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ABSTRACT. This is a full study of the dynamics of polynomial planar vector fields whose linear
part is a multiple of the identity and whose nonlinear part is a homogeneous polynomial of
arbitrary degree n > 1. It extends previous work by other authors that was mainly concerned
with the existence and number of limit cycles. The general results are also applied to two
classes of examples where the nonlinearities have degrees 2 and 3, for which we provide a set
of phase portraits.
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1. INTRODUCTION

Global planar dynamics of polynomial vector fields has been of interest for many years.
Part of this interest arises from its connection to Hilbert’s 16! problem on the number of
limit cycles for the dynamics. Because of Hilbert’s 16" problem, substantial effort has been
devoted to establishing a bound for the number of limit cycles. For some contributions in this
direction when the vector field has homogeneous nonlinearities see the work of Boukoucha [6],
Bendjeddou et al. [4], Huang et al. [16], Gasull et al. [15], Llibre et al. [19] or Carbonell
and Llibre [7], and more recently Garcia-Saldana et al. [14]. This question has also been
approached using bifurcations by, for instance, Benterki and Llibre [5] or [15]. Vector fields
of degree 2 are reviewed in the book by Artés et al. [3]. Quasi-homogeneous nonlinearities
have recently been addressed by Llibre et al. [18]. The special case where the homogeneous
nonlinearity is contracting is treated in Alarcén et al. [1]. Problems with symmetry appear in
Alvarez et al. [2] and Labouriau and Murza [17].!

We are, of course, also concerned in establishing an upper bound for the number of limit
cycles. However, when no limit cycle exists, we take a different route and address the question
of the existence of polycycles? and the number of equilibria in them. Our main results are
stated and proved in Sections 3 — 5.

We focus on polynomial vector fields with homogeneous nonlinearities, as many before us,
but use the existence of invariant lines through the origin to provide information on the global
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dynamics. We consider vector fields of the form

T o= Ar+ Ql(x7y>
(1)

y = Ay+Qaz,y),

where A # 0 and @;, i = 1,2 are homogeneous non-zero polynomials of the same degree n > 1.
We define Q = (Q1,Q)2) and say it is a homogeneous polynomial of degree n. The origin of
such a system is an unstable star node (a node with equal and positive eigenvalues) if A > 0
and a stable star node (a node with equal and negative eigenvalues) if A < 0.

Using both the dynamics of the vector field at infinity, through its Poincaré compactification,
as well as polar coordinates, we describe completely the existence of equilibria at infinity. These
occur as equilibria on the boundary of the Poincaré disk for the dynamics of the compactifi-
cation. We distinguish them from finite equilibria, occurring in the interior of the Poincaré
disk, by calling them infinite equilibria. The existence of infinitely many infinite equilibria
determines that either there are also infinitely many finite equilibria or the origin is the only
finite equilibrium.

The case of finitely many infinite equilibria allows for a complete description of the planar
dynamics. Each equilibrium at infinity defines an invariant radius with the origin. All finite
equilibria are located on such radii. We are able to provide an upper bound for the number of
finite equilibria which improves on Bezout’s Theorem for polynomials of degree strictly greater
than 3. We also describe the stability of all equilibria.

The above is a preliminary step for our main contribution to the description of the global
planar dynamics with star nodes. This relies on the construction of invariant sectors from
the invariant radii. The number of sectors necessary for the full description of the global
dynamics depends on the number of infinite equilibria (whose upper bound we have established
previously). Polycycles are present only when one type of sector repeats to cover the plane. A
limit cycle exists only when there are no infinite equilibria. It can arise as a generic perturbation
of a heteroclinic cycle that collapses through a saddle-node bifurcation. Together with ours,
results previously established by Bendjeddou et al. [4], Coll et al. [10], and Gasull et al. [15]
completely describe the case when the origin is a global attractor or repellor. We describe
the possible phase portraits up to topological equivalence, where two systems (1) are equivalent
if there is a homeomorphism of the Poincaré disk mapping trajectories of one system into
trajectories of the other and preserving time orientation.

We illustrate our results by studying the cases when the nonlinear polynomials are of degree
2 and 3. To this purpose, we build also on previous results of Cima and Llibre [8] and Date
[12]. In both cases we provide a list of admissible phase portraits for the global dynamics. In
the case of degree 2 this can be complemented with the classification in the book by Artés et al.
[3]. This article is thus a preliminary step towards the study of the probability of occurrence
of a given phase portrait along the lines of Cima et al. [9]. For higher degree the interested
reader may apply the same procedure to the classification of Collins [11].

This article is organised as follows: in the next section we provide some background and
establish our notation. In Section 3, we describe the equilibria as well as their stability. Sec-
tions 4 and 5 provide a complete description of the global dynamics, including the existence of
limit cycles and polycycles. In the final section we present two families of examples when the
nonlinear part of (1) is of degree 2 and of degree 3.



QUALITATIVE PLANAR DYNAMICS WITH STAR NODES: February 10, 2026 3

2. PRELIMINARY RESULTS AND NOTATION

We describe the global dynamics for (1) depending on whether the finite degree n is even
or odd. We use the compactification of R? in Chapter 5 of Dumortier et al. [13] to describe
the dynamics at infinity of (1) and to show that it determines the dynamics in R?. The
beginning of this section is devoted to recalling the Poincaré compactification and establishing
some convenient notation that we use throughout.

Let 8 C R? be the unit sphere and identify R? with the plane {(z,y,1) € R® : z,y € R}.
Using coordinates (21, 22, 23) for R?, define charts Uy = {z € §% : 2, > 0} and V;, = {z € §*:
2, < 0} for k = 1,2,3. The local maps corresponding to these charts are ¢p(z) = —p(z) =
(2m/ 2k, 2n/21) for m < n and m,n # k. Use (u,v) to denote the value of the image under any
of the local maps, so that the meaning of (u,v) has to be determined in connection to each
local chart. A point with coordinates (u,v), u # 0 in U; or V; corresponds to the point with
coordinates (@, 0) = (1/u,v/u) in U; or V; with i # j. The plane R? is identified with the open
northern hemisphere, the Poincaré disk is defined as its closure. By making v = 0 in Uy, Us,
Vi, Vi we obtain the equator St of the sphere, the circle at infinity of the Poincaré disk.

A direct application of the calculations in Dumortier et al. [13] shows that the dynamics of
(1) in the Poincaré compactification is given, in the chart U;, by:

v = F(u)
(2) where F(u) = Q2(1,u) — u@(1,u)
o= =" —vQ(1,u)

and in the chart Us, by:

u = G(u)
(3) where G(u) = Q1(u, 1) — uQs(u, 1).
b= A Qe 1)

The expressions of the Poincaré compactification in the charts 1, and V5, are obtained from
those in the charts U; and U,, respectively, by multiplication by (—1)""!,

The dynamics at infinity of (1) is thus given by the restriction of either (2) or (3) to the flow-
invariant line (u,0), since the second equation is trivially satisfied for v = 0. An equilibrium
at infinity of (1) is an equilibrium (u,0) € S' of either (2) or (3). We refer to it as an infinite
equilibrium, by opposition to finite equilibria (u,v), v # 0. We refer to periodic trajectories and
limit cycles as finite or infinite in the same spirit.

It is clear that the dynamics of the restriction of either (2) or (3) to the flow-invariant circle
at infinity (u,0) does not depend on A and therefore, does not depend on the linear part of (1).
Hence, it is equivalent to

T = Ql(xvy)
y = Q2(xay)

In the special case where the polynomials ()7 and @3 in (1) have no common factor it was
established in [8, Theorem 4.4] that the dynamics at infinity is determined by Q = (Q1, Q).
In our case the result holds without the common factor assumption.

A useful alternative description of the dynamics can be obtained from considering the rep-
resentation of (1) in polar coordinates (z,y) = (rcosf,rsinf), (r,0) € RT x S'. This is given
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by
=X+ f(0)r"
@ AR
where
(5) f(0) = (2,9) - Q@ Y)|(cosp.sinp) = 080 Q1(cos b, sinb) + sind Qa(cos b, sin 0)
and

(6) 9(0) = (=9, %) - Q(Z,Y)](cospsing) = €080 Qa(cosd,sin ) —sinf Q1(cosb,sinb).

Observe that f(0+ 7) = (—=1)"*f(0) and g(0 + 7) = (—1)""1g(0).
We refer to the half-line 8 = 6y, » > 0 as the radius 8 = 6y and to the line 8 = 0y, r € R as
the diameter 6 = 6.

Lemma 2.1. The polynomials Q1, Q2 have a common linear factor if and only if f(0) and
g(0) have a common zero.

Proof. Assume ¢(6y) = 0 for some 6y, with cosfly # 0 (otherwise, proceed analogously for
sinfly # 0). Then, from (6), g(6y) = 0 < Qa(cosby,sinby) = tanyQq(cosby,sinby). Re-
placing in (5), we obtain f(6y) = 0 & Qi(cosby,sinfy) = 0. Hence, for the same 6 it is
Q1(cos by, sinby) = Q2(cosby,sinby) and this is true if and only if the polynomials have a
common linear factor. 0

Note that the components of (1) never have common factors even when @7 and @y do.
In order to analyse the behaviour around the circle at infinity we change coordinates in (4)
by R = 1/r and multiply the result by R"~! obtaining the equivalent equations

R = —AR"— Rf(0)
") {9 = g(0).

