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COMPLEX LAGRANGIANS IN A HYPERKÄHLER MANIFOLD AND

THE RELATIVE ALBANESE

INDRANIL BISWAS, TOMÁS L. GÓMEZ, AND ANDRÉ OLIVEIRA

Abstract. Let M be the moduli space of complex Lagrangian submanifolds of a hy-

perKähler manifold X , and let ̟ : Â −→ M be the relative Albanese over M . We

prove that Â has a natural holomorphic symplectic structure. The projection ̟ defines

a completely integrable structure on the symplectic manifold Â. In particular, the fibers

of ̟ are complex Lagrangians with respect to the symplectic form on Â. We also prove
analogous results for the relative Picard over M .

1. Introduction

A compact Kähler manifold admits a holomorphic symplectic form if and only if it admits

a hyperKähler structure [Be], [Ya]. To explain this, let X be a compact manifold equipped

with almost complex structures J1, J2, J3, and let g be a Riemannian metric on X , such

that (X, J1, J2, J3, g) is a hyperKähler manifold. Then g defines a C∞ isomorphism,

T 0,1X
g1
−→ (T 1,0X)∗ ,

where TRX ⊗ C = T 1,0X ⊕ T 0,1X is the type decomposition with respect to the almost

complex structure J1; also J2 produces a C∞ isomorphism

T 1,0X
J ′

2−→ T 0,1X .

The composition of homomorphisms

T 1,0X
J ′

2−→ T 0,1X
g1
−→ (T 1,0X)∗ ,

which is a section of (T 1,0X)∗⊗(T 1,0X)∗, is actually is a holomorphic symplectic form on the

compact Kähler manifold (X, J1, g). The compact Kähler manifold (X, J1, g) is Ricci–flat.

Conversely, if a compact Kähler manifold admits a holomorphic symplectic form, then its

canonical line bundle is holomorphically trivial and hence it admits a Ricci–flat Kähler metric

[Ya]. Let (X, J1, g) be a Ricci–flat compact Kähler manifold equipped with a holomorphic

symplectic form. Then we may recover J2 by reversing the above construction. Finally, we

have J3 = J1 ◦ J2.

Let X be a compact Kähler Ricci–flat manifold admitting a holomorphic symplectic form.

Fix a Ricci–flat Kähler form ω on X (such a Kähler form exists [Ya]), and take a holomorphic
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symplectic form Φ on X . It is known that Φ is parallel (meaning, covariant constant) with re-

spect to the Levi–Civita connection onX associated to ω [Be, p. 760, “Principe de Bochner”],

[YB, p. 142].

LetM denote the moduli space of compact complex submanifolds ofX that are Lagrangian

with respect to the symplectic form Φ. Consider the corresponding universal family of

Lagrangians

Z −→ M . (1.1)

Let

̟ : Â −→ M

be the relative Albanese over M . So for any Lagrangian L ∈ M , the fiber of Â over L is

Alb(L) = H0(L, Ω1
L)

∗/H1 (L, Z). This ϕ is a holomorphic family of compact complex tori

over M .

We prove the following (see Theorem 3.3):

The complex manifold Â has a natural holomorphic symplectic form.

The symplectic form on Â is constructed using the canonical Liouville symplectic form on

the holomorphic cotangent bundle T ∗M ofM . The symplectic form Φ onX is implicitly used

in the construction of the symplectic form on Â. Recall that the Lagrangian submanifolds,

and hence M , are defined using Φ.

We prove the following (see Lemma 3.4):

The projection ̟ : Â −→ M defines a completely integrable structure on the symplectic

manifold Â. In particular, the fibers of ̟ are Lagrangians with respect to the symplectic

form on Â.

In Section 4 we consider the relative Picard bundle over M for the family Z in (1.1). Let

̟0 : A −→ M

be the relative Picard bundle for the family Z.

We prove that A is equipped with a natural holomorphic symplectic structure; see Propo-

sition 4.3.

Let ΘA denote the above mentioned holomorphic symplectic structure onA. The following

lemma is proved (see Lemma 4.4):

The projection ̟0 : A −→ M defines a completely integrable structure on A for the

symplectic form ΘA.

