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Abstract. Let F be a foliation defined on a complex projective manifold M of dimension n
and admitting a holomorphic vector field X tangent to it along some non-empty Zariski-open
set. In this paper we prove that if X has sufficiently many integral curves that are given
by meromorphic functions defined on C then the restriction of F to any invariant complex
2-dimensional analytic set admits a first integral of Liouvillean type. In particular, on C3,
every rational vector fields whose solutions are meromorphic functions defined on C admits a
non-empty invariant analytic set of dimension 2 where the restriction of the vector field yields
a Liouvillean integrable foliation.

1. Introduction

This paper is a contribution to a classical subject going back to the works of Painlevé,
Chazy, and Garnier that is also of considerable interest in distribution value theory, namely:
the study of differential equations whose solutions are meromorphic functions defined on C.
These equations are of interest in Physics, as they clearly satisfy Painlevé property, but also in
Complex analysis due to their remarkable properties and connections with Nevanlinna theory,
see for example the survey [8]. In this paper, however, we will consider not necessarily a single
differential equation but rather a system of differential equations or, in modern language, general
vector fields. The elementary theory of differential equations, allows us to turn any ordinary
(system of) differential equation into a vector field defined on a larger phase space, see for
example [18]. For example, the classical Painlevé equations give rise to a rational vector field
on C3. Nonetheless vector fields, say on C3, obtained out of second order differential equations
have a very special form and the analogous problem for “systems of differential equations” aka
general vector fields is much harder and less developed (see for example [9]). The main results
in this paper hold in the general case of vector fields. The most general result obtained in this
work is Theorem A below:

We refer the reader to Section 2 for accurate definitions of meromorphic solution of a vector
field and of singular foliations associated with a meromorphic vector field. The definition of
Liouvillean integrability can be found in Section 4 or, alternatively, in any standard reference
such as [31]. With this terminology in place, we have:

Theorem A. Let M be a compact projective manifold and denote by X a meromorphic vector
field on M . Assume that the set of leaves of F that are meromorphically parametrized by C has
strictly positive logarithmic capacity. Then the restriction of F to every invariant irreducible
2-dimensional analytic set (not contained in the singular set of F) admits a non-constant first
integral of Liouvillean type.
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Theorem A becomes particularly effective in dimension 3 and to explain this, it suffices to
consider the case of rational vector fields on C3 all of whose solutions are meromorphic on C
(this will actually follow, for example, if it can ensured that the set of leaves meromorphically
parametrized by C has non-empty interior). Then we have the following easy application of
Theorem A:

Theorem B. Let X be a rational vector field on C3 and recall that its underlying foliation F
admits a holomorphic extension to all of CP3 which has singular set of dimension at most 1.
Assume that the integral curves of X are meromorphic functions defined on C. Then all of the
following hold:

(1) The foliation F leaves invariant a certain 2-dimensional analytic set S ⊂ CP3 (note that
S is never contained in the singular set of F since the latter has dimension at least 1)

(2) The restriction of F to each irreducible component of S admits a Liouvillian first inte-
gral.

Theorem B is actually a kind of missing piece in a more comprehensive approach to the
classification of the vector fields in question. A somehow similar though technically easier
problem would be to first classify the singular points of these vector fields and there, again,
Theorem B plays an important role. These issues are further detailed in Section 5 (see also
[29]) and, at several different levels, they follow ideas put forward in [17], [21], [12], and [27]

Both Theorem A and Theorem B can be made slightly more accurate as the nature of the
Liouvillean first integral can be made explicit as it will be indicated in Section 4.

Let us close this introduction with a short outline of our argument. The main analytic
tools used in this work are somehow due to M. Brunella: we will make fundamental use of his
theorem on the plurisubharmonic variation of the foliated Poincaré metric [3], [5]. Another
deep theorem that will be required for our discussion is McQuillan’s theorem [22] on entire
maps tangent to foliations on surfaces. For the latter, however, we will follow the presentation
given in Brunella’s notes [4]. Roughly speaking, up to a suitably adapted definition of “leaf”,
the plurisubharmonic variation of the leafwise Poincaré metric basically allows us to conclude
that every “leaf” of a foliation must be a quotient of C or a rational curve provided that a
“large number” of them are so. In particular, leaves contained in two-dimensional invariant
analytic sets must themselves be either rational curves or quotients of C which, in turn, ensures
that the classification results of the corresponding foliations provided in [22], [4] can be brought
to bear. Carrying out this strategy successfully, however, requires a few classical geometric
ideas from foliation theory as well as some more standard tools from differential equations.
For example, in order to use Brunella’s theorem in [3], [5] we need to control the set of leaves
carrying non-trivial holonomy and for this Haefliger’s notion of compactly/countably generated
pseudogroup [13] comes in handy. Also the conclusion about the existence of Liouvillean first
integral requires some minor facts about Kleinian groups and about growth rate of leaves. For
the basics of foliation theory used in this work, we refer to any of the standard books in the
area, for example [10] is well adapted to our needs.

Finally, in Section 5, we outline how Theorem B can be combined with resolution of singu-
larities in dimension 3 [23], [25], see also [28], and with techniques from [12], [11] to adapt a
powerful and well-known two-dimensional technique to the problem of describing vector fields
with meromorphic solutions in three-dimensional manifolds.
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2. Vector fields, foliations, and enlarged leaves

The notions of holomorphic/meromorphic vector fields on an open set U ⊂ Cn are easy to
define by taking advantage of the standard coordinates (x1, . . . , xn) of Cn. Denoting by ∂/∂xi
the constant complex vector field arising from the ith element in the canonical basis of Cn, we
have:

Definition 2.1. A complex vector field

X = f1∂/∂x1 + · · ·+ fn∂/∂xn

is said to be holomorphic (resp. meromorphic) on U ⊂ Cn if each of the functions fi, i = 1, . . . , n
is holomorphic (resp. meromorphic) on U .

