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ABSTRACT. We obtain large deviations estimates for systems with stretched exponential
decay of correlations, which improve the ones previously obtained in the literature. As a
consequence we obtain better large deviations estimates for Viana maps and get large devi-
ations estimates for a class of intermittent maps with stretched exponential loss of memory.

1. INTRODUCTION

In the last two decades the study of statistical properties of non-uniformly dynamical systems
has been capturing much interest and attention. The memory loss of the systems given in
terms of decay of correlations and its connections with limiting laws, such as central limit the-
orems, invariance principles, extreme value distributions, and other properties such as large
deviation principles have been investigated thoroughly. In order to prove such properties,
several different techniques have been used, such as: inducing, coupling, spectral analysis
of transfer operators or renewal equations. One of the tools that has revealed to be very
powerful is the construction of Gibbs-Markov structures called Young towers whose inducing
times allow to describe the rates of mixing of the system ([You98, You99]) and ultimately
obtain estimates for large deviations ([MNO§]) and several types of limiting laws.

In [AFLV1I], the authors studied the relations between the rates of decay of correlations,
large deviation estimates and the tail of the inducing times of Young towers. In particu-
lar, they proved a sort of reciprocal of Young’s results, namely, they have shown that if
the system has a certain rate of decay of correlations, then it admits a Young tower whose
inducing times’ tail decays at a similar rate. This was done both for local diffeomorphisms
and maps with critical /singular sets. The construction of the Young tower and the estimates
on the induced time tail follow from large deviations estimates for the expansion function
and for the distance to the critical /singular set. Hence, at the core of that paper is a result
([AFLV11, Theorem D]) that establishes a connection between the rates for large deviations

RA was partially supported by FCT grant SFRH/BPD/123630/2016. Both authors were partially supported
by FCT projects FAPESP/19805/2014, PTDC/MAT-CAL/3884/2014 and PTDC/MAT-PUR/28177/2017,
with national funds, and by CMUP (UID/MAT/00144/2019), which is funded by FCT with national
(MCTES) and European structural funds through the programs FEDER, under the partnership agreement
PT2020. RA would like to thank Jean-René Chazottes and Cesar Maldonado for interesting discussions on
this topic. JMF would like to thank José Alves for useful comments. The authors would also like to thank
the referees for their useful suggestions.
1



2 R. AIMINO AND J. M. FREITAS

estimates of observable functions and the rates of decay of correlations of those observables
against essentially bounded functions. Two types of decay rates were considered: polyno-
mial and stretched exponential. To be more precise, this result asserted that if a systems
has decay of correlations for observables on a certain Banach space against all essentially
bounded functions at a polynomial rate or at a stretched exponential rate, then the large
deviations estimates for those particular observables decay, respectively, at a polynomial or
stretched exponential rate. Moreover, the dependence of the exponents and constants was
clearly stated. We remark that the polynomial case had already been proved in [Mel09).
However, as a corollary from the stretched exponential counterpart, in [AFLV11], the au-
thors obtained, for the first time, stretched exponential estimates for the large deviations
of Holder continuous observables evaluated along the orbits of Viana maps. Under certain
certain more restrictive assumptions, in [AFLV11l Theorem E], the exponential case was also
covered, but the assumption on the decay of correlations was rather very strong.

The main goal of this note is to improve the large deviations estimates for the stretched
exponential case obtained in [AFLVI1I, Theorem D]. Namely, we obtain a smaller loss in
the exponent of the stretched exponential rate when one goes from decay of correlations to
large deviations estimates. We apply this result to Viana maps in order to obtain the best
rates of large deviations estimates for these maps available in the literature. We also apply
it to some some non-uniformly expanding maps introduced in [CDKMIS8]|, which result from
a modification of the intermittent maps studied in [LSV99] carried out in order to produce
stretched exponential decay of correlations.