Thus, the dynamics of the vector field (4) at the equator of the Poincaré disk is described by
6 =g(0).

3. EQUILIBRIA

This section is concerned with the number and stability of equilibria of (1) in the Poincaré
compactification, both finite and infinite. We start with the behaviour at infinity.

One special case where ()7 and )> have a common factor is described in the next result. It
also implies that generically there will be either no equilibria at infinity or a finite number of
them.

Lemma 3.1. There are infinitely many equilibria of (1) at infinity if and only if yQi(z,y) =
xQs(x,y). Moreover, in this case either there are also infinitely many finite equilibria or the
only finite equilibrium is the origin.

Proof. Equilibria at infinity are points (u,0) that satisfy either F'(u) = 0 or G(u) = 0. Since
both F(u) and G(u) are polynomials, in order to have infinitely many roots we must have either
F(u) =0 or G(u) = 0. Direct substitution in the expressions for F'(u) and G(u) shows that if
yQ1(x,y) = 2Q2(x,y) then F(u) = G(u) = 0. To show the converse, write

Qu(z,y) = ™ y* and  Qaw,y) =) da"y"
k=0 k=0
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to obtain
n n+1 n n+1
(8) F(u) = Z dpuf — Z crqu” and G(u) = Z Cnyu’ — Z dp—_p .
k=0 k=1 =0 =1

Hence, F'(u) = 0 if and only if
c,=0=dy and dy=c,_1 k=1,...,n.

Exactly the same conditions hold for G(u) = 0.
Therefore, we can write Q1 (z,y) = zp(z,y) and Qs(z,y) = yp(x,y), where

I
.

plz,y) =Y cpa™ iy

=0

ol

is a homogeneous polynomial. That is, yQ1(z,y) = £Q2(x,y). In this case, finite equilibria of
(1) satisfy:

t=0 < axz=0orp(r,y =-X\ and y=0 < y=0orp(z,y =-—A\
Since the equation p(x,y) = —\ # 0 has either infinitely many solutions or none, the result
follows. 0

Lemma 3.2. If n is even then there is at least one pair of infinite equilibria of (1).

Proof. Using (8), we see that either the degree of F'is n+ 1, in which case there is at least one
infinite equilibrium, or the degree is less than n + 1. In the second case then ¢, = 0 and then
G(0) = 0 and again there is an infinite equilibrium. When n is even, since g(f) = g(f + 7), the
infinite equilibria occur in pairs. O

The next results provide the possible configuration of finite equilibria. They are similar in
nature to [7, Lemma 3.1] but describe cases not covered there.

Proposition 3.3. There is an infinite equilibrium of (1) on the radius 0 = 6y if and only if
g(6o) =0, and in this case

(a) the diameter 0 = 0y is flow-invariant;

(b) if Af(0y) < O there is a unique finite equilibrium on the radius 0 = 6y;

(c) if A\f(6p) > 0 there are no finite equilibria on the radius 6 = 6.

Proof. The existence of the infinite equilibrium follows from equation (7) and the invariance of
the diameter is immediate from (4). Finite equilibria (rq,0y) with ry > 0 satisfy

7;|90 = )\?"0 + f(@o)rg =0.
Hence, 0 < r§ ™' = —\/f(6p), establishing (b) and (c). O
From f(6 +7) = (=1)""1f(#) and g(0 + 7) = (—=1)"Tg(0), it follows that

e if n is even, the inequalities in (b) and (c) are reversed for 6y + ;
e if n is odd (b) and (c) also hold for 6y + .

The following corollary is then immediate.

Corollary 3.4. Let 0y be such that g(6y) = 0 in (6). Then

(a) there are two infinite equilibria on the diameter 0 = 6y;
(b) if n is even then
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(i) if f(6o) # O then one of the radii @ = 0y and 0 = Oy + m contains a single finite
equiltbrium and there are no finite equilibria on other radius;
(ii) if f(0o) = O there are no finite equilibria on any of the radii = 0y and 0 = 0y + 7;
(c) if n is odd then
(1) if Af(6o) < O there exists a unique finite equilibrium on each one of the radii 0 = 6,
and 0 = 0y + m;
(i1) if Af(0o) > O there are no finite equilibria on any of the radii @ = 0y and 6 = 6y +.

Thus, for each finite equilibrium there is a corresponding equilibrium at infinity. The converse
may not be true: the set of infinite equilibria may even be a continuum, with only one finite
equilibrium, as in Lemma 3.1.

By Bezout’s Theorem, if (1) has finitely many equilibria, then they are at most n?. The next
result shows that this estimate may be improved for n > 3 (the estimate is the same if n < 3).

Theorem 3.5. If (1) has finitely many infinite equilibria, then

(a) for all n > 1 there are at most 2(n + 1) infinite equilibria;
(b) if n is odd then the number of finite equilibria away from the origin is at most 2(n+1);
(c) if n is even then the number of finite equilibria away from the origin is at most n + 1.

Proof. We start by estimating the number of infinite equilibria. Recall that @ in (1) is a
homogeneous polynomial vector field of degree n. As in the proof of Lemma 3.1 there are
infinitely many equilibria at infinity if and only if either F'(u) = 0 or G(u) = 0, we suppose
this is not the case. As F'(u) is a polynomial of degree at most n + 1 the maximum number of
infinite equilibria in the chart U; is n + 1. Since the same holds in the chart Vi, the maximum
number of infinite equilibria arising from the zeros of F' is 2(n + 1). The zeros of G(u) yield
the same infinite equilibria except for u = 0, which does not belong to U; U V5. If G(0) = 0,
by (8), we have ¢, = 0 and an additional infinite equilibrium in each of the charts Us and V5.
However, when ¢, = 0 the degree of F' is n, rather than n + 1, producing the same maximum
number of 2(n + 1), establishing (a).

Equilibria at infinity correspond to roots of g(#) = 0. If the infinite equilibrium on the radius
0 = 0 lies in the neighbourhood U; then the equilibrium on the radius 6 = 0y + 7 lies in V.

If n is odd then Proposition 3.3 shows that for each one of the infinite equilibria on the radii
0 = 0y and 0 = 0y + 7, there may be at most one finite equilibrium point on each one of these
radii. Therefore the total number of finite equilibria away from the origin is at most 2(n + 1),

as in (b).
For even n, by Proposition 3.3 only one of the radii § = 6, and 6§ = 6, + 7 may contain a
finite equilibrium, hence the maximum number is n + 1, establishing (c). U

Corollary 3.6. Let () be a homogeneous polynomial vector field of degree n = 2m + 1 and
suppose (1) has finitely many equilibria at infinity. If in the restriction to the circle at infinity
all equilibria are either attracting or repelling then the number of equilibria at infinity is a
multiple of 4.

In particular Corollary 3.6 implies that when all infinite equilibria are hyperbolic their total
number is a multiple of 4.

Proof. As in the proof of Theorem 3.5 we count the equilibria in the chart U; (V, respectively)
in the restriction to the circle at infinity. Equilibria at infinity that are either attracting or
repelling correspond to roots where F'(u) (respectively G(u)) changes sign, hence they are
roots of odd multiplicity. If F'(u) has degree 2m + 2 then there must be an even number of
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these roots. In this case G(0) # 0 and all the infinite equilibria lie in the charts U; and ;.
Therefore the total number of infinite equilibria is a multiple of 4.
If the degree of F'(u) is 2m + 2 — p with p > 1, then from the expressions (8) we get that

F(u) =do+ Z(dk —cp)uF — cu

k=1

hence ¢,, = 0 with doymi2-p # Comt1—p and cx—1 = dj, for £ > 2m + 3 — p. Then

G(U’) = CN—I—Z(Cn—g_dn—f—‘rl)uz_d()un—’—l = (02m+1—p_d2m+2—p)up+ Z (Cn—f_dn—e-l—l)ué_doun-i_la
=1 (=p+1

since if k =n — £+ 1 then ¢,y = ¢4—1 = dy = dpp_s+1. Therefore G(0) = 0 with multiplicity p.

If p is even, then GG does not change sign at u = 0, contradicting the hypothesis. If p is odd,
then the number of roots of F(u) is odd, say 2k + 1, so there are 4k + 2 infinite equilibria in
the charts U; and V;. In this case G changes sign at u = 0, corresponding to two equilibria not
in the charts U; and Vi, and the total number of infinite equilibria is again a multiple of 4. [

The next result concerns the stability of the equilibria of (1). In the case of infinite equilibria
it repeats results in Proposition 4.1 (c) in [8], which we include here for ease of reference.

Proposition 3.7. If (1) has finitely many equilibria at infinity, then:

(a) the linearisation of (2) and (3) at any (finite or infinite) equilibrium has real eigen-
values, in particular, all equilibria are either topological nodes (attractors or repellors),
saddles or saddle-nodes;

(b) the infinite equilibrium on the radius 6 = Oy is radially attracting if either f(6y) > 0
or f(0o) =0 and X\ > 0; it is radially repelling if either f(6y) < 0 or if f(6y) = 0 and
A <0y

(c) the stability in the angular direction of an equilibrium (finite or infinite) on the radius
0 = 0y is determined by the sign of ¢'(0y), and in the radial direction, for finite equilibria,
by the sign of —\;

(d) an equilibrium (ug,vo) (finite or infinite) in the chart Uy (respectively Us) is a saddle-
node if and only if uy is a root of even multiplicity of F(u) in (2) (respectively G(u) in

(3))-

Proof. In both (2) and (3) the expression for @ does not depend on v, hence the Jacobian matrix
is triangular and the eigenvalues are real, proving (a).

