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Abstract

This paper fits in the theory of international agreements by studying the success
of stable coalitions of agents seeking the preservation of a public good. Extending
Baliga and Maskin [3], we consider a model of homogeneous agents with quasi-linear
utilities of the form uj(rj ; r) = rα − rj , where r is the aggregate contribution and
the exponent α is the elasticity of the gross utility. We prove that membership of
the stable coalitions grows from 1 up to attaining the grand coalition as the value
of α increases in its natural range (0, 1). We show that when the size of the stable
coalition increases, the ratio of the welfare of the stable coalitions against the welfare
of the competitive singleton coalition grows with α. However, we prove that the
growth of the size of stable coalitions occurs with a much greater loss of the coalition
members when compared to the utilities of the free-riders, which leads to the well-
known Barrett’s paradox of cooperation [4] even in the extreme case where the stable
coalition misses only a single free-rider. The paradox of cooperation only breaks when
α is large enough so that the grand coalition is stable.
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1 Introduction

Scott Barrett [4] argued that international environmental agreements are, typically, not
successful, since when cooperation matters the most, stable coalitions may achieve only
little. This claim has been known in the literature as Barrett’s paradox of cooperation
or simply the paradox of cooperation. The decision of whether or not to cooperate for
the provision or maintenance of a non-excludable and non-rivalrous good can be based on
countries’ private interests, in some way a Hobbesian approach where the common interest
is served only by a country when the neglect of the collective interest implies the loss of its
individual well-being.

Baliga and Maskin [3] proposed a model for pollution-emitting communities that are
negatively affected by these emissions, showing that any agreement involving two or more
communities is vulnerable to free-riding. Hence, even when stable coalitions are formed,
pollution reduction turns out to be no greater than in the case where negotiation is ruled
out. The stable coalition coincides with the competitive equilibrium for the preservation of
the public good, consisting of only a single agent paying the preservation costs and all the
other agents acting as free-riders and not contributing.

Extending Baliga and Maskin [3], we consider a model of homogeneous agents with
quasi-linear utilities of the form uj(rj; r) = rα − rj, where r is the aggregate contribution
and the exponent α ∈ (0, 1) coincides with the elasticity of the gross utility with respect to
the aggregate contribution, where α = 1/2 in [3]. The Nash–Cournot equilibria of the game
where all agents competitively choose their contributions are the low-cooperation strategies:
the aggregate effort of all the agents coincides with the stand-alone effort of a single agent
optimizing his/her utility on his/her own. We observe that low-cooperation strategies are
relevant in the dynamic framework previously analyzed in [1, 2] since they are stable equi-
librium points for the myopic or adaptive dynamics. Hence, for this extended version of
the Baliga and Maskin [3] model, it still holds that a single agent paying the preservation
costs and all the other agents as free-riders and not contributing is a competitive equilib-
rium. However, as we will describe, stable coalitions have more than a single element when
α > 1/2.

In this work, we follow the approach in d’Aspremont et al. [7] in the context of price
collusion. We consider a two-stage game, where a coalition formation stage is followed by a
public goods game involving the choices of efforts or contributions made to the public good
by the agents.
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We first analyze the second stage public goods game after coalitions have been formed.
Following some current literature ([6, 8, 9, 10, 12]), we consider the game where the formed
coalition is one of the players, its utility being the aggregate utility of the coalition members,
and the other players are the agents that do not belong to the coalition called free-riders
relative to the coalition. As we will discuss, the free-riders might contribute or not to the
public good. As considered in some of the previous works, we analyze two versions of the
public goods game: Nash–Cournot and Stackelberg. In the Nash–Cournot game, all players
choose their contributions simultaneously, while in the Stackelberg game, the coalition
player is the leader and hence chooses its contribution first, followed by a Nash–Cournot
game played by all the other agents. We prove in Lemmas 2 and 3 that the Nash–Cournot
equilibria and the Stackelberg equilibria are of the following two types: i) low-cooperation
strategies as described before (where free-riders may contribute to the public good); and
ii) the stand-alone strategies of a coalition, i.e. the aggregate contribution maximizing the
utility of the coalition, with all the free-riders contributing zero.

Secondly, we analyze the first stage coalition formation game. Following d’Aspremont
et al. [7] we define the concepts of internal and external stability of coalitions, and hence of
stable coalitions: a coalition A is stable if the members of the coalition do not have a utility
advantage to become free-riders by leaving the coalition and vice-versa. We concentrate
our analysis on focal stand-alone strategies that are both Nash–Cournot and Stackelberg
equilibria for the second stage public goods games: a focal stand-alone coalition is a coalition
with a stand-alone strategy of the coalition that is equally shared among coalition members
because of the homogeneity of the agents. We prove in Theorem 1 that for each α and
total number of players N , there is a stable (focal stand-alone) coalition S(α;N), which
is unique up to a permutation of agents. Furthermore, we prove that there is a coalition
cardinality increasing step function ℓ(α) ∈ N such that: (i) ℓ(α) = 1, for 0 < α ≤ 1/2, and
(ii) ℓ(α) tends to infinity, when α tends to 1, with the following property: the cardinality of
the stable coalition S(α;N) is the minimum between ℓ(α) and the total number of agents
N .

Inspired by the approach in Barrett [4], we will study the difficulties arising in the
formation of stable coalitions and the effects of stable coalitions in preserving the public
good. By Theorem 1, increasing α increases the size of stable coalitions, evolving from
singleton coalitions with a single member, to the grand coalition N including all the agents.
We observe that when the number of members of the stable coalitions increases, the utility
of a free-rider over a member of the stable coalition utility also increases, making the
formation of large coalitions much more difficult (except when the stable coalition becomes
the grand coalition). In fact, the ratio of the utility of a free-rider against the utility of a
member of the stable coalition equals (1−α)−1, and so tends to infinity when α tends to 1.

As usual, the welfare W (α;A) associated with a stand-alone strategy of a coalition A
consists of the aggregate utility of all N agents, including the free-riders. Since agents are
homogeneous, the welfare will depend only upon the cardinality of the coalition and not on
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the agents that form the coalition nor on the way the costs are distributed among coalition
members. Our goal is to compare the relative performance of the welfare associated with
stable (focal stand-alone) coalitions S to competitive (focal stand-alone) singleton coalitions
C formed by a single agent (corresponding to a competitive equilibrium), and the (focal
stand-alone) grand coalition N formed by all agents.

The gap between full cooperation and the competitive scenario can be measured in terms
of the relative welfare W (α;N )/W (α; C) between the grand coalition and a competitive
singleton coalition. We observe that this ratio tends to infinity, and so the gap increases
when α tends to 1. This can be interpreted as that the need or urge to preserve the public
good by the grand coalition increases with the elasticity α of the gross utility.