The proof of the result is based on a technique introduced by Gordin that allows to write the
sum of the random variables generated by the dynamics as a sum of reverse time martingale
differences plus a coboundary. Then the problem is reduced to control the large deviations of
the sum of martingale differences. In the polynomial case, in [Mel09], this is done using Rio’s
inequality. In the stretched exponential case, in [AFLV11], the Azuma-Hoeffding inequality
was used, instead. Here, we use again Rio’s inequality and a power series expansion of the
exponential moments of the sum of martingale differences in order to improve the exponent
in the large deviation estimates obtained in [AFLV11, Theorem D] .

This short paper is organised as follows. In Section [2| we state the main result and give some
applications. Section [3]is dedicated to the proofs.

2. STATEMENT OF RESULTS AND APPLICATIONS

Let T': X — X be a dynamical system with an ergodic invariant probability measure p. Let
¢ : X — R be an observable with ¢ € L*(u) and let

n—1
Pn = Z wo T".
k=0
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Birkhoft’s ergodic theorem guarantees that for p-a.e. x € X, time averages converge to the
spatial average, i.e.,

1
lim —y,(z) = /sodu~

n—oo 1

The study of Large Deviations concerns the probability of observing a deviation from the
mean for Birkhoff averages, namely, for a deviation size € > 0, we define:

LD(e, p,n) :u<%gon—/godu' >5).

Of course, Birkhoft’s ergodic theorem implies that for all €, we have that LD(e, ¢, n) vanishes
as n — oo. Large Deviations theory concerns the rate at which this quantity goes to 0. In
the classical case of independent and identically distributed random variables with a finite
exponential moment, LD(e, ¢, n) decays exponentially fast in n and, in fact, one can prove a
Large Deviations principle which establishes that there exists a strictly convex function I(g),
vanishing only at 0, such that

1
Jim —log(LD(e, ¢, 1)) = ~1(e).

In this setting the function [ is also called Cramer function and can be obtained from the
knowledge of the distribution of random variable . Large Deviations principles have been
proved by several authors for uniformly hyperbolic systems (see for example [OPS8S8| [Kif90l
Lop90, You90l, Wadog]).

One of the main aspects of raised in [Mel09, [AFLV1I] was the intimate connection between
Large Deviations and Decay of Correlations.

Definition 1 (Decay of correlations). Let C;,Cy denote Banach spaces of real valued mea-
surable functions defined on X. We denote the correlation of non-zero functions ¢ € C; and

Y € Cy w.r.t. a measure  as
1
= - oT™) du — d dp .
e ] oo foan fu “’

We say that we have decay of correlations, w.r.t. the measure pu, for observables in C; against
observables in C, if, for every ¢ € C; and every ¢ € Co we have

Cor, (¢, ¢, n) :

Cor,(¢,¢,n) -0, asn— oo.

We say that we have decay of correlations against L* observables whenever this holds for
Cy = L'(p) and [[Y[lc, = [[¢]lr = [ [¢] dp.

For non-uniformly hyperbolic systems, decay of correlations may not be exponential and, in
those cases, the decay rate of LD(g, ¢, n) is not exponential. For example, in the intermittent
case of the Manneville — Pomeau maps, it has been proved that LD(e, ¢, n) decays polyno-
mially fast (see for example [MNO§|, PS09, Mel09, [AFLVII]). In some cases, like for Viana
maps, for which streched exponential decay of correlations has been proved, the rate of decay
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of LD(g, p,n) is stretched exponential ([AFLV1I]). For other results regarding Large Devi-
ations for non-uniformly hyperbolic systems, see for example: [AP06], [MNOS, Mel09, [PS09L
AFLV11 Varl2 [CTY17).

Exponential decay of correlations alone has not proved to be enough to prove exponential
Large Deviations. So far, exponential Large Deviations rates have only been obtained by
requiring some stronger properties, like a spectral gap for the Perron-Frobenius operator or
decay of correlations against all L' observations (see discussion in [AFLVTI]). There is some
loss in the exponents when one goes from decay of correlations estimates to rates of Large
Deviations, unless some more information is known.

Very recently, in [NT19], the authors show that even for very well behaved systems with expo-
nential decay of correlations, for unbounded observables, one cannot obtain Large Deviations
rates better than stretched exponential. We consider observables in L> and we managed to
improve the loss in the exponents observed from the rates of decay of correlations to Large
Deviations rates. However, it remains an open question whether the loss we managed to
improve here is optimal (as in the unbounded case) or not.

