
Synchrony and Elementary Operations
on Coupled Cell Networks

M.A.D. Aguiar1, A.P.S. Dias2 and H. Ruan3

1 Centro de Matemática da Universidade do Porto∗,

Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

Faculdade de Economia, Universidade do Porto,

Rua Dr Roberto Frias, 4200-464 Porto, Portugal
2 Departamento de Matemática, Centro de Matemática, Universidade do Porto,

Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
3 Fachbereich Mathematik, Universität Hamburg,

Bundesstraße 55, 20146 Hamburg, Germany

E-mail: maguiar@fep.up.pt apdias@fc.up.pt haibo.ruan@math.uni-hamburg.de

July 9, 2013

Abstract

On a finite graph (network), let every node (cell) represent an individual dy-
namics given by a systemof ordinary differential equations, and every arrow (edge)
encode the dynamical influence of the tail node to the head node. We then have
defined a coupled cell system that is associated with the given network structure.
Subspaces that are defined by equalities of cell coordinates and left invariant under
every coupled cell system respecting the given network structure are called syn-
chrony subspaces. These are completely determined by the network structure and
form a complete lattice under set-inclusions. We analyze the transition of the lattice
of synchrony subspaces of a network that is caused by structural changes in the
network topology, such as deletion or/and addition of cells or/and edges, or/and
rewirings of edges. We give necessary and sufficient conditions underwhich lattice
elements persist or disappear. Our analysis is both algebraic and algorithmic.

AMS classification scheme numbers: 34C15 37C10 05C76 06B23

Keywords: Coupled cell network; graph operation; coupled cell system; synchrony
subspace; lattice.

∗Research funded by the European Regional Development Fund through the programme COMPETE
and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia under
the project PEst-C/MAT/UI0144/2011 and PTDC/MAT/100055/2008.

1

1 Introduction

In the theory of coupled cell networks developed by Stewart, Golubitsky and their
co-workers in [18, 11, 10] or Field in [9], a network is a finite set of nodes (or cells) linked
together by a finite number of arrows and dynamical systems that are consistent with
this network structure are called the admissible coupled cell systems. More precisely,
every cell of the network represents an individual dynamics given by a finite set of
ordinary differential equations and each arrow describes the interaction between the
two connected individuals. In analogue to other structures of dynamical systems such
as symmetry or the Hamiltonian, network structure imposes strong restrictions on
the dynamics of the associated coupled cell systems. One striking example of that is
the existence of synchrony subspaces, which are spaces defined by equalities of some cell
coordinates that are flow-invariant for all coupled cell systems associatedwith the given
network structure. See, for example, the paper by Aguiar et al. [1] where coupled cell
systems supporting heteroclinic behavior are analyzed and part of the crucial elements
guaranteeing that kind of dynamics is the existence of synchrony subspaces for which
the restricted systems have the desired dynamic properties. Those restricted systems
are also coupled cell systems associated with smaller networks, called the quotient
networks.

Synchrony subspaces can be determined solely by the underlying network struc-
ture. More precisely, Stewart, Golubitsky and their co-workers proved in [18, 11] that
synchrony subspaces of coupled cell systems associatedwith a network structure are in
one-to-one correspondence to certain equivalence relations defined on the set of cells of
the network satisfying a combinatorial property. These are called balanced equivalence
relations (cf. Definition 2.5). More specifically, denote by ⊲⊳ an equivalence relation
on the cell set of the network and by ∆⊲⊳ the (polydiagonal) subspace given by equal-
ities of cell coordinates among ⊲⊳-equivalent cells. Then, it is shown in [18, 11] that a
polydiagonal ∆⊲⊳ is a synchrony subspace if and only if it is left invariant under the
network adjacency matrices (one for each edge type), which happens if and only if ⊲⊳
is balanced.

By Stewart [17], the set of all synchrony subspaces of a network forms a complete
lattice under the set-inclusion (see also Aldis [5]). Equivalently, the set of all balanced
equivalence relations on the set of cells of a network G, denoted by ΛG, is a complete

lattice under the refinement of equivalence relations. Aguiar and Dias [2] showed
how to obtain the lattice of synchrony subspaces for a general network and presented
an algorithm that generates this lattice. Indeed, it is proved that this problem can
be reduced to finding the lattice of synchrony subspaces for regular networks, that is,
networks with only one cell type and one arrow type, and such that every cell receives
the same number of input arrows. For a regular network, the lattice of synchrony
subspaces can be obtained using the eigenvalue structure of the network adjacency
matrix. This approach was motivated by the work of Kamei [13] on the class of regular
networks where the adjacency matrix has only simple eigenvalues. See also Kamei
and Cock [14] for a computer algorithm searching for all possible balanced equivalence
relations using symbolic matrix computations.

In the realm of networks in nature and science, it is a common knowledge that

2

networks having different network topology support different patterns of dynamic
behavior. A vivid example is the gene regulatory networks, which, under different
conditions, exhibit different regulation patterns accompanied by different transcrip-
tional network topologies (cf. Zhang et al. [19] and Luscombe et al. [16]). As one of the
most investigated network-specific dynamic, network synchronizability shows to vary
as the network structure varies (cf. Atay and Biyikoglu [6], Lu et al. [15] and Chen
and Duan [7]). Furthermore, Hagberg and Schult [12] discussed how to engineer a
diffusively coupled network using elementary edge operations to enhance the network
synchronization.

Asmentioned earlier, in the context of coupled cell systems, the connecting topology
of a network dictates the lattice of balanced equivalence relations (or equivalently, the
lattice of synchrony subspaces). Thus, it is natural and of interest to ask how these
lattices evolve as the underlying topology of the network changes. In this perspective,
Aguiar and Ruan [4] considered non-product binary operations on networks such as
the join and the coalescence; Aguiar and Dias [3] addressed the same question for
product operations on networks.

In this paper we evaluate the impact of structural changes in network topology on
the lattice of balanced equivalence relations of the network, through elementary graph
operations such as addition and/or deletion of cells and/or edges, and/or rewiring
of edges. As one can expect, the lattice of balanced equivalence relations changes
in general: some relations persist, some disappear and some emerge. In particular,
we describe necessary and sufficient conditions for balanced equivalence relations to
persist or disappear.

Let G1 be a coupled cell network and G2 be the network obtained from G1 by an
elementary graph operation on edges or nodes. Since the sets of the adjacencymatrices
of G1 and G2 are in general, not identical, they may not generate the same linear space.
Thus, the coupled cell systems associated with G1 and G2 are generally not ODE-
equivalent (cf. Dias and Stewart [8]). In particular, some or all synchrony subspaces
can be different for G1 and G2.

More specifically, let ∼I1 denote the input equivalence relation on the set of cells in G1,
where two cells are said to be∼I1-equivalent if and only if their input sets are isomorphic
and admit a bijection preserving edge types. Here the input set of a cell is the multiset
of the tail cells of its input edges (cf. Definition 2.2). In Subsection 3.1 we consider
removing or adding an edge, whose head cell we denote by co. We show that a balanced
relation ⊲⊳ on G1 is again balanced on G2 if and only if co is not ⊲⊳-equivalent with any
other cell (cf. Lemma 3.3) and vice versa if one interchange G1 and G2. It follows that
a sufficient condition for ΛG2

⊆ ΛG1
is that [co]∼I2 contains only one element in G2. A

special case is when G1 is a homogeneous network (network with only one input type of
cell), then we have ΛG2

⊆ ΛG1
, where ΛG2

consists of those balanced relations ⊲⊳ in

ΛG1
such that [co]⊲⊳ = {co}.