The relative welfare between stable coalitions S and a competitive singleton coalition C is
the ratio W (α;S)/W (α; C). Since stable coalitions are singleton coalitions for 0 < α ≤ 1/2,
the relative welfare equals 1. This fact was pointed out by Baliga and Maskin [3], for α
in the boundary of this region: α = 1/2. However, when α tends to 1: (i) the number of
members of the stable coalitions grows up to N ; and (ii) the relative welfare grows to +∞.
This can be interpreted as that the stable coalition achieves much higher welfare than the
competitive singleton coalition when the elasticity of the gross utility α increases.
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Figure 1: The function log (W (α;S)/W (α;N )) /N depending on β ≡ β(α;N) ≡ ℓ(α)/N ,
for different values of N = 103, . . . , 1012.

The relative welfare between stable coalitions S and the grand coalition N is the ratio
W (α;S)/W (α;N ). By Theorem 3, for a large number of agents the relative welfare attains
a low global minimum when the number of the members ℓ(α) of the stable coalitions is
close to one-third of the number of the members of the grand coalition N , more precisely,
ℓ(α) ≈ e−1N ≈ 0.37N (see Figure 1). By Theorem 2 the welfare of stable coalitions
differing from the grand coalition (i.e. in situations where there are free-riders) is very
small compared to the welfare of the grand coalition. We observe that this observation
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enlarges the scope of Barrett’s paradox of cooperation to the case where stable coalitions
are large (for example when there is a single free-rider) and the gap between cooperation
and no cooperation is also large. This case is seldom mentioned in the literature; usually,
when the stable coalition is large then the gap between cooperation and no cooperation is
small. For other types of utilities and emphasizing the role of diversity through asymmetric
agents, Finus and McGinty [11] have shown related results.

Summarizing, when the membership of the stable coalitions grows up there is a much
greater loss of the coalition members when compared with the free riders’ utilities. This
fact has two major drawbacks: firstly, it is the explanation and interpretation of Barrett’s
paradox of cooperation, since when a new free-rider enters the stable coalition, the jump
of the welfare of the stable coalition has to become larger and larger. In particular, the
welfare of the stable coalitions (when different from the grand coalition) has to be much
smaller than the welfare of the grand coalition. Secondly, the formation of stable coalitions
becomes more and more difficult since all agents much prefer to be free-riders rather than
members of the stable coalition. These two facts are overcome only when the grand coalition
becomes stable. Hence, to save the public good the stability of the grand coalition is of
great importance and this only occurs for values of the elasticity of gross utility α large
enough.

This paper is organized in the following way. In Section 2, we introduce the extended
version of Baliga and Maskin’s model of contributions for a public good. We study two
variations of a public goods game regarding the contributions made after a coalition has
been formed: Nash–Cournot, and Stackelberg, and we characterize equilibria in these public
goods games. In Section 3, we study the first stage game regarding the formation of
coalitions and characterize the stability of coalitions in terms of the elasticity α of the gross
utility of the public good. In Section 4, we discuss the paradox of cooperation for the
welfare of stable coalitions, in particular, the special case where the stable coalition is large
but the gap between cooperation and the grand coalition is still large. In Section 5, we
conclude and make some final remarks. In the appendices to this paper, we present the
proofs of the results.

2 Public goods games

Baliga and Maskin [3] focus on the reduction of air pollution, but the model can be applied
with suitable modifications to other situations involving collective social risk dilemmas on
the preservation of public goods. Here, an extended version of Baliga and Maskin’s model
is presented by adding the parameter 0 < α < 1 (α = 1/2 in [3]). In this section, we present
this extended version of the model, and we study public good games regarding contributions
to the public good after a certain coalition has been formed. We study two variations of the
public goods game: Nash–Cournot, where the formed coalition and the remaining players
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choose their contributions simultaneously, and Stackelberg, where the formed coalition acts
as the leader.

2.1 An extended Baliga–Maskin model

We consider that there are N homogeneous agents that can be countries, individuals, or, in
game theory terms, players. They are indexed by i ∈ N = {1, 2, . . . , N} who are users or
consumers of a public good (which is the reduction of pollution in Baliga-Maskin’s model).
The contribution of agent j for the preservation of the public good is rj ≥ 0. The aggregate
contribution of all agents except j is r−j =

∑
i∈N\{j} ri.

The gross utility or benefit function of an agent is

v(rj + r−j) = (rj + r−j)
α.

We observe that the gross benefit functions are strictly concave since α ∈ (0, 1) (α = 1/2
in [3]). Hence,

α = lim
∆r→0

∆v

v(r)
/
∆r

r
=

dv(r)

dr

r

v(r)
,

and so the parameter α is the ratio of the percentage change in gross utility v to the
percentage change in the aggregate effort r, that is, the elasticity of gross utility with
respect to the aggregate contribution.

The net utility of agent j is the quasi-linear utility function

uj(rj; r−j) = v(rj + r−j)− rj = (rj + r−j)
α − rj .

Therefore, the partial derivative of uj(rj; r−j) with respect to rj is

∂uj

∂rj
= α(rj + r−j)

α−1 − 1.

Note that ∂uj/∂rj = 0 if and only if rj + r−j = r ≡ α
1

1−α . Hence, we observe that r is the
aggregate effort maximizing the net utility of agent j. We call r the stand-alone effort of a
single agent since it is the optimal effort rj = r of the agent when all the other agents do
not contribute r−j = 0.

2.2 Low-cooperation and stand-alone strategies

A low-cooperation strategy is a vector of individual efforts satisfying the aggregate effort
rN of all agents is equal to the stand-alone effort of a single agent

rN = r.
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A coalition A ⊂ N is a subset of agents that are willing to participate in a cooperation
agreement for the conservation or provision of a public good. The agents in N \ A are
called the free-riders relative to A. Two examples of coalitions are the singleton coalitions
C = {i}, where i ∈ N , constituted by a single agent, and the grand coalition N constituted
by all agents.

The aggregate effort rA =
∑

j∈A rj of the coalition A is the sum of the efforts of all the
agents in coalition A. The quantity r−A = rN − rA is the aggregate contribution of all the
free-riders relative to A. In particular, rN is the aggregate contribution of all agents and
so

rN = rA + r−A = rj + r−j.

The aggregate net utility of coalition A

uA(rA; r−A) =
∑
j∈A

uj(rj; r−j) = #A(rA + r−A)
α − rA

is the sum of the net utilities of all the agents of the coalition A. Therefore, the partial
derivative of uA(rA; r−A) with respect to rA is

∂uA

∂rA
= α#A(rA + r−A)

α−1 − 1.

Note that ∂uA/∂rA = 0 if and only if rA + r−A = rA ≡ (α#A)
1

1−α . Hence, we observe
that rAis the aggregate effort maximizing the aggregate net utility of coalition A. We call
rAthe stand-alone effort of coalition A since it is the optimal effort rA = rA of coalition
A when all the other agents do not contribute r−A = 0. Hence, the stand-alone effort rA
is the (sub)-optimal aggregate effort for a given coalition A, when the free-riders do not
contribute r−A = 0, being optimal when A = N .