We are now ready to state our main result. In what follows, for notational simplicity, we
assume without loss of generality that [ ~ pdp = 0.

Theorem 2. Let p € L™®(u). Suppose that there exist C, > 0, 7 > 0 and § € (0, 1] such that

(1) /X w.apo T du

Then there ezists ¢ = ¢(6,7) > 0 such that for alln > 1 and € > 0,

< Cyll9]

Lzoe’me, Vi € L*>®(p), n > 0.

Y
/29n9

pllpn| > ne) <277,

with 0" = %, T = 06’;29/ and 5q, = max{||¢l|re, Cp}-

Note that the exponent §' = % that we obtain for the large deviations estimate is larger
_0_

than the one obtained in [AFLV1I, Theorem D], where the exponent was equal to ;75.

Of course, this result gives rise to the natural question regarding to which extent the exponent
for the stretched exponential large deviations estimate that we managed to improve here is
optimal.

2.1. Large deviations for Viana maps. In [Via97|, Viana introduced an important class
of nonuniform expanding dynamical systems with critical sets in dimension greater than one.
This class of maps can be described as follows. Let ag € (1,2) be such that the critical point
x = 0 is pre-periodic for the quadratic map Q(z) = a9 — 2*. Let S' =R/Z and b: S' - R
be a Morse function, for instance, b(s) = sin(27s). For fixed small o > 0, consider the map

A

f: S'xR — St xR
(s,2) = (9(s),4(s,2))
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where G(s,r) = a(s) — x? with a(s) = ag + ab(s), and § is the uniformly expanding map of
the circle defined by g(s) = ds (mod Z) for some integer d > 2. It is easy to check that for
o > 0 small enough there is an interval I C (—=2,2) for which f(S" x I) is contained in the
interior of S' x I. Hence, S' x I is a forward invariant region for any map f sufficiently
close to f in the C° topology. Any such map restricted to S! x I is called a Viana map. It
was shown in [Alv00] that Viana maps have a unique ergodic absolutely continuous invariant
probability measure (acip) . In [Gou06], it was proved that every Viana map exhibits
stretched exponential decay of correlations, with § = 1/2, for Hélder continuous functions
against L>(u) functions. Consequently, the following corollary is a direct application of
Theorem 2

Corollary 3. Let f be a Viana map and let p be its unique acip. Then, for every Hélder
continuous observable ¢ and every € > 0, there exist T = 7(p,€) > 0 and C = C(p,€) > 0

such that pu (| Lo, — [odu] >€) < Ce ™",

For comparison purposes, we remark that the large deviations estimate obtained in [AFLVII]
Theorem G| was of the order of e~

2.2. Large deviations for intermittent maps with stretched exponential decay of
correlations. We consider the family of interval maps f, : [0,1] — [0,1], with v € (0, 1],
introduced in [CDKMIS8, Appendix A], which result from adapting the intermittent maps
studied in [LSV99] so that the contact between the graph of fz and the identity at the fixed
point creates a stretched exponential fast accumulation of the pre-orbit of 1/2 at 0, which
eventually is responsible for stretched exponential decay of correlations. Namely, consider
that

<1og2>f1-1> <
@) fola)={" (1+ (i), w12,
2x — 1, x>1/2

From |[CDKMIS, Theorem A.1], it follows that f, has an absolutely continuous invariant
measure p and exhibits stretched exponential decay of correlations, with 8 = ~, for Holder
continuous functions against L*°(u) functions. Hence, as consequence of Theorem , we
obtain:

Corollary 4. Let f, be as in (2) and let p be its acip. Then, for every Hélder continuous
observable ¢ and every € > 0, there exist T = 1(p,e) > 0 and C' = C(p,€) > 0 such that

i lien = [odu| > €) < Cemm 7T,

3. PROOF

To prove Theorem [2| we will estimate all the moments of ¢,,.
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Lemma 5. There ezists K = K(0,7) > 0 such that for all ¢ > 0 and n > 1, and all
¢ € L>=(p) satisfying (1)), we have

(/ |on ]qd,u) <KC’¢q

Proof. In this proof, we will use K to designate a generic constant whose value can change
from one occurence to the other. The value of K depends only on 6 and 7, and in particular
is independent from n, ¢ and the observable .