The rewiring case is addressed in Subsection 3.2. Here, by a rewiringof a network,we
mean a graph operation on edges of the network under which the input equivalence
relation is preserved. A rewiring of a network can be viewed as a composition of
several elementary rewirings, where an elementary rewiring takes place in the input set
of only one cell by replacing one input edge with another one of the same type. Our

3

goal of this subsection is then to recover ΛG2
from ΛG1

, where G2 is obtained from

G1 by an elementary rewiring. In principle, one can view an elementary rewiring
as first removing and then adding an edge, thus apply the result from Subsection 3.1
consecutively. However, aswewill see, it ismore advantageous to consider the rewiring
as a one-step operation, since it is, in contrast to the deletion or addition of an edge, an
operation preserving the input equivalence relation.

It should be mentioned that some partial results on rewiring have been obtained
by Field in [9], where he considered invariants of a network under repatching and
explored the patch equivalence for balanced equivalence relations. More precisely,
given a network G1 and an equivalence relation ⊲⊳ on its cell set C, a network G2 is
called a repatching of G1 if the number of edges, per edge-type, from cells in [c]⊲⊳ to
every cell in [d]⊲⊳ is the same on both G1 and G2, for all c, d ∈ C. The networks G1 and
G2 are called patch ⊲⊳-equivalent according to the terminology in Field [9]. It follows that
for patch ⊲⊳-equivalent networksG1 andG2, the relation ⊲⊳ is balanced onG2 if and only
if is balanced on G1 (cf. Field [9]).

In Subsection 3.2, we characterize those balanced equivalence relations from ΛG2

that are inherited from ΛG1
(cf. Lemma 3.10). In particular, we extend the results of

Field [9] mentioned above. That is, suppose the rewiring operation replaces an input
edge to co from dwith one from a, then a balanced equivalence relation ⊲⊳ onG1 is again
balanced on G2 if and only if a ⊲⊳ d or [co]⊲⊳ = {co}.

In Section 4 we consider graph operations on nodes and start with the case when a
node, togetherwith all its edges, is removed. We show thatΛG2

of the resulting network

can be completely recovered from ΛG1
of the initial network, if the input equivalence

relation of G2 refines the (projected) input equivalence relation of G1. In this case, ΛG2

is given by the projected balanced relations ⊲⊳ on G1 such that [co]⊲⊳ = {co} for co being
the removed node (cf. Propositions 4.10 and 4.14). As special cases, when there are no
outgoing edges from co to other cells, or when G1 is a homogeneous network, thenΛG2

is completely recoverable from ΛG1
(cf. Corolary 4.16).

The paper is organized as follows. In Section 2, we introduce notations and give
a compact presentation about coupled cell networks, coupled cell systems, synchrony
subspaces and balanced equivalence relations on networks. Ourmain results appear in
Sections 3-4. All the results are accompanied with examples and algorithms. In all the
algorithms, we refer to Algorithm A.1, which is an adaptation of Algorithm 6.3 in [2]
(cf. Appendix A).

In Subsection 3.1 we analyze the effect of removing or adding an edge upon the lat-
tice of balanced equivalence relations on the networks. Themain results are Lemma 3.3
and Corollary 3.6. In Subsection 3.2 we consider elementary rewirings. Themain result
is given by Lemma 3.10. In Subsection 3.3, we present an algorithm which generates
the new lattice ΛG2

based on the initial lattice ΛG1
and our theoretical results, in case

of removing, adding or rewiring an edge (for networks having only one cell type and
one edge type) (cf. Algorithm 3.15). We end the Section 3 with some computational
examples in Subsection 3.4 and extending the results to removing and adding multiple
edges including rewirings in Subsection 3.5.

In Section 4 we investigate the effect of operations on nodes. As for the case of

4

edge deletion or addition, there are balanced relations that can be recovered from the
initial lattice (cf. Propositions 4.10, 4.14 and Corollary 4.16) and there can be new ones
that emerge (cf. Proposition 4.17). Finally, we extend our results to the addition of a
node in Subsection 4.4 and then to the addition and/or deletion of multiple nodes in
Subsection 4.5.

2 Preliminaries

In this section we introduce notations and give a brief review on coupled cell networks,
coupled cell systems, synchronous subspaces and balanced equivalence relations on
networks. We follow the framework of Stewart, Golubitsky et al. [18, 11], where more
details can be found. See also Golubitsky and Stewart [10] for a survey on the subject.

2.1 Coupled cell networks and coupled cell systems

A coupled cell network is a directed graph whose nodes represent the cells and edges
describe couplings among the cells, where equivalence relations on nodes and edges
are indicated by different shapes of nodes and edges in the graph. More precisely:

Definition 2.1 A coupled cell network consists of a finite nonempty set C of nodes or
cells and a finite nonempty set E = {(d, c) : d, c ∈ C} of edges or arrows and two
equivalence relations: ∼C onC and∼E onE such that the consistency condition is satisfied:
if (d1, c1) ∼E (d2, c2), then d1 ∼C d2 and c1 ∼C c2. We write G = (C,E,∼C,∼E). ^

Note that a coupled cell network may have multiple edges and loops.

By a multiset, we mean a generalized notion of set, in which elements are allowed
to appear more than once. For a multiset A and x ∈ A, define the multiplicity of x as the
number of copies of x contained in A, denoted bym(x,A); for a subset B ⊂ A, define the
multiplicity of B as m(B,A) :=

∑

x∈B
m(x,A).

In the theory of coupled cell networks, the concept of input sets plays a key role.

Definition 2.2 Let c, d ∈ C be such that e := (d, c) ∈ E. Then, the cell d is called the tail
cell and c is called the head cell of e. The edge e is called an input edge of c. The set of
all tail cells of input edges of c, which is a multiset, is called the input set of c, usually
denoted by I(c). For an edge type e of G, denote by Ie(c) ⊂ I(c) the multiset of the tail
cells of input edges of c that are of type e. Two cells c1, c2 ∈ C are called input-equivalent,
denoted by c1 ∼I c2, if #I

e(c1) = #Ie(c2), for all edge-type e, where #Ie(ci) denotes the
cardinality of the multiset Ie(ci), i = 1, 2. ^

It follows from the consistency condition that the input equivalence relation ∼I

refines the cell equivalence relation ∼C.
The coupling structure of a coupled cell network with edge types e1, e2 . . . , es, can be

represented by adjacency matrices A1,A2, . . . ,As, one for each edge type, whereAl := (a(l)
i j
)

for a(l)
i j
= m
(

c j, I
el(ci)
)

, l ∈ {1, . . . , s}, where ci denotes the i-th cell of the network.

5

Definition 2.3 A coupled cell network is called homogeneous, if it has only one input-
equivalence class. A regular network is a homogeneous network with only one edge-
equivalence class. ^

In a homogeneous network, all cells are of identical type and receive the same
number of input edges per edge type. The number, which is the cardinality of the input
set, is called the valency of the network.

Definition 2.4 Given a coupled cell network G = (C,E,∼C,∼E), associate to every cell
c ∈ C a finite-dimensional real vector space Pc, called the cell phase space, such that ∼C-
equivalent cells have identical phase spaces. A coupled cell system is a systemof ordinary
differential equations whose structure is consistent with the network structure ofG and
whose total phase space P is defined by the direct product of all the cell phase spaces.
More precisely, if x = (xc)c∈C denotes the coordinate system on P, then it is of form
ẋ = F(x), where the system associated with cell j has the form

ẋ j = f j
(

x j; xi1 , . . . , xim
)

.

Here, the first argument x j in f j represents the internal dynamics of the j-th cell and
each of the remaining variables xip indicates an input edge from the ip-th cell to the j-th
cell. Input edges of the same type directed to the j-th cell correspond to the invariance
of f j under permutation of the corresponding variables. Systems associated with input
equivalent cells are given by the same function f j, but the permutation invariance under
variables is determined by the input types of the cells. Vector fields F satisfying the
above properties are called G-admissible. ^

As a special case, if G is a homogeneous network, then we have f j ≡ f for all cells.
Furthermore, ifG is a regular network with valency v, then the coupled cell system has
the form

ẋ j = f
(

x j; xi1 , . . . , xiv
)

,

where the overbar in f indicates that f is invariant under any permutation of the cell
coordinates xi1 , . . . , xiv .