We observe that for every coalition A we have the following

r ≤ rA ≤ rN .

We have that r = rA if and only if #A = 1, and that rA = rN if and only if A is the grand
coalition N .

A stand-alone strategy of a coalition A is a vector of individual efforts satisfying the
following two properties: i) the aggregate effort rA of coalition A is equal to its stand-alone
effort A

rA = rA;

and ii) all the free-riders do not contribute

r−A = 0.
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We observe that for stand-alone strategies, the strategies of free-riders are determined (equal
to zero), while for coalition members they are not, only its aggregate effort being equal to
the stand-alone effort of the coalition.

In particular, a stand-alone strategy is a low-cooperation strategy only when coalition
A is a singleton.

2.3 Nash–Cournot and Stackelberg games

In this section we are going to consider simultaneous and sequential games where the players
are the following: (i) a (formed) coalition F ; and (ii) all the free-riders j ∈ N \F . We will
consider two types of games: Nash–Cournot and Stackelberg. In the Nash–Cournot game,
all players play simultaneously. In the Stackelberg game, the formed coalition player F is
the leader and plays first, followed by all the free-riders j ∈ N \F playing a Nash–Cournot
subgame by choosing simultaneously.

The following lemma provides the best response functions of the players.

Lemma 1. The best response function of the coalition player F is

r∗F(r−F) =

{
0 if r−F ≥ rF

rF − r−F if r−F < rF
.

The best response functions of the free-riders j ∈ N \ F are

r∗j (r−j) =

{
0 if r−j ≥ r

r − r−j if r−j < r
.

We now fully characterize the Nash–Cournot equilibria of the game.

Lemma 2. The Nash–Cournot equilibria are the following:

1. if #F = 1, every low-cooperation strategy;

2. if #F ≥ 2, every stand-alone strategy of coalition F .

We observe that when #F = 1 the Nash–Cournot game is a competitive game between all
the agents. Case 1 of Lemma 2 characterizes the competitive equilibria of this game.

We now fully characterize the Stackelberg equilibria of the game. In the trivial case
where F = N , the equilibria are stand-alone strategies of the grand coalition by the previous
lemma. From now on, we will assume that F ̸= N and so there are free-riders playing the
second stage of the Stackelberg public goods game. Hence, we assume that there is at least
one agent not belonging to the formed coalition in cases 1 and 2 of the following lemma.

Lemma 3. The Stackelberg equilibria are the following:
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1. if #F = 1, every low-cooperation strategies such that rF = 0.

2. if #F = 2 and α ≤ 1/2, every low-cooperation strategies such that rF = 0;

3. if #F = 2 and α > 1/2, every stand-alone strategy of coalition F ;

4. if #F ≥ 3, every stand-alone strategy of coalition F .

In cases 1 and 2 of Lemma 3, the coalition F uses the advantage of moving first for its
members not to contribute, putting the burden of the aggregate contribution on the free-
riders. We observe that when #F = 1 the Stackelberg game is equivalent to a competitive
game between all the agents, where one of the agents is the leader and plays first, followed
by a simultaneous game between the other agents.

3 Stability of focal stand-alone coalitions

Since agents are homogeneous, it is natural to assume that agents belonging to a coalition
equally share the costs among themselves, as was considered in [3]. We call a coalition with
this cost-sharing structure a focal coalition.

In this section, we will define focal stand-alone coalitions that are both Nash–Cournot
and Stackelberg equilibria of the second stage public goods games. Restricted to the set of
focal stand-alone coalitions we study their stability. We also study the stability of coali-
tions with corresponding low-cooperation strategies that are Nash–Cournot and Stackelberg
equilibria of the public goods games of the previous section.

3.1 Distribution of costs and utilities

A coalition A is focal if all the members of the coalition have the same effort or contribution.
A focal stand-alone coalition is a focal coalition A together with a stand-alone strategy
associated with it., i.e. the stand-alone effort is equally shared among coalition members
and free-riders do not contribute. Hence, the contribution r(j/A) of every coalition member
j ∈ A is

r(j/A) =
rA
#A

= (α(#A)α)
1

1−α = αrαA ,

and the contribution r(j/A) of every free-rider j ∈ N \ A is r(j/A) = 0.
Therefore, the utility of each agent j ∈ N is

u(j/A) =

{
(1− α)rαA, if j ∈ A
rαA, if j /∈ A

. (1)
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These utilities determine the valuation functions of each agent for a given coalition A. We
observe that both the utility of a coalition member and that of a free-rider increase when
the number of coalition members increases.

Given a focal stand-alone coalition A, we observe that the relative utility between a
free-rider agent i /∈ A and a member of the coalition j ∈ A is

u(i/A)

u(j/A)
= (1− α)−1.

Hence, the above ratio tends to +∞ when α tends to 1.

Remark 1. Therefore, a free-rider has a much higher utility than a member of a coalition
when α is close to 1. Hence, when α is high, forming a coalition may become more complex,
since free-riders have high utilities compared to coalition members, except in the case of the
grand coalition where every agent is part of the coalition and there are no free-riders.

3.2 Stable coalitions cardinality

After d’Aspremont et al. [7], a focal stand-alone coalition A is internally stable if all
members j ∈ A of the coalition A prefer not to become free-riders, i.e.

u(j/A) > u(j/(A \ {j}));

and a focal stand-alone coalition coalition A is externally stable if all free-riders j /∈ A
prefer not to become members of A, i.e.

u(j/A) ≥ u(j/(A ∪ {j})).

A focal stand-alone coalition A is stable if and only if it is both internally and externally
stable.

Let F : (0, 1) → R+ be

F (α) = 1− (1− α)
1−α
α .

Hence, F is a decreasing function whose range is (0, (e− 1)/e)), (e− 1)/e ≈ 0.63. Let

G(α) =
1

F (α)

which is an increasing function whose range is (e/(e− 1),+∞), where e/(e− 1) ≈ 1.58.

Definition 1. The coalition cardinality ℓ(α) ∈ N is the unique integer such that

ℓ(α) ∈ [G(α)− 1, G(α)).

For all i ∈ N, let α1 = 0 and let αi ∈ (0, 1) be such that G(αi) = i, for i ≥ 2, and let
Ii = (αi, αi+1].
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Hence, for every i ∈ N and α ∈ Ii we have

l(α) = i.

From equation (10) in the appendix, we get

lim
α→1

1/ℓ(α)

−(1− α) log(1− α)
= 1 and lim

α→1

log(ℓ(α))

− log(1− α)
= 1. (2)

We observe that: (i) ℓ(α) is an increasing step function of α; (ii) ℓ(α) is left-continuous, i.e.
ℓ(αi) = G(αi) − 1 and ℓ(α+

i ) = G(αi) = ℓ(αi) + 1; (iii) ℓ(α) = 1 for α ≤ α2 = 1/2 (recall
that 1/2 is the value used by Baliga and Maskin); (iv) ℓ(α) tends to +∞, when α tends to
1 (see Figure 2).
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Figure 2: The coalition cardinality ℓ(α) (black line) and the associated bounds from the
definition: G(α)−1 (blue dots) and G(α) (green dashes). The vertical axis has logarithmic
scale.