These results are natural generalizations of some known cases of integrable systems, such as

the Hitchin system [Hi1] or the Mukai system [Mu] (see also [DEL]). One of our motivations

has been mirror symmetry; we hope to come back to the study of A and Â from the point

of view of hyperKähler geometry.
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2. Cotangent bundle of family of Lagrangians

Let X be a compact Kähler Ricci–flat manifold of complex dimension 2d equipped with a

Kähler form ω. Let Φ be a holomorphic symplectic form on X which is parallel with respect

to the Levi–Civita connection on X given by the Kähler metric on X associated to ω.

A complex Lagrangian submanifold of X is a compact complex submanifold L ⊂ X of

complex dimension d such that ι∗Φ = 0, where

ι : L →֒ X (2.1)

is the inclusion map.

It is known that the infinitesimal deformations of a complex Lagrangian submanifold of

X are unobstructed [Mc], [Vo], [Hi2]. Furthermore, the moduli space of complex Lagrangian

submanifolds of X is a special Kähler manifold [Hi2, p. 84, Theorem 3].

Let M be the moduli space of complex Lagrangian submanifolds of X . Let

L ⊂ X

be a complex Lagrangian submanifold. The point of M representing L will also be denoted

by L. Let NL −→ L be the normal bundle of L ⊂ X ; it is a quotient bundle of ι∗TX of rank

d, where ι is the map in (2.1). The infinitesimal deformations of the complex submanifold L

are parametrized by H0(L, NL). Since L is complex Lagrangian, the holomorphic symplectic

form Φ on X produces a holomorphic isomorphism

NL
∼

−→ (TL)∗ = Ω1
L ,

where TL (respectively, Ω1
L) is the holomorphic tangent (respectively, cotangent) bundle of

L. Using this isomorphism we have

H0(L, NL) = H0(L, Ω1
L) .

Among the infinitesimal deformations of the complex submanifold L, there are those which

arise from deformations within the category of complex Lagrangian submanifolds, meaning

those arise from deformations of complex Lagrangian submanifolds as Lagrangian submani-

folds. An infinitesimal deformation

α ∈ H0(L, NL) = H0(L, Ω1
L)

of L lies in this subclass if and only if the holomorphic 1–form α on L is closed [Hi2, pp. 78–

79]. But any holomorphic 1–form on L is closed because L is Kähler. Therefore, M is in

fact an open subset of the corresponding Douady space for X .

Consider the Ricci–flat Kähler form ω on X . The form

ωL := ι∗ω (2.2)

on L is also Kähler, where ι is the map in (2.1). Therefore, the pairing

φL : H0(L, Ω1
L)⊗H1(L, OL) −→ C , w ⊗ c 7−→

∫

L

w ∧ c ∧ ωd−1
L (2.3)
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is nondegenerate. We shall identify H1(L, OL) with H0(L, Ω1
L)

∗ using this nondegenerate

pairing.

It was noted above that

TLM = H0(L, NL) = H0(L, Ω1
L) . (2.4)

Using the pairing in (2.3) and (2.4), we have

T ∗
LM = H0(L, Ω1

L)
∗ = H1(L, OL) . (2.5)

Let

Z ⊂ X ×M (2.6)

be the universal family of complex Lagrangians over M . So Z is the locus of all (x, L′) ∈

X ×M such that x ∈ L′ ⊂ X . Consider the natural projections pX : X ×M −→ X and

pM : X ×M −→ M . Let

p : Z −→ X and q : Z −→ M (2.7)

be the restrictions of pX and pM respectively to the submanifold Z ⊂ X × M . So

p(q−1(L′)) ⊂ X for every L′ ∈ M is the Lagrangian L′ itself.

Let Ω1
Z/M −→ Z be the relative cotangent bundle for the projection q to M in (2.7). It

fits in the short exact sequence of holomorphic vector bundles

0 −→ q∗Ω1
M −→ Ω1

Z −→ Ω1
Z/M −→ 0

over M . The direct image R1q∗OZ fits in the short exact sequence of sheaves on M

