−1
x
A
(

xPn(x)
)
=−x2P′′n (x)−3xP′n(x)− (1− x)Pn(x) , n> 0,

By equating the first and last members, we obtain (3.4).

At last, if a polynomial sequence {Pn}n>0, with Pn(x) =
n
∑

k=0
cn,k xk, realizes the condition (3.4) with

P0(x) = 1, then it is necessarily a MPS and its coefficients fulfill the relation

cn+1,k = cn,k−1− (k+1)2cn,k , 06 k 6 n, n,k ∈ N0,

where cn,−1 = cn,k = 0 whenever k > n and with the initial conditions cn,0 = Pn(0) = (−1)n for n ∈ N and
cn,n = 1 for n ∈ N0. So necessarily we have cn,k = (−1)n−kŜ0(n+1,k+1) for any n,k ∈ N0. �

3.2. The Kontorovich-Lebedev transform of the MPS. A sharp instrument for the forthcoming results is
the modified Kontorovich-Lebedev transform given by the formula

(3.5) F(τ) = sinh
πτ

2

∫
∞

0
Kiτ(2

√
x) f (x)dx ,

which has an inverse defined through

(3.6) x
f (x−0)+ f (x+0)

2
=

2
π2 lim

λ→ π
2−

∫
∞

0
τ cosh(λτ)Kiτ(2

√
x)F(τ)dτ

being valid for f ∈ L1 (R+,K0(2µ
√

x)dx), 0 < µ < 1, in a neighborhood of each x ∈ R+ where f (x) has
bounded variation. For a thorough account on this matter, we refer to [26, Th. 6.3].
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Besides, Kν(2
√

x) reveals the asymptotic behaviour with respect to x [7, Vol. II][24]

Kν(2
√

x) =
√

π

2 x1/4 e−2
√

x[1+O(1/
√

x)], x→+∞,(3.7)

Kν(2
√

x) = O(x−ℜ(ν)/2) , K0(2
√

x) = O(logx) , x→ 0.(3.8)

Lemma 3.3. The MPS {Pn}n>0 (3.1) fulfills

(3.9)
∫

∞

0
Kiτ(2

√
x)Pn(x)dx =

π

2sinh(πτ/2)

(
τ

2

)2n+1
, n ∈ N0 ,

while

(3.10) xPn(x) = lim
λ→ π

2
−

2
π

∫
∞

0
Kiτ(2

√
x)cosh(λτ)

(
τ

2

)2n+2
dτ , n ∈ N0.

Proof. The modified Kontorovich-Lebedev transform of each polynomial Pn may be easily computed via the
moments of Kiτ(2

√
x) given in (2.4) and, afterwards by taking into account (2.6). This procedure provides

(3.9).
On the other hand, via the inversion relation (3.6) of the Kontorovich-Lebedev transform applied to (3.9),

we derive (3.10), taking into account that any polynomial plainly belongs to L1 (R+,K0(2µ
√

x)dx) with
0 < µ < 1. �

Remark 3.4. Following a similar procedure of the one taken in [23], we come out with∫
∞

0
u(x)

(
A ϕ(x)

)dx
x

=
∫

∞

0

(
A u(x)

)
ϕ(x)

dx
x
.

Therefore, from (3.3), we can successively write∫
∞

0
Kiτ(2

√
x)Pn(x)dx = (−1)n

∫
∞

0
Kiτ(2

√
x)
(
A n+11

)dx
x

=
(

τ

2

)2n ∫ ∞

0
Kiτ(2

√
x)dx , n ∈ N0,

because of (1.3). Appealing now to (2.1) with n = 0, we recover relation (3.9).

Lemma 3.5. The polynomial sequence {Pn}n>0 can be represented by

(3.11) 22n+2xPn(x) = lim
λ→π/2−

∂ 2n+2

∂λ 2n+2 e−2
√

xcos(λ/2) , n ∈ N0.