Using polar coordinates (4) at a finite equilibrium (7, 6y) we have 0 < rf ' = —\/f(6,) and
the Jacobian matrix of (4) is the triangular matrix

—A(n—1 f(@o)ry
(9) J(T0a00> = ( (O ) g’(«%; <)__A> ) .

f(0o)

Hence, the radial direction is an eigenspace corresponding to the non-zero eigenvalue —A(n—1),
whose sign is the opposite of that of A, proving (b) and the second part of (c).

The stability of a finite equilibrium (rg, fp) in the angular direction depends on the sign of
g'(0y) since 0 < rf~t = —\/f(6). It follows from equation (7) that this stability coincides with
that at infinity, proving (c).
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If f(Ay) # 0 then for small R the sign of R in equation (7) is the same as the sign of —f(6y).
When f(f,) = 0 then R has the sign of —\ for small R > 0, proving (b). Note that for f(8) =
the infinite equilibrium is not hyperbolic.

For an infinite equilibrium, statement (d) is proved in [8, Proposition 4.1 (¢)]. At a finite equi-

librium the radial eigenvalue of J(rg, ) is never zero, and (d) holds for the angular direction,
by (c). O

4. STABILITY OF THE ORIGIN

The aim of this section and the next one is to describe how the dynamics of (1) at infinity
constrains the geometry of flow-invariant sets other than equilibria. We start by the cases when
the dynamics is simpler. The next result is a synthesis of Theorem 2 in [4] and Theorem A in
[10], as well as Theorems 2 and 3 in [15], we include it here for ease of reference.

Theorem 4.1 ([4, 10, 15]). For (1) withn > 1 and X # 0:

() there is at most one non-constant finite periodic solution and its trajectory surrounds
the origin,

(i) if n is even then there are no finite periodic trajectories surrounding the origin,

(iii) if n is odd and g(0) = 0 for some 0 € [0,27) then there are no finite periodic trajectories
surrounding the origin;

(iv) if n is odd and g(0) # 0 for all 6 € [0,27) then the origin is the only equilibrium of (1)
and there is a finite limit cycle surrounding the origin if and only if X = A f27r |f(z) do <
O.

(v) if n is odd and g(0) # 0 for all 0 € [0,27), then the limit cycle at infinity is stable if
and only if T > 0;

(vi) if there is a limit cycle it is hyperbolic.

From this result, Proposition 3.3 and Corollary 3.4 we obtain necessary conditions for trivial
dynamics.

Corollary 4.2. If the origin is a globally attracting (A < 0) or repelling (A > 0) equilibrium
point of (1) then one of the following conditions holds:
(a) n is odd with g(0) # 0 for all § € [0, 27) cmd)\f27r ‘f dd > 0;

(b) n is odd and \f(0) > 0 whenever g(d) = 0;
(c) n is even and f(0) = 0 whenever g(#) = 0.

Proof. By Proposition 3.3, Corollary 3.4 and Theorem 4.1 the conditions on f(f) and g(#) of
(a)—(c) are equivalent to the origin being the only finite equilibrium of (1) and the non-existence
of finite limit cycles. Hence the conditions are necessary. 0

Proposition 4.3. The origin is a globally attracting (A < 0) or repelling (A > 0) equilibrium
point of (1) if one of the following conditions holds:

(a) n is odd with g(0) # 0 for all 8 € [0,27) and )\f% ch(e df > 0;
(b) n is odd, Q1 and Qy have no common linear factor, and )\f( ) > 0 whenever g(0) = 0.

Proof. We have already established that these conditions imply that there are no finite equilibria
except for the origin. Condition (a) implies that there are no infinite equilibria. To show the
condition is sufficient we establish the absence of non-trivial finite periodic trajectories. By
Theorem 4.1 (ii) if such trajectories existed they would surround the origin. Under condition
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(a), Theorem 4.1 (iv) and (v) guarantee no such trajectory exists and the stability of the limit
cycle at infinity is the opposite of that of the origin.

For condition (b), Theorem 4.1 (iii) and (iv) imply that there are no finite limit cycles. Since
@1 and Q3 have no common factor, Lemma 2.1 implies that f(6y) # 0 when g(6y) = 0, hence
Af(6g) > 0 at these points. In order to analyse the behaviour around the equilibria at infinity
we use equation (7) around R = 0. On the restriction to the invariant ray 6 = 6, the infinite
equilibrium (R, 6) = (0,6p) is hyperbolic and repelling for A < 0, so no finite trajectory can
have it as accumulation point and the result follows by the Poincaré-Bendixson Theorem. For
A > 0 the same holds with reversed time. 0

If n is even then by Corollary 3.4 the origin is the only finite equilibrium of (1) if and only if
f(8) = 0 whenever ¢g(f) = 0. By Theorem 4.1 (ii) there are also no finite periodic trajectories.
The problem is making sure there are no finite trajectories connecting the infinite equilibria.

The next example, constructed by Fabio Scalco Dias, illustrates the need for the condition
that ()1 and 2 have no common linear factor in Proposition 4.3 (b).

Example 4.4 (F. Scalco Dias). Let

T = —x+ (23 +y?) B B

Then Qu(r,y) = ~Qu(,y) with Qu(r,) =2 + 3 = (2 +3) Blr —9)* + (s + )] 50w+

is the only common linear factor. Since

1

9(0) = =< (z+y)* (3(x —y)* + (z +v)?)

<0
1 =

(cos 8,sin 0)

then ¢g(#) = 0 if and only if 6 = 37/4 or § = —7 /4, otherwise g(f) < 0. At these points f(6) =0
since

1

f0) = 7@ =y)(z+y) B —y)* + (@ +y)?)

(cosB,sin 6)
so on the corresponding radius » = —r < 0.

To see the behaviour at infinity we use equation (7). On the line R = 0 the infinite equilibrium
(R,0) = (0,—m/4) is a saddle-node attracting on the # > —m/4 side. On the ray R > 0,
0 = —m /4 this equilibrium is a non hyperbolic source R = R3. However, in the region R? < f(6),
close to the line at oo, R < 0 and this is where a trajectory connecting the two infinite equilibria
(0,37/4) and (0, —m/4)] may exist.

Let F'(R, ) be the vector field associated to (7) in the new coordinate ¢ = 6 + 7/4. To see
if there is such a connection we blow up the vector field F(R, ¢) around (R, ) = (0,0) in the
direction ¢. To simplify the calculations we use the degree 4 Taylor expansions of f and g,
that are:

(11) fle)=3p—4¢’ +0(¢°)  and  g(p) = =3¢* +3p" + O(¢°).

~ 1
Then the rescaled directional blow up (see [13]) is FI(R, ¢) = ﬁ(D]M)_1 - FoM(R, ), where
M(R, ) = (R, Rp). Using the Taylor expansions (11), it is given by:

- R — 3¢+ 4R%*p’
ﬂ&@—( ﬂﬁ3¢@>+mmwy
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hence

~ 1+8p% —3 4 12R%p? ~ 1 -3
DR = (T3 PR rourey = pRo0 = () )

with eigenvalues: 1 and —1, eigenvectors (1,0)7 and (3,2)7 respectively.
Therefore there are trajectories of (7) in the first quadrant R > 0, § > —m/4 going into the
infinite equilibrium (0, —7/4) and the origin is not a global attractor, as shown in Figure 1.
Note that this example is very degenerate, since the linear change of coordinates (u,v) =
(x +y,z — y) brings it to the form

v = —u+0
b= —v+2(a +yP).

F1GURE 1. Dynamics of Example 4.4 on the Poincaré disk.
Examples of degree 2 with similar dynamics may be found in the book [3].

5. INVARIANT REGIONS AND POLYCYCLES

In this section we discuss the dynamics of (1) when ¢(fy) = 0 for some 6y € [0,27). This
condition, by Proposition 3.3, implies the existence of two infinite equilibria. It also implies the
flow-invariance of the diameter § = 6y. Suppose g(6) is not identically zero and let a; and ay
be two consecutive infinite equilibria corresponding to two consecutive zeros of g(6), ¢; and 6s.
These define a flow-invariant set given in polar coordinates by {(r,0) : r € R, 0; <0 <6y},
with 0 < 0 — 67 < m. We refer to this flow-invariant set as a flow-invariant cone (or simply a
cone) and to its non-negative (r > 0) component as a half-cone.

Therefore, to equilibria at infinity there corresponds a division of the plane in invariant half-
cones between consecutive invariant radii. An upper bound for the number of half-cones can
be obtained from Theorem 3.5.

Corollary 5.1. If the homogeneous polynomial (Q has degree n > 1 then there are at most
2(n 4 1) half cones that are invariant under the flow of (1). If n is even there is at least one
pair of invariant half-cones.