Let
ℓ(α;N) = min{ℓ(α), N}.

Letting JN = (0, αN ], we observe that: (i) ℓ(α;N) = ℓ(α) if α ∈ JN ; (ii) ℓ(α;N) = N if
α ∈ (0, 1) \ JN = (αN , 1).

Theorem 1 (Stability and cardinality). Let us consider that in the public goods game
agents choose only to form Nash-Cournot equilibria that are focal stand-alone coalitions. A
focal stand-alone coalition A is stable if and only if

#A = ℓ(α;N).
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The fact that only the cardinality of the coalition matters in terms of stability is due to the
homogeneity of the agents.

In light of the previous theorem, in the remainder of this work, we will let S = S(α;N)
denote a focal stand-alone stable coalition, i.e., a coalition with

#S(α;N) = ℓ(α;N).

3.3 A note on low-cooperation strategies

In this section, we study the external stability of coalitions when low-cooperation strategies
are Nash–Cournot and Stackelberg equilibria of the public goods games in the previous
section (case 1 of Lemmas 2 and 3).

In a low-cooperation strategy a free-rider i ∈ N \ F can have a positive contribution
ri ≥ 0, since the only restriction of the strategy is that the aggregate contribution is r. Let
rM(F) be the largest contribution among free-riders

rM(F) = max
i∈N\F

ri.

By Lemma 2 a low-cooperation strategy is a Nash–Cournot equilibrium when the car-
dinality of the formed coalition F is 1. If a free-rider i ∈ N \ F joins F = {j}, then the
newly formed coalition A has 2 elements. For the strategy of the newly formed coalition
A to be a Nash–Cournot equilibrium, by Lemma 2, it must be a stand-alone strategy of
coalition A. To be in the same context as in the previous section, we assume that A is a
focal stand-alone coalition. We define the relative contribution threshold function

Z(α) = rα−1 + 2
α

1−α

(
1− rα−1

)
.

In Figure 3 We observe that Z is decreasing, Z(1/2) = 0 and that

lim
α→0

Z(α) = 1− log(2) ≈ 0.3.

We have the following result.

Lemma 4. Consider a Nash–Cournot equilibrium low-cooperation strategy for a formed
coalition F = {j}. A free-rider i ∈ N \ F prefers not to join coalition F , forming a focal
stand-alone coalition A = {i, j} if and only if ri/r ≤ Z(α).

Hence, the coalition F = {j} with a low-cooperation strategy is externally stable if and
only if the largest contribution among free-riders rM(F) is such that rM(F)/r ≤ Z(α).
In particular, focal stand-alone coalitions F with cardinality 1 are externally stable when
α ≤ 1/2 (and so Z(α) ≥ 0), in accordance with Theorem 1.
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Figure 3: The function Z(α).

By Lemma 4, when α < 1/2, if the relative contributions ri/r of all the free-riders i ̸= j
are small enough, the low-cooperation strategy is externally stable when compared to the
focal stand-alone coalition formed by two agents F = {i, j}. In particular, the relative
contributions of free-riders ri/r can increase up to approximately 0.3 when α tends to zero.
However, Z(α) < 0 for all α > 1/2 gives the following conclusion.

Corollary 1. A low-cooperation strategy of a formed coalition F is not externally stable
for α > 1/2.

Hence, putting together Lemma 2 and Corollary 1, we conclude that when α ≥ 1/2 only
stand-alone strategies of coalitions can be stable.

We now address the case when low-cooperation strategies are equilibria for the Stack-
elberg game. Recall from Lemma 3 that in case 1), #F = 1, or in case 2), #F = 2 and
α ≤ 1/2 then a low-cooperation strategy with rF = 0 is a Stackelberg equilibrium. We
have the following result.

Lemma 5. Consider a Stackelberg equilibrium low-cooperation strategy for a formed coali-
tion F . A free-rider i ∈ N \F always prefers to join coalition F , and so F is not externally
stable. Hence there are no stable Stackelberg low-cooperation equilibrium strategies.

Recall that in the trivial case F = N , the Stackelberg equilibria is the stand-alone
strategy of the grand coalition. By Lemma 3, we observe that for α ≤ 1/2, if #F < N ,
there are no focal stand-alone coalitions that are Stackelberg equilibria with cardinality 1
or 2. Hence, by Lemma 5 we obtain the following remark.
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Remark 2. Let us consider that in the public goods game agents choose only to form
Stackelberg equilibria that are focal stand-alone coalitions or low-cooperation strategies. A
focal stand-alone coalition A is stable if and only if

1. if α ≤ 1/2, #A = min{3, N};

2. if α > 1/2, #A = ℓ(α;N).

4 The paradox of cooperation

We now compare the gains and losses of the welfare for the three most relevant coalitions:
competitive singleton coalitions, stable coalitions, and the grand coalition, and we relate
our results to the paradox of cooperation.

The welfare associated to a strategy (r1, . . . , rN) is

W (r1, . . . , rN) =
∑
j∈N

uj(rj; r−j)

is the sum of the net utilities of all agents.
In the remainder of this paper, we will consider stand-alone strategies. Recall that this

means that rA = rA and that r−A = 0.
The welfare W associated to a stand-alone strategy of a coalition A is

W (α;A) = rA

(
N

α#A
− 1

)
= rαA (N − α#A) . (3)

We observe that the welfare does not depend on the way the costs are distributed, and so
the welfare is the same as for the focal stand-alone strategy of coalition A.

The relative welfare W (α;A/B) between coalition A and coalition B is

W (α;A/B) = W (α;A)

W (α;B)
=

(
#A
#B

) α
1−α

(
N − α#A
N − α#B

)
. (4)

4.1 Competitive versus full cooperation

The gap between the competitive and the full cooperation scenarios can be measured in
terms of the relative welfare between the grand coalition and the competitive singleton
coalition given by

W (α;N /C) = N
1

1−α

(
1− α

N − α

)
.

Hence, for N > 1, we get

lim
α→0

W (α;N /C) = 1 and lim
α→1

W (α;N /C) = +∞.
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Hence, the gap measured in terms of the relative welfare W (α;N /C) between the grand
coalition and the competitive singleton coalition increases with α. This can be interpreted
as that the need or urge to preserve the public good by the grand coalition increases with
the elasticity α of the gross utility. We recall that the paradox of cooperation says that
when the above gap is higher it is when the relative welfare between the stable coalition
and the grand coalition is smaller. We are going to analyze this in subsection 4.3.

4.2 Stable coalitions versus competitive scenario

The relative welfare between the stable coalition and the competitive singleton coalition is
given by

WC(α;N) ≡ W (α;S(α;N)/C) = ℓ(α;N)
α

1−α

(
N − αℓ(α;N)

N − α

)
.