2.2 Synchrony subspaces and balanced equivalence relations

The concept of balanced equivalence relations on coupled cell networks is closely
related to synchrony subspaces admitted by admissible coupled cell systems. The
following definition follows [11].

Definition 2.5 Given a networkG = (C,E,∼C,∼E), an equivalence relation ⊲⊳defined on
C is called balanced if for every c, d ∈ Cwith c ⊲⊳ d, there exists an isomorphism between
their input sets I(c) and I(d), β : I(c)→ I(d), preserving the equivalence relations ∼E and
⊲⊳: for all i ∈ I(c) we have i ⊲⊳ β(i) and (i, c) ∼E (β(i), d). ^

Remark 2.6 It follows from thedefinition that anybalanced equivalence relation refines
the input equivalence relation ∼I. ^

6

Using the multisets andmultiplicity, we have the following equivalent definition as
Definition 2.5 (cf. [4]).

Definition 2.7 Given a network G = (C,E,∼C,∼E), an equivalence relation ⊲⊳ defined
on C is called balanced, if for c, d ∈ Cwith c ⊲⊳ d, we have

m([α]⊲⊳, I
e(c)) = m([α]⊲⊳, I

e(d)), ∀α ∈ C (2.1)

for every edge type e in E. ^

To avoid lengthy notations, we omit the superscript “e” in (2.1) by writing

m([α]⊲⊳, I(c)) = m([α]⊲⊳, I(d)), ∀α ∈ C.

Definition 2.8 Let G = (C,E,∼C,∼E) be a network together with a choice of the total
phase space P. Let ⊲⊳ be an equivalence relation defined on C such that it refines ∼C.
Define the polydiagonal subspace associated with ⊲⊳ by

∆⊲⊳ = {x ∈ P : xc = xd whenever c ⊲⊳ d, ∀c, d ∈ C} .

The polydiagonal subspace ∆⊲⊳ of P is called a synchrony subspace if it is flow-invariant
for all G-admissible vector fields on P. ^

The concept of synchrony subspace and that of balanced equivalence relation are
related in the following way (cf. [11]).

Theorem 2.9 (cf. [11]) Given a coupled cell network G, an equivalence relation ⊲⊳ on the cell
set C and a choice P of the total phase space, the polydiagonal subspace ∆⊲⊳ is a synchrony
subspace if and only if ⊲⊳ is balanced.

Indeed, as stated in Corollary 2.10 of [2], it follows from Theorem 2.9 that for a
coupled cell network G and an equivalence relation ⊲⊳ defined on its cell set C, the
polydiagonal subspace ∆⊲⊳ is a synchrony subspace for any choice of the total phase
space P if and only if it is flow-invariant for all linear admissible vector fields for all the
cell phase spaces chosen to be R.

For homogeneous networks, if every cell phase space is chosen to be R, then the
set of all linear admissible vector fields is generated by the linear maps given by the
adjacency matrices (one for each edge type) together with the identity map on Rn. It
follows then that a polydiagonal subspace ∆⊲⊳ is a synchrony subspace for any choice
of the total phase space P if and only if it is left invariant by all the adjacency matrices.
A more general result is formulated in Theorem 4.2 of [2]: a polydiagonal subspace is
a synchrony subspace for a general network if and only if it is left invariant by all the
adjacency matrices (one for each edge type).

Given a networkGwith the setC of cells, we denote byMG the set of all equivalence

relations on C and by ΛG the set of all balanced equivalence relations on C. Both sets

have a partially ordered structure, using the relation of refinement ≺ defined as: for two
equivalence relations ⊲⊳i and ⊲⊳ j, we say ⊲⊳i refines ⊲⊳ j, written as ⊲⊳i ≺ ⊲⊳ j, if

[c]i ⊆ [c] j ∀ c ∈ C.

7

Here, [c]l denotes the ⊲⊳l-equivalence class of cell c, for l = i, j.
As pointed out in [17], both sets of balanced equivalence relations and synchrony

subspaces for a given network are complete lattices, with respect to the relation of
refinement and the inclusion of subspaces, respectively. See [2, Section 3] for a compact
discussion on this topic.

Example 2.10 Figure 1 shows two examples of 4-cell networks. The network on the
left has two edge types and one cell type. Moreover, cells 1, 2 are input isomorphic and
cells 3, 4 are input isomorphic. The network on the right is regular of valency 2, since
it has only one cell type and one edge type and all the cells are input isomorphic, all
receiving 2 edges.

2

34

1 2

34

1

Figure 1: Two examples of 4-cell networks, where the network on the right is regular
of valency 2.

The coupled cell systems associated to the network on the left of Figure 1 satisfy

ẋ1 = f (x1, x2, x2)
ẋ2 = f (x2, x1, x1)
ẋ3 = g(x3, x2, x4, x4)
ẋ4 = g(x4, x1, x3, x2)

,

where f :
(

Rk
)3
→ Rk and g :

(

Rk
)4
→ Rk are smooth and invariant under permutation

of the two cell coordinates under the bars. Note that there are two types of cell systems,
f and g, due to the fact that there are two input classes of cells.

The coupled cell systems associated to the network on the right of Figure 1 satisfy

ẋ1 = f (x1, x2, x2)
ẋ2 = f (x2, x1, x1)
ẋ3 = f (x3, x2, x4)
ẋ4 = f (x4, x1, x3)

, (2.2)

where f :
(

Rk
)3
→ Rk is smooth and invariant under permutation of the last two cell

coordinates. Here, the network is regular, so any coupled cell system with structure
consistent with this network structure is determined by only one type of cell systems.

8

For the network on the left of Figure 1, the only nontrivial balanced equivalence
relation on the set of cells C = {1, 2, 3, 4} is {{1, 2}, {3}, {4}}. For the 4-cell regular network
on the right of Figure 1, we have three nontrivial balanced equivalence relations on C:

⊲⊳1= {{1, 2}, {3}, {4}}
⊲⊳2= {{1, 2}, {3, 4}}
⊲⊳3= {{1, 3}, {2, 4}}

.

It follows then that the polydiagonals ∆⊲⊳1 ,∆⊲⊳2 ,∆⊲⊳3 are synchrony subspaces. That is,
they are flow-invariant under any coupled cell system of the type described in (2.2).
For example, for ⊲⊳2, we have

∆⊲⊳2 = {x ∈ (Rk)4 : x1 = x2, x3 = x4} .

The equations (2.2) restricted to ∆⊲⊳2 satisfy

ẋ1 = f (x1, x1, x1)
ẋ3 = f (x3, x1, x3)

.

Note that we can interpret these equations as coupled cell systems associated with the
2-cell network of Figure 2. This network is called the quotient network of the network
on the right of Figure 1 by ⊲⊳2.

1 3

Figure 2: The 2-cell quotient network of the network on the right of Figure 1 by the
balanced equivalence relation with classes {1, 2} and {3, 4}.

^

Theorem 5.2 of [11] shows that for any synchrony subspace ∆⊲⊳ there is always a
network, called the quotient network, such that the restrictions of admissible vector fields
to ∆⊲⊳ are the admissible vector fields of the quotient network. More precisely, given
a network G and a balanced equivalence relation ⊲⊳ on its cells, the quotient network
G/ ⊲⊳ is defined naturally as follows: the set of cells of G/ ⊲⊳ is formed by one cell of
each ⊲⊳-equivalence class and the edges in the quotient network are the projection of
edges in the original network. Moreover, the cell and the edge relations are preserved.
Specifically, cells in the quotient G/ ⊲⊳ representing two distinct equivalence classes,
say [c]⊲⊳ and [c′]⊲⊳, are cell-equivalent if and only if cells c and c′ are cell-equivalent in
G. Moreover, given a cell in the quotient, representing the cells in a ⊲⊳-class [c]⊲⊳, the
number of edges of type e directed from a cell representing the cells in a ⊲⊳-class [d]⊲⊳
to that cell is m([d]⊲⊳, I

e(c)): in notation, we have the input edge e = ([d]⊲⊳, [c]⊲⊳) with
multiplicity m([d]⊲⊳, I

e(c)).