Proof. Each pair of infinite equilibria, satisfying g(6p) = 0 = ¢(fy + m) determines a flow-
invariant diameter. From the proof of Theorem 3.5 it follows that there are at most 2(n + 1)
such pairs, independently of the parity of the degree n. If n is even then by Proposition 3.3
there is at least one pair of infinite equilibria, giving rise to one pair of invariant half-cones. [J

An infinite equilibrium a and its associated invariant radius determine two angles in a neigh-
bourhood in the half-plane v > 0. Denote by P~ an angle that is repelling in both the line at
infinity and in the radius, P an angle that is attracting in both the line at infinity and in the
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radius, H~ an angle that is attracting in the line at infinity and radially repelling and H* an
angle that is repelling in the line at infinity and radially attracting, see Figure 2.

A parabolic sector is a subset of the Poincaré disk bounded by either a PT or a P~ angle such
that the dynamics is qualitatively equivalent to that of a node. A hyperbolic sector is bounded
by either a H* or a H~ angle with dynamics qualitatively equivalent to a saddle. A region
bounded by an angle may contain more than one sector as in Figure 1.

We will use below this classification of sectors to determine the dynamics of (1) on the
invariant half-cones.

If a is a hyperbolic equilibrium of (7), i.e. if @); and @2 have no common linear factor and
g'(a) # 0, then the P* are parabolic sectors and the H* are hyperbolic sectors.

P P’ H' H " " ) H
—

\/\/7 @ T@f’ T\‘\/}/

(@) (b) (©) (d)

F1GURE 2. Dynamics in invariant half-cones in Theorem 5.3 for A > 0. In case
(a) the unstable manifold of the finite equilibrium splits the half-cone in two
basins of attraction. In case (d) there is a robust heteroclinic connection between
two finite equilibria. In the remaining cases the origin is a global repellor for the
interior of the half-cone.

Lemma 5.2. If g(0) is not identically zero the possible pairs of angles at two consecutive infinite
equilibria are:
(a) P~ and PT;
(b) H* and H™;
(c) H" and P*;
(d) P~ and H™.

Proof. Since the infinite equilibria are consecutive, the flow at infinity goes from one of the
infinite equilibria to the other. Then, if the angles are of the same type, H or P, they cannot
have the same sign. If the angles are of different types then, of course, one is P*. If it is P~
then the other angle, which is H¥, is attracting in the angular component and must therefore
be radially repelling. That is, it is H~. Analogously, if one angle is P* then the other angle

is repelling in the angular component. It must therefore be radially attracting, that is, it is
HT. O

Theorem 5.3. If all the infinite equilibria of the vector field (1) are hyperbolic, then the dy-
namics near them determines the global dynamics on the plane. For a trajectory at infinity
connecting two consecutive infinite equilibria a; and as the dynamics in the half-cone C' deter-
mined by them is described in Figures 2 and 3, where the possible pairs of angles at a; and a
are those in Lemma 5.2.

Proof. Assume that A > 0 so that the origin is repelling as in Figure 2. If all the infinite
equilibria are hyperbolic, then equation (7) implies that g(€) is not identically zero, and there
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are finitely many infinite equilibria. Because of Proposition 3.3, one is the maximum number
of finite equilibria on the radius # = 6; corresponding to a;, 7« = 1,2. We have that

e an angle delimited by a repelling radius exists at a; if and only if exactly one finite
equilibrium exists on the radius 6 = 6;;
e an angle delimited by an attracting radius exists at a; if and only if there are no finite
equilibria on the radius 6 = 6,.
Since to a finite equilibrium there corresponds an infinite one, and because a; and a, are
consecutive infinite equilibria, it follows that there are no finite equilibria in the interior of C.
The admissible dynamics are depicted in Figure 2.

For A\ < 0 the origin is attracting and the dynamics in C' may be obtained by changing time
as s = —t. The phase portraits are depicted in Figure 3. U

p- pt + - + + - -

\XJ/‘ . 6] 5 6/ @/

(@) (b) (©) (d)

FiGURE 3. Dynamics in invariant half-cones in Theorem 5.3 for A < 0. In case
(a) the stable manifold of the finite equilibrium splits the half-cone in two basins
of attraction. In case (c) there is a robust heteroclinic connection between two
finite equilibria. In the remaining cases the origin is a global attractor for the
interior of the half-cone.

It remains to see what happens if the infinite equilibrium a at 6 is not hyperbolic. This may
happen if either f(6p) = 0 (i.e. @Q; and Q2 have a common linear factor) or if ¢’(6p) = 0. In
this case the angle formed by the line at infinity and the radius may comprise more than one
dynamically defined sector. We start by establishing the dynamics around an angle of type P.

Lemma 5.4. If a is an infinite equilibrium of the vector field (1) that determines an angle that
is attracting (respectively repelling) in both the line at infinity and in the radius, then the angle
18 a parabolic sector.

Proof. We show that the non hyperbolic equilibrium a with coordinates (R, ) = (0, 6) attracts
(respectively repels) all points in the intersection of the half-cone with an open rectangle around
a. Assume that A > 0 (for A < 0 reverse time), and for simplicity, that the sector is locally
0 > 0.

First note that if f(#) is identically zero, then the first equation in (7) reduces to R =
—AR"™ < 0 for R > 0. In particular this holds for ¢, which implies that a is radially attracting.
It follows by hypothesis that the angle is P™ and hence a is attracting in the line at infinity,
therefore g(f) < 0 for 6 > 0, close to #y. From (7) and since there is no other equilibrium
around a, it follows that a attracts all trajectories with R > 0 and # > 0 close to 6, so the
angle is a parabolic sector. .

If f(0y) > 0 then at the radius at 6y we have R = —AR" — Rf(6p) < 0 for small R > 0, so
a is radially attracting and the angle is of type P with ¢g(f) < 0 for § > 6, close to 6. By
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continuity, there are R; > 0 and 0, > 0y such that if 0 < R < R; and 0y < 0 < #; we have
R < 0 and 6 = g(f) < 0. Therefore the rectangle (R,6) € [0, Ry] x [fo,6:] is positively flow-
invariant so it must contain the w-limit set of all trajectories in it. Since the only equilibrium
in the rectangle is a, this must be the w-limit set, so the angle is a parabolic sector. The same
reasoning may be applied if f(6y) < 0 with R = —AR"™ — Rf(6y) < 0 for small R > 0.

If f(6y) < 0 with R = —AR" — Rf(6y) > 0 for small R > 0 then a is radially repelling and
the angle is of type P~ with ¢g(0) > 0 for 8 > 6 close to 6. Then there are Ry > 0 and 6; > 6,
such that if 0 < R < Ry and 6, < 0 < 6; we have R > 0 and 6 = g(0) > 0. Therefore the
rectangle (R, 0) € [0, Ry] X [6p, 61] is negatively flow-invariant so it must contain the a-limit set
of all trajectories in it. Since the only equilibrium in the rectangle is a, this must be the a-limit
set, so the angle is a parabolic sector. (]

An angle of type H may contain more than one sector, as we saw in Example 4.4. Figure 1
shows two infinite equilibria such that the angle of type H™ contains one hyperbolic and one
parabolic sector. The next result establishes that the only possibility is the situation of that
example.

Lemma 5.5. If a is an infinite equilibrium of the vector field (1) that determines an angle that
is attracting (respectively repelling) in the line at infinity and radially repelling (respectively
attracting), then the angle contains a hyperbolic sector and at most one parabolic sector. The
last case only occurs if f(6y) = 0 where (0,0y) are the coordinates (R, 0) at a.

Proof. Let (R,0) = (0,6p) be the coordinates of the non hyperbolic equilibrium a and without
loss of generality consider an angle defined locally by 6 > 6,. Again we deal with the case
A > 0, for A < 0 the result follows by reversing time.

If f(0) is identically zero, then, as in the proof of Lemma 5.4 it follows that a is radially
attracting, hence the angle is of type H™, and there exists 6; > 6y such that g(6) > 0 for
0y < 0 < ;. For some R; > 0, consider the rectangle (R,0) € [0, Ry] X [6p, 61]. Its boundary
consists of the flow-invariant segments (0, #) and (R, 6y), of the segment (R;, 6) where the vector
field points in (since R = —AR" < 0) and of the segment (R, 6,) where the vector field points
out. Trajectories starting at {R;} X (6y,0;) go into the rectangle. The only equilibrium in
the rectangle is a = (0,6,) and that point cannot be their w-limit, since § = g(f) > 0, so the
trajectories must go out through the segment [0, R1] x {6;}. Therefore, the angle is a hyperbolic
sector.

If f(6y) > 0, since at the radius at 6y we have R = —AR™ — Rf(6,) < 0, then a is radially
attracting and the angle is of type H™. By continuity, there is 6; > 6y such that f(6) > 0 and
g(0) < 0 for 0 € [y, 0], hence, for any R; > 0, in the rectangle (R,0) € [0, Ry] X [0y, 61] we
have R < 0 and 6 > 0. The same arguments used in the case f(0) = 0 show that the angle is
a hyperbolic sector.