For N > 1, we observe that

lim
α→0

WC(α;N) = 1 and lim
α→1

WC(α;N) = +∞.

Since the relative welfare WC(α;N) increases when α increases to 1, this means stable coali-
tions achieve a much higher welfare compared to the competitive scenario of a singleton
coalition when the elasticity of the gross utility α increases. To analyse the status of Bar-
rett’s paradox of cooperation we have to compare stable coalitions with the full cooperation
scenario, which we will do in the next section.

4.3 Stable coalitions versus full cooperation

The relative welfareWN (α;N) between the stable coalitions S(α;N) and the grand coalition
N is given by

WN (α;N) ≡ W (α;S(α;N)/N ) =

(
ℓ(α;N)

N

) α
1−α

(
N − αℓ(α;N)

N(1− α)

)
. (5)

Recalling that JN = (0, αN ], we observe that: (i) WN (α;N) < 1 if α ∈ JN ; and (ii)
WN (α;N) = 1 if α ∈ (0, 1) \ JN , i.e., when α > αN . Hence, from now on, we restrict our
analysis to the interval JN where the stable coalitions S(α;N) are not the grand coalition
N and so, it is the set of interest to study the status of the paradox of cooperation.

The relative welfare WN (α;N) as a function of the parameter α has the following prop-
erties (see Figure 4): (i) for each interval Ii = (αi, αi+1], WN (α;N) is smooth and strictly
decreasing; and (ii) WN (α;N) is left-continuous.

Now, let us introduce the following jump functions:

WL(α) ≡ WL(α;N) =

(
G(α)− 1

N

) α
1−α

(
N − α(G(α)− 1)

N(1− α)

)
; (6)
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Figure 4: The relative welfare WN (α;N) between the stable and the grand coalition for
values of N = 2, . . . , 10. The vertical axis has logarithmic scale.

and

WH(α) ≡ WH(α;N) =

(
G(α)

N

) α
1−α

(
N − αG(α)

N(1− α)

)
. (7)

Numerically, we observe that the jump functions WL(α) and WH(α) are smooth functions
having a unique minimum point in JN . For N > 1, from (5) we observe that the bounds
on ℓ(α) imply that, for every αi ≤ αN ,

WL(αi) = WN (αi;N) and WH(αi) = WN (α+
i ;N). (8)

By (8) and (9) in the appendix, the relative jump of the relative welfare function WN (α;N)
at the discontinuity αi ≤ αN is

WN (α+
i ;N)

WN (αi;N)
=

WH(αi)

WL(αi)
=

(
i

i− 1

) αi
1−αi

(
N − iαi

N − iαi + αi

)
= (1− αi)

−1

(
N − iαi

N − iαi + αi

)
.

Hence, the jumps WN (α+
i ;N)/WN (αi;N) tend to +∞ when αi tends to 1 (i.e. when i and

N tend to +∞).

Remark 3. In particular, noting that WN (α+
N ;N) = 1, we have that

WN (αN ;N) =
WN (αN ;N)

WN (α+
N ;N)

= (1− αN) +
αN

N
.

tends to 0 when N tends to +∞. This shows the strong impact of the entrance of the last
free-rider when the grand coalition becomes stable.
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4.3.1 Global supremum of the relative welfare

Firstly, we study the relative welfare between the largest stable coalition different from the
grand coalition and the grand coalition in terms of the parameter α. For every N > 1 and
every α ∈ IN−1, the cardinality of the stable coalition is ℓ(α) = N − 1. Since the grand
coalition N (α) has only one element more than the stable coalition, we have

N(α) = 1 + ℓ(α) = N.

Thus, the relative welfare achieved by the stable coalitions S(α;N(α)) relative to the grand
coalition N (α) is

WN (α)(α;N(α)) =

(
N(α)− 1

N(α)

) α
1−α

(
N(α)(1− α) + α

N(α)(1− α)

)
.

Theorem 2. The following limits hold

lim
α→1

log(WN (α)(α
+
N(α)−1;N(α)))

log(WN (α)((1/2)+;N(α)))
= lim

α→1

log(WN (α)(α
+
N(α)−1;N(α)))

log(1− α)
= 1 .

In particular, this implies that

lim
α→1

WN (α)(α
+
N(α)−1;N(α)) = lim

N→+∞
WN (α+

N−1;N) = 0 .

This last assertion implies that the welfare that is achieved by the stable coalition with
only one member less than the grand coalition becomes very low when compared to the
welfare of the full-cooperation scenario of the grand coalition when the total number of
agents is large.

Finally, let us study the global supremum of WN (α;N)|JN , for N > 1. We will study
separately the supremum at the intervals I1 and JN \ I1 since the supremum at I1 is 1:

WN (α;N)|I1 =
(

1

N

) α
1−α

(
N − α

N(1− α)

)
is a decreasing function of α with WN (0+;N) = 1 and

WN (1/2;N) =
2− 1/N

N
<

2

N
.

Now, the supremum of WN (α;N)|JN \ I1 is attained: (i) at α = (1/2)+, where

WN ((1/2)+;N) =

(
4

N

)(
N − 1

N

)
;
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Figure 5: The function WN (α)(α;N(α))/WN (α)((1/2)
+;N(α)).

or (ii) at the last discontinuity α+
N−1, where

WN (α+
N−1;N) =

(
N − 1

N

) αN−1
1−αN−1

(
N(1− αN−1) + αN−1

N(1− αN−1)

)
.

Thus, the supremum of WN (α;N)|JN \ I1 is

sup
JN\I1

WN (α;N) = max

{(
4

N

)(
N − 1

N

)
,

(
N − 1

N

) αN−1
1−αN−1

(
N(1− αN−1) + αN−1

N(1− αN−1)

)}
.

In Figure 5, for α ∈ JN \ I1, we observe that

WN (α)(α
+
N(α)−1;N(α))

WN (α)((1/2)+;N(α))
≤ 1,

and so

sup
JN\I1

WN (α;N) =

(
4

N

)(
N − 1

N

)
<

4

N
.

Remark 4. For N > 1 by increasing α ∈ JN the cardinality of the stable coalition S(α;N)
increases. However, increasing α does not increase the relative welfare between the stable
coalitions S(α;N) and the grand coalition N , when compared to the relative welfare between
the stable coalitions S(α;N) and the grand coalition N at α = (1/2)+. This is a result along
the same lines as the paradox of cooperation. Nonetheless, when α > αN , the grand coalition
becomes stable, the full cooperation scenario is attained, and the paradox no longer holds.
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Figure 6: The sequence βm(N) ≡ ℓ(αm(N))/N tends to e−1 ≈ 0.37 (horizontal grey dots)
when N tends to +∞.

4.3.2 Global minimum of the relative welfare

Now we will characterize the values of α corresponding to the global minimum of the relative
welfare WN (α;N) when N is large (see figure 1).