Proof. Considering that

cosh(λτ)
(

τ

2

)2n+2
= 2−(2n+2) ∂ 2n+2

∂λ 2n+2 cosh(λτ),

it is reasonable to rewrite (3.10) as follows

(3.12) xPn(x) = 2−(2n+2) lim
λ→ π

2 −

2
π

∂ 2n+2

∂λ 2n+2

∫
∞

0
Kiτ(2

√
x)cosh(λτ)dτ

motivated by the absolute and uniform convergence by λ ∈ [0,π/2− ε], for a small positive ε . Meanwhile,
from (1.1) and the inversion formula of the cosine Fourier transform, we deduce

2
π

∫
∞

0
Kiτ(2

√
x)cosh(λτ)dτ = e−2

√
xcos(λ ) , x > 0,

permitting to attain (3.11) from (3.12). �



8 ANA F. LOUREIRO AND S. YAKUBOVICH

3.3. The generating function. As aforementioned, the coefficients of the elements of the MPS {Pn(x)}n>0
are essentially (up to a sign) the even order central factorial numbers (of second kind), T (2n+ 2,2k+ 2),

which were treated in [17, Ch. 6]. Therein we may as well read that the polynomials Tn(x) =
n
∑

k=0
T (n,k)xk

are generated by the function f (x,u) = e2xsinh(u/2) [17, Ch. 6, p.214], so that we may write

(3.13) e2xsinh(u/2) = ∑
n>0

Tn(x)
un

n!
.

Inasmuch as, T (2n+2,2k+1) = T (2n+2,0) = T (2n+1,2k) = 0, n,k ∈ N0, after a few steps of computa-
tions we deduce that

(3.14) T2n+2(i
√

x) = (−1)n+1xPn(x) , n ∈ N0,

whereas

(3.15) T2n+1(i
√

x) = i
√

x
n

∑
k=0

T (2n+1,2k+1)(−1)kxk , n ∈ N0.

The three relations (3.13)-(3.15) readily provide

− ∂ 2

∂u2 e2i
√

xsinh(u/2) = ∑
n>0

(−1)n xPn(x)
u2n

(2n)!
− i
√

x ∑
n>0

(
n+1

∑
k=0

T (2n+3,2k+1)(−1)kxk

)
u2n+1

(2n+1)!
.

Thus, a generating function for the PS {(−1)nPn(x)}n>0 comes out:

(3.16)
∂ 2

∂u2
−1
x

cos(2
√

xsinhu/2) = ∑
n>0

(−1)nPn(x)
u2n

(2n)!
.

Remark 3.6. Actually,by taking into account

Ax cos(2
√

xsinhu/2) =
∂ 2

∂u2 cos(2
√

xsinhu/2) ; lim
u→0

∂ 2

∂u2 cos(2
√

xsinhu/2) = x,

where Ax = x2 ∂ 2

∂x2 + x ∂

∂x − x, and then using (3.3) as a key ingredient, we can recover (3.16).

3.4. Relationship with the Genocchi numbers and the Euler polynomials. The even order Genocchi
numbers, G2n [4, p.49] are the coefficients in the Taylor series expansion of the function 2t

et+1 . Apart from
their definition via the even order Bernoulli numbers B2n, namely

G2n =
(
22n−1

)
B2n

they admit as well the integral representation [7, Vol.I]

(3.17) G2n+2 = (−1)n(n+1)
∫

∞

0

1
sinh(πτ/2)

(
τ

2

)2n+1
dτ , n ∈ N0.

This representation endows an integral meaning for the elements of the MPS {Pn}n>0.

Corollary 3.7. The MPS {Pn}n>0 is connected with the Genochi numbers of even order via

(3.18)
π(−1)n

2n+2
G2n+2 =

∫
∞

0
e−2
√

xPn(x)dx , n ∈ N0.
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Proof. We integrate both sides of (3.9) over R+ by τ and we change the order of integration in the left
hand-side of the equality, according to Fubini’s theorem and on the grounds of the inequality [20]

(3.19)
∣∣∣∣∂ mKiτ(x)

∂xm

∣∣∣∣6 e−δτ Km(xcosδ ), x > 0, τ > 0, m ∈ N0

with δ ∈ (0,π/2) and m = 0. By virtue of the relation∫
∞

0
Kiτ(2

√
x)dτ =

π

2
e−2
√

x

and on account of (3.17) the identity (3.18) holds. �

Furthermore, we can also deduce a riveting integral relationship between {Pn}n>0 and the well known
Euler polynomials, En(x), commonly defined by [1, (23.1.1)][4, 6]

2etx

et +1
= ∑

n>0
En(x)

tn

n!
.

Lemma 3.8. The MPS {Pn}n>0 and the subsequence of even order of the Euler polynomials {E2n(x)}n>0
satisfy the following formulas

(3.20) E2n+2

(
1− iτ

2

)
=

2
π
(−1)n cosh(πτ/2)

∫
∞

0

√
xPn(x) Kiτ(2

√
x)dx , n ∈ N0,

and

(3.21) x3/2Pn(x) =
(−1)n+1

π
lim

λ→ π
2−

∫
∞

0
cosh(λτ) tanh

(
πτ

2

)
E2n+2

(
1− iτ

2

)
Kiτ(2

√
x)dτ , n ∈ N0.