Let M be a complex manifold along with a covering {(Uk, ϕk)} of M by coordinate charts.
A holomorphic (resp. meromorphic) vector field on M consists of a collection of holomorphic
(resp. meromorphic) vector fields {Xk} defined on ϕk(Uk) ⊂ Cn such that for every k1, k2 we
have

Zk1 = (ϕk2 ◦ ϕ
−1
k1

)∗Zk2 ,

provided that Uk1∩Uk2 6= ∅. In particular, a holomorphic vector field defines a (possibly empty)
divisor of zeros on M while a meromorphic vector fields may define a divisor of zeros and a
divisor of poles.

The definition of singular holomorphic foliation on M being slightly different, it is convenient
to make it explicit so as to understand its usefulness when compared with vector fields.

Definition 2.2. Let M and {(Uk, ϕk)} be as above. A singular holomorphic foliation F on M
consists of a collection of holomorphic vector fields Yk satisfying the following conditions:

• For every k, Yk is a holomorphic vector field defined on ϕk(Uk) ⊂ Cn whose singular set
has codimension at least 2.
• Whenever Uk1 ∩ Uk2 6= ∅, we have ϕ∗k1Zk1 = gk1k2ϕ

∗
k2
Zk2 for some nowhere vanishing

holomorphic function gk1k2 defined on Uk1 ∩ Uk2 .

The singular set Sing (F) of a foliation F is then defined as the union over k of the sets
ϕ−1k (Sing (Zk)) ⊂M , where Sing (Zk) stands for the singular set of Zk. Therefore the singular
set of any holomorphic foliation has codimension at least two. In particular, a foliation has no
divisor of either poles or zeros.

Remark 2.3. Note that the foliations introduced in Definition 2.2 are all of complex dimension 1
and, for this reason, they are often referred to in the literature as 1-dimensional holomorphic
foliations or yet as foliations by Riemann surfaces. This issue about dimension is not emphasized
in Definition 2.2 since this is the only type of foliation that will be considered in this paper.

To large extent, the interest of Definition 2.2 stems from the following observation.

Lemma 2.4. Let X be a meromorphic vector field defined on a complex manifold M . Then
the local orbits of X induce a holomorphic foliation F defined on all of M .
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Proof. Consider a point p ∈M . By definition of meromorphic vector field, in a suitable coordi-
nate ϕk : U ⊂ M → Cn defined around p, the vector field X is represented by a meromorphic
vector field Xk defined on ϕk(U) ⊂ Cn. Owing to the standard Hilbert nullstellensatz in
codimension 1, the divisor of zeros and poles of Xk can be factored out so as to have

Xk =
f

g
Yk

where f and g are holomorphic functions and where Yk is a vector field with empty divisor of
zeros and poles. In other words, Yk is a holomorphic vector field whose zero-set has codimension
at least 2. It is now immediate to check that the collection of vector fields {Yk} satisfies the
condition in Definition 2.2 and hence defines a holomorphic foliation F on all of M . �

The foliation F arising from a vector field X as in Lemma 2.4 will be called the foliation
associated with X, or yet, the underlying foliation of X.

The leaves of a holomorphic foliation F on a manifold M can easily be defined as follows.
First note that the standard flow box theorem for holomorphic vector fields ensures that F
coincides with a regular foliation by 2-dimensional real surfaces on the manifold M \ Sing (F).
We then define the leaves of the singular foliation F on M to be the leaves of the regular
foliation on M \ Sing (F) obtained as restriction of F .

The preceding raises an important issue for us. Consider a meromorphic vector field X
defined on M and assume that the divisor of poles (or zeros) of X is not empty. This divisor
of poles cannot be contained in the singular set of the holomorphic foliation F associated with
X since the latter set has codimension at least 2. Hence the “generic” point of the divisor of
poles of X is regular for F and the divisor may or may not be invariant by the foliation F .
The last question, however, is directly related with the existence of meromorphic solutions, cf.
Lemma 2.5 below.

At this point, it is convenient to make accurate the notion of meromorphic solution for a
vector field. Consider a meromorphic vector field X on a complex manifold M and denote by
F its associated foliation. Now consider a point p ∈M lying away from the divisor of poles of
X and such that X(p) 6= 0 and denote by φ a local solution of X satisfying φ(0) = p. We say
that the solution of X through p is a meromorphic function on C if φ the following holds:

• There is a discrete set D = {ti}i∈N ⊂ C such that φ possesses a holomorphic extension
Φ to C \ D.
• The points ti ∈ D are poles for Φ.

Clearly if the solution of X through p is a meromorphic function on C then the same applies to
every point in the orbit of p. We will then say that the leaf L of F through p is (meromorphically)
parametrized by C via X. Note that the latter definition makes sense for every point p regular
for F even though p belongs to the divisor of poles (or zeros) of X.

Next, we have:

Lemma 2.5. Let X be a meromorphic vector field defined on a complex manifold M and denote
by S an irreducible (non-empty) component of the divisor of poles of X. If p ∈ S is a regular
point of F at which F and S are transverse, then the leaf L of F through p is not parametrized
by C via X.