0 −→ R0q∗Ω
1
Z/M −→ R1q∗C −→ R1q∗OZ −→ 0 , (2.8)

where C is the constant sheaf on Z with stalk C. The direct image R1q∗C is a flat complex

vector bundle, equipped with the Gauss–Manin connection. We briefly recall the construction

of the Gauss–Manin connection. For any point L′ = y ∈ M , let Uy ⊂ M be a contractible

open neighborhood of y. Since Uy is contractible, the inverse image q−1(Uy) is diffeomorphic

to Uy ×L′ such that the diffeomorphism between q−1(Uy) and Uy ×L′ takes q to the natural

projection from Uy × L′ to Uy. Using this diffeomorphism, the restriction of R1q∗C to Uy

coincides with the trivial vector bundle

Uy ×H1(L′, C) −→ Uy (2.9)

with fiber H1(L′, C). Using this isomorphism between (R1q∗C)|Uy
and the trivial vector

bundle Uy × H1(L′, C) in (2.9), the trivial connection on the trivial vector bundle in (2.9)

produces a flat connection on (R1q∗C)|Uy
. This connection on (R1q∗C)|Uy

does not depend on

the choice of the diffeomorphism between q−1(Uy) and Uy × L′. Consequently, these locally

defined flat connections on R1q∗C patch together compatibly to define a flat connection on

R1q∗C. This flat connection is the Gauss–Manin connection mentioned above.

Since the Gauss–Manin connection on R1q∗C is flat, and M is a complex manifold, the

Gauss–Manin connection produces a natural holomorphic structure on the C∞ vector bundle

R1q∗C. The direct image R0q∗Ω
1
Z/M is a holomorphic subbundle of R1q∗C, but it is not

preserved by the flat connection in general. The holomorphic structure on the quotient
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R1q∗OZ induced by that of R1q∗C coincides with its own holomorphic structure; the fiber of

R1q∗OZ over any L′ ∈ M is H1(L′, OL′).

Since ωL in (2.2) is the restriction of a global Kähler form on X , the section of R2q∗C

M −→ R2q∗C , L′ 7−→ [ωL′ ] = [ω|L′] ∈ H2(L′, C)

is covariant constant with respect to the Gauss–Manin connection on R2q∗C. Consequently,

the homomorphism

(R1q∗C)⊗ (R1q∗C) −→ C , (2.10)

that sends any v ⊗ w ∈ (R1q∗C)t ⊗ (R1q∗C)t, t ∈ M , to
∫

q−1(t)

v ∧ w ∧ (ω|q−1(t))
d−1 ∈ C

is also covariant constant with respect to the connection on (R1q∗C)⊗ (R1q∗C) induced by

the Gauss–Manin connection on R1q∗C. Hence the pairing in (2.10) produces a holomorphic

isomorphism of vector bundles

(q∗Ω
1
Z/M )∗

∼
−→ R1q∗OZ (2.11)

on M . The restriction of this isomorphism to any point L ∈ M coincides with the isomor-

phism H0(L, Ω1
L)

∗ = H1(L, OL) in (2.5).

On the other hand, the pointwise isomorphisms in (2.4) combine together to produce a

holomorphic isomorphism of vector bundles

Ω1
M

∼
−→ (q∗Ω

1
Z/M )∗ (2.12)

on M . Composing the isomorphisms in (2.11) and (2.12), we obtain a holomorphic isomor-

phism of vector bundles

χ : Ω1
M −→ R1q∗OZ (2.13)

over M .

For notational convenience, the total space of R1q∗OZ will be denoted by Y . Let

γ : Y −→ M (2.14)

be the natural projection. Consider the canonical Liouville 1-form on Ω1
M . Using the iso-

morphism χ in (2.13) this Liouville 1-form on Ω1
M gives a holomorphic 1-form on Y . Let

θ ∈ H0(Y , Ω1
Y) (2.15)

be the holomorphic 1-form given by the Liouville 1-form on Ω1
M . Note that for any L ∈ M ,

and any v ∈ γ−1(L), the form

θ(v) : TvY −→ C

coincides with the composition of homomorphisms

TvY
dγ
−→ TLM = H0(L, Ω1

L)
φL(−,v)
−→ C ,

where φL is the bilinear pairing constructed in (2.3), and dγ is the differential of the projection

γ in (2.14); the above identification

TLM = H0(L, Ω1
L)
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is the one constructed in (2.4).

It is straight-forward to check that the 2-form

dθ ∈ H0(Y , Ω2
Y) (2.16)

is a holomorphic symplectic form on the manifold Y in (2.14). Indeed, dθ evidently coincides

with the 2-form on Y given by the Liouville symplectic form on Ω1
M via the isomorphism χ

in (2.13).

