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Abstract

In 2011, A. Fordy and R. Marsh provided a list of quivers with low
number of nodes and mutation-period equal to 2. In the five-node case,
they imposed symmetry on the quiver apparently due to the symmetry
observed for quivers of four nodes with the same period.

In this paper we give the complete list of quivers of four nodes and
mutation-period 2, as a non-symmetric family was left out of their list.
For the case of five nodes, we correct one of the families they obtained
and prove that the corrected list is exhaustive.
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1 Introduction

Cluster algebras were introduced in 2001 by Fomin & Zelevinsky (see [3] for the
published version) to study total positivity in semisimple groups. Since then,
cluster algebras have been linked to many areas, namely representation theory,
pre-symplectic and Poisson geometry, dynamical systems, topology and number
theory just to name a few (we refer to the Cluster Algebras Portal by Fomin to
have a glimpse on the variety of areas envolved in this subject).

In 2002 Fomin & Zelevinsky proved the so-called Laurent phenomenon for
cluster algebras (see [4]): every element of a cluster algebra can be written as
a Laurent polynomial in the original cluster variables. This phenomenon has
been associated to many higher-order sequences (e.g., Somos sequences) which
exhibit the following behaviour: although defined by rational recurrences, if one
starts with the initial data (1, 1, . . . , 1), all terms in the sequence turn out to be
integers.

Motivated by this phenomenon, a new concept was introduced by Fordy &
Marsh in [7], that of amutation-periodic quiver. Quivers can be seen as instances
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dade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal. Email: imcruz@fc.up.pt

†Email: jorgembf school@outlook.com

1



of cluster algebras by appropriately defining mutations in the direction of the
nodes of the quiver. Mutation-periodic quivers of period m naturally give rise to
a system of m nonlinear (in fact bi-rational) difference equations, which include
some of the Somos sequences. The discrete dynamical systems determined by
these systems of difference equations, are commonly referred to as cluster maps
and are canonically written as a composition of m mutations and a permutation
on the nodes of the quiver (this vision of cluster map coincides with the one in
[5] in the case of mutation-period 1, but is somewhat different for higher periods
and odd number of nodes, in which case we refer to [1]).

In the meantime, Poisson and pre-symplectic geometry had been successfully
used in cluster algebra theory by Gekhtman, Shapiro & Vainshtein (see for
example [8], [9]), revealing the potential of the use of these areas of geometry
both in algebra and dynamical systems. For an account of a dynamical systems
point of a view see for example [5], where cluster maps associated to mutation-
periodic quivers of period 1 are reduced to symplectic maps by the use of pre-
symplectic techniques. For example, reduction of the Somos-4 and of the Somos-
5 cluster map leads to integrable maps in dimension 2 (in the sense of [10]).

The notion of mutation-periodicity was proved to be equivalent to a geomet-
ric counterpart in [1]. More precisely, a quiver is mutation-periodic (arbitrary
period) if and only if the canonical pre-symplectic form associated to the quiver
is invariant under the corresponding cluster map. As a consequence, cluster
maps arising from mutation-periodic quivers of any period can always be re-
duced to lower dimensional symplectic maps if the “adjacency” matrix of the
quiver is singular (which will always be the case for odd number of nodes).
Nevertheless, reducing a cluster map to lower dimension by using Poisson struc-
tures can turn out to have a negative answer (see [1] for an example). This
is the case for all 5-node quivers with mutation-period equal to 2: none of the
corresponding cluster maps can be reduced by the use of log-canonical Poisson
structures.

2 Preliminaries

2.1 Mutation-periodic quivers

We start by establishing some notation, following the one introduced in [7].
Q will denote a quiver (a directed multi-graph) with N nodes and no loops

nor 2-cycles. The nodes will be labelled 1, 2, . . . , N and will be depicted as the
vertices of a regular N -gon disposed in clockwise order. To Q we associate a
modified version of its adjacency matrix: an integer N × N skew-symmetric
matrix, BQ = [bij ], whose nonnegative entries bij are the number of arrows
from node i to node j. The fact that there are no loops guarantees that bii = 0.
Conversely, given an integer N × N skew-symmetric matrix B = [bij ], we can
define a quiver, QB , by defining the number of arrows from node i to node j to
be equal to bij , if this number is positive (no arrows otherwise).