Proof. Consider the restriction X|L of X to L viewed as a meromorphic vector field on a
Riemann surface (L). Let z be a local coordinate around p ∈ L, p ' 0 ∈ C. Since X has a pole
at p, there follows that X takes on the form

X = z−kf(z)∂/∂z
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in the coordinate z. Here k ≥ 1 and f is a holomorphic function satisfying f(0) 6= 0. In fact,
the elementary theory of normal forms for 1-dimensional complex vector fields ensures that the
coordinate z can therefore be chosen so as to have f = 1 (constant). In other words, without
loss of generality we can suppose that X = z−k∂/∂z. The integral curve of X with initial point

z0 6= 0 is therefore φ(t) = k+1

√
(1 + k)t+ zk+1

0 . This function is multivalued since k+ 1 ≥ 2 and

therefore does not yield a meromorphic function defined on C. This establishes the lemma. �

Remark 2.6. The statement of Lemma 2.5 actually holds for semicomplete vector fields, see
for example [12]. In turn, it is not hard to check that vector fields all of whose solutions are
meromorphic will necessarily be semicomplete.

As mentioned, a fundamental ingredient in this paper is Brunella’s theorem on the regularity
of the leafwise Poincaré metric. To call on his result, however, a slightly more specific notion
of “leaf” is required. To avoid misunderstandings, throughout this paper, the phrase “leaf of
a singular (holomorphic) foliation” will be taken in the above introduced sense. In turn, the
variant of it needed for Brunella’s theorem to hold will be referred to as enlarged leaf and is
defined as follows (cf. [5]).

In general, an enlarged leaf L̂ of F is obtained out of a leaf L of F by adding some singular
points of F to L according to the rule described below. To begin with, consider a singular point
of F identified with the origin of Cn by means of a local coordinate.

In the local setting, consider the n-dimensional polydisc Dn about the origin. This polydisc
comes equipped with the trivial fibration Dn = Dn−1 × D → Dn−1. A meromorphic map
f : Dn → M is said to be a foliated meromorphic immersion if the indeterminacy set I(f) of
f intersects each vertical fiber of Dn in a discrete set and if f satisfies the following additional
conditions:

• f is an immersion on the complement of I(f).
• In the complement of I(f), f takes vertical fibers to leaves of F .

If L is a leaf of F , we say that a closed subset K ⊂ L is a vanishing end of L if the following
conditions are satisfied:

(1) K is isomorphic to the punctured disc and the holonomy of the restriction of F to
M \ Sing (F) corresponding to the cycle ∂K has finite order k.

(2) There is a foliated meromorphic immersion f : Dn →M such that
(2a) I(f) ∩ ({0} × D) is reduced to the origin of Cn (and where “{0}” stands for the

origin of Dn−1 ⊂ Cn−1).
(2b) The image of f restricted to ({0}×D) coincides with the interior of K. Furthermore

f : ({0} ×D)→ Int (K) is a regular covering of degree k, where Int (K) stands for
the interior of K.

Let now p be a point in M \Sing (F) and denote by Lp the leaf of F through p. To define the

enlarged leaf L̂p of F through p we proceed as follows. If Lp possesses no vanishing ends, then

we set L̂p = Lp. Otherwise, the enlarged leaf L̂p will consist of Lp with the ends of the vanishing
ends added to it where the operation of adding an end to Lp should be understood in the sense
of orbifolds; the multiplicity of the added point will be the order k of the holonomy relative to
∂K. These orbifolds can then be turned into Riemann surfaces by standard normalization.

For reference, it is convenient to point out the following immediate consequence of the con-
struction above.

Lemma 2.7. Given p ∈M \Sing (F), let Lp and L̂p denote respectively the leaf and the enlarged

leaf of F through p. Then the set L̂p \ Lp is a discrete set of L̂p. �
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3. Meromorphic solutions, parabolic leaves, and invariant surfaces

The purpose of this section is to prove the theorem below:

Theorem 3.1. Let M be a complex projective manifold of dimension n equipped with a mero-
morphic vector field X whose associated foliation is denoted by F . Denote by (X)∞ the divisor
of poles of X and assume that the following condition is satisfied: there exists a foliated set
I ⊂ M \ (X)∞ having positive logarithmic capacity and such that for every point p ∈ I, the
corresponding solution of X yields a meromorphic function defined on all of C.

Assume now that N ⊂ M is a, (singular, irreducible) surface invariant by F which is not
contained in the singular set of F . Denote by FN the foliation naturally induced on N by
restriction of F . Then, up to birational equivalence, the foliation FS is of one of the following
types:

(1) a fibration.
(2) a Riccati foliation.
(3) a turbulent foliation.

As it will be seen, Theorem 3.1 is by far the main ingredient in the proof of Theorem A. In
fact, all the deep material from complex analysis and algebraic geometry involved in the proofs
of the mentioned theorems of Brunella and of McQuillan (cf. [3], [5], [22], [4]) are encoded in
the proof of this theorem.

Some terminology, however, is needed to clarify the statement of the above theorem. Let then
N denote a (possibly singular) compact complex surface equipped with a singular holomorphic
foliation F . The pair (N,F) will be regarded up to birational equivalence as it is standard in
complex geometry.

Recall that a fibration on a complex surface N is nothing but a non-constant holomorphic
map with connected fibers P : N → S where S stands for some compact Riemann surface.
Clearly the set of critical values of P is a finite subset {p1, . . . , pl} of S and the fibers of P over
the critical values are said to be the singular fibers of the fibration (or of π). Note also that the

map P induces a C∞-bundle structure from M \
⋃l

i=1 P−1(pi) to S \ {p1, . . . , pl}. The genus of
the corresponding fiber is called the genus of P. Thus a fibration is of genus 0 if and only if its
generic fiber is a rational curve. Similarly it is of genus 1 if and only if its generic fiber is an
elliptic curve.