9

3 Graph operations on edges

In this section, we consider graph operations on edges of a coupled cell network
including deletion, addition and rewiring of edges. Our aim is to recover the lattice of
balanced equivalence relations of the resulting network from that of the initial one.

We start by considering the case of deleting or adding a single edge in Subsection 3.1,
where we discuss primarily the deletion case and leave the addition case as a complete
analog (cf. Remark 3.8). In Subsection 3.2, we analyze the case of rewiring an edge. In
Subsection 3.3 we present an algorithm that can handle the cases of deletion, addition
or rewiring of an edge simultaneously. We give several computational examples in
Subsection 3.4. We close the section by extending our results to the cases of deleting,
adding and/or rewiring multiple edges in Subsection 3.5.

In what follows, let G1 denote an initial coupled cell network and G2 the resulting
network from an edge operation. The input equivalence relation on Gi is denoted by
∼Ii and the input set on Gi is denoted by Ii(·), for i = 1, 2.

Definition 3.1 A balanced equivalence relation ⊲⊳2∈ ΛG2
is called recoverable from ΛG1

,

if ⊲⊳2∈ ΛG1
. ^

In what follows, we denote by ΛR

G2

the set of all balanced equivalence relations in

ΛG2
that are recoverable from ΛG1

. Then, we have ΛR

G2

= ΛG1
∩ΛG2

.

3.1 Deletion and addition of an edge

Let G1 = (C,E1,∼C,∼E) be a coupled cell network and eo = (do, co) ∈ E1 be an edge
directing from do to co. Let G2 be the coupled cell network obtained from G1 by
removing eo, then

G2 = (C,E1 \ {eo},∼C,∼E) := (C,E,∼C,∼E). (3.3)

Thus, the input sets of the two networks satisfy

I2(x) =















I1(x), if x , co

I1(x) \ {do}, if x = co,
(3.4)

for x ∈ C. Here, notice that:

Remark 3.2 [co]∼I1 ∩ [co]∼I2 = {co}, for input equivalence relations ∼I1 and ∼I2 . ^

Lemma 3.3 Let ⊲⊳ be an equivalence relation on C. Then, we have:

(i) If #[co]⊲⊳ = 1, then ⊲⊳ is balanced on G1 if and only if it is balanced on G2, i.e.,

⊲⊳∈ ΛG1
⇔ ⊲⊳∈ ΛG2

.

(ii) If #[co]⊲⊳ > 1, then ⊲⊳ cannot be balanced on both G1 and G2, i.e., ⊲⊳< ΛG1
∩ΛG2

.

10

Proof (i) By definition, an equivalence relation ⊲⊳ is balanced on G2 if and only if for
all x, y ∈ C such that x ⊲⊳ y, the following condition holds:

m([α]⊲⊳, I2(x)) = m([α]⊲⊳, I2(y))

for all α ∈ C. Now, let x, y ∈ C such that x ⊲⊳ y and x , y. As #[co]⊲⊳ = 1, it follows that
x , co and y , co. By (3.4), the input sets of x and y remain the same under the deletion
of eo and so

m([α]⊲⊳, I2(x)) = m([α]⊲⊳, I1(x)) = m([α]⊲⊳, I1(y)) = m([α]⊲⊳, I2(y))

holds for all α ∈ C. Thus ⊲⊳ is balanced on G1 if and only if it is balanced on G2.

(ii) Since every balanced equivalence relation of a network must refine the input equiv-
alence relation on the network, the statement follows from Remark 3.2. ¤

An alternative proof of Lemma 3.3 can be given from an algebraic viewpoint. We
explain it in the following remark.

Remark 3.4 Asmentioned in Subsection 2.2, see the discussion following Theorem 2.9,
a synchrony subspace of an n-cell coupled cell network is precisely a polydiagonal
subspace that is left invariant under all the adjacency matrices, one for each edge type.
If G2 is obtained from G1 by removing an edge eo = (do, co), then G2 and G1 have the
same adjacency matrices for every edge type, apart from the type corresponding to
the removed edge eo. Denote by AG1

and AG2
the adjacency matrix for the edge type

of eo on G1 and G2, respectively. Then the relation between the lattices of synchrony
subspaces of G1 and G2 is determined by the polydiagonals that are left invariant by
both or just one of the adjacencymatricesAG1

andAG2
. LetN = [ni j] be the n×nmatrix

such that nco,do = −1 and zero elsewhere. It follows that

AG2
= AG1

+N .

In the case d0 , c0, the matrix N is a nilpotent matrix where the zero eigenvalue has
algebraic multiplicity n and geometric multiplicity (n − 1) with eigenspace E0 = {x :
xdo = 0}. Otherwise, if d0 = c0, then N is a semi-simple matrix with eigenvalues 0 and
−1, whose eigenspaces are given by E0 = {x : xco = 0} and E−1 = {x : x j = 0, ∀ j , c0}.
In both cases, a polydiagonal subspace is left invariant under N if and only if it does
not include coordinates equalities of type xco = x j for some j , co in its definition. This
fact coincides with the result of Lemma 3.3. More precisely, if a polydiagonal subspace
does not include any equality of type xco = x j, then it is invariant under AG2

if and only

if it is invariant under AG1
. If it does include some equality of that type, then it is not

invariant under N, and so it is not simultaneously invariant under AG2
,AG1

. ^

Remark 3.5 Under the hypotheses of Lemma 3.3 (i), the quotient network G2/ ⊲⊳ is
obtained from G1/ ⊲⊳ by removing the edge eo = ([do]⊲⊳, [co]⊲⊳), where [co]⊲⊳ = {co}. ^

By Definition 3.1 and Lemma 3.3, we have

ΛR

G2

= {⊲⊳∈ ΛG1
: #[co]⊲⊳ = 1} . (3.5)

11

Corollary 3.6 The following holds:

(i) If #[co]∼I2 = #[co]∼I1 = 1 then ΛG2
= ΛR

G2

= ΛG1
.

(ii) If #[co]∼I2 = 1 and #[co]∼I1 > 1 then ΛG2
= ΛR

G2

. In particular, this is the case when G1

is a homogeneous network.

(iii) If #[co]∼I2 > 1 and ⊲⊳ ∈ ΛG2
\ΛR

G2

then #[c0]⊲⊳ > 1.

Proof Observe that every balanced equivalence relation of a network must refine the
input equivalence relation on the network. The statements then follow fromLemma3.3.

¤

Thus, the problem of obtaining ΛG2
reduces to finding those ⊲⊳∈ ΛG2

for which

#[co]⊲⊳ > 1.

Proposition 3.7 Let G2 be a network obtained from G1 by removing an edge eo = (do, co). If

∼I2 ≺ ∼I1

then, every balanced relation in ΛG2
is recoverable from ΛG1

. That is,

ΛG2
= ΛR

G2

.

Proof If ∼I2 ≺ ∼I1 , as [co]∼I2 ∩ [co]∼I1 = {co}, we have #[co]∼I2 = 1. The result then follows
from Corollary 3.6(i)(ii). ¤

Remark 3.8 (i) The result of this subsection is completely applicable to the case of
adding an edge. In particular, Lemma 3.3 is a symmetric statement with respect to G1

and G2, thus it still holds if G2 is obtained from G1 by adding an input edge to co. As
we will see in Subsection 3.3, the algorithm can be adapted similarly for both cases.