3. The family of Albanese tori

Take a compact complex Lagrangian submanifold L ⊂ X represented by a point of M .

We know that T ∗
LM

∼= H0(L, Ω1
L)

∗ (see (2.4)). Note that the non-degenerate pairing

H1,0(L)⊗Hd−1,d(L) −→ C , α⊗ β 7−→

∫

L

α ∧ β ,

which is also the Serre duality pairing, yields an isomorphism

H0(L, Ω1
L)

∗ ∼= Hd(L, Ωd−1
L ) .

For a fixed L, we have the Hodge decomposition

H2d−1(L, C) = Hd,d−1(L)⊕Hd−1,d(L) ;

but if we move L in the family M , meaning if we consider the universal family

q : Z −→ M

in (2.6), then only Rd−1q∗Ω
d
Z/M is a holomorphic subbundle of R2d−1q∗C, and we have the

short exact sequence of holomorphic vector bundles

0 −→ Rd−1q∗Ω
d
Z/M −→ R2d−1q∗C −→ Rdq∗Ω

d−1
Z/M −→ 0 , (3.1)

on M .

The holomorphic vector bundle R2d−1q∗C is equipped with the Gauss–Manin connection,

which is an integrable connection. The quotient Rdq∗Ω
d−1
Z/M , in (3.1), of R2d−1q∗C is a holo-

morphic vector bundle on M with fiber Hd(L′, Ωd−1
L′ ) over any L′ ∈ M .

The homomorphism

(R1q∗C)⊗ (R2d−1q∗C) −→ C , (3.2)

that sends any α⊗ β ∈ (R1q∗C)t ⊗ (R2d−1q∗C)t, t ∈ M , to
∫

q−1(t)

v ∧ w ∈ C

is covariant constant with respect to the connection on (R1q∗C) ⊗ (R2d−1q∗C) induced by

the Gauss–Manin connections on R1q∗C and R2d−1q∗C. Consequently, the pairing in (3.2)

yields a holomorphic isomorphism of vector bundles

(q∗Ω
1
Z/M )∗

∼
−→ Rdq∗Ω

d−1
Z/M
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over M . Combining this isomorphism with the isomorphism in (2.12) we get a holomorphic

isomorphism of vector bundles

χ̂ : Ω1
M

∼
−→ Rdq∗Ω

d−1
Z/M (3.3)

over M .

We shall denote the total space of the holomorphic vector bundle Rdq∗Ω
d−1
Z/M by W, so

W := Rdq∗Ω
d−1
Z/M

γ̂
−→ M (3.4)

is a holomorphic fiber bundle.

As in Section 2, consider the canonical Liouville holomorphic 1-form on the total space of

Ω1
M . Using the isomorphism in (3.3), this Liouville 1-form on the total space of Ω1

M produces

a holomorphic 1-form on W in (3.4). Let

θ′ ∈ H0(W, Ω1
W)

be this holomorphic 1-form on W. We note that

dθ′ ∈ H0(W, Ω2
W) (3.5)

is a holomorphic symplectic form on W. Indeed, the isomorphism in (3.3) takes dθ′ to the

Liouville symplectic form on the total space of Ω1
M .

Remark 3.1. Note that while the Kähler form ω on X was used in the construction of

the symplectic form dθ on Y in (2.16) (see the pairing in (2.10)), the construction of dθ′

in (3.5) does not use the Kähler form ω on X . We recall that the isomorphism in (2.12)

is constructed from the the pointwise isomorphisms in (2.4). Note that the isomorphism in

(2.4) does not depend on the Kähler form ω.

The Albanese Alb(Y ) of a compact Kähler manifold Y is defined to be

Alb(Y ) = H0(Y, Ω1
Y )

∗/H1 (Y, Z) = Hn(Y, Ωn−1
Y )/H1 (Y, Z) ,

where n = dimC Y (see [GH, p. 331]). It is a compact complex torus.

For each point L ∈ M , consider the composition of homomorphisms

H2d−1(L, Z) −→ H2d−1(L, C) −→ H2d−1(L, C)/Hd−1(L, Ωd
L) = Hd(L, Ωd−1

L )

(see (3.1)). It produces a homomorphism

R2d−1q∗Z −→ W , (3.6)

where W is defined in (3.4).