Naturally a fibration is a special type of foliation. Next, assume N is equipped with a
fibration P : N → S and with a singular foliation F . The foliation F is said to be transverse to
P if the leaves of F are transverse to the fibers of π away from finitely many fibers of P, which
are necessarily invariant under F . Finally, if F is transverse to some genus 0 fibration, then
F is called a Riccati foliation. Similarly a foliation transverse to a genus 1 fibration is called a
turbulent foliation.

The following general lemma will also be useful in what follows.

Lemma 3.2. Let F be a singular holomorphic foliation on a complex Kähler manifold M .
Then the set of leaves of F carrying non-trivial holonomy has volume equal to zero. In fact,
this set has zero logarithmic capacity.

Proof. The idea goes back to [7] and makes an important use of Haefliger’s notion of “holonomy
pseudogroup” along with its property of being “countably generated” on general open manifolds,
see [13], [2]. Consider F as a regular holomorphic foliation on the open complex manifold
M \ Sing (F) where Sing (F) stands for the singular set of F . Let L be a leaf of F and
denote by σ : [0, 1] → L a loop in L. Unless the holonomy map ρL(σ) obtained from σ is
identically zero, L is contained in the set of fixed points of ρL(σ) and the latter is a (local)
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proper complex analytic subset of M \ Sing (F). The countably generated nature of Haefliger’s
holonomy pseudogroup allows us now to conclude that the set of leaves of F carrying non-
trivial holonomy is contained in a countable union of locally defined (proper) analytic subsets
of M \ Sing (F). Since the latter set must have null measure with respect to Kähler form on
M , and in fact zero logarithmic capacity, the statement follows. �

We are now able to begin our approach to Theorem 3.1. To some extent, the content of this
theorem was previously indicated in [27] but in what follows we provide full detail and accurate
formulations.

Let M , X, and F be as in Theorem 3.1. By using standard terminology, a Riemann surface is
said to be parabolic if it is a quotient of C. Similarly, a Riemann surface that is a quotient of the
hyperbolic disc D is called hyperbolic. According to the uniformization theorem, every Riemann
surface different from CP1 is either parabolic or hyperbolic. Now we have the following:

Lemma 3.3. Every enlarged leaf of F is either CP1 or a parabolic Riemann surface.

Proof. The point of considering enlarged leaves L̂, as opposed to standard leaves L, lies in the
fact that the Poincaré metric on enlarged leaves varies in a pluri-subharmonic way, thanks to
Brunella’s theorem in [3], see also [5]. This means the following. Let every (enlarged) leaf of F
be equipped with its Poincaré metric: the unique complete metric with curvature equals to −1)
in the case of a hyperbolic Riemann surface and the totally vanishing “metric” otherwise. If Z
is a (locally defined) holomorphic vector field tangent to F , then we have the (locally defined)
function P given by

P (q) = log(‖Z(q)‖)
where ‖ . V ert stands for the norm of X with respect to the above introduced foliated metric.
Basically, Brunella’s theorem states that the function f is plurisubharmonic unless it is constant
equal to −∞. Clearly the polar set of P coincides with non-hyperbolic enlarged leaves of F . In
particular, we have the following consequence of Brunella’s theorem which will play in a key role
in the proof of the lemma: if the set of enlarged leaves of F that are not hyperbolic Riemann
surface has strictly positive logarithmic capacity then every enlarged leaf of F is either parabolic
or a rational curve.

In view of the preceding, the proof of the lemma is reduced to checking that the set formed by
enlarged leaves of F that are either rational curves or parabolic Riemann surfaces is sufficiently
large in the sense that it must have strictly positive logarithmic capacity.

Consider now a regular point p ∈M for X and denote by Lp (resp. L̂p) the leaf of F (resp.
the enlarged leaf of F) through p. Assume that Lp has trivial holonomy. We then denote by
φ the integral curve of X satisfying φ(0) = p. Owing to Lemma 3.2, to prove the lemma it

suffices to show that L̂p is not a hyperbolic Riemann surface provided that φ is a meromorphic
map defined on C.

Taking advantage of the fact M is projective, i.e. can be embedded in some complex pro-
jective space, it is easy to give a meaning to the meromorphic nature of φ. Up to considering
a hyperplane section on M , the corresponding Zariski-open set U is naturally isomorphic to
an algebraic affine manifold of dimension n in CN (for some sufficiently large N ∈ N). In the
standard coordinates of CN , we have φ(T ) = (φ1(T ), . . . , φN (T )). Saying that φ is a mero-
morphic map defined on C then means that each of the coordinate maps φi, 1 ≤ i ≤ N , is a
meromorphic map from C to C as defined in Section 2. In particular, there is some discrete set
D = {ti}i∈N ⊂ C such that φ defines a holomorphic map from C \ D → CN . Moreover, φ has
at worst poles at points of D.

Let t̂ be a point in D and B(ε) ⊂ C a small disc around t̂ containing no other points from D.
Clearly φ maps the punctured disc B(ε)\{t̂} to Lp ⊂ U . Our purpose is to show that φ extends
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to t̂ as a holomorphic map taking values in the enlarged leaf L̂p. Since M can be viewed as the

projective compactification of U ⊂ CN and since φi at worst a pole at t̂, there follows that the
limit limt→t̂ φ(t) exists in M . Set then limt→t̂ φ(t) = q ∈M .