(ii) It should be mentioned that the case where an edge changes its edge type (for
networks with more than one edge type) can be similarly treated, since it can be
interpreted as a composition of first deleting an edge of one type and then adding an
edge of another type. Note that this changes the relation of input equivalence among
cells. Again, the balanced relations that are preserved under that edge operation are
the ones where the head cell of the edge that changed its type forms a single class. ^

3.2 Rewiring of an edge

Let G1 be a coupled cell network and co, a, d be cells of G1. Let G2 be the network
obtained from G1 by the elementary rewiring where the edge (d, co) is replaced by the
edge (a, co), denoted by

G1

(co;d,a)−→ G2. (3.6)

12

This operation can also be interpreted as first deleting the input edge (d, co) of co from
d and then adding another input edge (a, co) from a of the same type. Alternatively, G1

can be viewed as the network obtained from G2 by the elementary rewiring where the
edge (a, co) is replaced by the edge (d, co), i.e.,

G2

(co;a,d)−→ G1.

The relation between the input sets of G1 and G2 is given by

I2(x) =















I1(x), if x , co

(I1(x) \ {d}) ∪ {a}, if x = co,
(3.7)

for x ∈ C.

Remark 3.9 Note that [c0]∼I1 = [c0]∼I2 , in contrast to the deletion or addition of an edge
(cf. Remark 3.2). In particular, G2 is a regular (resp. homogeneous) network if and
only if G1 is a regular (resp. homogeneous) network. ^

In the same spirit as Lemma 3.3, the following holds for the rewiring operation.

Lemma 3.10 Let ⊲⊳ be an equivalence relation on C and G1,G2 be related by (3.6). Then, we
have:

(i) If d ∈ [a]⊲⊳, then ⊲⊳ is balanced on G1 if and only if it is balanced on G2, i.e.,

⊲⊳∈ ΛG1
⇔ ⊲⊳∈ ΛG2

. (3.8)

(ii) If d < [a]⊲⊳ and #[co]⊲⊳ = 1, then (3.8) holds.

(iii) If d < [a]⊲⊳ and #[co]⊲⊳ > 1, then ⊲⊳< ΛG1
∩ΛG2

.

Proof Let x ∈ C. If x , co, then I1(x) = I2(x) and consequently,

m([α]⊲⊳, I1(x)) = m([α]⊲⊳, I2(x)), ∀α ∈ C.

Otherwise, if x = co, then I2(x) = (I1(x) \ {d}) ∪ {a}.

(i) Since a ⊲⊳ d, we have I1(x) and I2(x) are equal up to the ⊲⊳-equivalence, i.e.

m([α]⊲⊳, I1(x)) = m([α]⊲⊳, I2(x)), ∀α ∈ C.

Thus, ⊲⊳∈ ΛG1
if and only if ⊲⊳∈ ΛG2

.

(ii) Note thatG2 can be viewed as a network obtained fromG1 by first deleting an input
edge to co and then adding another input edge to co. Thus, (3.8) follows from Lemma
3.3 and Remark 3.8, due to the condition #[co]⊲⊳ = 1.

13

(iii) Assume to the contrary that ⊲⊳∈ ΛG1
∩ ΛG2

. Since #[co]⊲⊳ > 1, we take x ∈ C such

that co ⊲⊳ x and co , x. It follows from ⊲⊳∈ ΛG1
∩ΛG2

that

m([α]⊲⊳, I1(co)) = m([α]⊲⊳, I1(x)), ∀α ∈ C

and
m([α]⊲⊳, I2(co)) = m([α]⊲⊳, I2(x)), ∀α ∈ C.

Combined with I1(x) = I2(x), we have

m([α]⊲⊳, I1(co)) = m([α]⊲⊳, I2(co)), ∀α ∈ C. (3.9)

On the other hand, since d < [a]⊲⊳, we have m([d]⊲⊳, I2(co)) = m([d]⊲⊳, I1(co)) − 1, which is a
contradiction to (3.9).

¤

Remark 3.11 The statement in Lemma 3.10 (i) agrees with Remark 14 (2) in Field [9]. ^

Remark 3.12 Under the hypothesis of Lemma 3.10, it follows from the definition of
quotient network that for ⊲⊳ balanced on Gi with i ∈ {1, 2}, we have:

(i) If d ∈ [a]⊲⊳ then G1/ ⊲⊳= G2/ ⊲⊳.

(ii) If d < [a]⊲⊳ and #[co]⊲⊳ = 1 then G2/ ⊲⊳ is obtained from G1/ ⊲⊳ by rewiring the input
edge ([d]⊲⊳, [co]⊲⊳) to ([a]⊲⊳, [co]⊲⊳) of [co]⊲⊳. Thus, in general, G1/ ⊲⊳ ; G2/ ⊲⊳.

^

It follows from Lemma 3.10 that

ΛR

G2

= {⊲⊳∈ ΛG1
: (d ∈ [a]⊲⊳) ∨ (#[co]⊲⊳ = 1)}, (3.10)

which is a parallel of (3.5). Then,

ΛG2
\ΛR

G2

= {⊲⊳∈ ΛG2
: d < [a]⊲⊳ ∧ #[co]⊲⊳ > 1} . (3.11)

In fact, Corollary 3.6(i) and (iii) remain valid for ΛR

G2

,ΛG2
\ ΛR

G2

defined by (3.10)-

(3.11). Thus, the problem of recovering ΛG2
then reduces to recovering those ⊲⊳∈ ΛG2

for which d < [a]⊲⊳ and #[co]⊲⊳ > 1.

3.3 Algorithm for edge operations

In this subsection we present an algorithm that generates the lattice of balanced equiv-
alence relations of the new network G2 based on that of the initial network G1, where
G2 is obtained from G1 by either removing, adding or rewiring an edge.

Without loss of generality, we can assume G1 has only one cell type and one edge
type, since as shown in [2], the calculation of the lattice of synchrony subspaces for a
general coupled cell network reduces to this particular kind of networks.

14

The notations used here follow Sections 3.1 and 3.2. Recall that MG2
stands for the

set of all equivalence relations on C. We denote by

N = {⊲⊳∈MG2
: ⊲⊳≺∼I2 ∧ #[c0]⊲⊳ = 2 ∧ #[x]⊲⊳ = 1, ∀ x < [c0]⊲⊳},

and for every ⊲⊳∈ N, let

M⊲⊳ = {⊲◦⊳ ∈ ΛG2
: ⊲⊳≺ ⊲◦⊳ }, in case of edge deletion or addition, (3.12)

M⊲⊳ = {⊲◦⊳ ∈ ΛG2
: ⊲⊳≺ ⊲◦⊳ ∧ d < [c]⊲◦⊳}, in case of edge rewiring. (3.13)

Then, we have the following result.

Proposition 3.13 Let G2 be a network obtained from G1 by deletion, addition or rewiring of
an edge. Let M⊲⊳ be defined by (3.12) in case of deletion or addition of an edge, and by (3.13)
in case of rewiring an edge. The set of balanced relations in ΛG2

that are not recoverable from

ΛG1
is given by

ΛG2
\ΛR

G2

=
⋃

⊲⊳∈N
M⊲⊳ .

Proof It follows from the definition of ΛG2
\ΛR

G2

and M⊲⊳. ¤

Consequently, the problem of recovering ΛG2
\ ΛR

G2

reduces to recovering M⊲⊳ for

every ⊲⊳∈ N. Let ⊲⊳∈ N. Then, the only non-trivial ⊲⊳-equivalence class is [co]⊲⊳ = {co, c}
for some c , co such that c ∼I2 c0, and the corresponding polydiagonal is given by

P = {x : xco = xc}. (3.14)

Using Algorithm A.1, which is an adaptation of Algorithm 6.3 in [2] to our setting, one
can find the set of all synchrony subspaces contained in P.