(1+5)p,

[SIES
m\»—t

We will follow closely the proof of [Mel09, Lemma 2.1], adapted to our assumption of stretched
exponential decay, keeping a precise track of the dependence in ¢ of all the estimates.

Let £: L'(u) — L'(n) be the transfer operator of T, i.e. the unique operator satisfying
[ eoTdu= [ Lo, voe L), Vo € 1)
X X

Since L*(p) is the dual of L'(y), (1)) implies that [|£"¢||z; < C,e~™" . Hence, for all ¢ > 1,

(4

n n -1 n 1 _—mn
Jreretan <ievelty [ 1eneldn < ulelite ™
X X
Defining x = > 7, L™p, we get, for all ¢ > 1,

Ty > 71n9 ~ & _ T 46
MW<ZMW%_ZCWquS el [t
0

~ 111 1
=C,qgo——1| =
o (9)
= Kég,q%,
where we have performed the change of variables s = gte.
Defining ¢ = ¢ + x — x o T', we also have
1 ~ 1
(I6lzg < lellzg +2lxllzg < @l +2KCoqo < KCpgo.

It is immediate to verify that £¢ = 0, and so {¢poT*; k =0,1,2,...} is a sequence of reverse
martingale differences. Passing to the natural extension, we can reduce the situation to the
case where {¢ o T"*; k = 0,1,2,...} is a sequence of martingale differences with respect to a
filtration {Fy; £ =0,1,2,...}.
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By Rio’s inequality [Rio00, Theorem 2.5], we have for all ¢ > 1:

n q
2
heiy < (1030
=1

where

J
poT" ZE(@ o T*|F)

k=i

b; », = max

<
i<j<n < [Jp]| e max

i<j<n

j
Y E(poT"F)
k=i

LY, L},

From the definition of ¢ and the martingale property, it follows

J
S E(p o THE) = ¢ o T — E(x o T'|F;) + E(x o TV F),
k=1

so that A
J
> E(poTHF)

k=i

~ 1
< llollrg + 2lxllzg < KCyq?.

L,
Hence b;,, < H(pHLzoKapqé < Kézq% and we thus obtain for all ¢ > 1
2 <K<52 I+ )q

It < K (G2 in)"

which yields the required estimate for all ¢ > 2. The general case of ¢ > 0 is deduced by
1
changing the value of the constant K, since the map q — ( | X ]cpn|qd,u) ¢ is non decreasing
for ¢ € (0, 00). O
Lemma 6. There exists c = c(0,7) > 0 such that for all ¢ € L*>(p) satisfying (1))
sup/ erfn—gllwnlw/d,u <2,
D'

n>1

. =~ _op/
with 7' = cC; 20"

Proof. By expanding the exponential in power series and using Fubini’s theorem and Lemmalf]
we have for all 7/ > 0 and n > 1:

T’n’9/|g0n|2‘9/d _ . (T/)kn_kel 2k9’d < S 29/ /K29’6129’ k kk
K n=2 g | Ll p< Y (207K CE)
k=0 k=0

Since, by induction over k, we have k! > (%)k for all £ > 1, it follows

1, —0' ! > 1 ~op! k
/ e™’m %o |?? d,u S Z (269/}(26 C«i@ 7_/) _ 2’
X

k=0

if we set 7/ = 05;29' for ¢ = (4e0/ K%)=, O
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Proof of Theorem[3 For all n > 1 and € > 0, by Markov’s inequality and Lemma [6]

Remark

/ / / /
'n—0 |<Pn|29 eT/ne €20

1(Jon| > ne) = pe

1.0 20 7, —6 20’
<e T /ern len] d,u
X

1,,6" 26"

S2€_Tn €
]

7. By changing the value of ¢, we can replace the constant 2 by any constant of

the form 1+ 4, 6 > 0.
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