

## **CMUP Post-doc Meeting**

November 26, 2021

Room FC1.027

CENTRO DE

MATEMÁTICA

UNIVERSIDADE DO PORTO

www.cmup.pt/

| 14:00         Helena           CMU         CMU           14:05         Victor Vo | JP                   | Opening session<br>Thermodynamic formalism for discrete time linear dynamical systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|----------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                  |                      | Thermodynamic formalism for discrete time linear dynamical systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14:05 Victor V                                                                   | argas                | Thermodynamic formalism for discrete time linear dynamical systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                  |                      | Inclinouynumic formation for discrete time tineur dynamical systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Dynamical S                                                                      | Systems              | In this talk will be presented some results about existence of $\sigma$ -additive Borel probability measures with non-trivial support and invariant by the action of a weighted shift $L: X \to X$ , where X is either the Banach space $c^{0}(R)$ or $l^{p}(R)$ $(1 \leq p < \infty)$ . In order to do that, we adapt well known techniques of the classical thermodynamic formalism to the setting of the so called weighted shifts defining a transfer operator depending of a potential $A: X \to R$ satisfying suitable conditions and we prove that any fixed point $\mu A$ of the dual of the transfer operator results in an invariant probability measure with full support. Furthermore, we are able to show that any $\mu_A$ obtained through this technique satisfies a variational principle of the pressure and, thus, it is an equilibrium state. In addition, we also show existence of accumulation points at zero temperature of the family $(\mu_t A)_t > 1$ in the weak* topology.                                                                                            |  |
| 14:50AdjaratouDiate                                                              |                      | Resolution of the singularities of a pair of foliations in dimension 2 and classification<br>(online session)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                  | -                    | According to the well-known theorem of A. Seidenberg, it is possible to reduce the complexity of a singularity of a holomorphic foliation defined on a complex surface to obtain a foliation with a very simple singularity in the sense of Seidenberg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                  |                      | In this talk, we propose to generalize Seidenberg's theorem to the pair of foliations. Indeed, given a pair of singular holomorphic foliations on a compact complex surface:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                  |                      | • What is the simplest and most accessible local model of the pair of foliations after simultaneous reduction of its singularities?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Geome                                                                            | etry                 | • Is it possible to know the analytic type of the pair of foliations after solving its singularities?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 15:35                                                                            |                      | Coffee Break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 16:00 <i>Claude M</i>                                                            | Marion               | Free groups and finite groups: a few problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Algebr                                                                           | Dra                  | <ul> <li>Given a free group F of finite rank and a pseudovariety V of finite groups (a class closed under taking subgroups, homomorphic images and finite direct products), one can endow F with the pro-V topology. Examples of pseudovarieties include the sets of all finite groups, all groups of odd order, all nilpotent groups and all solvable groups. Given a finitely generated subgroup H of F, a natural question arises: <ul> <li>(i) Are some pro-V topological properties, for example denseness or closedness, decidable for H?</li> <li>On another area, following the classification of finite simple groups in the 1980s, it was established that every finite simple group can be generated by two elements. Some natural questions arise:</li> <li>(ii) Can we impose some restrictions on a pair of generators?</li> <li>(iii) What are the graph-theoretical properties of the generating graph of a finite simple group?</li> <li>(iv) Given a subgroup H of a finite simple group, what can be said about the minimal number of generators for H?</li> </ul> </li> </ul> |  |
| 16:45 Alfonso To                                                                 | ortorella            | Advances in Jacobi geometry through the boundary of Poisson and Contact Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Geomet                                                                           | etry                 | Over the last decades both Poisson geometry and contact geometry have developed into full-fledged research<br>areas of pure Mathematics with plenty of notable applications at the crossroads of Geometry and Physics.<br>Contact, locally conformal symplectic (lcs) and Poisson geometries share a common extension, namely Jacobi<br>geometry. Since it unifies several important geometric theories, Jacobi geometry has a built-in potential to<br>highlight the rich interplay and powerful connection between Poisson and contact geometry. In the last years,<br>I have been interested in unlocking this potential by addressing fundamental questions about Jacobi, Poisson,<br>and related geometries using techniques from deformation theory, functional analysis, Lie theory and the<br>geometry/algebra of PDEs. In this talk, I will try to briefly tell you more about my activity in this direction.to<br>know the analytic type of the pair of foliations after solving its singularities?                                                                                     |  |
| 17:30                                                                            | 7:30 Closing session |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |





