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Abstract

We connect the theorems of Rentschler [16] and Dixmier [10] on locally nilpotent
derivations and automorphisms of the polynomial ring A0 and of the Weyl algebra A1,
both over a field of characteristic zero, by establishing the same type of results for the
family of algebras Ah = 〈x, y | yx− xy = h(x)〉, where h is an arbitrary polynomial in x.
On the second part of the paper we consider a field F of prime characteristic and study
F[t]-comodule algebra structures on Ah. We also compute the Makar-Limanov invariant
of absolute constants of Ah over a field of arbitrary characteristic and show how this sub-
algebra determines the automorphism group of Ah.
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1 Introduction

The purpose of this note is to connect two groundbreaking papers which appeared in 1968: in
[16], Rentschler classified the actions of the additive group Ga on the 2-dimensional plane and
in [10] Dixmier determined the automorphism group of the Weyl algebra A1 = 〈x, y | yx−xy =
1〉, the algebra of differential operators with polynomial coefficients in one variable, both over
a field of characteristic 0. What they have in common is the use of locally nilpotent derivations
as a fundamental tool to obtain their respective main results, each related to a corresponding
automorphism group. Indeed, a consequence of Rentschler’s Theorem is a description of the
automorphism group of the polynomial ring in two variables A0 = 〈x, y | yx = xy〉.

Although polynomial rings and Weyl algebras can seem to be on opposite sides of the
spectrum when it comes to certain algebraic properties (e.g., one is commutative, has plenty
of prime ideals and can be made into a Hopf algebra in a natural way, while the other is
noncommutative and simple, with no Hopf structure), it should not be surprising that they
are quite strongly related. A striking connection is the fact that the Jacobian conjecture is
equivalent to the (weak) Dixmier conjecture (see [19], [3] and [20] for definitions and details).

∗Partially supported by CMUP (UID/MAT/00144/2019), which is funded by FCT (Portugal) with national
(MEC) and European structural funds (FEDER), under the partnership agreement PT2020.
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One way of explicitly connecting A0 and A1 is through a family of algebras Ah, parametrized
by a polynomial h(x) in x, which was introduced and studied in [4], [6] and [5]. The algebra
Ah can be defined as the algebra with generators x, y satisfying the commutation relation
yx − xy = h(x). When h = 0, 1 we retrieve the polynomial algebra A0 and the Weyl al-
gebra A1, respectively. Other choices of h give algebras like the enveloping algebra of the
two-dimensional non-abelian Lie algebra, as Ax, the Jordan plane, as Ax2 , and many others.
In characteristic 0, one can think of all of these algebras as deformations of the coordinate
ring of the 2-dimensional plane, the polynomial ring A0. This can be made explicit by means
of the so-called Groenewold-Moyal product. Consider the derivations φ = d

dy and ψ = h(x) d
dx

of A0. Then the infinitesimal φ ∧ ψ defines an associative star product on A0[[~]], with

a ? b =
∑
n≥0

φn(a)ψn(b)

n!
~n.

It is easy to verify that

x ? x = x2, y ? y = y2, y ? x = yx+ h(x)~, x ? y = xy,

so y ? x − x ? y = h(x)~. Since φ is locally nilpotent, we can specialize at ~ = 1, hence
retrieving Ah as a deformation of the commutative polynomial algebra A0.

We show in Section 2 that, over a field of characteristic 0, the descriptions given in Dixmier
and Rentschler’s aforementioned papers still hold in general for Ah, for any h, although in
a more rigid form, in case h is not a constant polynomial. After describing explicitly the
locally nilpotent derivations of Ah, we determine the so-called Makar-Limanov invariant of
absolute constants, ML(Ah) and use it to give an alternative proof of [1, Prop. 3.6], that the
automorphism group of Ah is tame (generated by affine and triangular automorphisms). See
[14] for the corresponding results for the free Poisson algebra in two variables and the recent
paper [11] for related results on the free algebra of rank two.

In Section 3 we consider the case of fields of positive characteristic p. In this case, locally
nilpotent derivations lose some of their properties and they do not capture enough information,
as often (although not always) the p-th power of a locally nilpotent derivation will be trivial.
The natural analogue in prime characteristic comes from the notion of an action of the additive
group of the field, Ga. In algebraic terms, this corresponds to a comodule algebra structure
or, equivalently, to a locally nilpotent iterative higher derivation. This point of view fits
in naturally with viewing Ah as a deformation of the polynomial ring A0, allowing for a
generalization of the geometric notion of an action on a space, which in this case could be
thought of as a noncommutative space. See [17] and [18] for results in this direction in the
case of the Weyl algebra A1. Thus, we define the prime characteristic analogue of the Makar-
Limanov invariant, as in [8], and compute it for Ah for any non-constant polynomial h. This
again gives sufficient information for computing Aut(Ah) over a field of prime characteristic.

2 The locally nilpotent derivations of Ah in characteristic 0

Throughout this section, F denotes an arbitrary field of characteristic 0. For a unital F-algebra
A, we denote by LND(A) the set of all locally nilpotent derivations of A. In detail, LND(A) is
the set of all linear maps ∂ : A −→ A satisfying the Leibniz identity ∂(ab) = a∂(b)+∂(a)b and
such that the set N(∂, a) = {n ≥ 0 | ∂n(a) 6= 0} is finite, for all a, b ∈ A. We set A∂ = ker∂, a
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subalgebra of A. It is well known that every ∂ ∈ LND(A) induces a degree function on A by
setting:

deg ∂(0) = −∞, deg ∂(a) = maxN(∂, a), for 0 6= a ∈ A. (2.1)

This degree function has especially nice properties in case A is a domain and char(F) = 0.

Proposition 2.2 ([13]). Assume that A is a domain and F is a field of characteristic zero.
For any ∂ ∈ LND(A) and a, b ∈ A, we have:

(a) deg ∂(ab) = deg ∂(a) + deg ∂(b);

(b) deg ∂(a+ b) ≤ max { deg ∂(a), deg ∂(b)}, with equality if deg ∂(a) 6= deg ∂(b);

(c) deg ∂(∂(a)) = deg ∂(a)− 1 if deg ∂(a) 6= 0.

It follows from (a) above that A∂ is factorially closed: if a, b ∈ A \ {0} and ab ∈ A∂, then
a, b ∈ A∂.

Remark 2.3. The hypotheses on A and F in Proposition 2.2 are needed only for part (a);
the remaining parts hold in general.

There is a strong connection between locally nilpotent derivations and algebra auto-
morphisms of A. Given ∂ ∈ LND(A), there is a well-defined map exp(∂) : A −→ A with

exp(∂)(a) =
∑

k≥0
∂k(a)
k! and it is easy to see that exp(∂) is an algebra automorphism of A. Al-

though the set LND(A) is not in general closed under sums or commutators, the automorphism
group Aut(A) acts on LND(A) by conjugation, and it follows that {exp(∂) | ∂ ∈ LND(A)} gen-
erates a normal subgroup of Aut(A).

Another connection with automorphisms of A is via the so-called Makar-Limanov invariant
of absolute constants, ML(A), introduced in [13]. By definition,

ML(A) =
⋂

∂∈LND(A)

A∂ (2.4)

and clearly the subalgebra ML(A) is invariant under automorphisms of A.

Example 2.5. For α ∈ F, let Aα be the unital associative F-algebra generated by elements
x, y, subject to the relation [y, x] = α, where [a, b] = ab− ba is the commutator.

(a) If α = 0, then A0 = F[x, y] is the usual commutative polynomial algebra of rank 2.
Then the partial derivatives ∂x = d

dx and ∂y = d
dy are locally nilpotent and it is easy to

see that A∂x0 ∩ A
∂y
0 = F. Hence, ML(A0) = F.

(b) If α 6= 0, then Aα is isomorphic to A1, the first Weyl algebra (the algebra of differential
operators on F[x] with polynomial coefficients), with defining relation yx−xy = 1. It is
well known that all derivations of A1 are inner (see e.g. [9, 4.6.8]) and thus of the form
ada, for some a ∈ A1, where ada(b) = [a, b]. Let ∂x = adx and ∂y = ady. It is easy to

see that ∂x, ∂y ∈ LND(A1) and A∂x1 ∩ A
∂y
1 = F. Hence, ML(A1) = F.

Although it was easy to compute ML(Aα) without explicitly determining LND(Aα), in
these two cases the invariant in itself is of no use for computing Aut(Aα). However, in [16]
and [10] the authors describe the automorphism groups of the polynomial algebra A0 and
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of the first Weyl algebra A1, respectively, using a characterization of the locally nilpotent
derivations of the corresponding algebra. Specifically, given α ∈ F (up to isomorphism, it can
be assumed that either α = 0 or α = 1), let Gα be the subgroup of Aut(Aα) generated by the
affine automorphisms (those which leave the 3-dimensional subspace Fx⊕ Fy⊕ F1 invariant)
and the triangular automorphisms (those of the form x 7→ x, y 7→ y+ p(x), with p(x) ∈ F[x]).