If f(6y) < O then, for R < Ry = (—f(60)/A\)" ™Y, at the radius at 6, we have R = —AR" —
Rf(6p) > 0 hence a is radially repelling and by hypothesis it is attracting in the line at infinity,
therefore the angle is of type H~. By continuity, there is a rectangle (R, ) € [0, Rs] X [0y, 01]
with Ry < R;, where R > 0 and § = g(f) < 0. Its boundary consists of the flow-invariant
segments (0,6) and (R, 6y), of the segment (Rs,#) where the vector field points out (since
R > 0) and of the segment (R, 0;) where the vector field points in. Trajectories starting at
(R,6;) go into the rectangle. The only equilibrium in the rectangle is a = (0,6) and that
point cannot be their w-limit, since R > 0, so the trajectories must go out through the segment
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(Rs,0). Similarly, all trajectories starting at points in the rectangle with R > 0 satisfy 0 <0
so a = (0,6y) cannot be their a-limit. Therefore, the angle is a hyperbolic sector.

If f(6p) = 0 then a is radially attracting and the angle is of type Ht. If f(8) > 0 for § > 6,
close to 6y, then, as in the case f(6y) > 0, there is a rectangle (R, 0) € [0, Ry] X [0y, 0;] where
f(8) > 0 and ¢(f) > 0, hence R < 0 and 6 > 0 and the angle is a hyperbolic sector, as in the
case f(6p) > 0.

If f(6y) = 0 with f(8) < 0 for § > 6 close to 6y, then R = 0 on the curve R = R() =
(—f(6)/ NV with R > 0 for R < R(). Since for some 6; > 6, we have g(#) > 0 for
0o < 0 < 04, then, for trajectories starting at (R, 6;) with 0 < R < R(f;), the coordinates R(t)
and 6(t) are monotonically increasing functions. If the trajectory meets the curve R = R(0)
it crosses it from the region where R < 0 from where it must arrive at the rectangle (R, #) €
[0, R(61)] % [0o, 01] through the side (R(6;),6). However, there may be trajectories that never
cross the curve R(f) and therefore must have a as a-limit. In this case the angle at a consists
of two sectors, one hyperbolic H* and the other parabolic P~. Since 6 > 0 at all points in the
interior of the rectangle, then no trajectory can have a as w-limit. This precludes the existence
of an elliptic sector, filled with loops having both a- and w-limit a. U

Note that in Lemmas 5.4 and 5.5 the fact that ¢’(fy) = 0 is irrelevant to the dynamics on
the angle.

Theorem 5.6. If the vector field (1) has finitely many equilibria at infinity, then the dynamics
near them determines its global dynamics on the plane.

For a trajectory at infinity connecting two consecutive infinite equilibria a; and ag the dy-
namics in the half-cone C determined by them is described in Figures 2, 3 and 4.

+ - p- - - + pt +

(@) (b) (@) (d)

FIGURE 4. Dynamics in invariant half-cones in Theorem 5.6 when there is an
angle HOjE consisting of two sectors. The dashed line is the trajectory separating
the sectors, it splits the half-cone in two basins of attraction or repulsion. In (a)
and (b) A < 0, in (c) and (d) A > 0. In cases (b) and (d) there is a parabolic

sector at infinity connecting the two infinite equilibria as in Example 4.4.

Proof. Assume that A > 0, so the origin is repelling and consider a half-cone C' defined by two
consecutive infinite equilibria a; and as at the angles 6, < 65, respectively. If both a; and as
are hyperbolic, then by Theorem 5.3 the dynamics around them determines the dynamics in
C. Suppose that at least one of the equilibria is not hyperbolic. We claim that the admissible
dynamics in the half-cone is one of those shown either in Figure 3 or in Figure 4.

To establish the claim, note that in the proof of Theorem 5.3 the hypothesis that the infinite
equilibria are hyperbolic is only used to ensure that all the angles in the half-cone consist of a
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single sector, either parabolic or hyperbolic. By Lemmas 5.4 and 5.5 this is true of almost all
half-cones, so the arguments in that proof can be applied except in the case where one of the
angles contains two sectors. In this case from the proof of Lemma 5.5 it follows that the angle
is of type HT, we denote it by Hy . Without loss of generality, let a; be the infinite equilibrium
at this angle, so f(6;) = 0. By Lemma 5.2 the angle defined by ay is either H~ or P* and hence
it consists of a single sector. From now on we suppose that Hy contains a repelling parabolic
sector.

If the angle at a; is H~, then the radius at 6y contains a single finite equilibrium. This
equilibrium is the only possibility in C' for the w-limit set of the trajectories in the repelling
sector in H{ since there are no finite equilibria in the interior of C' nor in the radius at ¢, and
the origin is repelling. Thus, the dynamics is that of Figure 4 (c).

If the angle at a; is P then none of the radii at #; or #, contains a finite equilibrium. The
only possibility in C' for the w-limit set of the trajectories in the repelling sector in Hj is the
attractor a; and the dynamics is that of Figure 4 (d). O

A polycycle is a flow-invariant simple connected curve in the plane containing at least one
equilibrium point and not going through the origin. In the special case when all the trajectories
that are not equilibria have the same orientation it is called a heteroclinic cycle.

When one sector is parabolic and the other hyperbolic a finite equilibrium may exist in each
radius. If these exist, their radial stability is opposite to that of the origin. Thus the connection
between these two finite equilibria is robust as it is either of saddle-sink (A > 0) or saddle-source
(A < 0) type. See Figures 2 (d) and 3 (c). Note that for a polycycle to exist, all sectors must
be alternatingly either H~ and P~ if A > 0 or H' and P if A < 0. The next results provide
more detail concerning polyclycles and heteroclinic cycles.

Proposition 5.7. The dynamics of (1) exhibits a polycycle if and only if n is odd, there is at
least one pair of infinite equilibria and \f(0) < 0 whenever g(6) = 0. Moreover, the polycycle
is globally attracting (respectively repelling) if A > 0 (respectively A < 0).

Proof. By Lemmas 5.4 and 5.5 if Af(f) < 0 when g(6) = 0 then any angle at infinity defined
by an infinite equilibrium consists of a single sector, either parabolic or hyperbolic.

If n is odd and A\f(f) < 0 when g(f) = 0 it follows by Proposition 3.3 that each invariant
radius contains a finite equilibrium. On each invariant half-cone one of the sectors is P* and
the other is H® where s is the sign of —A. By Theorem 5.6 there is a trajectory in the half-cone
connecting the two finite equilibria, forming a polycycle. Its dynamics in the radial direction
is given by the sign of —\. Thus, the polycycle is globally attracting (respectively repelling) if
A > 0 (respectively A < 0).

Conversely, if n is even, then for each 6y such that g(6y) = 0, by Proposition 3.3, there is
always a radius where there are no finite equilibria. Hence there is a pair of consecutive finite
equilibria for which there is no connecting trajectory, as it would have to cross an invariant
radius, and there is no polycycle.

The same argument shows that if n is odd and there is a polycycle, then there must be a
finite equilibrium on each invariant radius. Proposition 3.3 implies that Af(#) < 0 whenever

g(0) =0. O

Another way of stating Proposition 5.7 is that any (finite) polycycle is a copy of the polycycle
at infinity, with the radial stability inverted. All the connections of a polycycle for (1) are robust,
by (c) and (d) of Lemma 5.2.
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Corollary 5.8. A polycycle of (1) is a heteroclinic cycle if and only if all infinite equilibria
are local minima or local maxima of g.

Proof. In a heteroclinic cycle all the equilibria must be connected by trajectories with the same
orientation. All the equilibria must be saddle-nodes. Therefore the sign of g(#) must be always
the same. U

A simple interpretation of Corollary 5.8 follows from Figures 2 and 3. In order to have a
heteroclinic cycle all half-cones must be as in Figure 2 (d) for A > 0 (respectively Figure 3 (c)
for A < 0) and hence all connections must be P~ — H~ if A > 0 (respectively H — PT if
A < 0). This is the only result in this section where the derivative ¢’'(6p) is relevant.

In parametrised systems a limit cycle may be created through a saddle-node bifurcation of
the equilibria in a heteroclinic cycle. The next result shows that indeed this happens within
the class we are studying.

Proposition 5.9. A I-parameter perturbation of a heteroclinic cycle for (1) creates a limit
cycle.

Proof. Let Q-(z,y) = (Q1(x,y) +ePi(z,y), Q2(z,y) + ePa(x,y)) be homogeneous of degree n
with (Py(z,y), Py(z,y)) = (—y™,2"). Define f.(0) and g.(f) as in (5) and (6), respectively. We
have

f-(0) = f(0) +esinfcosh(cos" ' —sin" 1)

g-(0) = g(0) +e(cos™ 0 + sin" 9).
Assume that a heteroclinic cycle exists for the dynamics of (1) when ¢ = 0. By Proposition 5.7
and Corollary 5.8 it must be that the degree of () is odd, say n = 2m+1, and ¢(6) has constant
sign. Without loss of generality, we assume in this proof that g() > 0 for all # and that A > 0,
the other cases being analogous. Hence, we also have f(6) < 0 when g(6) = 0.