We claim that the point q is a vanishing end of Lp so that, by definition, we must have

q ∈ L̂p. To show that q is a vanishing end, we need to construct an appropriate foliated
meromorphic immersion f defined on Dn−1×D. The existence of this meromorphic immersion
is clear if q happens to be a regular point of F . In the general case, we proceed as follows. Note
that the restriction of φ to B(ε) (with φ(t̂) = q) yields a natural candidate for f restricted to
{0} ×D. Moreover the holonomy of Lp is trivial by assumption and thus so is the holonomy
associated with the cycle given by the boundary of φ(B(ε)). In particular, φ can be extended
as a meromorphic immersion to the product of Dn−1 with an annulus of type B(ε) \ B(ε/2)
(which is also defined on {0}×B(ε)). To show that the resulting map can further be extended
to Dn−1×D, we just need to use the parametrization of the leaves by the meromorphic integral

curves of X. This proves that q is a vanishing end and hence that q ∈ L̂p.

To complete the proof of the lemma we proceed as follows. Since limt→t̂ φ(t) = q ∈ L̂p ⊂M ,

there follows from Riemann theorem that φ extends to t̂ as a holomorphic map taking values

in L̂p. Since t̂ is an arbitrary point of D, we conclude that φ extends to a (non-constant)

holomorphic map from all of C to L̂p. The enlarged leaf L̂p is therefore either a rational curve
or a parabolic Riemann surface. The lemma is proved. �

We are now able to derive Theorem 3.1 from McQuillan’s theorem on foliations tangent to a
Zariski-dense entire map, as presented by Brunella in [4].

Proof of Theorem 3.1. Owing to Lemma 3.3, we know that no enlarged leaf of the foliation F is
a hyperbolic Riemann surface. Assume now that N is a 2-dimensional an irreducible algebraic
set invariant by F and not contained in the singular set of F . Denote by FN the foliation
induced on N by F . Here an additional comment is needed to compare leaves of FN with
leaves of F that are contained in N . The issue giving rise to this difference lies in the fact
that FN may differ from the restriction of F to N . More precisely, note that N ∩ Sing (F)
may still contain algebraic curves as opposed to only isolated singular points. Away from these
“singular curves”, FN coincides locally with the restriction of F to N . Around points lying in
a singular curve, however, the foliation FN is locally obtained after dividing the components of
the foliation restricted to N by a non-trivial common factor (see Definition 2.2 where all singular
foliations have singular set of codimension at least 2). In particular a point in N ∩ Sing (F)
may turn out to be regular for FN and, as a consequence, the leaves (resp. enlarged leaves) of
F contained in N may differ from the leaves (resp. enlarged leaves) of FN . Similarly, a point
q ∈ N may be a vanishing end for a leaf of FN without being so for the corresponding leaf viewed
as belonging to the foliation F (note, in particular, the condition on the holonomy associated
with the cycle ∂K in the definition of vanishing end). Nonetheless, it is straightforward to
check that taking a leaf (resp. enlarged leaf) of F contained in N and replacing it by the
corresponding leaf (resp. enlarged leaf) of FN can only add new points to the former leaf (resp.
enlarged leaf). Since there are non-constant holomorphic maps from C to every enlarged leaf
of F - and in particular to those enlarged leaves of F contained in N - the same maps also
provide non-constant holomorphic maps from C to the enlarged leaves of FN . In other words,
the enlarged leaves of FN are never hyperbolic Riemann surfaces.

Now consider a enlarged leaf L̂ of the foliation FN . In view of the preceding, L̂ is not a

hyperbolic Riemann surface. Since N is irreducible and of complex dimension 2, either L̂ is

Zariski-dense in N or L̂ is contained in a compact curve (necessarily invariant under FN ). In
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the latter case, note that the compact curve in question is either rational or elliptic since L̂ is
not hyperbolic, though this is not important in what follows. In fact, a well-known theorem due
to Jouanolou [19] asserts that FN must admit a rational first integral provided that it leaves
infinitely many (irreducible, compact) curves invariant. In turn, if FN admits a rational first
integral, then it is clearly equivalent to a fibration so that the statement of Theorem 3.1 holds.

Consider now the former case where L̂ is Zariski-dense. Being non-hyperbolic, there follows

that L̂ is a quotient of C. Hence FN is a foliation that is tangent to an Zariski-dense entire
curve. Owing to McQuillan’s theorem (cf. Chapter 9 and Theorem 4 in page 131 of [4]), one
of the following has to hold:

(1) Up to a finite ramified covering Ñ of N , the foliation FN is defined by a (global)
holomorphic vector field.

(2) Up to birational equivalence FN is a Riccati foliation or a turbulent foliation.
(3) A fibration.

As far as the statement of Theorem 3.1 is concerned, we can assume without loss of generality
that (1) holds. Complex compact surfaces equipped with holomorphic vector fields have been
studied since long and there are several ways to rely on the available information to derive
Theorem 3.1. The argument provided below has the advantage of relying exclusively on very
classical material in the realm of complex (algebraic) geometry.

Consider then the pair Ñ equipped with a (non-trivial) holomorphic vector field Z whose

underlying foliation is FZ . Here Ñ is a possibly singular projective surface. We need to show
that up to birational equivalence, the foliation FZ either is a fibration or is as in item (2).

Claim. Without loss of generality, Ñ can be assumed to be smooth.

Proof of the Claim. Let Sing (Ñ) denote the singular locus of Ñ . If not empty, the set Sing (Ñ)

is constituted by isolated points and irreducible curves. However, Sing (Ñ) is clearly invariant
under the flow of Z so that we actually have:

• Every isolated point of Sing (Ñ) is invariant under Z (i.e. it is a singular point of Z).