A skew-symmetric, coefficient-free cluster algebra can then be associated to

2



BQ =


0 −1 2 1 1
1 0 −1 0 1
−2 1 0 −1 2
−1 0 1 0 −1
−1 −1 −2 1 0


1

2

34

5

Figure 1: A five node quiver Q and its matrix.

Q by proceeding as follows:

1. attach a variable xi (cluster variable) to node i of Q, thus getting what is
known in cluster algebra theory as initial seed :

(B,x)

with B = BQ and x = (x1, . . . , xN );

2. define µk, the operation of mutation at node k ∈ {1, . . . , N}, acting on a
seed (B,x) as:

(µk(B), µk(x)) = (B′,x′)

with

b′ij =


−bij , if i = k or j = k

bij +
1

2
(|bik|bkj + bik|bkj |), otherwise

and

x′
i =


Πbkj≥0 x

bkj

j +Πbkj≤0 x
−bkj

j

xk
, if i = k

xi, otherwise

In cluster algebra theory, the initial seed can be mutated in any direction (at any
node) producing another seed, which can again be object of another mutation
(note that µk ◦ µk = Id) and so forth. In our study we will perform mutations
in a prescribed order, first at node 1, then at node 2, and so on up to order N .

Remark 1. In the definition of B′ = µk(B), observe that: (a) b′ij = bij+bikbkj
if bik and bkj are both positive; (b) b′ij = bij − bikbkj if bik and bkj are both
negative and (c) b′ij = bij whenever bik bkj ≤ 0. In particular, if all elements in
row k have the same sign (zero included in any sign), then only the kth row (or
column) of B undergoes some change in the process of mutation.

In terms of the quiver, mutation at node k is defined so that the matrix
associated to the mutated quiver is the mutated matrix of the original quiver:

Bµk(Q) = µk(BQ), (1)

which translates in the following set of rules:
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• reverse all arrows which are incident with node k;

• if p ≥ 0 is the number of arrows from node i to node j then:

(a) add qr arrows to p if there are q > 0 arrows from node i to node k
and r > 0 arrows from k to j;

(b) subtract qr arrows from p if there are q > 0 arrows from j to k and
r > 0 arrows from k to i (a negative result is to be read as qr − p
arrows from j to i);

(c) leave p unchanged in any other situation.

1

2

34

5

1

2

34

5

1

2

34

5

Figure 2: Quivers Q, µ1(Q) and µ2 ◦ µ1(Q).

A quiver will be mutation-periodic if, performing the mutation at node 1
followed by the mutation at node 2 and so on, at some point the mutated quiver
coincides with the original quiver, up to a certain permutation of the nodes.

To be more precise, we introduce the cyclic permutation1

σ =

(
1 . . . N − 1 N
2 . . . N 1

)
and define σ(Q) to be the quiver with N nodes where the number of arrows
from node σ(i) to node σ(j) is the number of arrows in Q from node i to node
j. One can visualize σ(Q) as the N -gon where the arrows remain fixed and the
N vertices are rotated counter-clockwise.

It can easily be checked that this operation of permutation translates, in
terms of matrices, as

Bσ(Q) = σ−1BQ σ, (2)

where, slightly abusing notation, σ on the right hand side stands for the matrix

0 1 0 · · · 0

0 0 1
...

...
. . .

. . .
...
1

1 0 0 · · · 0

 . (3)

1denoted by ρ−1 in [7]

4



1

2

34

5

2

3

45

1

3

4

51

2

Figure 3: Quivers Q, σ(Q) and σ2(Q).

Definition 1. A quiver Q with N nodes is said to be mutation-periodic with
period m ≥ 1, or m-periodic for short, if

µm ◦ µm−1 ◦ · · · ◦ µ1(Q) = σm(Q). (4)

Example 1. The quiver Q introduced in figure 1 is 2-periodic (compare the third
quivers in figures 2 and 3) but not with period 1 (compare the second quivers in
the same figures).

By using (1) and (2), one can express mutation-periodicity as follows:

µm ◦ µm−1 ◦ · · · ◦ µ1(BQ) = σ−mBQ σm (5)

with BQ denoting the matrix associated to Q.

Example 2. For the matrix in figure 1 the matrices µ1(BQ) and µ2 ◦ µ1(BQ)
are respectively

µ1(BQ) =


0 1 −2 −1 −1
−1 0 1 1 2
2 −1 0 −1 2
1 −1 1 0 −1
1 −2 −2 1 0

 , µ2◦µ1(BQ) =


0 −1 −1 0 1
1 0 −1 −1 −2
1 1 0 −1 2
0 1 1 0 −1
−1 2 −2 1 0


The last matrix agrees with σ−2BQσ

2, as can be easily checked.

2.2 Cluster maps

For the sake of completeness, we define the cluster map associated to a mutation-
periodic quiver (here our interest lies in period greater than 1, so we follow [1]
instead of [5]).

Definition 2. The cluster map associated to a mutation-period quiver Q with
N nodes and strict-period 2 m is the map

φ(x) = σm ◦ µm ◦ · · · ◦ µ1(x) (6)

with x = (x1, . . . , xN ).

2m but not n, for any n < m
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As an example, the cluster map associated to the mutation-period quiver in
figure 1 is given by:

φ(x1, . . . , x5) =

(
x3, x4, x5,

x2 + x2
3x4x5

x1
,
x2 + x2

3x4x5 + x1x3x4x
2
5

x1x2

)
as

x′ = µ1(x) =

(
x2 + x2

3x4x5

x1
, x2, . . . , x5

)
and

µ2(x
′) =

(
x′
1,

x′
1 + x′

3x
′
4x

′
5
2

x′
2

, x′
3, x

′
4, x

′
5

)
.

The referred Laurent phenomenon implies that, starting with x = (1, 1, 1, 1, 1)
and iterating by φ, one will always obtain integers, which is somewhat surprising
as already in the fourth iteration we will be dividing by 3 and 21.

3 Full list of 2-periodic quivers with four nodes

The complete list of 4-node quivers with mutation-period 2 can be found below.
Note that mutation-period 1 is also included but can be avoided by restricting
the parameters.

We opted not to include the proof of this result as the 4-node case is a lot
simpler than the 5-node case and the latter will be carried out with detail in
the next section. Still, we can easily provide it if requested.

Proposition 1. If Q is a 2-periodic 4-node quiver, then BQ is one of the
matrices below or its negative:

1. BI =


0 −p −q −r
p 0 −r −s
q r 0 −p
r s p 0

 with p, q, r, s ∈ Z+
0

( sink-type family);

2. BII =


0 −p q −r
p 0 −r − pq q
−q r + pq 0 −p
r −q p 0

 with p, r ∈ Z+
0 , q ∈ Z+

(family (10) in [7]);

3. BIII =


0 0 −p 0
0 0 0 q
p 0 0 0
0 −q 0 0

 with p, q ∈ Z+

(difference of multiples of primitives).
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These are all the possible cases (and include matrices for 1-periodic quivers).

Remark 2. Family BIII is missing in [7] and is not symmetric with respect to
the counter diagonal 3. Also, family BI is not symmetric unless q = s.

4 Full list of 2-periodic quivers with five nodes

In the next Proposition we give the complete list of quivers of five nodes and
mutation-period strictly 2 (we excluded the cases where the period is 1).

An immediate consequence is that all these quivers possess symmetry as the
matrices BQ are symmetric with respect to the counter diagonal.

Proposition 2. If Q is a 5-node quiver with mutation-period strictly 2, then
BQ is one of the matrices below or its negative:

1. B1 =


0 −1 p+ 1 1 p
1 0 −1 0 1

−p− 1 1 0 −1 p+ 1
−1 0 1 0 −1
−p −1 −p− 1 1 0

 with p ∈ Z+

(correct version of family (13) in [7]);

2. B2 =


0 p 1 p+ 1 −1
−p 0 −1 p+ 1 p+ 1
−1 1 0 −1 1

−p− 1 −p− 1 1 0 p
1 −p− 1 −1 −p 0

 with p ∈ Z+
0

(family (12) in [7]);

3. B3 =


0 −p 1 1 −q
p 0 −p− q 1− p 1
−1 p+ q 0 −p− q 1
−1 p− 1 p+ q 0 −p
q −1 −1 p 0

 with p, q ∈ Z+
0 and p ̸= q

(family (11) in [7]).

These are all the possible cases.

Proof. We are looking for all integer, skew-symmetric matrices satisfying the
periodicity condition (5) with m = 2.

Clearly the quiver obtained by reverting the arrows retains the mutation-
periodicity property. Equivalently −BQ still satisfies condition (5). This allows

3this matrix symmetry translates the graph-symmetry referred in [7]
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us to reduce the number of cases to study by a factor of 2. Writing

B = BQ =


0 b1 b2 b3 b4

−b1 0 b5 b6 b7
−b2 −b5 0 b8 b9
−b3 −b6 −b8 0 b10
−b4 −b7 −b9 −b10 0


one obtains

σ−2Bσ2 =


0 b10 −b3 −b6 −b8

−b10 0 −b4 −b7 −b9
b3 b4 0 b1 b2
b6 b7 −b1 0 b5
b8 b9 −b2 −b5 0

 .

Before considering the signs needed to perform mutations, note that the first
row of µ1(B) is the negative of that of B, and the second row of µ2 ◦ µ1(B) is
the negative of that of µ1(B). This shows that the mutation-periodic condition
already implies b10 = b1. So we proceed with general B of the form:

B =


0 b1 b2 b3 b4

−b1 0 b5 b6 b7
−b2 −b5 0 b8 b9
−b3 −b6 −b8 0 b1
−b4 −b7 −b9 −b1 0


and

σ−2Bσ2 =


0 b1 −b3 −b6 −b8

−b1 0 −b4 −b7 −b9
b3 b4 0 b1 b2
b6 b7 −b1 0 b5
b8 b9 −b2 −b5 0

 . (7)

To perform the first mutation the signs in the first row of B are needed. Using
the fact aforementioned, these signs can be reduced to the 8 cases below.

For each case we use the sign information to compute the second row of
µ2 ◦µ1(B), then compare this incomplete matrix with (7) to get information on
(the signs of) more entries until we are able to complete µ2 ◦ µ1(B). Then a
careful handling of equations (with integer unknowns) leads either to B or the
conclusion that B does not exist.

1. b1, b2, b3, b4 ∈ Z+
0 - in this case, mutations at nodes 1 and 2 produce (only

the upper triangular part of each matrix is shown)

µ1(B) =


0 −b1 −b2 −b3 −b4

0 b5 b6 b7
0 b8 b9

0 b1
0


8



and

µ2 ◦ µ1(B) =


0 b1 ∗ ∗ ∗

0 −b5 −b6 −b7
0 ∗ ∗

0 ∗
0

 .

Comparing with (7) we obtain b4 = b5, b7 = b6, b9 = b7. In particular
b5 ≥ 0. We argue that b6 ≥ 0, otherwise entries in row 1, column 4 would
produce

0 < −b6 = −b3 + b1b6 ≤ 0.

The signs of b5 and b6 are all we need to complete the second mutation:

µ2 ◦ µ1(B) =


0 b1 −b2 −b3 −b4

0 −b5 −b6 −b7
0 b8 b9

0 b1
0


By comparing again with (7) we arrive at

b3 = b2, b4 = b1, b5 = b1, b6 = b2, b7 = b2, b8 = b1, b9 = b2

leading to the periodic quiver (which turns out to have period 1)

B =


0 b1 b2 b2 b1

0 b1 b2 b2
0 b1 b2

0 b1
0

 .