Note that when n = 2m + 1, for € > 0 we have g.(f) > 0 for all §. Hence, the vector field

defined by (). has no infinite equilibria and only the origin is a finite equilibrium. The proof is
completed by showing that

" £.(0)
(12 | <o

Then the hypotheses of Theorem 4.1 (iv) are satisfied and for small € > 0 a limit cycle exists.
Choose £ > 0 small enough so that f.(#) < 0 for § in intervals containing the 6; where g(6;) = 0.
When ¢ — 0 we have g.(6;) — 0. Since lim. ,01/g.(0;) = +o0, the contribution of these
intervals to the value of the integral in (12) increases when ¢ decreases and the integral is
negative for small € > 0. 0

When (1) has only one pair of infinite equilibria the saddle-node bifurcation described in
Proposition 5.9 holds for an open set of homogeneous vector fields near (). This is clearly not
true if there is more than one pair of equilibria, since the collapse of the saddle-nodes may not
be simultaneous for a generic 1-parameter perturbation.

6. EXAMPLES

The results of the previous sections are applied here to obtain phase portraits of (1) for
nonlinearities of degrees 2 and 3. The dynamics of (1) at infinity depends only on the nonlinear
part and by Theorem 5.6 it determines the global dynamics, except when there are no infinite
equilibria.
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A linear change of coordinates and a time rescaling that preserves orientation transforms the
equation X = AX + Q( ), with A # 0, where X = (z,y) and @ is a non-zero homogeneous
vector field, into X = AX + FO(X) with § = £1, where ) has the same sign as A and Q is a
homogeneous polynomial of the same degree as (). This is true because the linear part AX of
the equation commutes with every linear map of R2.

Thus, we can apply the results of Date [12] and of Cima and Llibre [8] on the classification of
homogeneous polynomial vector fields of degrees 2 and 3, under linear changes of coordinates
and a rescaling of time. For higher degree the interested reader may apply the same procedure
to the classification of Collins [11].

Given a homogeneous vector field Q@ = (@1, Q2) of degree n on the plane, let G(z,y) =
xQa(x,y) — yQ1(x,y), a homogeneous form of degree n 4 1. It follows from equation (7) that
g(0) = G(cos @, sin f) determines the dynamics of (1) at infinity. For the dynamics near infinity
we also need the expression of f(6) = F(cos6,sinf) where F(z,y) = 2Q1(z,y) + yQa2(x, y).

6.1. Example: nonlinearities of degree 2. As an illustration of our results we obtain all
the possible phase portraits for (1), when the nonlinearities are quadratic. This repeats results
presented in Artés et al.[3], except for the possibility of existence of parabolic sectors discussed
in Lemma 5.5. We use the classification of homogeneous cubic forms G(z,y) from [12] and [8].
In order to apply these classifications we compute in the next result the general form of the
vector fields of the form (1) with nonlinearities of degree 2 that share the same expression for
G. Its proof is a direct computation.

Lemma 6.1. Let Q = (Q1,Q2) be a homogeneous quadratic vector field on the plane defining
(1). If G(z,y) = 2Qa(x,y) —yQ:1(x,y) = apx®+ a2y + asxy® +azy>, then there exist q1,q2 € R
such that (1) has the form:

T = M+qr?+ (g2 — ag)zy — asy’
U o= \y+ apx?®+ (a1 + q1)zy + ¢y°

with F(x,y) = qad+ (g2 + ap — CL2)Z‘QZ/ + (ay —asz + Q1)l’y2 + g1

The next result recovers [12] with the normal forms for G from Theorem 1.4 in [8]. Here
X = AX — Q(X) is mapped into X = AX + Q(X) by a rotation of 7 around the origin, hence
we do not need to add § = %1 to the canonical forms.

Proposition 6.2. For each homogeneous quadratic vector field Q = (Q1, Q2) defining (1) there
exists a linear change of coordinates and an orientation preserving reparametrisation of time
that transforms (1) into only one of the following canonical forms, where X and A have the
same sign:

o { io= A+ qa®+ gy — o G(z,y) = 2 +y
y = M+t +qry+ ey’ F(z,y) = qa’ + (2 + Dy + (¢ — Day® + qy’;
= M+ qa? + (g + 3)ay G(w,y) = x(2® — 3y?)

X

y = N+t +qry+ ey’ Flz,y) = qz +(qz+4)xy+q1xy + ¢2y?;

(i) { T = %x—l—qlxz—iquxy G(x,y) = 322
g = M+ (¢ +3)zy + gy’ Flz,y) = Q137 + @2’y + (@1 + 3)2y? + qy’;

o { & = Brraetrom Gr)
v = \y+ 22+ qay + gy’ F(z,y) = qz® + (g2 + D)2y + qay? + gy
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J = M+ aqry+ gy F(z,y) = q2* + @2y + gy’ + ¢y,
For A > 0 these canonical forms give rise to a minimum of 16 qualitatively different phase
portraits depicted in Figures 5-9.

) { i = §\$+Q1$2+(J2iﬁy G(z,y) =0

The phase portraits for these canonical forms may now be obtained using Proposition 3.3, its
corollary, Lemma 5.5 and Theorem 5.6. They are shown in Figures 5-9 for A > 0. The phase
portraits for case (i) (Figure 5) are topologically equivalent to those of case (iv) (Figure 8),
although in the latter case the infinite equilibria are not hyperbolic. Calculations are given in
Appendix A. The finer classification in [3, Theorem 7.2] enumerates 40 possible configurations of
quadratic systems with a star node. They determine explicitly when there is a parabolic sector
at an infinite equilibrium and distinguish between parabolic sectors where nearby trajectories
are tangent to the radius and those where they are tangent to the line at infinity, while our
results do not account for this. The correspondence between their classification and ours is
given in Appendix B where we use it to show that there are 17 qualitatively different phase
portraits.

FIGURE 5. Phase portraits on the Poincaré disk for normal form (i) in Proposi-
tion 6.2 with A > 0: (A) g1 —q2 < 1; (B) 1 —q2 > 1; (C) ¢1 — g2 = 1. The dashed
line in the case (C) where ¢; — ¢o = 1 indicates the possibility of a parabolic
sector at the infinite equilibrium # = —n/4. Whether this sector does or does
not exist has to be decided by other methods, see Appendix B.
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FIGURE 6. Phase portraits on the Poincaré disk for normal form (ii) in Propo-
sition 6.2 with A > 0. Conditions on the parameters ¢i, g» for (A)—(F) are given
in Appendix A. The dashed lines in the transition cases (D)—(F) indicate the
possibility of parabolic sectors at infinite equilibria that may or may not exist.
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Their existence has to be decided by other methods, see Appendix B.
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FIGURE 7. Phase portraits on the Poincaré disk for normal form (iii) in Propo-
sition 6.2 with A > 0. Conditions on the parameters ¢, ¢2: (A) ¢1 > 0, g2 # 0;
B) a1 <0,¢#0;(C) 1 =0,¢#0; (D) g1 >0, =0 (E) g <0, g2 = 0;
(F) ¢1 =0, go = 0. The dashed lines in the last four transition cases indicate the
possibility of parabolic sectors at infinite equilibria that may or may not exist.
Their existence has to be decided by other methods, see Appendix B.

© ©

FIGURE 8. Phase portraits on the Poincaré disk for normal form (iv) in Proposi-
tion 6.2 with A > 0. Conditions on the parameters qi, ¢2: (A) g2 > 0; (B) q2 < 0;
(C) g2 = 0. The dashed lines in case (C) indicate the possibility of parabolic
sectors at an infinite equilibrium that may or may not exist. Their existence has
to be decided by other methods, see Appendix B.

6.2. Example: nonlinearities of degree 3. Cima and Llibre in [8] classify homogeneous
binary forms G(z,y) of degree 4 along with homogeneous polynomial vector fields of degree 3,
under linear changes of coordinates and a rescaling of time. Since the rescaling allows a reversal
of time, we multiply their vector fields by a term g = +1, except in the cases when the change
of sign can be achieved through the parameters py, ps, p3 and a. We use this classification to
obtain the dynamics at infinity as a starting point for the following list of canonical forms of
homogeneous cubic vector field @) = (Q1, Q2) defining (1).
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FIGURE 9. Phase portrait on the Poincaré disk for normal form (v) in Proposi-
tion 6.2 with A > 0 and (¢, ¢2) # (0,0). The dotted lines are continua of equilib-
ria, both finite and infinite. The finite equilibria lie on the line A+ g2 4+ g2y = 0.
If g1 = g2 = 0 then the equation is linear.