Theorem 2.6 ([10, 8.9] and [16, Thé.]). Assume that char(F) = 0 and let α ∈ F. Then, for
any ∂ ∈ LND(Aα), there exists ∆ ∈ Gα such that ∆◦∂◦∆−1(x) = 0 and ∆◦∂◦∆−1(y) = p(x),
for some p(x) ∈ F[x].

Remark 2.7. Using the notation of Theorem 2.6, in case α = 0 we have ∆◦∂ ◦∆−1 = p(x) ddy
and in case α 6= 0 we have ∆ ◦ ∂ ◦∆−1 = adf(x), where p(x) = −f ′(x).

From Theorem 2.6 it is easy to deduce that Aut(Aα) = Gα. For example, in the case of
the Weyl algebra A1 we can argue as follows (compare [10, 8.10]). Let φ ∈ Aut(A1) and set
(u, v) = (φ(x), φ(y)). Then adu = φ ◦ adx ◦ φ−1 ∈ LND(A1). By Theorem 2.6, there exists
∆ ∈ G1 such that ∆ ◦ adu ◦ ∆−1 = adf(x), for some f(x) ∈ F[x]. Thus, adf(x) = ad∆(u)

and since A1 has trivial center when char(F) = 0, we deduce that ∆ ◦ φ(x) = g(x), where
g(x) differs from f(x) by a constant. Moreover, since CA1(x) = F[x], where CA1 stands for
the centralizer in A1, we have that CA1(g(x)) = F[g(x)]. As g /∈ F, it is easy to see that
CA1(g(x)) = F[x], so g(x) = ax+ b for some a, b ∈ F with a 6= 0. Now, applying ∆ ◦ φ to the
defining relation [y, x] = 1, one concludes that ∆ ◦ φ(y) = a−1y + p(x), for some p(x) ∈ F[x],
which shows that ∆ ◦ φ ∈ G1 and Aut(A1) = G1. The proof for the polynomial algebra A0

follows similar reasoning, with a few adaptations.
Our goal in this note is to point out that these ideas apply more generally to a family Ah

of algebras parametrized by arbitrary polynomials h ∈ F[x]. This family was introduced in
[6], where the automorphism groups Aut(Ah) were studied using different methods.

Definition 2.8. Let h ∈ F[x]. The algebra Ah is the unital associative algebra over F with
generators x, y and defining relation [y, x] = h, where [y, x] = yx− xy.

The algebras Ah include the polynomial algebra as A0, the Weyl algebra as A1, the en-
veloping algebra of the two-dimensional non-abelian Lie algebra as Ax, the Jordan plane as
Ax2 , and many others (see [6, 4, 5] for more details on these algebras).

For a general h ∈ F[x], there is a derivation of Ah which is an analogue of the derivations
p(x) ddy of A0 and adf(x) of A1. Given p(x) ∈ F[x], the derivation Dp(x) is determined by

Dp(x) : Ah −→ Ah, Dp(x)(x) = 0, Dp(x)(y) = p(x). (2.9)

It is easy to see that Dp(x) ∈ LND(Ah). Next, we generalize Theorem 2.6 to the algebras Ah.
Notice that the result implies that these algebras are more rigid (in the sense of [7]) when
h /∈ F.

Proposition 2.10. Assume that char(F) = 0 and let h ∈ F[x] \ F. Then, LND(Ah) ={
Dp(x) | p(x) ∈ F[x]

}
and ML(Ah) = F[x].

Proof. Let ∂ ∈ LND(Ah). Then,

∂(h) = [∂(y), x] + [y, ∂(x)]. (2.11)
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In particular, ∂(h) ∈ [Ah,Ah] and by [6, Lem. 6.1], [Ah,Ah] ⊆ hAh, so ∂(h) = hθ, for some
θ ∈ Ah. If ∂(h) 6= 0, then deg ∂(h) − 1 = deg ∂(∂(h)) = deg ∂(h) + deg ∂(θ), which is a
contradiction as deg ∂ does not take on the value −1. Thus, ∂(h) = 0.

Let n be the degree of h as a polynomial in x. By hypothesis, n ≥ 1 and by Proposition 2.2,
0 = deg ∂(h) = n deg ∂(x). Therefore, ∂(x) = 0. Now, using (2.11), we conclude that
∂(y) ∈ CAh

(x) = F[x], where the last equality comes from [6, Lem. 6.3]. We thus conclude that
∂ = Dp(x), where p(x) = ∂(y). The final statement follows from the fact that Ah

Dp(x) = F[x]
for all 0 6= p(x) ∈ F[x].