Proof. The even order Euler polynomials admit the integral representation [7, p. 43, Vol.I][6, (24.7.9)]

E2n
(
− y

2

)
= 2(−1)n+1 sin(πy/2)

∫
∞

0

(τ/2)2n cosh(πτ/2)
cosh(πτ)− cos(πy)

dτ

= 2(−1)n+1 sin(πy/2) lim
λ→π/2−

∫
∞

0

(τ/2)2n cosh(λτ)

cosh(πτ)− cos(πy)
dτ , n ∈ N0 , −2 < ℜ(y)< 0,

which can be transformed into

(3.22) E2n

(
− y

2

)
=

4
π2 (−1)n+1 sin(πy/2) lim

λ→π/2−

∫
∞

0

∫
∞

0
(τ/2)2n cosh(λτ)Kiτ(2

√
x)Ky+1(2

√
x)

dx√
x

dτ

owing to the relation (2.16.33.2) in [15, Vol.II] followed by a change of variable. Precisely, we obtain
1

cosh(πτ)− cos(πy)
=

2
π2

∫
∞

0
Kiτ(2

√
x)Ky+1(2

√
x)

dx√
x
, −2 < ℜ(y)< 0.

The absolute and uniform convergence by λ ∈ [0,π/2− ε], for small positive ε , of the inner integral with
respect to x in (3.22), justify the equality

(3.23)
E2n

(
− y

2

)
=

4
π2 (−1)n+1 sin

(
πy
2

)
2−2n−2

× lim
λ→π/2−

∂ 2n+2

∂λ 2n+2

∫
∞

0

∫
∞

0
cosh(λτ)Kiτ(2

√
x)Ky+1(2

√
x)

dx√
x

dτ , n ∈ N0.

In the light of Fubini’s theorem, we change the order of integration in (3.23). The equality [24]
2
π

∫
∞

0
cosh(λτ)Kiτ(2

√
x)dτ = e−2

√
xcos(λ/2)
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(i.e., the inverse relation of (1.1)) provides (3.23) to become

E2n

(
− y

2

)
=

2
π
(−1)n+1 sin

(
πy
2

)
2−2n−2 lim

λ→π/2−

∂ 2n+2

∂λ 2n+2

∫
∞

0
e−2
√

xcos(λ/2)Ky+1(2
√

x)
dx√

x
.(3.24)

Moreover, it is straightforward to verify that
∣∣∣ ∂ 2n+2

∂λ 2n+2 e−2
√

xcos(λ/2)
∣∣∣ 6 Cnxn for x > 0 and λ ∈ [0,π/2),

where Cn depends exclusively on n ∈ N0. This argument combined with the fact that
∣∣Ky+1(2

√
x)
∣∣ 6

Kℜ(y)+1(2
√

x) and ∫
∞

0
Kℜ(y)+1(2

√
x)xndx <+∞,

gives grounds for the passage of the limit under the outer integral in (3.24). Appealing to (3.11) and as long
as −2 < ℜy < 0, we derive

E2n

(
− y

2

)
=

2
π
(−1)n+1 sin(πy/2)

∫
∞

0

√
xPn−1(x) Ky+1(2

√
x)dx , n ∈ N,

which yields (3.20) after taking y =−1+ iτ .
Within the scope of the Kontorovich-Lebedev transform (according to (3.5)-(3.6)), it is possible to invert

(3.20), which results in (3.21). �

Remark 3.9. It is worth to compare (3.21) with the representation given in (3.10).

4. THE DUAL SEQUENCE AND THE DITKIN-PRUDNIKOV PROBLEM

The properties of the MPS {Pn}n>0 trigger those of the corresponding dual sequence. Basically, after
analyzing them we will bring to light the connection between this MPS (non-orthogonal) {Pn}n>0 and the
Ditkin-Pridnikov orthogonal polynomial sequence: they share the same canonical form.

Lemma 4.1. The elements of {un}n>0 are solution of the following differential equations

(x2u0)
′′−3(xu0)

′+(1− x)u0 = 0,(4.1)

(x2un+1)
′′−3(xun+1)

′+(1− x)un+1 =−un , n> 0 .(4.2)

Moreover, the moments of u0 are (u0)n = (n!)2 for , n ∈ N0.

Upon rearrangement, the relations (4.1)-(4.2) can be written

xDxDu0− x u0 = 0,
xDxDun+1− x un+1 =−un , n> 0 .

Proof. The action of u0 over (3.4) is given by

〈u0,x2P′′n (x)+3xP′n(x)+(1− x)Pn(x)〉= 0 , n ∈ N0,

which, by transposition, on account of (1.5), is equivalent to

〈
(
x2u0

)′′−3
(
xu0
)′
+(1− x)u0,Pn〉= 0 , n ∈ N0,

providing (4.1). Likewise, the action of uk+1 over (3.4) yields

〈uk+1,x2P′′n (x)+3xP′n(x)+(1− x)Pn(x)〉=−δn,k , n,k ∈ N0,

and, due to (1.5), we may write this latter as

〈
(
x2uk+1

)′′−3
(
xuk+1

)′
+(1− x)uk+1,Pn〉=−δn,k , n,k ∈ N0.

By virtue of (1.4), the relation (4.2) is then a consequence of this latter equality.
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The action of both sides of (4.1) over the sequence {xn}n>0 permits to obtain the relation for the moments
of u0, since we have

(u0)n+1 = (n+1)2(u0)n , n ∈ N0

and thereby (u0)n = (n!)2(u0)0 = (n!)2 for , n ∈ N0. �

Remark 4.2. Any MPS {Bn}n>0 such that B0 = 1 and Bn+1(0) = 0 has the Dirac delta δ as canonical form.

For this reason, the sequence {Bn(x) :=
n
∑

k=0
Ŝ0(n,k)xk}n>0 has δ as its canonical form.

Corollary 4.3. The sequence of the moments of the elements of the dual sequence {(un)k}06n6k, coincides
with the sequence of the modified Stirling numbers of first kind, namely

(un)k = (−1)n+k ŝ0(k+1,n+1)

with (u0)k = (k!)2 for any k ∈ N0.

Proof. Regarding the definition of a dual sequence it is clear that (un)k = 0, whenever 06 k < n. By virtue
of (3.2), as long as k > n> 0, it follows

(un)k =
k

∑
ν=0

(−1)k+ν ŝ0(k+1,ν +1)〈un,Pk〉=
k

∑
ν=0

(−1)k+ν ŝ0(k+1,ν +1)δn,ν

whence the result. �

It is now to clarify whether or not the MPS {Pn(x)}n>0 is orthogonal. Somehow expected, we have the
following result.

Lemma 4.4. The MPS {Pn(x)}n>0 cannot be regularly orthogonal.

Proof. Under the assumption of the orthogonality of the MPS {Pn(x)}n>0, the elements of the corresponding
dual sequence can be written as a product of Pn by the canonical form u0, according to (1.6), and (4.2) is
then given as well by(

x2Pn+1u0

)′′
−3
(

xPn+1u0

)′
+(1− x)Pn+1u0 =−γn+1Pnu0 , n ∈ N0,

with γn+1 =
〈u0,P2

n+1〉
〈u0,P2

n 〉
6= 0. We collect it in terms of the derivatives of Pn+1, that is,

Pn+1

(
(x2u0)

′′−3(xu0)
′+(1− x)u0

)
+P′n+1

(
2(x2u0)

′−3xu0

)
+P′′n+1x2u0 =−γn+1Pnu0 , n ∈ N0,

and we invoke (4.1) in order to simplify it to

P′n+1

(
2(x2u0)

′−3xu0

)
+P′′n+1x2u0 =−γn+1Pnu0 , n ∈ N0.

The particular choice of n = 0 brings

2(x2u0)
′−3xu0 =−γ1u0

permitting to deduce the equality(
− γ1P′n+1 + x2P′′n+1 + γn+1Pn

)
u0 = 0 , n ∈ N0.

Now the regularity of u0 compels the identity

−γ1P′n+1 + x2P′′n+1 + γn+1Pn = 0 , n ∈ N0,

contradicting the fact that degPn = n for all n ∈ N0, whence the conclusion. �
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Remark 4.5. Actually, the non-orthogonality of this MPS could be observed directly from Table 3, after a
few steps of computation, regarding, for instance, the fact that P3 do not fulfill a second order recurrence
relation, namely,

P3(x) = (x−9)P2(x)−25P1(x)−17P0(x) .
Arguing in a similar way, we may as well conclude the non-ocurrence of other kinds of orthogonality, like the
d-orthogonality for at least d = 5, insofar as there are polynomials not fulfilling a (d+1)th order recurrence
relation. For a compendium of results about the d-orthogonality, related to the present work whatsoever, we
refer the reader to [3].