Remark 3.2. The Gauss–Manin connection on R2d−1q∗C −→ M evidently preserves the

subbundle of lattices

R2d−1q∗Z ⊂ R2d−1q∗C .

From this it follows immediately that the C∞ submanifold R2d−1q∗Z ⊂ W in (3.6) is in fact

a complex submanifold.



8 I. BISWAS, T. GÓMEZ, AND A. OLIVEIRA

The quotient

Â := W/(R2d−1q∗Z) −→ M (3.7)

for the homomorphism in (3.6) is in fact a holomorphic family of compact complex tori over

M . Note that the fiber of Â over each L ∈ M is the Albanese torus

Alb(L) = Hd(L, Ωd−1
L )/H2d−1(L, Z) .

For any complex Lagrangian L ∈ M , using Serre duality,

Hd(L, Ωd−1
L ) = H0(L, Ω1

L)
∗ ,

and the underlying real vector space for H0(L, Ω1
L)

∗ is identified with

H1(L, R)∗ = H1(L, R) .

Using Poincaré duality for L, we have H2d−1(L, Z)/Torsion = H1(L, Z)/Torsion. Conse-

quently, Â in (3.7) admits the following isomorphism:

Â = W/(R2d−1q∗Z) = W/H̃1(Z) = (q∗Ω
1
Z/M )∗/H̃1(Z) , (3.8)

where H̃1(Z) is the local system on M whose stalk over any L ∈ M is H1(L, Z)/Torsion.

Also we have the isomorphism of real tori

Â = (R1q∗R)
∗/H̃1(Z) = H̃1(R)/H̃1(Z) , (3.9)

where H̃1(R) is the local system on M whose stalk over any L ∈ M is H1(L, R).

Theorem 3.3. The 2-form dθ′ in (3.5) on W descends to the quotient torus Â in (3.7).

Proof. Take a point L0 ∈ M . In [Hi2] Hitchin constructed a C∞ coordinate function on M

defined around the point L0 ∈ M that takes values in H1(L0, R) [Hi2, p. 79, Theorem 2];

we will briefly recall this construction.

Take any

c ∈ H1(L0, Z)/Torsion . (3.10)

Let U ⊂ M be a contractible neighborhood of the point L0. Choose a S1-subbundle of the

fiber bundle Z (see (2.6)) over U

B
ιU
→֒ Z|U

q
−→ U (3.11)

such that the fiber of the S1-bundle B over L0 represents the homology class c in (3.10);

recall that the fiber of Z over the point L0 ∈ M is the Lagrangian L0 itself.

Consider the symplectic form Φ on X . Integrating ι∗Up
∗Re(Φ) along the fibers of B, where

ιU and p are the maps in (3.11) and (2.7) respectively, we get a closed 1-form ξc on U . Let

fc be the unique function on U such that fc(L0) = 0 and dfc = ξc. Now, let

µ : U −→ H1(L0, R)

be the function uniquely determined by the condition that φLx
(c ⊗ µ(x)) = fc(x) for all

x ∈ U and c ∈ H1(L0, Z)/Torsion, where φLx
is the pairing constructed as in (2.3) for the

complex Lagrangian Lx = q−1(x) ⊂ X , where q is the projection in (2.7). This µ is a local

diffeomorphism [Hi2, p. 79, Theorem 2].
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Using the Kähler form ωL0
:= ω|L0

on L0 (see (2.2)), we identifyH
1(L0, R) withH1(L0, R)

as follows. Since the pairing

H1(L0, R)⊗H1(L0, R) −→ R , v ⊗ w 7−→

∫

L

v ∧ w ∧ ωd−1
L0

is nondegenerate, it produces an isomorphism

H1(L0, R)
∼

−→ H1(L0, R)
∗ = H1(L0, R) . (3.12)

On the other hand, there is the natural homomorphism H1(L0, Z) −→ H1(L0, R). Let

Γ ⊂ H1(L0, R) (3.13)

be the subgroup that corresponds to H1(L0, Z) by the isomorphism in (3.12).

Using the above coordinate function µ on U , we have

T ∗U
∼

−→ T ∗µ(U) = µ(U)×H1(L0, R)
∗ = µ(U)×H1(L0, R) ,

where T ∗ denotes the real cotangent bundle.