Each Dp(x) ∈ LND(Ah) determines a triangular automorphism φp(x) = exp
(
Dp(x)

)
with

φp(x)(x) = x and φp(x)(y) = y + p(x). There are also affine automorphisms τ(α,β) such that
τ(α,β)(x) = αx + β and τ(α,β)(y) = αn−1y, for every α, β ∈ F2 with α 6= 0 and h(αx + β) =
αnh(x), where n is the degree of h as a polynomial in x (see [6, Sec. 8] for more details). Let Gh
be the subgroup of Aut(Ah) generated by the triangular and the affine automorphisms defined
above. As a corollary of Proposition 2.10 we get the analogue of Jung’s Theorem [12] for the
polynomial ring A0 and of Dixmier’s Theorem [10] for the Weyl algebra A1. This result was
obtained in [6] using different methods but here we wish to underline the common features
and properties of the locally nilpotent derivations of the algebras Ah as a whole, showing
how they fit into the approach used by Dixmier and Rentschler in [10] and [16], respectively,
and how their structure under the action of the group Gh allows for the description of their
automorphism groups. Another example of this phenomenon occurs in [2], where the authors
study the isomorphisms and automorphisms of a family of generalized Weyl algebras over a
polynomial algebra of rank one.

Corollary 2.12. Assume that char(F) = 0 and let h ∈ F[x] \ F. Then Aut(Ah) = Gh, i.e.
Aut(Ah) is generated by the triangular automorphisms φp(x) = exp

(
Dp(x)

)
and the affine

automorphisms τ(α,β).

Proof. Let φ ∈ Aut(Ah) with h ∈ F[x] of degree n. By Proposition 2.10, ML(Ah) = F[x], so
there are α, β ∈ F with α 6= 0 such that φ(x) = αx + β. Applying φ to the defining relation
of Ah we obtain [φ(y), x] = α−1h(αx + β). Let ∂ = ad−x = Dh. Then the relation obtained
implies that deg ∂(φ(y)) = 1. It is not hard to see that the set of θ ∈ Ah with deg ∂(θ) = 1 is
(F[x]y + F[x])\F[x], so there are f, g ∈ F[x] with f 6= 0 such that φ(y) = fy+g. Substituting
into [φ(y), x] = α−1h(αx + β) we deduce that αfh = h(αx + β). Hence, comparing the
coefficients of xn on both sides, we get f = αn−1 ∈ F∗ and αnh = h(αx+ β). Finally, notice
that φ = φα1−ng ◦ τ(α,β) ∈ Gh.

3 Higher derivations of Ah

Unless stated otherwise, throughout this section F denotes a field of arbitrary characteristic.
As remarked after Proposition 2.2, the fundamental properties of deg ∂ hold over fields of
arbitrary characteristic, except for the multiplicative property.

Example 3.1. Assume that char(F) = p > 0. Then the Weyl algebra has non-inner deriva-
tions. One such is Ex, defined by Ex(x) = yp−1 and Ex(y) = 0. This derivation is locally
nilpotent and deg Ex(x) = 1, deg Ex(y) = 0. Since A1 is a domain, we can still deduce that
deg Ex(xp) ≤ p, but in fact we have Ex(xp) = −1, so deg Ex(xp) = 1 (see [5] for more details).

5



One way of circumventing this problem is to follow along the generalization introduced
in [8], motivated by the more geometric notion of an action of the additive group Ga on a
variety V . From the algebraic point of view, the affine group scheme Ga is represented by the
Hopf algebra F[t], with comultiplication ∆ : t 7→ t⊗ 1 + 1⊗ t, counit ε : t 7→ 0 and antipode
S : t 7→ −t. The action of Ga on V then corresponds to a F[t]-comodule algebra structure on
the coordinate ring of V . This is the setting of Rentschler’s Theorem in [16], where his result
is phrased in terms of actions of the additive group Ga on the affine plane, represented by the
polynomial ring A0.

Let us very briefly explain the connection between this algebraic setting and derivations.
Let A be a (not necessarily commutative) algebra. Then a (right) F[t]-comodule algebra
structure on A is a map δ : A −→ A ⊗ F[t] satisfying the following axioms (dualizing the
axioms for an action):

(i) δ is an algebra homomorphism;

(ii) (IdA ⊗∆) ◦ δ =
(
δ ⊗ IdF[t]

)
◦ δ;

(iii) (IdA ⊗ ε) ◦ δ = µ;

where µ : A −→ A⊗ F is the canonical isomorphism. Given such a map δ, write

δ(a) =
∑
k≥0

∂k(a)⊗ tk, (3.2)

where, for each a ∈ A, the sum is finite and ∂k : A −→ A. Then the above axioms are
equivalent to the following properties (a, b ∈ A and k ≥ 0):

(i) ∂k is a linear map;

(ii) ∂0 = IdA;

(iii) ∂k(ab) =
∑k

i=0 ∂i(a)∂k−i(b);

(iv) ∂k ◦ ∂j =
(
k+j
k

)
∂k+j ;

(v) {k ≥ 0 | ∂k(a) 6= 0} is finite.

A sequence ∂ = {∂k}k≥0 satisfying properties (i)–(iii) above is called a higher derivation
of A. If in addition ∂ satisfies (iv), we say that it is iterative, and if it satisfies (v) then we
say that it is locally nilpotent. We have thus encoded Ga group actions and, more generally,
F[t]-comodule algebra structures, using locally nilpotent iterative higher derivations.

Let ∂ = {∂k}k≥0 be a locally nilpotent iterative higher derivation of A. Notice that, in
particular, ∂1 is a derivation of A. In case the base field F has characteristic 0, it is easy to

show that ∂k =
∂k1
k! , for all k ≥ 0, and it follows that ∂1 is locally nilpotent as a derivation of

A. Conversely (still in characteristic 0), a locally nilpotent derivation ∂1 of A determines the

locally nilpotent iterative higher derivation
{
∂k1
k!

}
k≥0

. So, over fields of characteristic 0 these

two concepts coincide, but it is not longer so in characteristic p > 0, as the maps ∂pk , for
k ≥ 0, are in a sense independent. Specifically, it can be proved that, writing k =

∑m
i=0 kip

i,
with 0 ≤ ki < p, then

∂k =
∂k0
p0
◦ ∂k1

p1
◦ · · · ◦ ∂kmpm

k0!k1! · · · km!
.
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Therefore, the natural generalization of the Makar-Limanov invariant over fields of positive
characteristic uses locally nilpotent iterative higher derivations. We denote the set of such
higher derivations of an algebra A by LNIHD(A) and set

ML(A) =
⋂

∂∈LNIHD(A)

A∂ , (3.3)

where A∂ = {a ∈ A | ∂k(a) = 0, for all k ≥ 1}. We pursue this further by setting N(∂, a) =
{k ≥ 0 | ∂k(a) 6= 0} and

deg ∂(0) = −∞, deg ∂(a) = maxN(∂, a), for 0 6= a ∈ A. (3.4)

Since Aut(A) acts on LNIHD(A) by conjugation, the subalgebra ML(A) is invariant under
automorphisms.

With these definitions, the new notions coincide with the existing ones when the base field
has characteristic 0. It is easy to see that this extended notion of deg ∂ , for ∂ ∈ LNIHD(A),
still satisfies the additive property from Proposition 2.2 (b) and, as long as A is a domain, it
satisfies the multiplicative property (a) as well. See [8] for more details, especially in the case
that A is commutative.

Now we return to the algebras Ah and compute the invariant ML(Ah) over a field of
arbitrary characteristic.

Lemma 3.5. Let h ∈ F[x] \ F. Then, for any ∂ ∈ LNIHD(Ah), x ∈ A∂h and ∂k(y) commutes
with x, for every k ≥ 1.

Proof. Fix ∂ = {∂k}k≥0 ∈ LNIHD(Ah) and recall that ∂ defines an algebra homomorphism
δ : Ah −→ Ah ⊗ F[t] as in (3.2). Then, applying δ to the relation h = [y, x] we see that
δ(h) ∈ [Ah ⊗ F[t],Ah ⊗ F[t]] ⊆ [Ah,Ah]⊗F[t] ⊆ hAh⊗F[t]. Thus, for every k ≥ 0, ∂k(h) = hθk,
for some θk ∈ Ah.

Let k ≥ 1 and ` = deg ∂(h). For any j > ` − k, we have ∂j(∂k(h)) =
(
k+j
k

)
∂k+j(h) = 0.

Thus,
`+ deg ∂(θk) = deg ∂(hθk) = deg ∂(∂k(h)) ≤ `− k.

It follows that deg ∂(θk) = −∞, so θk = 0 = ∂k(h). This shows that deg ∂(h) = 0. Now, as
in the proof of Proposition 2.10, the latter implies that deg ∂(x) = 0, so x ∈ A∂h.

Applying δ once again to the defining relation of Ah gives:

h⊗ 1 = δ(h) =
∑
k≥0

[∂k(y), x]⊗ tk,

whence the final claim.

Guided by the above result, below we construct locally nilpotent iterative higher deriva-
tions of Ah which in positive characteristic take the role of the locally nilpotent derivations
p(x) ddy of A0, adf(x) of A1 and Dp(x) of Ah, as defined in (2.9). For related results on the
polynomial algebra A0 and on the Weyl algebra A1 see [15] and [18], respectively.

Lemma 3.6. Assume that char(F) = p > 0 and fix h ∈ F[x]. Let P = {Pi(x)}i≥0 be a family
of elements of F[x] such that Pi = 0 for i � 0. Then there is a locally nilpotent iterative
higher derivation of Ah, denoted by ∂P = {(∂P )k}k≥0, such that:
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(a) (∂P )0 = IdAh
,

(b) (∂P )k(x) = 0, for all k ≥ 1,

(c) (∂P )k(y) = Pi(x), if k = pi for some i ≥ 0,

(d) (∂P )k(y) = 0 for all other k ≥ 1.

Proof. As seen in (3.2), the claim is tantamount to the statement that δ =
∑

k≥0(∂P )k ⊗ tk
defines a F[t]-comodule algebra structure on Ah, which is what will be proved.

Let ck = (∂P )k(y), so that c0 = y, cpi = Pi(x) and ck = 0 for all other values of k. Then,
as ∑

k≥0

ck ⊗ tk, x⊗ 1

 =
∑
k≥0

[ck, x]⊗ tk = [y, x]⊗ 1 = h⊗ 1,

it follows that there is a unique algebra homomorphism δ : Ah −→ Ah ⊗ F[t] such that
δ(x) = x⊗1 and δ(y) =

∑
k≥0 ck⊗ tk. This already shows that ∂P is a higher derivation of Ah

and it is locally nilpotent by the finiteness assumption on P = {Pi(x)}i≥0. Hence it remains
to prove the iterative property, which is equivalent to the following equality:

δ(ck) =
∑
j≥0

(
k + j

k

)
ck+j ⊗ tj , for all k ≥ 0. (3.7)

If k = 0, then (3.7) reduces to δ(y) = δ(c0), which clearly holds. Otherwise, there is
a unique i ≥ 0 such that pi ≤ k < pi+1. Then either ck = Pi(x) or ck = 0; regardless,
δ(ck) = ck ⊗ 1. Now consider the right-hand side of (3.7). If j = 0, the corresponding
summand is ck ⊗ 1, thus we need to show that for j > 0,

(
k+j
k

)
ck+j = 0. Suppose that

ck+j 6= 0. Then, as k, j > 0, there is ` > i such that k + j = p` and by Lucas’ Theorem,(
k + j

k

)
=

(
p`

k

)
≡
∏̀
m=0

(
am
bm

)
(mod p),

where p` =
∑

m amp
m and k =

∑
m bmp

m are the p-adic expansions. Since am = 0 for all

m < ` and pi ≤ k < pi+1, it follows that ai = 0 and bi > 0, so
(
ai
bi

)
= 0 and

(
k+j
k

)
≡ 0 (mod p).

This proves that
(
k+j
k

)
ck+j = 0 for all j > 0, so ∂P is iterative.

Now we are ready to compute the Makar-Limanov invariant ML(Ah) in case char(F) =
p > 0 and see that this information is enough to describe the automorphism group of Ah, as
in Corollary 2.12.

Corollary 3.8. Let h ∈ F[x] \ F. Then, ML(Ah) = F[x] and Aut(Ah) = Gh.

Proof. In view of Proposition 2.10 and Corollary 2.12, we can assume that char(F) = p >
0. Then, by Lemma 3.5, F[x] ⊆ ML(Ah). Now, by Lemma 3.6, for every ` ≥ 0, there is
∂P ∈ LNIHD(Ah) such that deg ∂P (y) = p` ≥ 1. For any such higher derivation, A∂Ph = F[x],
proving equality. Now, as in Corollary 2.12, this implies that any automorphism of Ah sends
x to αx + β for some α, β ∈ F with α 6= 0. This result and its analogue for the inverse
automorphism imply that y is sent to αn−1y + g, as in the proof of Corollary 2.12.
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10


