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Abstract

The process of reduction of a symplectic manifold by a Hamiltonian
Lie group action, is commonly referred to as Marsden-Weinstein reduc-
tion and was published in 1974. About a decade later, in 1986, Marsden
and Ratiu developed a theory of reduction of Poisson manifolds by distri-
butions, fitting several constructions of symplectic and Poisson geometry
in this framework.

In this note we prove that Marsden-Weinstein reduction is indeed an
instance of Poisson reduction by distributions, as claimed by Marsden and
Ratiu, filling what we believe is a gap in the literature.
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1 Introduction

Poisson manifolds are a generalization of symplectic manifolds, which can be
thought of as “everywhere nondegenerate” Poisson manifolds. As stated by
Marsden and Ratiu in their paper Reduction of Poisson manifolds ([5]), the
context of reduction by distributions was chosen to “include the usual theorems
on reduction of symplectic manifolds, as well as ...”. In their example B, the
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authors explain why all assumptions they make are satisfied in the setting of
Marsden and Weinstein’s Reduction of Symplectic Manifolds with Symmetry
([4]). Still, one of the assumptions does not follow in the way they seem to
argue. We try to explain the problem with an example (subsection 3.1).

We remark that the reduction of the dynamics in the symplectic setting also
fits in the reduction of the dynamics in the setting of Marsden and Ratiu, but
this proof presents no problems (see [7] for all details).

2 Preliminaries

In this section we will settle the notation, terminology and sign conventions
to be followed throughout this note. Unimportant as these may be, we will
be comparing two papers with different notation, so statements can be made
easier to read if some care is taken in uniformization. For example, we decided
to keep M for a Poisson manifold (and use P to denote the Poisson tensor on
M), as some confusion would arise if, when moving from the symplectic case
to the Poisson case, M would be replaced by P and a submanifold N would
be replaced by M . Regarding sign conventions, which differ from author to
author and are often a matter of convenience, our choice fell on [1], although
the organization in [3] is probably more friendly to a newcomer. Still the sign
conventions in [3] lead to the wrong sign in Hamilton’s equations, which are
historically foundational in Symplectic Geometry.

2.1 Setting for symplectic reduction by symmetries

The notation for this setting is as follows: (M,ω) denotes a connected symplectic
manifold, G a connected Lie group acting (on the left) on M by symplectomor-
phims Ψg (with g ∈ G), and G the Lie algebra of G. We assume both objects
are finite-dimensional.

If p is a point in M , then Gp and Op denote, respectively, the isotropy
subgroup and the G-orbit of p:

Gp = {g ∈ G : Ψg(p) = p}, Op = {Ψg(p) : g ∈ G}.

We assume that the action is (strongly) Hamiltonian ([3], [6]), meaning
that: (i) for any ξ ∈ G, the fundamental vector field ξM is Hamiltonian with
Hamiltonian function Jξ; (ii) the map ξ −→ Jξ is a Lie algebra-homomorphism,
in particular the moment map J : M −→ G∗ is Ad∗-equivariant, where

⟨J(p), ξ⟩ = Jξ(p), ∀p ∈ M, ξ ∈ G.

The requirements for symplectic reduction ([4]) are as follows:

S1. µ ∈ G∗ - regular value of J ;

S2. N = J−1({µ}) ̸= ∅ - (embedded) submanifold of M ;
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S3. Gµ = {g ∈ G : Ad∗g(µ) = µ} (isotropy subgroup of µ for the co-adjoint
action) - assumed to act1 freely and properly on N . The orbit of p ∈ N
by this restricted action will be denoted by Oµ

p .

Under these assumptions, the space of Gµ-orbits, Mµ = N/Gµ, has a differ-
entiable manifold structure for which the canonical projection

πµ : N −→ Mµ

is a submersion.

We start with a lemma (used in the proof of the reduction theorem), which
we will use in section 3.

Lemma 1 ([4]). Under assumptions S1–S3, and for any p ∈ N , the following
hold:

1. TpOµ
p = TpOp ∩ TpN ;

2. TpN = (TpOp)
ωp ,

where (TpOp)
ωp is the symplectic complement of TpOp in TpM .