Proposition 6.3. For each non-zero homogeneous cubic vector field QQ = (Q1, Q2) defining (1)
there exists a linear change of coordinates and an orientation preserving reparametrisation of
time that transforms (1) into only one of the following canonical forms, where A\ and \ have
the same sign:

0 { i o= A+ Bla(pia® + psy?) + y((p2 — 3p)a® — o2

| ) .
gy = M+ Blypa® + psy®) + x(2® + (p2 + 31)y?)] with pr < g =+l1;

37

b= Mt apa?+p?) +y((pe —3ap)a® —ay?) o =+1
(I1) < ) ) ) oy With 1 1,
gy = My+ylpir® + psy?) + z(az® + (p2 + 3au)y?) p>—3 pF 3
. . g 2 o
(1) { to= Awt Bl poy) +y((p2 =32 )] g g
g = M+ Bly(ma® + psy?) + x(2? + (pa + 3p)y?)]
. 2 2 _ 2 _
(1) { . ;x”(pli by ) rulle = Sa)r S ay D with o = £1;
Y y +y(p1a® + psy?) + 2((p2 + 30)y°)
.3 2 2 . 2 2
(V) { v _ ;Hx(pli tpsy lﬂ/((m 2003” toy) ik = +1;
Y Y+ y(pre*y + psy?) + z(p2 + 3a)y
(VD) { oo Qe ) ol S ) S 0v) 2
y = My+y(pie® + psy?) + x(ax® + (p2 + @)y?) ’
. 2 2 . 2
(VII) { vz ix Talpie - pay ) + (P 33)0‘)52 with o = £1;
Y Y+ y(p1e® + psy®) + z(p2 + 3a)y
i = v+ Bx((p — 1)2° + psy?) + par?y] ,
VIII th B = +1:
(VIL) { g o= My+Blul(pr +3)2 + psv?) + pory?] 4 ’
. _ 2 2
ax) { £ = At b bty L
v = My +y(pa® + psy?) + z(ax? + pay?)
T ) + pax?y

= Az +a(pa® + pay
(X) _ 5 2 2 2
y = M+ypme® +psy?) + pory’.
For A\ > 0 these canonical forms give rise to a minimum of 30 qualitatively different phase
portraits depicted in Figures 10-15.

Each normal form in Proposition 6.3 corresponds to a single expression for G(z,y) = 2Qa(x, y)—
yQ1(x,y), that does not depend on py,pe, ps and may be multiplied by o = +1 or § = +£1.
Hence the expression for g(6) is the same in each group, as well as the angular dynamics at
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infinity, up to a reversal of direction of rotation at infinity. This information is summarised in
Table 1. However, the expression of f(6), governing the radial dynamics near infinity, depends
strongly on these parameters, giving rise to qualitatively different global dynamics.

normal equilibria angular figure
form at infinity stability
(I) 8 hyperbolic 10
(II) 0 - 14
(I1T) 4 hyperbolic 12
(IV) 2 saddle-nodes 13
(V) 6 4 hyperbolic 11
2 saddle-nodes
(VI) 0 - 14
(VII) 4 (0, w/2, m, 3w/2) saddle-nodes 12
(VIIT) 4 (0, w/2, m, 3w/2) 2 hyperbolic 12
2 hyperbolic-like
(IX) 2 (m/2, 31/2) saddle-nodes 13
(X) 00 - 15

TABLE 1. Number and angular stability of infinite equilibria for normal forms in
Proposition 6.3. Hyperbolic-like are weak non-hyperbolic attractors or repellors.
The last column gives the number of the figure that contains all the possible
phase portraits for each normal form.

Phase portraits for the normal forms in Proposition 6.3 may be obtained applying Theo-
rem 5.6 to the information on the behaviour at infinity of the homogeneous differential equa-
tions studied in [8]. When (1) has finitely many infinite equilibria, their angular stability is
determined by the nonlinear part, by Proposition 3.7. Since we want to preserve the time
orientation, when the infinite equilibria are hyperbolic, each phase portrait in [8] gives rise to
potentially two different ones obtained applying Theorem 5.3, although in some cases they may
coincide, as in cases (0), (1) and (3) of Figure 10. This figure contains all the cases with 8
hyperbolic equilibria at infinity for A > 0. Even if some infinite equilibrium is not hyperbolic,
if @)1 and ()2 have no common factor, then Lemmas 2.1, 5.4 and 5.5 imply that the phase
portraits are the same.

The procedure outlined above covers all cases with finitely many equilibria at infinity, whose
phase portraits are shown in Figures 10-13, when ), and ()5 have no common factor, grouped
by number of infinite equilibria. Cases (II) and (VI) with no equilibria at infinity are covered
by Theorem 4.1 and shown in Figure 14.

In the degenerate case (X) all points in the equator of the Poincaré disk are equilibria. The
next lemma describes the dynamics in the finite domain, shown in Figure 15.

Lemma 6.4. Let D = pyp3 — p3/4 and T = py + ps, then for the normal form (X) and A >0,
we have:

(a) if D > 0 and T > 0 then there are no finite equilibria and all infinite equilibria are
radially attracting;

(b) if D >0 and T < 0 then there is a closed curve of attracting finite equilibria encircling
the origin,
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(c) if D < 0 then there are two invariant half-cones containing curves of attracting finite
equilibria separated by two half-cones with radially attracting infinite equilibria;

(d) if D =0 and T > 0 then there are no finite equilibria and all infinite equilibria are
radially attracting;

(e) if D=0 and T < 0 then a diameter contains no attracting finite equilibria and the two
remaining half-planes contain curves of attracting finite equilibria.

Proof. Equations with normal form (X) satisfy ¢g(f) = 0, hence all points at infinity are equi-
libria. By Propositions 3.3 and 3.7 the dynamics on the radius associated to € is determined
by the sign of f(#). A direct computation shows that in this case f(f) = F(cos(f),sin(f))
where F(z,y) = (2% + y?)q(x,y) with ¢(z,y) = p12® + powy + p3y?. The quantities D and T
are, respectively, the determinant and the trace of the symmetric matrix that represents the
quadratic form g(z,y).

If both D and T are positive then ¢(z,y) is positive definite, hence f(6) > 0 for all 6,
establishing (a). Similarly, when D > 0 and 7" < 0 then f(6) < 0 for all 8, hence every radius
contains an attracting finite equilibrium, as in (b). In case (c¢) the matrix representing ¢ has
eigenvalues of opposite sign, so ¢(z,y) is negative in a cone and each one of its components
contains a curve of attracting finite equilibria.

If D = 0 then the eigenvalues of the matrix of ¢(z,y) are 0 and also 7. If " > 0 then
f(8) > 0 for all # and (d) follows. When T' < 0 the infinite equilibria on the diameter that
is the eigenspace of 0 are attracting and each radius on the half-planes determined by this
diameter contains an attracting finite equilibrium, as in (e). 0

° R
/Z\P Sy S

/j.\t;fj. AN e

R S
SNVANAVA

FIGURE 10. Phase portraits for normal form (I) in Proposition 6.3 for A\ > 0,
when )7 and @)» have no common factor. Each diagram in [8|[Figure 5.1] gives
rise to two cases, depending on the choice of sign, numbering refers to their cases.
In cases (0), (1) and (3) the two choices give equivalent phase portraits, case (0)
is missing from [8]. Only half the disk is shown, the other half is obtained by a
rotation of m around the origin. The equator of the Poincaré sphere is a global
attractor in case (4)- and there is a polycycle in case (4)+.
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/N\\ /\\)\ //\“7/(\

6)+ and (9

/>v<\ /\/\ /@/\

9)+ and (6

FIGURE 11. Phase portraits for normal form (V) in Proposition 6.3 for A>0
when @; and @2 have no common factor. Each diagram in [8][Figure 5.1] gives
rise to two cases, depending on the choice of sign, numbering refers to their cases.
Cases (6)4 and (9)F coincide. The equator of the Poincaré sphere is a global
attractor in case (8)- and there is a polycycle in case (8)+. Conventions as in
Figure 10.

AR (D

(10)+ and (12)- (12)+ and (10)-

A (1 A

FIGURE 12. Phase portraits with A > 0 for normal forms (III), (VII) and (VIII)
in Proposition 6.3, where there are 4 infinite equilibria when )7 and ()5 have
no common factor. Numbering refers to cases in [8][Figure 5.1]. Cases (10)-
(12) correspond to both (III) and (VIII) with (10)+ and (12)7 coinciding, (14)+
and (14)- are the same. Cases (13) and (14) arise for (VII). The equator of the
Poincaré sphere is a global attractor in cases (11)- and (13)-. There is a polycycle
in cases (11)+ and (13)+. Conventions as in Figure 10.
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(15)-

FIGURE 13. Phase portraits with A > 0 for normal forms (IV) and (IX) in
Proposition 6.3, with two infinite equilibria, when ); and ()5 have no common
factor. The equator of the Poincaré sphere is a global attractor in case (15)- and
there is a heteroclinic cycle in case (15)+. Conventions as in Figure 10.

O\

17)+ (17)-

)

[ JEEENY PVANNNY PN A )

(15)+

FIGURE 14. Phase portraits for normal forms (II) and (VI), with no infinite
equilibria, in Proposition 6.3 for A > 0. The equator of the Poincaré sphere is a

global attractor in case (17)- and there is a limit cycle in case (17)+. Conventions
as in Figure 10.

O —  — o= o

(a) and (d) (b) (c) (e

FIGURE 15. Phase portraits with A > 0 for normal form (X) in Proposition 6.3,
when all points at infinity are equilibria. Cases (a)—(e) as in Lemma 6.4. Con-
ventions as in Figure 10.
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APPENDIX A. CALCULATIONS FOR THE EXAMPLES WITH DEGREE 2

Recall that G(z,y) = 2Q2(z,y) — yQi(z,y) and F(z,y) = 2Q1(z,y) + yQ2(z,y). To these
correspond ¢(0) = G(cosf,sinf) and f() = F(cosh,sinf). We use Proposition 3.3 to both
find the infinite equilibria, by solving ¢g(#) = 0, and determine the dynamics, by looking at the

sign of f(6y).