More precisely, let A be the adjacency matrix of the n-cell network G2. Let λi
for i = 1, . . . , t with t ≤ n, be the eigenvalues of A, whose algebraic and geometric
multiplicities are denoted by ma

i
and m

g

i
, respectively. Let Gλi be the generalized

eigenspaces of A for i = 1, . . . , t. Then a subspace S is invariant under A if and only if S
can be written as a direct sum

S =
(

Gλ1 ∩ S
) ⊕ · · · ⊕ (Gλt ∩ S

)

.

For everypolydiagonalPof the form (3.14), theAlgorithm3.15 starts by constructing
the largest A-invariant subspace ofRn contained in P and then uses the Algorithm A.1,
which is an adaptation of Algorithm 6.3 from [2], to find all synchrony subspaces
contained in that invariant subspace.

To express the largest A-invariant subspace ofRn contained in P, define recursively
the following subspaces of Gλi for every i ∈ {1, 2, . . . , t} by























J1
λi
= (A − λiIdn)

−1 (0) ∩ P,

Jk
λi
= (A − λiIdn)

−1
(

Jk−1
λi

)

∩ P, for 2 ≤ k ≤ pi,

(3.15)

15

where pi ≥ 1 is the minimal integer such that ker(A − λiIdn)
j = ker(A − λiIdn)

pi , for all
j > pi. Note that

Jkλi ⊆ ker (A − λiIdn)
k

and
Jk−1λi ⊆ Jkλi ,

for 2 ≤ k ≤ pi. By definition of Jk
λi
, we have the following observation.

Proposition 3.14 Let A be an adjacency matrix of an n-cell network and P be the polydiagonal
subspace given by (3.14). For Jk

λi
defined by (3.15) with i = 1, . . . , t and k = 1, . . . , pi, we have:

(i) The largest A-invariant subspace of Rn contained in the polydiagonal P is given by

S = J
p1
λ1
⊕ · · · ⊕ J

pt
λt
.

(ii) Any synchrony subspace ∆ of the network that contains equality xco = xc in its definition,
is a polydiagonal subspace of S that is left invariant under A. We also call such ∆ a
synchrony subspace of A restricted to S.

Algorithm 3.15 Let G1 be an n-cell network having only one cell type and one edge
type. Let G2 be the network obtained from G1 by either removing, adding or rewiring
an edge. Denote by A the n× n adjacency matrix of the network G2 whose eigenvalues
λi with i = 1, . . . , t have algebraic and geometric multiplicities ma

i
and m

g

i
, respectively.

1 In the deletion or addition case, let ΛG2
:= {⊲⊳∈ ΛG1

: #[co]⊲⊳ = 1}. Otherwise, in

the rewiring case, let ΛG2
:= {⊲⊳∈ ΛG1

: (d ∈ [a]⊲⊳) ∨ (#[co]⊲⊳ = 1)}.

2 1If #[co]∼I2 = 1 then return ΛG2
and exit the algorithm. In the deletion or addition

case, if G2 is regular then let ΛG2
:= ΛG2

∪ {{1, . . . ,n}}.

3 2For each k ∈ [co]∼I2 \ {co}

3.1 Consider the polydiagonal P := {x : xco = xk}.
3.2 For each i = 1, . . . , t, consider the subspace J1

λi
:= Eλi ∩ P.

3.3 If for all i = 1, . . . , t, J1
λi
is the zero subspace then go to step 3.

3.4 Consider only the nonzero subspaces J1
λi j
, say for j = 1, . . . , s.

3.5 Take J
pi j

λi j
according to (3.15), for j = 1, . . . , s.

3.6 Let Ṽ be the set of synchrony subspaces returned by AlgorithmA.1 executed
on A restricted to

J
pi1
λi1
⊕ · · · ⊕ J

pis
λis
.

1See Corollary 3.6 (i) and (ii).
2See Proposition 3.13-3.14.

16

3.7 Let Λ̃ be the set of balanced equivalence relations corresponding to Ṽ. In
case of rewiring, we discard those ⊲⊳ satisfying d ∈ [c]⊲⊳ from Λ̃3.

3.8 Let ΛG2
:= ΛG2

∪ Λ̃.

4 Return ΛG2
.

^

3.4 Examples

In this subsection, we present two examples of networks, for which the algorithm is
applied step by step to obtain the lattice of all balanced equivalence relations of the
new network. The first example treats a series of edge deletions and the second one
calculates for an edge rewiring.

Example 3.16 Consider the networks G1, G2, G3 and G4 given by Figure 3, where
G2,G3,G4 are obtained by successively removing edges (1, 3), (4, 1) and (2, 4) from G1.
We start by generating the lattice ΛG1

of balanced equivalence relations on G1 using

Algorithm 6.3 in [2]. Then, we obtain successively the lattice ΛGi
based on ΛGi−1

using

Algorithm 3.15, for i = 2, 3, 4. The result is summarized in Table 1.

G
1

G
2

G3 G
4

Figure 3: Four networks G1,G2,G3,G4, where G2 is obtained from G1 by removing the
edge (1, 3), G3 is obtained from G2 by removing the edge (4, 1) and G4 is obtained from
G3 by removing the edge (2, 4).

More precisely, consider the network G2 as obtained from G1 by removing the edge
(1, 3). Since [3]∼I2 = {1, 2, 3, 4, 5}, there can be additional balanced equivalence relations
on G2, besides those from ΛG1

satisfying #[3]⊲⊳ = 1 (cf. Corollary 3.6 (iii)). At step

1 of Algorithm 3.15, ΛG2
is set to be {⊲⊳20, ⊲⊳21, ⊲⊳25} := {⊲⊳10, ⊲⊳11, ⊲⊳13} = ΛG1

. Since G2 is

regular, at step 2 we add the balanced relation ⊲⊳26= {{1, 2, 3, 4, 5}} to ΛG2
. At step 3,

every k ∈ {1, 2, 4, 5} is considered. Note that the eigenspaces of the adjacency matrix of
G2 are given by

E −1+√5
2

=<
(

1, 1, 23−
√
5

1−
√
5
,
√
5−3
2
,
√
5−3
2

)

>, E −1−√5
2

=<
(

1, 1, 23+
√
5

1+
√
5
,−
√
5+3
2
,−
√
5+3
2

)

>,

E2 =< (1, 1, 1, 1, 1) >, E0 =< (−1, 1,−1,−1, 1) >, and E−1 =< (2,−1, 2,−1,−1) >
3This discard is not essential to obtain ΛG2

, but only to be consistent with Proposition 3.13.

17

ΛG1
ΛG2

ΛG3
ΛG4

⊲⊳1
0
= {{1}, {2}, {3}, {4}, {5}} ⊲⊳2

0
= {{1}, {2}, {3}, {4}, {5}} =⊲⊳1

0
⊲⊳3

0
= {{1}, {2}, {3}, {4}, {5}} =⊲⊳1

0
⊲⊳4

0
= {{1}, {2}, {3}, {4}, {5}} =⊲⊳1

0

⊲⊳1
1
= {{1, 2}, {3}, {4, 5}} ⊲⊳2

1
= {{1, 2}, {3}, {4, 5}} =⊲⊳1

1
⊲⊳3

1
= {{1}, {2}, {3}, {4, 5}} =⊲⊳1

2
⊲⊳4

1
= {{1, 4}, {2, 3}, {5}}

⊲⊳1
2
= {{1}, {2}, {3}, {4, 5}} ⊲⊳2

2
= {{1, 3}, {2, 5}, {4}}

⊲⊳2
3
= {{1, 3, 4}, {2, 5}}

⊲⊳2
4
= {{1, 3}, {2, 4, 5}}

⊲⊳2
5
= {{1}, {2}, {3}, {4, 5}} =⊲⊳1

2

⊲⊳2
6
= {{1, 2, 3, 4, 5}}

Table 1: The lattices of balanced equivalence relations for the networks Gi, i = 1, . . . , 4
in Figure 3.

Thus, A is semisimple. For k = 1, consider the polydiagonal

P1 := {x : x3 = x1}.