With the notation just established, the Marsden-Weinstein reduction theo-
rem can be stated as below.

Theorem 1 (Marsden-Weinstein [4]). Under assumptions S1–S3, there is a
unique symplectic structure ωµ on Mµ satisfying

i∗ω = π∗
µωµ,

where i : N ↪→ M is the inclusion.

2.2 Setting for Poisson reduction by distributions

In this setting we will consider Poisson, not necessarily symplectic, manifolds.
The pair (M, { , }) will denote a Poisson manifold, P the Poisson tensor associ-
ated to { , }, that is

Pp(dfp, dgp) = {f, g}(p), p ∈ M,

and P ♯ : T ∗M −→ TM the bundle map defined by

⟨α, P ♯(β)⟩ = P (α, β), α, β ∈ T ∗M.

N will be an embedded submanifold of M with i : N ↪→ M denoting the
inclusion map.

Poisson reduction will be performed using E ⊂ TM|N , a sub-bundle of TM
restricted to N , with the following requirements:

1by restricting Ψ both to Gµ and N , which is possible by the Ad∗-equivariance of J
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P1. F := E ∩ TN is an integrable distribution (with constant rank) on N ;

P2. the foliation Φ associated to F is simple, so the space of leaves, N = N/Φ,
has a differentiable manifold structure for which the canonical projection

π : N −→ N

is a submersion;

P3. the Poisson bracket { , } is E-invariant, that is, for any f, g ∈ C∞(M)E ,
their Poisson bracket {f, g} also belongs to C∞(M)E , where

C∞(M)E = {f ∈ C∞(M) : dfp ∈ E◦
p , ∀p ∈ N}

and E◦
p denotes, as usual, the annihilator of Ep in T ∗

pM .

Definition 1. Under the requirements P1–P3, the quadruple (M, { , }, N,E) is
Poisson-reducible if there exists a Poisson bracket { , }N on N with the following
property: for any f̄ and ḡ ∈ C∞(N), and for any extensions f and g of f̄ ◦ π
and ḡ ◦ π to C∞(M)E, respectively, the following identity holds:{

f̄ , ḡ
}
N
◦ π = {f, g} ◦ i.

Remark 1. In the definition, f̄ , ḡ and f, g need only be locally defined smooth
functions.

The main theorem in [5] establishes, under the requirements P1–P3, a nec-
essary and sufficient condition for (M, { , }, N,E) to be Poisson-reducible.

Theorem 2 (Marsden and Ratiu, [5]). Under the requirements P1–P3, the
quadruple (M, { , }, N,E) is Poisson-reducible if and only if P ♯(E◦) ⊂ E+TN .

Remark 2. If E = 0, then P3 is trivially satisfied since C∞(M)E = C∞(M).
In such case, (M, { , }, N,E = 0) being Poisson-reducible means that N = N is
a Poisson submanifold of (M, { , }).

If E ̸= 0, Falceto and Zambon ([2]) showed that condition P3 already implies
P ♯(E◦) ⊂ TN . In particular, assuming P1–P3, the quadruple (M, { , }, N,E) is
always Poisson-reducible.

3 Reduction by symmetries is an instance of re-
duction by distributions

Given the data (M,ω,G,Ψ, µ) satisfying assumptions S1–S3 of 2.1, consider the
sub-bundle E ⊂ TM|N defined by

Ep = TpOp, p ∈ N. (1)

Marsden and Ratiu claim that (M, { , }, N,E) satisfies both P1–P3 and the
reducibility condition P ♯(E◦) ⊂ E + TN , where { , } is the Poisson structure
associated to ω.
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Remark 3. The relations between ω and { , } are common knowledge and the
sign conventions are actually not important, still we state our choice here:

{f, g} = ω(Xf , Xg) = ⟨ω♭(Xf ), Xg⟩ = ⟨df,Xg⟩,

with Xf denoting the Hamiltonian vector field of f with respect to ω.
With this choice we obtain the usual identity: ω♭ = (P ♯)−1. Recall that

we are using the sign conventions in [1] so ω♭ : TM −→ T ∗M is given by
ω♭(X) = iXω.