• Every irreducible curve C contained in Sing (Ñ) is globally invariant under Z. Note
that if the curve C is singular, then its singular points are invariant by Z as well.

Now, we apply a resolution procedure to Ñ . This procedure consists of two types of oper-
ations, namely, normalizations and blow-ups (see for example [1]). A normalization must be

centered at a smooth curve contained in Sing (Ñ) and, since the curve is question is globally
invariant by Z, the corresponding transform of Z still is a holomorphic vector field. In turn,

blow-ups are centered at isolated points of Sing (Ñ) or at singular points of a curve in Sing (Ñ).
In either case, they are invariant under Z so that again the corresponding transform of Z is a

holomorphic vector field. Proceeding by induction, it is now clear that the singularities of Ñ
can be resolved in such way that the final transform of the vector field Z is still a holomorphic
vector field. This establishes the claim. �

In the sequel we assume Ñ to be smooth. We can also assume Ñ not to contain (−1)-rational

curves, i.e., Ñ can be assumed to be minimal. In fact, the transform of a holomorphic vector
field arising from collapsing a (−1)-rational curve is always holomorphic since it is holomorphic
away from the point to which the curve collapsed. Since we are dealing with a surface, the vector
field must then extend holomorphically to the point in question since it has codimension 2.

The list of compact complex surfaces carrying a non-singular holomorphic vector field was
provided by Mizuhara [24] and it reads:

(1) A complex torus C2/Λ;
(2) A flat holomorphic fiber bundle over an elliptic curve;
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(3) An elliptic surface without singular fibers or with singular fibers of type mI0 only. In
other words, the singular fibers are elliptic curves with finite multiplicity;

(4) A Hopf surface or a positive Inoue surface.

In turn, a compact complex surface carrying a holomorphic vector field exhibiting at least one
singular point must either be rational or a surface of class VII as shown in [6]. Note that Hopf

surfaces ans Inoue surfaces are themselves examples of class VII surfaces, see [1]. Since Ñ is
projective, and hence algebraic, surfaces of class VII can be ruled out of our discussion since
they are never algebraic, see [1] page 244. Also, a minimal rational surface is either a Hirzebruch
surface Fn, n 6= 1 or CP2.

It is immediate to check holomorphic vector fields on a complex torus are constant and hence
satisfy the conditions of Theorem 3.1 provided that the torus in question is algebraic. Similarly,
holomorphic vector fields on CP2 are “linear” and it is also immediate to check that they satisfy
the conditions of the theorem in question.

In all the remaining cases, the surface Ñ carries a (possibly singular) fibration of genus 0
or 1. Since Z is holomorphic, the classical Lemma of Blanchard applies to say that Z must
preserve the fibration in question. If the fibers are individually preserved by Z, then Z is
tangent to the mentioned fibration so that Theorem 3.1 holds. Finally, if instead, the flow of Z
permutes the fibers of the mentioned fibration, then it is clear that the foliation FZ will either
be Riccati or turbulent depending only on the genus of the fibration. The proof of Theorem 3.1
is complete. �

4. Proofs for Theorems A and B

Let us begin by recalling the definition of Liouvillian function. Informally speaking, a Liou-
ville function is a function that can be built up from rational functions by means of algebraic
operations, exponentiation, and integrals. The following definition makes this notion accurate
(see for example [31]).

Definition 4.1. Let k ⊂ K be differential fields. The field K is said to be a Liouvillian
extension of k if there is a tower k = K0 ⊂ · · · ⊂ Ks = K of differential fields such that
Ki = Ki−1(ti), for i = 1, . . . , s, where at least one of the following holds:

(1) The derivative t′i of ti lies in Ki−1 (i.e. ti is the integral of an element in Ki−1).
(2) ti 6= 0 and t′i/ti lies in Ki−1 (i.e. ti is the exponential of an element in Ki−1).
(3) ti is algebraic over Ki−1

If N is a projective manifold, a Liouvillian function on N is therefore an element of a
Liouvillian extension of the field of rational functions on N . If, in addition, N is equipped with
a foliation F , then a Liouvillian first integral for F is nothing but a Liouvillian function that
is constant over the leaves of F .

An immediate consequence of the above definition is that the existence of a Liouvillian first
integral F is a birational invariant of the pair (N,F). Similarly, a birational equivalence between
two manifolds gives rise to a one-to-one correspondence between the corresponding algebras of
Liouvillian functions over C.

Remark 4.2. M. Singer has proved in [31] that a differential equation with Liouvillian first
integrals must admit a transversely affine structure. This statement was later generalized to
codimension 1 foliations and an interesting treatment of the topic can be found in [32]. These
statements provide an alternative dynamical point of view in the notion of Liouvillian first
integrals.
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A converse is easy. If a codimension 1 foliation admits a transverse affine structure, then the
developing map (see [10]) associated with the affine structure in question provides a Liouvillian
first integral for the foliation.

In the sequel, we place ourselves in the setting of Theorem A. Thus M is a projective manifold
endowed with a meromorphic vector field X whose underlying foliation is denoted by F . We also
assume that the set of leaves of F associated to integral curves of X giving rise to meromorphic
maps defined on C has strictly positive logarithmic capacity.

As explained in Section 3, all enlarged leaves of F are either CP1 or a parabolic Riemann
surface (cf. Lemma 3.3). Let now N be an irreducible (possibly singular) projective surface
left invariant by F and denote by FN the foliation induced by F on N . We can assume
from now on that FN has no meromorphic first integral, otherwise there is nothing to prove.
Owing to Jouanolou’s theorem [19] this ensures that only finitely many leaves of FN fail to be
Zariski-dense.