Let αm(N) be such that W ′
L(αm(N);N) = 0. Let i(N) ∈ N be such that αi(N)−1 <

αm(N) ≤ αi(N). Hence, the global minimum of WN (α;N) is attained at αi(N)−1 or at αi(N).
We recall that ℓ(αi(N)) = ℓ(αm(N)) and ℓ(αi(N)−1) = ℓ(αm(N)) − 1 (recall figure 2 and
the definition of l(α)). The following theorem characterizes these when N is large (see also
figure 6).

Theorem 3. The following limits hold

lim
N→+∞

ℓ(αi(N)−1)

N
= lim

N→+∞

ℓ(αi(N))

N
= lim

N→+∞

ℓ(αm(N))

N
= e−1.

For N large enough, from (5) the minimum of the relative welfare is

WN (αm(N);N) ≈ e−
1

1−αm(N)

(
e− αm(N)

1− αm(N)

)
.

From Theorem 3 we obtain that the minimum αm(N) goes to 1 when N increases. This
implies that the minimum relative welfare becomes very small when N is large enough,
which can be observed numerically in Figure 1.

5 Conclusions

The antagonism between individual and collective rationality takes on a more dramatic
and socially influential nuance when it comes to public or common goods whose non-
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excludability usually results in problems of under-provision or exhaustion, which has been
an issue in economics for a very long time. The main results from this work are the
following: we show that there are stable coalitions different from the competitive singleton
coalition consisting of only one agent, and so with more than one agent willing to bear
the costs of preserving the public good, even with the issue of the existence of free-riders.
Furthermore, the number of agents belonging to the stable coalition grows when there is
an increase in the elasticity of the gross utility α and so a greater need for the preservation
of the public good. Hence, contrarily to the paradox of cooperation, when the urge to
preserve the good is high enough (α high enough), the grand coalition becomes stable.
However, we have reinterpreted the paradox of cooperation for a case not much considered
in the literature, where stable coalitions are large (but not the grand coalition) and the gap
between cooperation and no cooperation is still large. The preservation of the public good
by these large stable coalitions is far better than by the competitive coalitions, but also far
worse than the full cooperative scenario corresponding to the grand coalition. Hence, the
existence of even a few free-riders may undermine the preservation of the public good by
the stable coalitions.

As future developments, one can study the repercussions of heterogeneity among agents
in the formation of stable coalitions. Another future development would be to identify
mechanisms that make the grand coalition stable through a system of rewards, transfers,
and/or cost allocations. Another possibility is to study uncertainty and thresholds regarding
climate catastrophes (see Barrett [5]).

A Proof of Lemmas 1, 2 and 3

Note that ∂uA(rA; r−A)/∂rA = 0 if and only if rA + r−A = rA = (α#A)
1

1−α . moreover,
∂uA(rA; r−A)/∂rA < 0 if and only if rA + r−A > rA. Hence, the best-response function of
player A against the effort r−A of other players is

r∗A(r−A) =

{
0, if r−A ≥ rA

rA − r−A, if r−A < rA
.

Note that ∂uj(rj; r−j)/∂rj = 0 if and only if rj+r−j = r = α
1

1−α . Moreover ∂uj(rj; r−j)/∂rj <
0 if and only if rj + r−j > r. Hence, the best-response function of players j ∈ N \A against
the effort r−j of other players is

r∗j (r−j) =

{
0, if r−j ≥ r

r − r−j, if r−j < r
.

Hence, Lemma 1 holds.
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Let us now analyse the Nash–Cournot equilibria.
Case #A = 1: noting that rA = r, the best-response of all players is optimal if and only if

rN = rA +
∑

j∈N\A

rj = r.

Hence, the Nash–Cournot equilibria are all the low-cooperation coalitions of N .
Case #A > 1: noting that rA > r, the best-response of player A is optimal if and only if

rA +
∑

j∈N\A

rj = rA.

Since rA > r, the best-response of player j ∈ N \ A is optimal if and only if rj = 0 and
so r−A = 0. Hence, rA = rA and the equilibria are stand-alone strategies of coalition A.
Therefore, Lemma 2 holds.

Let us now analyse the Stackelberg equilibria.
Leader chooses rA ≥ r: in this case the best response rj of the followers j is 0 and so
r−A = 0. Hence, the best choice for the leader is rA = rA. Furthermore,

uA(rA; 0) = α
α

1−α#A
1

1−α (1− α).

Leader chooses rA < r: in this case, the best response rj of the followers j is such that

rA +
∑

j∈N\A

rj = r.

Hence, the best choice for the leader is rA = 0. Furthermore,

uA(0; r) = #Aα
α

1−α .

Let us compare the utility of the leader in both cases:

uA(rA; 0)

uA(0; r)
= #A

α
1−α (1− α) ≥ 1

which is equivalent to

#A ≥ (1− α)
α−1
α .

We observe that:

• 2 ≤ (1− α)
α−1
α < e < 3, if α ≤ 1/2; and

• 1 < (1− α)
α−1
α < 2, if α > 1/2.

Hence, case 1 of Lemma 3 only holds if: (i) #A = 1 or (ii) #A = 2 and α ≤ 1/2; and case
2 of Lemma 3 only holds if: (i) #A > 2 or (ii) #A = 2 and α > 1/2. Therefore, Lemma 3
follows.
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B Proof of Theorem 1

Consider a coalition S. Using (1), the coalition S is internally stable if for j ∈ S, we have

(1− α)rαS > rαS\{j}.

Analogously, the coalition S is externally stable if for j /∈ S we have

rαS ≥ (1− α)rαS∪{j}.

Manipulating these inequalities using the stand-alone contributions, we obtain, respectively,

#S <
(
1− (1− α)

1−α
α

)−1

= G(α),

and

#S ≥
(
1− (1− α)

1−α
α

)−1

− 1 = G(α)− 1.

So, the coalition S is stable if and only if

G(α)− 1 ≤ #S < G(α).

We have defined ℓ(α) as the unique integer in this interval, so we have that S is stable if
and only if #S = ℓ(α), when ℓ(α) < N , since N is the maximum coalition cardinality, and
#S = N when ℓ(α) ≥ N .

C Proof of Lemmas 4 and 5

In a low-cooperation strategy of a formed coalition F = {j}, a free-rider i ∈ N \ F
contributing ri has utility rα − ri. If #A = 2 we have that rA = 2

1
1−α r. If the free-rider

i joins coalition F , then for the newly formed focal stand-alone coalition A we have that
u(i/A) = rαA − rA/2 = 2

α
1−α rα − 2

α
1−α r. Hence, the free-rider prefers not to join coalition F

if and only if
ri ≤ ZNC(α) = rα + 2

α
1−α (r − rα) ,

which proves Lemma 4.