Then, the only nonzero J1
λi
’s at step 3.4 are

J1λi = Eλi ∩ P1 = Eλi , for λi = 2, 0,−1.

Executing Algorithm A.1 at step 3.6 with A restricted to J12 ⊕ J10 ⊕ J1−1, we obtain at step
3.7 the set of synchrony subspaces corresponding to

Λ̃1 = {⊲⊳22, ⊲⊳23, ⊲⊳24}.

Thus, we set ΛG2
to be {⊲⊳20, ⊲⊳21, ⊲⊳25, ⊲⊳26} ∪ Λ̃1 = {⊲⊳20, ⊲⊳21, ⊲⊳22, ⊲⊳23, ⊲⊳24, ⊲⊳25, ⊲⊳26}. Analogously,

for k = 2, 4, 5, consider the polydiagonals

P2 := {x : x3 = x2}, P3 := {x : x3 = x4} and P4 := {x : x3 = x5},

and we obtain
Λ̃2 = {}, Λ̃3 = {⊲⊳23} and Λ̃4 = {} .

Therefore, at the end of Algorithm 3.15, we have

ΛG2
= {⊲⊳20, ⊲⊳21, ⊲⊳25, ⊲⊳26} ∪ Λ̃1 ∪ Λ̃3 = {⊲⊳20, ⊲⊳21, ⊲⊳22, ⊲⊳23, ⊲⊳24, ⊲⊳25, ⊲⊳26} .

Next, consider the network G3, which is obtained from G2 by removing the edge
(4, 1). In this case, we have #[1]∼I2 = 1 (cf. Corollary 3.6 (ii)). Thus, Algorithm 3.15
exits at step 2 and the only balanced equivalence relations on G3 are those balanced
equivalence relations on G2 such that #[1]⊲⊳ = 1. Therefore, ΛG3

= {⊲⊳20, ⊲⊳25} := {⊲⊳30, ⊲⊳31}.
In the end, consider the network G4, which is obtained from G3 by removing the

edge (2, 4). At step 1 of Algorithm 3.15, we set ΛG4
= {⊲⊳3

0
} := {⊲⊳40}. Since [4]∼I = {1, 4},

18

we execute step 3 only for k = 1 and consider the polydiagonal P := {x : x4 = x1}. The
eigenspaces of the adjacency matrix of G4 are given by

E−
√
3 =< (1,−

√
3,−
√
3, 1, 2) >, E√3 =< (1,

√
3,
√
3, 1, 2) >,

E0 =< (1, 0, 0, 1,−1) >, E−1 =< (−1, 1,−1, 1, 0) >, and E1 =< (1, 1,−1,−1, 0) > .

Then, we have the following nonzero J1
λi
’s at step 3.4

J1λi = Eλi ∩ P1 = Eλi , for λi = 0,−
√
3,
√
3.

Executing Algorithm A.1 at step 3.6 with A restricted to J1
−
√
3
⊕ J10 ⊕ J1√

3
, we have

the set of synchrony subspaces corresponding to Λ̃ = {⊲⊳4
1
}. Therefore, at the end of

Algorithm 3.15, we obtain ΛG4
= {⊲⊳40} ∪ Λ̃ = {⊲⊳40, ⊲⊳41} . ^

Example 3.17 Consider the networks G1 and G2 given by Figure 4, where G2 is ob-
tained from G1 by rewiring the edge (3, 2) to (4, 2). We first obtain the lattice ΛG1

of

balanced equivalence relations onG1 byAlgorithm 6.3 in [2], and then obtainΛG2
using

Algorithm 3.15. The results are presented in Tables 2 and 3.

2

3

14

5

2

3

14

5

G
1

G
2

Figure 4: Network G2 is obtained from G1 by the rewiring (2; 3, 4).

⊲⊳1
0
= {{1}, {2}, {3}, {4}, {5}}

⊲⊳1
1
= {{1, 4}, {2}, {3}, {5}}

⊲⊳1
2
= {{1}, {2, 5}, {3}, {4}}

⊲⊳1
3
= {{1}, {2}, {3, 5}, {4}}

⊲⊳1
4
= {{1}, {2, 3, 5}, {4}}

⊲⊳1
5
= {{1, 4}, {2, 5}, {3}}

⊲⊳1
6
= {{1, 4}, {3, 5}, {2}}

⊲⊳1
7
= {{1}, {2, 5}, {3, 4}}

⊲⊳1
8
= {{1, 4}, {2, 3, 5}}

⊲⊳1
9
= {{1, 2, 5}, {3, 4}}

⊲⊳1
10
= {{1, 3, 4}, {2, 5}}

⊲⊳1
11
= {{1}, {2, 3, 4, 5}}

⊲⊳1
12
= {{1, 2, 3, 4, 5}}

Table 2: The balanced equivalence relations for the network G1 of Figure 4.

19

⊲⊳2
0
= {{1}, {2}, {3}, {4}, {5}} =⊲⊳1

0

⊲⊳2
1
= {{1, 2}, {3}, {4}, {5}}

⊲⊳2
2
= {{1, 4}, {2}, {3}, {5}} =⊲⊳1

1

⊲⊳2
3
= {{1}, {2, 4}, {3}, {5}}

⊲⊳2
4
= {{1}, {2}, {3, 5}, {4}} =⊲⊳1

3

⊲⊳2
5
= {{1, 2, 4}, {3}, {5}}

⊲⊳2
6
= {{1}, {2, 3}, {4, 5}}

⊲⊳2
7
= {{1, 2}, {3, 5}, {4}}

⊲⊳2
8
= {{1}, {2, 4}, {3, 5}}

⊲⊳2
9
= {{1}, {2, 5}, {3, 4}} =⊲⊳1

7

⊲⊳2
10
= {{1, 4}, {2}, {3, 5}} =⊲⊳1

6

⊲⊳2
11
= {{1, 2, 3}, {4, 5}}

⊲⊳2
12
= {{1, 2, 4}, {3, 5}}

⊲⊳2
13
= {{1, 2, 5}, {3, 4}} =⊲⊳1

9

⊲⊳2
14
= {{1, 3, 4}, {2, 5}} =⊲⊳1

10

⊲⊳2
15
= {{1, 4, 5}, {2, 3}}

⊲⊳2
16
= {{1}, {2, 3, 4, 5}} =⊲⊳1

11

⊲⊳2
17
= {{1, 2, 3, 4, 5}} =⊲⊳1

12

Table 3: The balanced equivalence relations for the network G2 of Figure 4.

More precisely, since the network G2 is obtained from G1 by the rewiring (2; 3, 4),
we apply Algorithm 3.15 for the rewiring case to obtain ΛG2

. Observe that the two

networks are both regular, thus all cells 1, 2, 3, 4, 5 are input equivalent.
At step 1 ofAlgorithm3.15,ΛG2

is composedof those balanced equivalence relations

⊲⊳ on G1 such that 3 ⊲⊳ 4 or #[2]⊲⊳ = 1. By Table 2, the balanced equivalence relations
such that 3 ⊲⊳ 4 are ⊲⊳17, ⊲⊳

1
9, ⊲⊳

1
10
, ⊲⊳1

11
, ⊲⊳1

12
, and those satisfying #[2]⊲⊳ = 1 are ⊲⊳10, ⊲⊳

1
1
, ⊲⊳13 and

⊲⊳16. Thus, at step 1 of the algorithm, we set ΛG2
= {⊲⊳20, ⊲⊳22, ⊲⊳24, ⊲⊳29, ⊲⊳210, ⊲⊳213, ⊲⊳214, ⊲⊳216, ⊲⊳217}

as shown in Table 3. Since #[2]∼I2 = 5, step 2 is skipped and step 3 is executed for every
k ∈ {1, 3, 4, 5}. The eigenspaces of the adjacency matrix A of G2 are given by

E−1 =< (1,−1,−1, 0, 0), (1, 0, 0,−1,−1), (1, 0,−1,−1, 0) >,

E2 =< (1, 1, 1, 1, 1) > and E1 =< (0, 0, 1, 0, 1) > .