The Liouville symplectic form on T ∗µ(U) is clearly the constant 2-form on

H1(L0, R)×H1(L0, R)

given by the natural isomorphism of H1(L0, R) with H1(L0, R)
∗. From this it follows im-

mediately that

µ(U)× Γ ⊂ µ(U)×H1(L0, R)

is a Lagrangian submanifold with respect to the Liouville symplectic form on T ∗µ(U), where

Γ defined in (3.13).

Since µ(U) × Γ ⊂ µ(U) × H1(L0, R) is a Lagrangian submanifold, it follows that for

W = (R1q∗R)
∗ (see (3.9) and (3.4)), the image of the natural map

H̃1(Z) −→ (R1q∗R)
∗ = W

(see (3.8)) is Lagrangian with respect to the real symplectic form Re(dθ′) on W, where dθ′

is constructed in (3.5).

It was noted in Remark 3.2 that R2d−1q∗Z is a complex submanifold of W. Consequently,

the 2-form on R2d−1q∗Z obtained by restricting the holomorphic 2-form dθ′ on W is also

holomorphic. Since the real part of the holomorphic 2-from on R2d−1q∗Z given by dθ′ vanishes

identically, we conclude that the holomorphic 2-from onR2d−1q∗Z, given by dθ′, itself vanishes

identically. Therefore, R2d−1q∗Z is a Lagrangian submanifold of the holomorphic symplectic

manifold W equipped with the holomorphic symplectic form dθ′.

To complete the proof we recall a general property of the Liouville symplectic form.

Let N be a manifold and α a 1-form on N . Let

t : T ∗N −→ T ∗N

be the diffeomorphism that sends any v ∈ T ∗
nN to v+α(n). If ψ is the Liouville symplectic

form on T ∗N , the

t∗ψ = ψ + dα .
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In particular, the map t preserves ψ if and only if the form α is closed. Also, the image of t

is Lagrangian submanifold of T ∗N for ψ if and only α is closed.

Since

R2d−1q∗Z

is a Lagrangian submanifold of the symplectic manifold (W, dθ′), from the above property

of the Liouville symplectic form it follows immediately that the 2-form dθ′ on W descends

to the quotient space Â in (3.7). �

Let

qÂ : W −→ Â := W/(R2d−1q∗Z) (3.14)

be the quotient map (see (3.7)). From Theorem 3.3 we know that there is a unique 2-form

ΘÂ ∈ H0(Â, Ω2
Â) (3.15)

such that

q∗ÂΘÂ = dθ′ , (3.16)

where qA is the map in (3.14). Since dθ′ is a holomorphic symplectic form, it follows imme-

diately that ΘÂ is a holomorphic symplectic form on Â.

The projection γ̂ : W −→ M in (3.4) clearly descends to a map from A to M . Let

̟ : Â −→ M (3.17)

be the map given by γ̂; so we have

γ̂ = ̟ ◦ qÂ ,

where qÂ is constructed in (3.14).

Lemma 3.4. The projection ̟ in (3.17) defines a completely integrable structure on Â for

the symplectic form ΘÂ constructed in (3.15). In particular, the fibers of ̟ are Lagrangians

with respect to the symplectic form ΘÂ.

Proof. Recall that W is holomorphically identified with Ω1
M by the map χ̂ in (3.3) (see (3.4)).

This map χ̂ takes the Liouville symplectic form on Ω1
M to the symplectic form dθ′ on W.

Therefore, from (3.14) and (3.16) we conclude that Â is locally isomorphic to Ω1
M such that

the projection ̟ is taken to the natural projection Ω1
M −→ M , and the symplectic form ΘÂ

on Â is taken to the Liouville symplectic form on Ω1
M . The lemma follows immediately from

these, because the natural projection Ω1
M −→ M defines a completely integrable structure

on Ω1
M for the Liouville symplectic form. �

4. The relative Picard group

For any L ∈ M , consider the homomorphisms

H1(L, Z) −→ H1(L, C) −→ H1(L, OL) , (4.1)
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where H1(L, Z) −→ H1(L, C) is the natural homomorphism given by the inclusion of Z in

C, and the projection H1(L, C) −→ H1(L, OL) corresponds to the isomorphism

H1(L, C)/H0(L, Ω1
L) = H1(L, OL)

(see (2.8)). The image of the composition of homomorphisms in (4.1) is actually a cocompact

lattice in H1(L, OL); so H
1(L, OL)/H

1(L, Z) is a compact complex torus. We note that

the composition of homomorphisms in (4.1) is in fact injective. When the compact complex

manifold L is a complex projective variety, then H1(L, OL)/H
1(L, Z) is in fact an abelian

variety.