Consider a low-cooperation strategy of a formed coalition F = {j} with rj = 0 and a
free-rider i ∈ N \F contributing ri, hence having utility rα − ri. When i joins coalition F ,
then according to Lemma 3 there are two possibilities for the strategy of the newly formed
coalition A = {i, j} to remain a Stackelberg equilibrium, given by cases 2 and 3. In case 2),
occurring if α < 1/2, i has utility rα after joining F , which is always greater than his/her
utility when a free-rider, and so i always joins, and F is not externally stable. In case 3),
occurring if α ≥ 1/2, then the strategy of the newly formed coalition must be a stand-alone
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strategy, in which case we assume it to be focal. Then the same computation as in the
previous lemma applies, giving ri ≥ 0 > ZNC(α), and hence i always joins and F is not
externally stable.

Now consider a low-cooperation strategy of a formed coalition F = {j, l}, with rj =
rl = 0, and a free-rider i ∈ N \F contributing ri. When i joins coalition F , then according
to Lemma 3 there only possibility for the strategy of the newly formed coalition A = {i, j}
to remain a Stackelberg equilibrium, is given by case 4, i.e. a stand-alone strategy, in which
case we assume it to be focal. The utility of i as a free-rider is rα − ri. If #A = 3 we have

that rA = 3
1

1−α r, and we have that u(i/A) = 3
α

1−α rα − 3
α

1−α r. Hence, the free-rider prefers
not to join coalition F if and only if

ri ≤ ZS(α) = rα + 3
α

1−α (r − rα) ,

which never holds since ZS(α) < 0 for every α, and so F is not externally stable, which
finishes the proof of Lemma 5.

D Formulas for F

We start by showing some useful properties of the function F (α) = 1/G(α).
For every i > 1, we have

(1− αi)
1−αi
αi = 1− F (αi) = 1− 1/i =

i− 1

i
. (9)

The function F (α) satisfies the following limits

lim
α→1

F (α)

−(1− α) log(1− α)
= 1 and lim

α→1

log(F(α))

log(1− α)
= 1. (10)

Therefore,

lim
α→1

log(1 + F (α))

−(1− α) log(1− α)
= 1. (11)

The first derivative F ′(α) of F (α) satisfies the following limit

lim
α→1

F ′(α)

log (1− α)
= 1. (12)

Therefore

lim
α→1

(1− α)F ′(α)

F (α)
= −1. (13)
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D.1 Proofs of the above limits

Let
T (α) = 1− F (α) = (1− α)

1−α
α . (14)

We observe that limα→1 F (α) = limα→1(1− T (α)) = 0. Hence, F ′(α) = −T ′(α) and

log T (α) =
1− α

α
log (1− α).

Let

V (α) =
F ′(α)

1− F (α)
(15)

Therefore,

V (α) = −(log T (α))′ =
1

α2
log (1− α) +

1

α
.

Hence,

lim
α→1

V (α)

F ′(α)
= lim

α→1

1

T (α)
= 1, (16)

because limα→1 F (α) = 0. Therefore, equation (12) holds. In particular,

lim
α→1

F ′(α) = lim
α→1

V (α) = −∞ and lim
α→1

(1− α)F ′(α) = lim
α→1

(1− α)V (α) = 0− . (17)

By L’Hopital’s rule and using equation (12),

lim
α→1

F (α)

−(1− α) log(1− α)
= lim

α→1

F ′(α)

1 + log(1− α)
= lim

α→1

F ′(α)

log(1− α)
= 1,

proving the left-side of (10).
Furthermore,

V ′(α) =
F ′′(α)(1− F (α)) + (F ′(α))2

1− F (α)
= − 2

α3
log (1− α)− 1

(1− α)α2
− 1

α2
. (18)

Thus,

lim
α→1

(1− α)V ′(α) = −1 and so lim
α→1

(1− α)V ′(α)

F ′(α)
= 0+. (19)

Using L’Hôpital’s rule and (16) and (19),

lim
α→1

(1− α)V (α)

F (α)
= lim

α→1

−V (α) + (1− α)V ′(α)

F ′(α)
= −1. (20)
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By (15),

(1− α)F ′(α)

F (α)
=

(1− α)V (α)(1− F (α))

F (α)
=

(1− α)V (α)

F (α)
− (1− α)V (α)F (α)

F (α)

Hence, by (20),

lim
α→1

(1− α)F ′(α)

F (α)
= lim

α→1

(1− α)V (α)

F (α)
− lim

α→1

(1− α)V (α)F (α)

F (α)
= −1

and so (13) holds. Using L’Hopital’s rule,

lim
α→1

log(F (α))

log(1− α)
= lim

α→1
−F ′(α)(1− α)

F (α)
= 1

and so the right-side of (10) holds. Using L’Hopital’s rule,

lim
α→1

log(1 + F (α))

−(1− α) log(1− α)
= lim

α→1

F ′(α)

(1 + F (α))(1 + log(1− α))
= lim

α→1

F ′(α)

log(1− α)
= 1

and so equation (11) holds.

E Proof of Theorem 2

Noting that ℓ(α) = N(α)− 1 and by the definition of αN(α)−1, we get

ℓ(α) = N(α)− 1 = G(αN(α)−1) = (F (αN(α)−1))
−1.

Hence,

N(α) =
1 + F (αN(α)−1)

F (αN(α)−1)
and

N(α)− 1

N(α)
=

1

1 + F (αN(α)−1)
.

Letting

v(α) = (1 + F (α))−
α

1−α

(
(1 + F (α))(1− α) + αF (α)

(1 + F (α))(1− α)

)
,

we get

v(αN(α)−1) =

(
N(α)− 1

N(α)

) αN(α)−1
1−αN(α)−1

(
N(α)(1− αN(α)−1) + αN(α)−1

N(α)(1− αN(α)−1)

)
= WN (α)(α

+
N(α)−1;N(α)).

Let z(α) = log(v(α)) = z1(α) + log(1 + z2(α)), where

z1(α) = − α

1− α
log(1 + F (α)) and z2(α) =

αF (α)

(1 + F (α))(1− α)
.
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By equation (11), we get

lim
α→1

z1(α)

log(1− α)
= 1.

By equation (12) and using L’Hopital’s rule, we obtain

lim
α→1

−z2(α)

log(1− α)
= lim

α→1

(F (α) + αF ′(α)(1 + F (α))− αF (α)(1 + F ′(α))

(1 + F (α))2(1 + log(1− α))

= lim
α→1

αF ′(α)

log(1− α)
= 1

Hence,

lim
α→1

z(α) = lim
α→1

(
z1(α) + log(− log(1− α)) + log

(
1 + z2(α)

− log(1− α)

))
=

= lim
α→1

(z1(α) + log(− log(1− α))) .

Therefore, we have that

lim
α→1

z(α)

log(1− α)
= lim

α→1

z1(α) + log(− log(1− α))

log(1− α)
= lim

α→1

z1(α)

log(1− α)
= 1.

which proves the second equality in the first assertion in the theorem. In particular, we
obtain that

lim
α→1

WN (α)(α
+
N(α)−1;N(α)) = lim

α→1
v(αN(α)−1) = 0.