In view of Theorem 3.1, there follows that FN is either a Riccati foliation or a turbulent one
(up to birational equivalence). A slightly more accurate statement is, however, possible:

Lemma 4.3. If FN is a Riccati foliation, then its holonomy group is amenable. Similarly, if
FN is a turbulent foliation, then its holonomy group is solvable and virtually abelian (i.e. it
contains an abelian subgroup of finite index).

Proof. Let us first assume that FN is a turbulent foliation and denote by P : N → S the corre-
sponding genus 1 fibration. Note that the regular fibers of P are pairwise equivalent as elliptic
curves since local parallel transport along the leaves of FN yields holomorphic diffeomorphisms
between them. If E denote the “typical” fiber of P, then the holonomy group of F is nothing
but the image of the holonomy representation of the fundamental group of S in the group of
automorphisms Aut (E) of the elliptic curve E = C/Λ, where Λ stands for a lattice of C. The
possibilities for the automorphism group Aut (E) are well-known. First, Aut (E) is naturally
realized as a subgroup of the affine group of C. In particular, Aut (E) must be solvable. To see
that Aut (E) is a finite extension of an abelian group, let Aut0(E) stand for the subgroup of
Aut (E) consisting of those automorphisms whose action on H1(E) is trivial coincides with the
automorphisms induced by translations on C (E = C/Λ). In particular, Aut0(E) is abelian. In
general, the index of Aut0(E) in Aut (E) can take only on the following values: 2, 4, and 6 (cf.
[14], page 321). It then follows that Aut (E) is a finite extension of an abelian group.

The case of Riccati foliations is slightly different in that the monodromy group is a subgroup
of the automorphism group of the Riemann sphere, namely PSL (2,C). In general the holonomy
group of a Riccati equation is not amenable. However, the enlarged leaves of FN are parabolic
Riemann surfaces and this imposes strong constraints on the holonomy group in question. In
fact, a subgroup of PSL (2,C) that is not amenable contains a free subgroup on two generators
(Tits alternative) and has therefore exponential growth: this forces the Zariski-dense leaves of
FE to have exponential growth as well (see [10] for the case of regular foliations, details in the
specific case of Riccati foliations can be found in [27]). Clearly the exponential growth of the
leaves means that they are hyperbolic Riemann surfaces. Since the passage of a leaf to the
corresponding enlarged leaf only adds a discrete set of points to the former, the enlarged leaves
must be hyperbolic themselves and this yields a contradiction with Lemma 3.3. The proof of
the lemma is complete. �

We are now ready to prove Theorem A.

Proof of Theorem A. We keep the preceding notation. In particular, we can assume that the
foliation FN is transverse to a (singular) fibration P : N → S of genus 0 or 1. Let us first
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consider the case in which this fibration has genus 1, i.e., the case where FN is a turbulent
foliation. Denote by Γ the corresponding holonomy group. Lemma 4.3 establishes that Γ is
solvable and this yields the desired extension implied in the definition of Liouvillian functions.
In more precise terms, Γ is a finite extension of the abelian group Γ0 = Γ ∩ Aut0(E): the
solutions are then expressed as a finite extension of elliptic functions. Alternatively, to make
the connection with Singer’s theorem in Remark 4.2, just observe that the natural “affine
structure” inherited by E = /Λ from C is naturally preserved by Γ since this group is naturally
containe in the affine group of C.

Let us now consider the case where FN is a Riccati foliation. Again let Γ denote the corre-
sponding holonomy group which is naturally a finitely generated subgroup of PSL (2,C). We
can assume Γ is infinite, otherwise all leaves of FN are compact and hence we have a rational
first integral. In view of the discussion in Remark 4.2, it suffices to prove the existence of a
transverse affine structure invariant by Γ. In particular, it is enough to check that Γ is conjugate
to a subgroup of the affine group Aff (C) ⊂ PSL (2,C).

Assume first that Γ is discrete and hence a Kleinian group. The group Γ is, however, amenable
(Lemma 4.3) and it is well known that (infinite) amenable Kleinian group are all elementary
in the sense that their Limit sets consist of one or two points. The Limit set being naturally
invariant under Γ, either Γ has a fixed point or Γ has a subgroup Γ2 of index 2 having a fixed
point. In the first case, the fixed point of Γ can be used to construct a conjugation between Γ
and some subgroup of Aff (C). In the second case, Γ2 has a Liouvillian first integral and so has
Γ as a degree 2 extension of Γ2.

Finally, assume now that Γ is not discrete so that its closure Γ ⊂ PSL (2,C) is a Lie subgroup
of PSL (2,C) with non-trivial Lie algebra. Clearly this Lie algebra must be strictly contained in
the Lie algebra of PSL (2,C), otherwise Γ would be dense in PSL (2,C) and thus non-amenable.
This Lie algebra is therefore either abelian or conjugate to an affine Lie algebra. From there
it is again clear that the (amenable) group has a fixed point or, at least, contains a index 2
subgroup possessing a fixed point. The existence of the desired Liouvillian first integral then
follows as above. The proof of Theorem A is complete. �

We can now prove Theorem B as well.

Proof of Theorem B. Theorem B follows from Theorem A once it is established the existence
of a 2-dimensional analytic set S ⊂ CP3 that happens to be invariant by F . For this consider
first X given as a rational vector field on C3. The divisor of poles (X)∞ of X on C3, if not
empty, yields an algebraic set of dimension 2. Let then S ⊂ CP3 be an irreducible component
of the algebraic set in question. All we need to check is that S is invariant by F . However, if
this were not the case, then a leaf L of F transverse to S would be such that integral curves of
X with initial conditions at (generic) points of L would be multivalued functions, rather than
a a meromorphic function (cf. Lemma 2.5). The resulting contradiction proves the statement
in this case.