As L moves over the family M , these cocompact lattices fit together to produce a C∞

submanifold of the complex manifold Y in (2.14).

The Gauss–Manin connection on R1q∗C −→ M evidently preserves the above bundle of

cocompact lattices R1q∗Z ⊂ R1q∗C. From this it follows immediately that the above C∞

submanifold R1q∗Z ⊂ Y is in fact a complex submanifold.

Taking fiber-wise quotients, we conclude that

A := Y/(R1q∗Z) −→ M (4.2)

is a holomorphic family of compact complex tori over M .

Remark 4.1. Let Y be a compact Kähler manifold. Consider the short exact sequence of

sheaves on Y given by the exponential map

0 −→ Z −→ OY
λ7→exp(2π

√
−1λ)

−→ O∗
Y −→ 0 ,

where O∗
Y is a multiplicative sheaf of holomorphic functions with values in C \ {0}. For the

corresponding long exact sequence of cohomologies

H1(Y, Z) −→ H1(Y, OY ) −→ H1(Y, O∗
Y )

c1−→ H2(Y, Z) ,

where the connecting homomorphism c1 sends any holomorphic line bundle ξ ∈ H1(Y, O∗
Y )

to c1(ξ), the quotient

H1(Y, OY )/H
1(Y, Z)

gets identified with the Picard group Pic0(Y ) that parametrizes the topologically trivial

holomorphic line bundles on Y .

Consequently, the quotient A in (4.2) is naturally identified with the moduli space Pic0Z/M

of topologically trivial holomorphic line bundles on the fibers of q : Z −→ M . In other

words, A parametrizes all pairs of the form (L, ξ), where L ∈ M , and ξ is a topologically

trivial holomorphic line bundle on L.

Recall that we have the holomorphic symplectic form dθ on Y , where θ is constructed in

(2.15).

Remark 4.2. Recall from Remark 3.1 that dθ does depend on the Kähler form ω on X .

Proposition 4.3. The 2-form dθ on Y descends to the quotient space A in (4.2), or in other

words, dθ is the pullback of a 2-form on A.
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Proof. The proof of the proposition is very similar to the proof of Theorem 3.3. As before,

the local coordinate functions on M constructed in [Hi2] play a crucial role. We omit the

details of the proof. �

Let

qA : Y −→ A := Y/(R1q∗Z) (4.3)

be the quotient map (see (4.2)). Let ΘA ∈ H0(A, Ω2
A) be the holomorphic symplectic form

given by Proposition 4.3, so

q∗AΘA = dθ , (4.4)

where qA is the map in (4.3).

The projection γ in (2.14) clearly descends to a map

̟0 : A −→ M . (4.5)

Note that the isomorphism between A and Pic0Z/M in Remark 4.1 takes ̟0 to the forgetful

map

Pic0Z/M −→ M

that forgets the line bundle, or in other words, it sends any (L, ξ) ∈ Pic0Z/M to the complex

Lagrangian L forgetting the line bundle ξ.

Lemma 4.4. The projection ̟0 in (4.5) defines a completely integrable structure on A for

the symplectic form ΘA.

Proof. Recall that Y is holomorphically identified with Ω1
M by the map χ in (2.13), and χ

takes the Liouville symplectic form on Ω1
M to the symplectic form dθ on Y . Therefore, from

(3.14) and (4.4) we conclude that A is locally isomorphic to Ω1
M such that the projection ̟0

is taken to the natural projection Ω1
M −→ M , and the symplectic form ΘA on A is taken

to the Liouville symplectic form on Ω1
M . The lemma follows immediately from these. �
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Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Nicolás Cabrera 15, Campus
Cantoblanco UAM, 28049 Madrid, Spain

Email address : tomas.gomez@icmat.es
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Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro, UTAD,
Quinta dos Prados, 5000-911 Vila Real, Portugal

Email address : andre.oliveira@fc.up.pt / agoliv@utad.pt


	1. Introduction
	2. Cotangent bundle of family of Lagrangians
	3. The family of Albanese tori
	4. The relative Picard group
	Acknowledgements
	References