Finally, by equation (10), we observe that

lim
α→1

log(WN (α)((1/2)
+;N(α)))

log(1− α)
= 1

which gives the first equality and ends the proof.

F Proof of Theorem 3

For (α, x) ∈ (0, 1)2, define the function β(α) by

β(α) ≡ β(α;x) =
x

F (α)
. (21)

The motivation to define β(α) is that

β(αi; 1/N) =
ℓ(α+

i )

N
.
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Therefore,

β′(α) = −β(α)F ′(α)

F (α)
and (log β(α))′ =

β′(α)

β(α)
= −F′(α)

F(α)
(22)

Hence, by (13),

lim
α→1

(1− α)β′(α)

β(α)
= lim

α→1
−(1− α)F ′(α)

F (α)
= 1. (23)

Given a function VT (α;x) with a unique interior minimum point αT (x), we have that
V ′(αT (x);x) = 0. Assume that αT (x) is invertible and that xT (α) is its inverse, i.e.

αT (xT (α)) = α and V ′
T (α;xT (α)) = 0.

Let
βT (α) = β(α;xT (α)) = xT (α)/F (α).

Let

VWH(α) = β(α)
α

1−α

(
1− αβ(α)

1− α

)
.

We observe that for every N ∈ N, VWH(α; 1/N) coincides with WH(α;N) (see equations
(6) and (7)). Let αWH(x) be such that V ′(αWH(x);x) = 0, and let xWH(α) be its inverse,
i.e.

αT (xWH(α)) = α and V ′
WH(α;xWH(α)) = 0.

Let
βWH(α) = β(α;xWH(α)) = xWH(α)/F (α).

Lemma 6. We have βWH(1
−) = e−1.

Proof. We have

log VWH(α) =
α

1− α
log β(α) + log (1− αβ(α))− log (1− α).

Therefore,

V ′
WH(α)

VWH(α)
=

1

(1− α)2
log β(α) +

α

1− α

β′(α)

β(α)
− β(α) + αβ′(α)

1− αβ(α)
+

1

1− α

=
1

(1− α)2
log β(α) +

(1− 2αβ(α) + β(α))α

1− αβ(α)

β′(α)

(1− α)β(α)
− β(α)

1− αβ(α)
+

1

1− α

Hence, by equation (23),

0 = lim
α→1

(1− α)2V ′
WH(α)

VWH(α)
= 1 + log βWH(1

−). (24)
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Figure 7: The function αWL(x) and its inverse xWL(α) are the intersection of the surface
with the horizontal plane.

Let

VWL(α) = (1− α)

(
1 +

αβF (α)

1− αβ

)
VWH(α).

Noting that (1−F )α/(1−α) = 1−α, for every N ∈ N, VWL(α; 1/N) coincides with WL(α;N)
(see equations (6) and (7)). Let αWL(x) be such that V ′(αWL(x);x) = 0, and let xWL(α)
be its inverse (see Figure 7). Let (see Figure 8)

βWL(α) = β(α;xWL(α)) = xWL(α)/F (α).

Lemma 7. We have βWL(1
−) = e−1.

Proof. We have that

log VWL(α) = log (1− α) + log

(
1 +

αβF (α)

1− αβ

)
+ log VWH(α).

Hence, after some algebraic manipulations we get

V ′
WL(α)

VWL(α)
=

V ′
WH(α)

VWH(α)
− 1

1− α
+

F (α)β

1− αβ(1− F (α))

1

1− αβ
− αβF ′(α)

1− αβ(1− F (α))
.

Hence, by (24),

lim
α→1

(1− α)2V ′
WL(α)

VWL(α)
= lim

α→1

(1− α)2V ′
WH(α)

VWH(α)
= 0 (25)

Therefore, VWL and VWH have the same critical values βWL(1
−) = βWH(1

−) = e−1.
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Figure 8: The function βWL(α) is the intersection of the surface with the horizontal plane.

Lemma 8. The following limits hold

lim
N→+∞

αWL(1/N) = 1 and so lim
N→+∞

βWL(αWL(1/N)) = e−1.

Proof. By Lemma 7 and continuity of βWL(α), for any 0 < β0 < e−1, there is 0 < α0 < 1,
such that βWL(α) ≥ β0, for all α ≥ α0. In particular, βWL(αWL(x)) ≥ β0, for every
x ≤ β(α0)F (α0). Hence,

lim
x→0

G(αWL(x)) = lim
x→0

βWL(αWL(x))

x
≥ lim

x→0

β0

x
= +∞.

Therefore, limx→0 αWL(x) = 1. In particular,

lim
N→+∞

αWL(1/N) = 1 and so lim
N→+∞

βWL(αWL(1/N)) = e−1.

We observe that for every N ∈ N, VWL(α; 1/N) coincides with WL(α;N). Hence,

W ′
L(αWL(1/N);N) = V ′

WL(αWL(1/N); 1/N) = 0.

Since

βWL(αWL(1/N))− 2

N
≤ ℓ(αWL(1/N)− 1)

N
<

ℓ(αWL(1/N))

N
< βWL(αWL(1/N)),

from Lemma 8, we obtain

lim
N→+∞

ℓ(αWL(1/N))− 1

N
= lim

N→+∞

ℓ(αWL(1/N))

N
= e−1,

which ends the proof of Theorem 3.

29



Acknowledgements

This work is financed by National Funds through the Portuguese funding agency, FCT
– Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020, and within
project “Modelling, Dynamics and Games” with reference PTDC/MAT-APL/31753/2017.

Elvio Accinelli wishes to thank CUMEX (Consortium of Mexican Universities) and the
Ibero-American Postgraduate University Association (AUIP) for the support granted for
his stay in Portugal between July 10 and August 24, 2021 and also the Department of
Mathematics of University of Porto for their hospitality.

Atefeh Afsar would like to thank the financial support of FCT through a PhD. grant of
the MAP-PDMA program with reference PD/BD/142886/2018.

Filipe Martins was partially supported by CMUP, member of LASI, which is financed
by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the
project with reference UIDB/00144/2020.

References

[1] Elvio Accinelli, Filipe Martins, and Alberto A. Pinto. Evolutionary dynamics for
the generalized Baliga–Maskin public good model. Chaos, Solitons & Fractals,
page 109496, 2019. URL: http://www.sciencedirect.com/science/article/pii/
S0960077919304424, doi:https://doi.org/10.1016/j.chaos.2019.109496.

[2] Elvio Accinelli, Filipe Martins, and Alberto A. Pinto. The basins of attraction in the
generalized Baliga–Maskin public good model. Journal of Evolutionary Economics,
2021. URL: https://link.springer.com/article/10.1007/s00191-021-00758-z,
doi:10.1007/s00191-021-00758-z.

[3] Sandeep Baliga and Eric Maskin. Mechanism design for the environment.
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