2. b1 ∈ Z−, b2, b3, b4 ∈ Z+
0 - in this case we obtain

µ1(B) =


0 −b1 −b2 −b3 −b4

0 b5 − b1b2 b6 − b1b3 b7 − b1b4
0 b8 b9

0 b1
0


and

µ2 ◦ µ1(B) =


0 b1 ∗ ∗ ∗

0 b1b2 − b5 b1b3 − b6 b1b4 − b7
0 ∗ ∗

0 ∗
0


and the comparison with (7) gives:

b4 = b5 − b1b2, b7 = b6 − b1b3, b9 = b7 − b1b4.
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We now argue that b7 ≥ 0. In fact, assuming that b7 < 0, entry in row 1,
column 4 for µ2 ◦ µ1(B) would be −b3 leading to equality b6 = b3 and to
the contradiction

b7 = b3(1− b1) ≥ 0

Since b7 ≥ 0 we immediately obtain b9 ≥ 0 as b1b4 ≤ 0. With this
information we complete the second mutation:

µ2 ◦ µ1(B) =


0 b1 −b2 − b1b4 −b3 − b1b7 −b4 − b1b9

0 b1b2 − b5 b1b3 − b6 b1b4 − b7
0 b8 b9

0 b1
0


Then the identity for entries in row 4, column 5 produces b5 = b1 so that
0 ≤ b4 = b1(1 − b2), which can only happen with b2 − 1 ≥ 0. Equating
then entries in row 1, column 3 leads to

0 ≤ b3 = b2 + b1b4 = b2 + b21(1− b2)

so finally
b2 ≥ b21(b2 − 1) (8)

Due to the sign of (b2 − 1), there are precisely two possibilities for (8):

i. b2 = 1

ii. b1 = −1 (coming from b21 ≤ b2
b2−1 with b1 ∈ Z−)

By comparing the remaining entries of (7) and µ2 ◦ µ1(B) it is easily
checked that the first possibility leads to the periodic quiver

Bi =


0 b1 1 1 0

0 b1 b1 + 1 1
0 b1 1

0 b1
0

 , b1 ∈ Z−

(included in family B3 with q = 0), whereas the second leads to the quiver

Bii =


0 −1 b2 1 b2 − 1

0 −1 0 1
0 −1 0

0 −1
0

 , b2 > 1

(coinciding with family B1). Both families have period 2 but not 1.
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3. b2 ∈ Z−, b1, b3, b4 ∈ Z+
0 - this case does not produce any quiver, since

µ1(B) =


0 −b1 −b2 −b3 −b4

0 b5 + b1b2 b6 b7
0 b8 − b2b3 b9 − b2b4

0 b1
0


and

µ2 ◦ µ1(B) =


0 b1 ∗ ∗ ∗

0 −(b5 + b1b2) −b6 −b7
0 ∗ ∗

0 ∗
0

 .

Because 0 ≤ b4 = b5 + b1b2, we can compute the entry in row 1, column 3
of µ2 ◦ µ1(B), and by comparing it with that of (7) gives b3 = b2, which
is incompatible with the sign hypothesis.

4. b3 ∈ Z−, b1, b2, b4 ∈ Z+
0 - this case is ruled out similarly to case 3, since

µ1(B) =


0 −b1 −b2 −b3 −b4

0 b5 b6 + b1b3 b7
0 b8 + b2b3 b9

0 b1 − b3b4
0


and

µ2 ◦ µ1(B) =


0 b1 ∗ ∗ ∗

0 −b5 −(b6 + b1b3) −b7
0 ∗ ∗

0 ∗
0

 .

As 0 ≤ b4 = b5 we easily compute the entry in row 1, column 3 of the last
matrix, and doing the same comparison leads again to b3 = b2, which is
impossible.

5. b4 ∈ Z−, b1, b2, b3 ∈ Z+
0 - start with the mutations:

µ1(B) =


0 −b1 −b2 −b3 −b4

0 b5 b6 b7 + b1b4
0 b8 b9 + b2b4

0 b1 + b3b4
0


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and

µ2 ◦ µ1(B) =


0 b1 ∗ ∗ ∗

0 −b5 −b6 −(b7 + b1b4)
0 ∗ ∗

0 ∗
0

 .

Compare with (7) to obtain:

b4 = b5, b7 = b6, b9 = b7 + b1b4.

We now argue that b9 ≥ 0. In fact, assuming b9 < 0, entry in row 3,
column 5 for µ2 ◦ µ1(B) would be b9 + b2b4 leading to the contradiction

0 ≤ b2 = b9 + b2b4 < 0

Therefore b9 ≥ 0 which in turn implies b6 = b7 ≥ 0 as b1b4 ≤ 0. Now
complete the second mutation:

µ2 ◦ µ1(B) =


0 b1 −b2 + b1b4 −b3 −b4

0 −b5 −b6 −(b7 + b1b4)
0 b8 − b4b6 b9 + b2b4 − b4b9

0 b1 + b3b4
0


Using again the identity for entries in row 3, column 5 one obtains b9 = b2.
Comparing now the entries in row 4, column 5 and using b5 = b4 leads to

0 ≤ b1 = b4(1− b3)

which takes place only if b3 − 1 ≥ 0. Finally equality between entries in
row 1, column 3 produce

0 ≤ b2 = b3 + b1b4 = b3 + b24(1− b3)

that is,
b3 ≥ b24(b3 − 1) (9)

Now the argument proceeds along the lines of case 2: due to the sign of
(b3 − 1), there are precisely two possibilities for (9):

iii. b3 = 1

iv. b4 = −1 (coming from b24 ≤ b3
b3−1 with b4 ∈ Z−)

The first possibility leads to the periodic quiver

Biii =


0 0 1 1 b4

0 b4 1 1
0 b4 1

0 0
0

 , b4 ∈ Z−
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(included in family B3 with p = 0), and the second leads to the quiver

Biv =


0 b1 1 b1 + 1 −1

0 −1 b1 + 1 b1 + 1
0 −1 1

0 b1
0

 , b1 ∈ Z+
0

(coinciding with family B2). Again both families have period 2 but not 1.

6. b1, b2 ∈ Z−, b3, b4 ∈ Z+
0 - an inconsistence appears fairly quickly as

µ1(B) =


0 −b1 −b2 −b3 −b4

0 b5 b6 − b1b3 b7 − b1b4
0 b8 − b2b3 b9 − b2b4

0 b1
0


and

µ2 ◦ µ1(B) =


0 b1 ∗ ∗ ∗

0 −b5 b1b3 − b6 b1b4 − b7
0 ∗ ∗

0 ∗
0

 .

Here, as in case 4, we conclude that 0 ≤ b4 = b5. Equating entries in row
1, column 3 gives b3 = b2 + b1b5, which is impossible with the signs under
consideration.

7. b1, b3 ∈ Z−, b2, b4 ∈ Z+
0 - this case requires more care, as there is no easy

contradiction.

µ1(B) =


0 −b1 −b2 −b3 −b4

0 b5 − b1b2 b6 b7 − b1b4
0 b8 + b2b3 b9

0 b1 − b3b4
0


and

µ2 ◦ µ1(B) =


0 b1 ∗ ∗ ∗

0 b1b2 − b5 −b6 b1b4 − b7
0 ∗ ∗

0 ∗
0

 .

A first comparison with row 2 of (7) gives

b4 = b5 − b1b2, b7 = b6, b9 = b7 − b1b4.
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Comparing the entries in row 1, column 4 we conclude that b6 ≤ 0. In
fact, if b6 > 0 we would obtain

0 < b6 = b3 + b1b6

which is impossible with the signs of this case.

Also, using the entries in row 3, column 5 we obtain b9 ≥ 0. In fact,
assuming b9 < 0 would produce

0 ≤ b2 = b9 + b4b9

which is impossible.

The signs of b6 and b9 allow us to complete the second mutation:

µ2 ◦ µ1(B) =


0 b1 −b2 − b1b4 −b3 −b4 − b1b9

0 b1b2 − b5 −b6 b1b4 − b7
0 b8 + b2b3 + b4b6 b9

0 b1 − b3b4 − b7b9
0

 .

and conclude that b6 = b3 and b9 = b2.

To see that there are no quivers in this case we proceed to compare entries
in row 4, column 5 (using b7 = b6 = b3 and b9 = b2) to arrive at:

b5 = b1 − b3b4 − b1b2

Now using b4 = b5 − b1b2 and substituting for b5 in the previous equation
we get

0 ≥ b4(1 + b3) = b1(1− b2)− b2b3

The only possibilities that respect the signs of this case are b2 = 0 or
b2 = 1. Using row 1, column 3 to produce b3 = b2 + b1b4 we see that

b2 = 0 ⇒
{

b4(1 + b3) = b1
b3 = b1b4

⇝ b3 = b24(1 + b3)

which is impossible.

Likewise
b2 = 1 ⇒ b4(1 + b3) = −b3

which is again impossible.

8. b1, b4 ∈ Z−, b2, b3 ∈ Z+
0 - this last case originates family B3 and a quiver

with period 1.

µ1(B) =


0 −b1 −b2 −b3 −b4

0 b5 − b1b2 b6 − b1b3 b7
0 b8 b9 + b2b4

0 b1 + b3b4
0


14



and

µ2 ◦ µ1(B) =


0 b1 ∗ ∗ ∗

0 b1b2 − b5 b1b3 − b6 −b7
0 ∗ ∗

0 ∗
0

 .

Comparing with (7) we get:

b4 = b5 − b1b2, b7 = b6 − b1b3, b9 = b7.

Clearly b7 ≥ 0, since if b7 < 0 then entry in row 1, column 4 for µ2 ◦µ1(B)
would be −b3 leading to the contradiction

0 > b7 = b3 − b1b3 ≥ 0

With the sign of b7 (and recalling b9 = b7) we complete the second muta-
tion

µ2 ◦ µ1(B) =


0 b1 −b2 −b3 − b1b7 −b4 − b1b7

0 −b5 −b6 −(b7 + b1b4)
0 b8 − b4b7 b9 + b2b4 − b4b7

0 b1 + b3b4
0


Now we just have to compare the adequate entries in this matrix and (7)
to achieve all solutions. Row 1, column 4 leads to b7 = b3 + b1(b7 − b3),
so that b7 = b3. Moreover row 1, column 3 and row 4, column 5 lead to
b4 = b1 + b2(b4 − b1), and therefore to the following possibilities:

v. b2 = 1

vi. b4 = b1

Collecting all equalities we conclude that v leads to the periodic quiver

Bv =


0 b1 1 1 b4

0 b1 + b4 1 + b1 1
0 b1 + b4 1

0 b1
0

 , b1, b4 ∈ Z−

(family B3), which has period 1 if b1 = b4, whereas vi leads to the quiver

Bvi =


0 b1 b2 b2 b1

0 b1(1 + b2) b2(1 + b1) b2
0 b1(1 + b2) b2

0 b1
0

 , b1 ∈ Z−, b2 ∈ Z+
0

which has period 1.
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Remark 3. The inequality m1 >
√

m2

m2+1 in page 42 of [7] is wrong: the correct

version leads to m1 = 1, m3 = −1 and to the family B1.

5 Conclusions and comments

In this note we have presented the full list of 2-periodic quivers with both 4 and
5 nodes. The proof was carried out only in the 5-node case, as for quivers with
4 nodes the proof is analogous but simpler. In the case of 4 nodes we included
a family which does not have the graph-symmetry mentioned in [7]. As for the
5-node case, our proof shows that all these quivers have graph-symmetry. This
is somehow surprising, as the motivation in [7] to impose graph-symmetry on
5-node quivers came from that same property in 4-node quivers, which does not
always hold.

In Figure 4 below, we depict new quivers illustrating these conclusions (the
first obtained with (p, q) = (1, 2) in family BIII and the second with p = 2 in
family B1).

1

23

4
1

2

34

5

Figure 4: New 4-node (non-symmetric) and 5-node (hence symmetric) quivers
with strict period 2.

Concerning 5-node quivers with period 2, we note that a common feature
to all BQs is that all these matrices have rank 4. This means that reduction of
the associated cluster map by log-canonical pre-symplectic structures produces
a symplectic reduced map in precisely four variables (the reduced symplectic
maps for all the families can be found in [2]). Moreover, we claim that it is
not possible to use log-canonical Poisson structures to achieve reduction of the
cluster map since only the zero Poisson structure is invariant under this map
(we refer to [1] for more details and examples). The proof of this statement can
also be found in [2].
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