Despite the non-(regular)orthogonality of {Pn}n>0 with respect to the form u0, we cannot exclude the
existence of an orthogonal polynomial sequence, say {Vn}n>0, with respect to u0, which amounts to the
same as ensuring the regularity of u0. This question is handled in the next section.

Proposition 4.6. The canonical form u0 is definite positive and admits the integral representation

(4.3) 〈u0, f 〉= 2
∫

∞

0
K0(2
√

x) f (x)dx , ∀ f ∈P.

Proof. We seek a function U(x) such that

〈u0, f 〉=
∫

C
U(x) f (x)dx

holds in a certain domain C. Since 〈u0,1〉= 1 6= 0, we must have

(4.4)
∫

C
U(x)dx = 1 6= 0

Consider the three polynomials presented in (4.1)

φ(x) = x2 , ψ(x) =−3x , χ(x) = 1− x .

By virtue of (4.1), we have, for any f ∈P

0 = 〈
(
(φ(x)u0)

′+ψ(x)u0

)′
+χ(x)u0, f (x)〉= 〈u0,φ(x) f ′′(x)+ψ(x) f ′(x)+χ(x) f (x)〉

=
∫

C

(
(φ(x)U(x))′′+(ψ(x)U(x))′+χ(x)U(x)

)
f (x)dx

−
(

φ(x)U(x) f ′(x)− (φ(x)U(x))′ f (x)−ψ(x)U(x) f (x)
)∣∣∣

C

therefore, U(x) is a function simultaneously fulfilling∫
C

(
(φ(x)U(x))′′+(ψ(x)U(x))′+χ(x)U(x)

)
f (x)dx = 0 , ∀ f ∈P(4.5) (

φ(x)U(x) f ′(x)− (φ(x)U(x))′ f (x)−ψ(x)U(x) f (x)
)∣∣∣

C
= 0 , ∀ f ∈P .(4.6)

The first equation implies

(φ(x)U(x))′′+(ψ(x)U(x))′+χ(x)U(x) = λg(x)

where λ is a complex number and g(x) 6= 0 is a function representing the null form, that is, a function such
that ∫

C
g(x) f (x)dx = 0 , ∀ f ∈P.

We begin by choosing λ = 0 and we search a regular solution of the differential equation

(x2U(x))′′− (3xU(x))′+(1− x)U(x) = 0
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whose general solution is: y(x) = c1I0(2
√

x)+ c2K0(2
√

x) , x > 0, for some arbitrary constants c1,c2 and
y(x) = 0 when x < 0 [7]. As a consequence U(x) =

{
c1I0(2

√
x)+c2K0(2

√
x)
}
, x> 0. Insofar as U(x) must

be a rapidly decreasing sequence (that is, such that lim
x→+∞

f (x)U(x) = 0 for any polynomial f ) simultaneously

realizing the condition (4.4), we readily conclude that U(x)= 2K0(2
√

x), considering its asymptotic behavior
(3.7)-(3.8) together with the expression for its moments (2.2). Moreover, for every polynomial g that is not

identically zero and is non-negative for all real x we have 〈u0,g〉= 2
∫

∞

0
g(x)K0(2

√
x) dx > 0 and therefore

u0 is a positive-definite form, which implies the existence of a corresponding MOPS (i.e., u0 is a regular
form). �

The aforementioned MOPS is necessarily the Ditkin-Prudnikov MOPS {Vn}n>0, whose characterization
is still an open problem. Needless to say that it is possible to compute the first recurrence coefficients, for
instance

β0 = 1 , γ1 = 3 , β1 = 29/3 , γ2 =
656

9
, β2 =

3467
123

, γ3 =
690363
1681

, β3 =
2196517

38827
. . .

and also
β7 =

363585736298731290065727811165063
1352672789824976295577428827577

where βn and γn+1 are such that

V0(x) = 1 , V1(x) = x−β0,(4.7)

Vn+2(x) = (x−βn+1)Vn+1(x)− γn+1Vn(x) , n ∈ N0.(4.8)

Apparently this does not give any clue for the behavior of the remaining elements of the sequence. We
did not reach this far further connections between these two polynomial sequences {Pn}n>0 and {Vn}n>0,
capable to unravel the aforementioned problem. However we still work toward this goal, bring to light the
properties of this MPS connected to the moments of Kiτ(2

√
x) is worth by itself.
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