Form (i) Itis G(z,y) =2 +y® = (z+y)(a® —zy+y?) = i(x +9)((z+y)*+ 3(z — y)?) and
the infinite equilibria appear at y = —z, i.e. 6y = —w /4, 6, = 37 /4.

We have F(z,y) = @2 + (2 + 1)2%y + (1 — Dxy? + ¢y, hence F(x, —z) = 2(q1 — 2 — 1)23
and sign f(6;) = —sign f(62) = sign(q1 — g2 — 1). There is at most one finite equilibrium away
from the origin. The following cases appear, where labelling (A)—(C) corresponds to Figure 5:
(A)ggr—qg <1 = f(0)<0and f(f2) >0 = one finite saddle;

B)gg—¢>1 = f(6h)>0and f(f;) <0 = one finite attractor;

C)gr—q=1 = f(6)=f(0)=0 = no finite equilibria away from the origin.

Form (ii) We have G(z,y) = x(2? — 3y?) and infinite equilibria occur for z = cosf = 0 and
r =43y, ie. O = (2k+1)7/6, k =0,...,5. Hence, ¢'(6y) = =3, ¢'(01) = +3, ¢'(02) = —3
and ¢'(Oy+3) = —g'(0k).
It is F(z,y) = qa® + (¢ + 4)2%y + quey® + ¢y so that F(0,y) = ¢® and, for ¢ = +1, we
obtain F(v/3ey,y) = 4(qa + V3eq1 + 3)y°. Thus f(Orss) = —f(6%).
The following cases occur where the labelling (A)—(F) refers to the diagrams in Figure 6 for
A > 0 (see Figure 16).
Generic cases: three hyperbolic finite equilibria away from the origin.
(A) There are two finite saddles, one finite attractor. Conditions:
@2 >0and ¢ > —(V3q +3) and 2 > V3 —3 = f(6o) >0, f(61) >0, f(fa) > 0;
@2 <0and ¢ > —(V3q +3)and @2 < V31 —3 = f(6o) >0, f(61) <0, f(62) <O
¢ <0and o < —(V3q +3) and ¢ > V3¢ —3 = f(6) <0, f(61) <0, f(62) >0
(B) There are two finite attractors, one finite saddle. Conditions:
g2 >0and o > —(V3q +3) and ¢ < V31 —3 = f(6p) >0, f(61) >0, f(62) <O
g2 <0and o < —(V3q +3) and g2 < V31 —3 = [f(6h) <0, f(61) <0, f(62) <O
g2 > 0 and g9 < —(\/§Q1 + 3) and gy > \/g(h -3 = f(@o) < 0, f(01) > 0, f(eg) >0
(C) There are three finite saddles. Conditions:
g2 <0and go > —(vV3q1 +3) and g > V3¢ —3 = f(6o) >0, f(61) <0, f(6) >0

Codimension one cases: one pair of non hyperbolic infinite equilibria (f(6;) = 0 for one
Jj = 0,1,2) plus two pairs of hyperbolic infinite equilibria. Two hyperbolic finite equilibria
away from the origin. Conditions:

=—(V3a+3) = f(6o) =0;
@2=0 = f(6i)=0;

= V3¢ —3 = [f(6) =0

(D) two finite equilibria (saddle and attracting node) in consecutive half-cones . Conditions:

g2 >0and ¢o > —(V3q +3) and ¢ = V31 —3 = f(6h) >0, f(61) >0, f(6a) =

g2=0and ¢ > —(v3q: +3) and ¢ < V3¢ —3 = f(6) >0, f(91)—0,f(92)<0;
@2 <0and ¢ =—(V3q +3)and @2 < V3 —3 = f(6o) =0, f(61) <O, f(f) <O;
@2 <0and ¢ < —(V3q +3) and @2 = V31 —3 = f(6o) <0, f(61) <O, f(f) =0;
¢ =0and o < —(V3q +3) and ¢ > V3¢ —3 = f(6o) <O, f(61) =0, f(62) > O;
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g2 >0and ¢o=—(V3q +3) and ¢ > V31 —3 = f(6p) =0, f(61) >0, f(6) > 0.

(E) two finite equilibria (both saddles) in non consecutive half-cones. Conditions:

@=0and ¢, > —(vV3q +3)and o > V3¢ —3 = f(6) >0, f() =0, f(6) > 0;

@2 <0and ¢ > —(V3q +3)and @2 = V3 —3 = f(6o) >0, f(61) <O, f(f) =0;

g2 <0and go = —(v3q1 +3) and g > V3¢ =3 = f(6h) =0, f(61) <0, f(6) > 0.
Codimension two cases: two pairs of non hyperbolic infinite equilibria, one pair of hyperbolic

infinite equilibria. Only one hyperbolic finite equilibrium away from the origin.

(F) Conditions:

~(V3q1+3)<0=g=V3a -3 = f()>0, f(t1) =0, f(6) =0

:t\/gch_?):(h<0 = f(QO):va(01)<07f<92):07

V3 =3<0=q=—-(3a+3) = [f(fo)=0, f(61) =0, f(62) > 0.

v#o a

(D)

f(927
)
F.— O

(A)
(B)

= () ——

9

F1GURE 16. Conditions on the parameters ¢; and g» for the types of phase por-
trait in normal form (ii) for A > 0. Regions with the same colour correspond to
topologically equivalent phase portraits.

Form (iii) When G(x,y) = 3z?y, infinite equilibria occur at = 0 and y = 0, i.e. 6y = k7/2,
k =0,...,3. The infinite equilibria 6; and 03 are saddle-nodes at infinity, while 6, is a repellor
and 0y is an attractor. There are at most two finite equilibria away from the origin.

We obtain F(x,y) = a3 +qr*y+(q1+3)xy* +¢u°, hence F(x,0) = ¢z and F(0,y) = ¢1°.
Cases, with labelling (A)—(F) as in Figure 7:

(A)g1 >0, #0 = f(0y) >0, f(61) #0 = 2 finite equilibria, attractor and saddle-

node;

B)a1 <0,¢2#0 = f(6y) >0, f(61)=0 =2 finite equilibria, saddle and saddle-node;
(C)g1=0,02#40 = f(6y) =0, f(#1) #0 = 1 finite equilibrium, saddle-node;

(D) g1 >0,¢2=0 = f(6ph) >0, f(61) =0 = 1 finite equilibrium, attractor;
(E)q1<0,¢2=0 = f(f) <0, f(61)=0 = 1 finite equilibrium, saddle;
(F)¢1=0,2=0 = f(0y) =0, f(61) =0 = no finite equilibria away from the origin.

Form (iv) When G(z,y) = x*, equilibria at infinity occur for z = 0, i.e. 0y = kn/2, k = +1.
We have F(z,y) = q2® + (g2 + 1)2%y + quovy® + ¢y, hence F(0,y) = goy® hence f(;) has the
same sign as o, the opposite sign of f(6_1). The equilibrium at infinity at 6; is a non-hyperbolic
attractor at infinity and the one at 6_; is a non-hyperbolic repellor at infinity. There is at most
one finite equilibrium away from the origin. Cases, with labelling (A)-(C) as in Figure 8:
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(A)ga>0 = f(6;)>0 = 1 finite equilibrium, saddle;
(B) g2 <0 = f(6) <0 = 1 finite equilibrium, attractor;
(C)g2=0 = f(A;)=0 = no finite equilibria away from the origin.

Form (v) It is G(z,y) = 0 so that all points at infinity are equilibria.
From F(z,y) = q2° + ¢2%y + quvy® + oy = (qux + qay) (2® + y?), we obtain sign F(z, y) =

sign(q1z + ¢2y). Finite equilibria apart from the origin satisfy r = 0, or,

- >
q1cos + qasin 6
equivalently, A + ¢1x + g2y = 0.

ApPPENDIX B. CORRESPONDENCE OF THE EXAMPLES WITH DEGREE 2 WITH |[3]

The dynamics of vector fields of degree 2 with a star node is described in Theorem 7.2 in the
book by Artés et. al [3] for the cases where there are finitely many infinite equilibria. For the
sake of comparison we list here the cases «;, i = 1,...,40 of that theorem that correspond to
each normal form in Proposition 6.2 and to each one of the phase portraits in Subsection 6.1.
From that correspondence we determine whether or not, at an angle of type H, there is a
parabolic sector delimited by a separatrix that we represented by a dashed line in the phase
portraits.

case Figure diagram 17 in o parabolic
sector?
(i) 5 (A) 15-18, 35 -
(B) 12-14 -
(C) 29 no
(i) 6 (A) 5-11 -
(B) 24 -
(C) 1 -
(D) 2728 no
(E) 26 no
(F) 36 no
(i) 7 (A) 19-20 -
(B) 21-23 -
(C) 30 no
(D)  31-32 yes
(E) 33-34, 37 no
(F) 39 no
(iv) 8 (A) 25 -
(B) 24 -
(C) 38,40 yes

In case (iii) (D) both dashed lines exist for some values of the parameter ¢;.

In case (iv) (C) only one of the dashed lines may exist, depending on whether it is asg or ayg.
Thus, the canonical forms in Proposition 6.2 give rise to a total of 17 qualitatively different

phase portraits.
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