As expected (see remark 2) the main difficulty lies in proving P3. Concerning
P3, the example in subsection 3.1 below, shows that functions in C∞(M)E
are not necessarily G-invariant functions (for the action Ψ), which seems to
invalidate the argument in example B of [5].

In subsection 3.2, we will present an alternative proof of P3, and in subsection
3.3 we prove that the reduced Poisson structure on N = Mµ is precisely the
Poisson structure determined by the reduced symplectic form ωµ on Mµ.

3.1 An example

An obvious observation is that G-invariant functions on M belong to C∞(M)E
with E as in (1), that is, for any f ∈ C∞(M), the implication below holds:

f ◦Ψg = f =⇒ f ∈ C∞(M)E .

Moreover, the Poisson bracket ofG-invariant functions onM is againG-invariant,
as the action is symplectic.

Nevertheless, a function f ∈ C∞(M)E need not be G-invariant, even though
(f ◦Ψg)|N = f |N .

In fact consider M = R2, ω = dx ∧ dy the canonical symplectic form, and
G = (R,+) acting on M by diagonal translations:

Ψa(x, y) = (x+ a, y + a).

This is a (strong) Hamiltonian action with moment map J : M −→ R ≃ G∗

given by
J(x, y) = y − x.

All reals are regular values of J so we choose N = J−1(0) = {(x, x) : x ∈ R}.
We observe that G0, isotropy subgroup of 0 for the co-adjoint action, is

precisely R, which acts freely and properly on N , and that all conditions for
Marsden-Weinstein reduction are met.

Now consider f ∈ C∞(M) given by f(x, y) = x(x− y). Then:

• f ∈ C∞(M)E since E(x,x) = {ξM (x, x) : ξ ∈ G} and

df(x,x) (ξM (x, x)) =
d

dt
f(x+ tξ, x+ tξ)

∣∣∣∣
t=0

= 0

• f is not G-invariant as, for example, f ◦Ψa(1, 0) ̸= f(1, 0), for a ̸= 0.
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3.2 Proof - part I

This section is devoted to the proof that (M, { , }, N,E), with E given by (1),
satisfies both P1–P3 and P ♯(E◦) ⊂ E + TN .

Clearly E is a distribution with constant rank equal to dimM − dimN . We
proceed to check all the required conditions.

• We prove P1 and P2 simultaneously. By lemma 1, and for all p ∈ N ,

Fp = TpOp ∩ TpN = TpOµ
p ,

so F is an integrable distribution with constant rank. In fact, the leaves
of the foliation Φ are precisely the Gµ-orbits

Oµ
p = Op ∩N,

which are embedded submanifolds of N by the property of πµ. This ar-
gument also proves that Mµ, the reduced symplectic manifold, coincides
with N , the reduced Poisson manifold.

• To prove P3 we follow three steps.

Step 1: characterize the set C∞(M)E . Note that

Ep = TpOp = {ξM (p) : ξ ∈ G}

and that ξM is the Hamiltonian vector field of Jξ. Then f belongs to
C∞(M)E if and only if, for all p ∈ N , the following holds:

0 = ⟨dfp, XJξ
(p)⟩ = ωp (Xf (p), ξM (p)) , ∀ξ ∈ G,

that is, Xf (p) belongs to (TpOp)
ωp . Using lemma 1 we arrive at

C∞(M)E = {f ∈ C∞(M) : Xf (p) ∈ TpN, ∀p ∈ N} (2)

(equivalently C∞(M)E is the set of functions whose Hamiltonian vector
field is tangent to N , at all points of N).

Step 2: show that, in the symplectic setting:

P ♯
p(E

◦
p) = TpN, ∀p ∈ N. (3)

By lemma 1, (TpOp)
ωp = TpN , so that

∀ξ ∈ G,∀u ∈ TpN, ωp (ξM (p), u) = 0

or, equivalently, ω♭
p(TpN) = T ◦

pOp = E◦
p . Using the fact that ω♭ and P ♯

are inverse maps, the equality (3) follows.