It remains to consider the case in which (X)∞ is empty, i.e., the case in which X is actually
a polynomial vector field. In this case, we consider the “plane at infinity” ∆∞ = CP3 \ C3.
If X extends holomorphically to ∆∞, then X is actually a holomorphic vector field on all of
CP3. It is therefore a linear vector field, i.e. a vector field arising from the group PSL (4,C)
of automorphisms of CP3. In this case, the existence of an invariant plane for F is immediate.
Finally, if X has poles on ∆∞, then the preceding argument shows that ∆∞ must be invariant
by F again. Theorem B is proved. �
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5. Appendix - from dimension 2 to dimension 3

Both local and global theory of singular holomorphic foliations in dimension 2 are far more
developed than its counterparts in higher dimensions. The issue stems from the fact that these
one-dimensional foliations are also of codimension 1 when the ambient has dimension 2. This
means that “invariant divisors” are merely a leaf with compact closure for the corresponding
foliation F . In contrast, once the dimension n satisfies n ≥ 3, then invariant divisors carry
a global foliation whose dynamics can be very complicate and this complication has a serious
impact on the difficulty of the problems.

Whereas the survey [29] is referred to for a detailed discussion of the above mentioned issue,
we will quickly revisit here a general and powerful method to address the dynamics of (certain)
foliations on complex surfaces. In chronological terms, the first instance of this technique
can be traced back to the work of Hudai-Verenov [15], later improved by Il’yashenko [17]. A
definite step forward, however, was undertaken by Mattei and Moussu in [21] who, working
with singularities, made systematic use of Seidenberg theorem [30] and settled the basics for
the corresponding “semi-global analysis” of the singular points. While the contexts of [15] and
[17] are in principle very different from the local problems treated in [21], they both fit in the
same framework that is summarized below.

Consider a singular holomorphic foliation F on a complex surface M leaving invariant a curve
C ⊂M . The purpose is to investigate the structure of F on a neighborhood of C. To make the
discussion less technical, let us assume that none of the singularities of F lying in C is dicritical.
Here we recall that a singular point is said to be dicritical if there exists a finite sequence of
blow-ups starting at the singular point in question and leading to a foliation transverse at
generic points to at least one irreducible component of the resulting (total) exceptional divisor,
see for example [21], [16]. To get insight into the structure of F around C, we then proceed as
follows:

(1) Apply Seidenberg resolution theorem [30] to the singularities of F lying in C. This

allows us to replace F by a new foliation F̃ all of whose singular points are “simple”,

i.e., they have at least one eigenvalue different from zero. Moreover, F̃ is tangent to a
(connected) tree-like divisor consisting of curves C1, . . . , Ck.

(2) Having “understood” the singular points of F̃ (so that nothing is “hidden” in them),

the (singular, reducible) curve C1 ∪ · · · ∪ Ck is invariant by F̃ so that it gives rise to
a holonomy representation in Diff (C, 0) (including “passage of corners” as detailed in

[21]). As a consequence, essentially all of the dynamics of F (or F̃) becomes encoded
in the dynamics of a group of local diffeomorphisms of C fixing 0 ∈ C.

The curve C becomes therefore a kind of core for the dynamics in the sense that a large part
- if not all - of the dynamics of F arises from its local dynamics around C. From the global
perspective, like in [15], [17], [20], if in addition that initial curve C is ample, then all regular
leaves of F will intersect arbitrarily small neighborhoods of C. In particular, the local dynamics
of F around C can be globally “propagated” on the ambient surface. An important success of
this strategy closely related to problems discussed in this paper appears in [12] and [11].

Carrying out a similar approach in higher dimensions, or at least in dimension 3, is no
longer out of reach. A suitable generalization of Seidenberg theorem has been obtained in [25],
[23], see also [28]. Similarly much progress has been made about the dynamics of subgroups
of Diff (Cn, 0), n ≥ 2. Nonetheless the fact that invariant divisors (that exist in the case in
question thanks to Lemma 2.5) are foliated and the dynamics of this global foliation is the
source of huge difficulty. In fact, even if the structure of the foliation around (simple) singular
points can be understood, the existence of non-trivial global dynamics makes it unclear if these
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singularities “interact among them”. Along similar lines, the leaves of the foliation might have
only cyclic holonomy groups and these might be essentially independent: this contrasts again
with the 2-dimensional case where all of the information is encoded in what is essentially a
single subgroup of Diff (C, 0). As a type of startling examples, the foliations constructed in [20]
can be intrinsically attached to singular points of foliations, see [29].

Summarizing the preceding paragraph, the (potential) existence of dynamically complicated
foliations on invariant divisors is the main obstacle to approach a large class of problems with
the general strategy outlined above. Apparently, the only way around this difficulty consists
of a priori describing the dynamics in question. In other words, given a specific problem (such
as the classification of vector fields with meromorphic solutions), it is necessary to obtain an
a priori result showing that the restriction of the foliation in question to an invariant divisor
cannot have an excessive complicated dynamics. If this restricted foliation turns out to be
simple enough, then the general strategy will look promising. In this respect, and concerning
the classification of vector fields with meromorphic solutions in dimension 3, this is exactly the
content of Theorem A and B: these foliations are integrable in the sense of Liouville and their
possible dynamics are explicitly described.
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