Step 3: consider the characterization of T ◦
pN (see, for example, lemma

1.1.9. in [8]):

T ◦
pN = {dhp : h ∈ C∞(M) with h|N = 0}. (4)
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With this last ingredient we can now prove P3. To this end, consider f
and g in C∞(M)E , that is:

Xf (p) ∈ TpN and Xg(p) ∈ TpN, ∀p ∈ N.

Consider h ∈ C∞(M), arbitrary, with h|N = 0. By (4), all we need to
prove is that

⟨dhp, X{f,g}(p)⟩ = 0, ∀p ∈ N,

or, rephrasing in terms of { , },

{h, {f, g}}(p) = 0, ∀p ∈ N.

This last equality follows directly from Jacobi identity for { , } and from
the fact that

⟨dhp, Xf (p)⟩ = 0 and ⟨dhp, Xg(p)⟩ = 0, ∀p ∈ N.

• The fact that the reducibility condition P ♯(E◦) ⊂ E+TN holds is a direct
consequence of (3).

3.3 Proof - part II

The proof that the reduced Poisson structure on N = Mµ coincides with the
Poisson structure determined by ωµ on Mµ, follows the lines described in exam-
ple B of [5], but we need to replace the term G-invariant functions by functions
in C∞(M)E . We start with a lemma which relates the Hamiltonian vector fields
on N and on N .

Lemma 2. Under the conditions of section 3, let π : N −→ N denote the
canonical projection. Then, for all f̄ ∈ C∞(N) and for any extension f of f̄ ◦π
to C∞(M)E, the Hamiltonian vector fields of f̄ and f are π-related:

X f̄ (π(p)) = dπp(Xf (p)), ∀p ∈ N

where X f̄ is the Hamiltonian vector field of f̄ with respect to ωµ and Xf is the
Hamiltonian vector field of f with respect to ω.

Proof. We have to show that:

(ω♭
µ)(dπp(Xf (p)) = df̄π(p), ∀p ∈ N.

Now, for any p ∈ N and u ∈ Tπ(p)N , the following equality holds

(ωµ)π(p)(dπp(Xf (p), u)) = (π∗ωµ)p (Xf (p), u)

with u ∈ TpN , so by the definition of ωµ we obtain

(ωµ)π(p)(dπp(Xf (p)), u) = (i∗ω)p (Xf (p), u) .

Since, by (2), Xf (p) ∈ TpN and u is arbitrary, the right-hand-side equals

dfp(u) = d(f̄ ◦ π)p(u) = df̄π(p)(u)

completing the proof of the lemma.
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The rest of the proof of part II is straightforward. Take f̄ , ḡ in C∞(N) and
π(p) ∈ N . By definition of the reduced Poisson bracket:

{f̄ , ḡ}N ◦ π(p) = {f, g} ◦ i(p),

where f and g are arbitrary extensions of f̄ ◦ π and ḡ ◦ π to C∞(M)E , or

{f̄ , ḡ}N ◦ π(p) = ωp(Xf (p), Xg(p)).

On the other hand, the Poisson bracket determined by ωµ, denoted momentarily
by { , }µ, satisfies:

{f̄ , ḡ}µ(π(p)) = (ωµ)π(p)
(
X f̄ (π(p)), X ḡ(π(p))

)
,

so lemma 2, the definition of ωµ and (2) lead to:

{f̄ , ḡ}µ(π(p)) = (π∗ωµ)p (Xf (p), Xg(p))

= (i∗ω)p (Xf (p), Xg(p))

= ωp(Xf (p), Xg(p))

and to the conclusion that { , }N coincides with { , }µ.

4 Comments

In this note we presented a proof that Marsden-Weinstein reduction of a sym-
plectic manifold by a (strong) Hamiltonian action can be obtained by Marsden-
Ratiu reduction of the same manifold using the natural distribution consisting
of the tangent space to the G-orbits (N is level set of a regular value of the
moment map).

Although such claim is present in other papers, they point to the explanation
given in [5]. Our example in subsection 3.1 explains why we believe the argument
in [5] is misleading.

Although it is probably possible to use the results in [2] to obtain an alter-
native proof, we could not devise a natural way to do it.
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