For k = 1, consider the polydiagonal

P1 := {x : x2 = x1} .
The only nonzero J1

λi
’s at step 3.4 are

J1λi = Eλi ∩ P1 = Eλi , for λi = 2, 1

and
J1−1 = E−1 ∩ P1 =< (−1,−1, 1, 2, 0), (0, 0, 1, 0,−1) > .

Executing Algorithm 3.15 with A restricted to J12 ⊕ J1
1
⊕ J1−1 at step 3.6, we obtain the set

of synchrony subspaces corresponding to

Λ̃1 = {⊲⊳21, ⊲⊳25, ⊲⊳27, ⊲⊳211, ⊲⊳212} .
Thus, we set ΛG2

as {⊲⊳20, ⊲⊳22, ⊲⊳24, ⊲⊳29, ⊲⊳210, ⊲⊳213, ⊲⊳214, ⊲⊳216, ⊲⊳217} ∪ Λ̃1 at step 3.8. Further,

consider for k = 3, the polydiagonal

P2 := {x : x2 = x3}.

20

Then, we have the following nonzero J1
λi
’s

J12 = E2 ∩ P2 = E2, and J1−1 = E−1 ∩ P2 =< (1,−1,−1, 0, 0), (1, 0, 0,−1,−1) > .

Executing Algorithm 3.15 with A restricted to J12 ⊕ J1−1, we obtain the set of synchrony
subspaces corresponding to

Λ̃2 = {⊲⊳26, ⊲⊳211, ⊲⊳215}.
Similarly, for k = 4, consider the polydiagonal

P3 := {x : x2 = x4},

together with the nonzero subspaces J1
λi
’s given by

J1λi = Eλi ∩ P3 = Eλi , for λi = 2, 1

and
J1−1 = E−1 ∩ P3 =< (2,−1,−2,−1, 0), (0, 0, 1, 0,−1) > .

Executing Algorithm 3.15 with A restricted to J12 ⊕ J1
1
⊕ J1−1, we have the following set of

balanced equivalence relations

Λ̃3 = {⊲⊳23, ⊲⊳25, ⊲⊳28, ⊲⊳212} .

In the end, consider for k = 5, the polydiagonal

P4 := {x : x2 = x5},

with the nonzero subspaces J1
λi
’s given by

J12 = E2 ∩ P2 = E2, and J1−1 = E−1 ∩ P2 =< (2,−1,−1,−1,−1), (1, 0,−1,−1, 0) > .

Executing Algorithm 3.15 with A restricted to J12 ⊕ J1−1, we have the following set of
balanced equivalence relations

Λ̃4 = {}.
Therefore, at the end of Algorithm 3.15, we have

ΛG2
= {⊲⊳20, ⊲⊳22, ⊲⊳24, ⊲⊳29, ⊲⊳210, ⊲⊳213, ⊲⊳214, ⊲⊳216, ⊲⊳217} ∪

⋃

i=1,...,4

Λ̃i

as listed in Table 3. ^

3.5 Graph operations on multiple edges

We extend our results of Subsections 3.1 and 3.2 to edge operations involving multiple
edges. More precisely, we consider the graph operations on edges of a coupled cell
network including the deletion, addition and/or rewiring of multiple edges.

21

3.5.1 Deleting or adding multiple edges

Let G2 be the network obtained from G1 by removing the multiple edges (di, ci), for
i = 1, 2, . . . , s. Analogously, G1 is obtained from G2 by adding those edges. Let ⊲⊳ be
an equivalence relation on C. A necessary condition for ⊲⊳ to be recoverable is that ⊲⊳
refines both input relations ∼I1 and ∼I2 . More precisely, if we consider the equivalence
relation ∼I1,2 on Cwhere

[c]∼I1,2 = [c]∼I1 ∩ [c]∼I2 , ∀c ∈ C,

then ⊲⊳≺∼I1,2 . However, as the example below shows, this is not a sufficient condition
for ⊲⊳ to be recoverable.

Example 3.18 Consider the three 5-cell networks in Figure 5, where the network G2 on
the middle is obtained from the network G1 on the left by deletion of the two edges
(5, 1) and (4, 3). Consider the 5-cell network GE on the right with the same set of cells
of the two networks Gi and these two edges. In this example we have:

1 1 1

2

3

45

2

3

45

2

3

45

Figure 5: Three examples of 5-cell networks. The networkG2 on the middle is obtained
from G1 on the left by deletion of the two edges directed to cells 1 and 3 appearing at
the network GE = G1 − G2 on the right.

∼I1= {{1, 3}, {2}, {4, 5}}, ∼I2= {{1, 2, 3}, {4, 5}} and ∼I1,2= {{1, 3}, {2}, {4, 5}} .

Taking
⊲⊳= {{1, 3}, {2}, {4}, {5}} ≺∼I1,2 ,

we have that ⊲⊳ is balanced for G2 but it is not balanced for G1. Note that ⊲⊳ is not
balanced for the network GE = G1 − G2 on the right of Figure 5. ^

In what follows, denote by GE = G1 − G2 obtained by removing all edges of G2

from G1. Using GE, we obtain the following result as an extension of Lemma 3.3 and
Remark 3.8 (i).

Lemma 3.19 Let ⊲⊳ be an equivalence relation on the set of cells C of the networks G1,G2 and
GE. Assume that ⊲⊳ is balanced for Gi, for some i ∈ {1, 2}. We have that, ⊲⊳ is balanced on G j,
j ∈ {1, 2}, j , i, if and only if it is balanced on GE, i.e.,

⊲⊳∈ ΛG j
⇔ ⊲⊳∈ ΛGE

.

22

Proof Let ⊲⊳ be an equivalence relation on the set of cells C of the networksG1,G2 and
GE. Assume that ⊲⊳∈ ΛGi

for some i ∈ {1, 2}. We start by observing that, as ⊲⊳≺∼Ii and

I1(x) = I2(x) + IE(x), ∀ x ∈ C,

we have that ⊲⊳ refines ∼I j for j ∈ {1, 2}, j , i, if and only if ⊲⊳ refines the input relation
for the network GE. Moreover, we have

m([α]⊲⊳, I1(x)) = m([α]⊲⊳, I2(x)) +m([α]⊲⊳, IE(x)), ∀α, x ∈ C . (3.16)

As ⊲⊳∈ ΛGi
then, for x ⊲⊳ y, we have

m([α]⊲⊳, Ii(x)) = m([α]⊲⊳, Ii(y)), ∀α ∈ C .

It follows then, from (3.16), that

m([α]⊲⊳, I j(x)) = m([α]⊲⊳, I j(y))⇔ m([α]⊲⊳, IE(x)) = m([α]⊲⊳, IE(y)) .

¤

3.5.2 Rewiring multiple edges

Let G2 be the network obtained by rewiring multiple edges of G1. If the rewiring takes
place in the input set of a single cell c0 by replacing m edges with another m edges of
the same type, such that

I2(c0) = I1(c0) \ {d1, . . . , dm} ∪ {a1, . . . , am}, (3.17)

then Lemma 3.10 extends to the following result.

Lemma 3.20 Let ⊲⊳ be an equivalence relation on C. Then, we have:

(i) If #[c0]⊲⊳ = 1 or # ({a1, . . . , am} ∩ [α]⊲⊳) = # ({d1, . . . , dm} ∩ [α]⊲⊳) for all α ∈ C, then

⊲⊳∈ ΛG1
⇔ ⊲⊳∈ ΛG2

.

(ii) Otherwise, ⊲⊳< ΛG1
∩ΛG2

.

In case of rewirings concerning multiple nodes c10, . . . , c
n
0 such that

I2(c
i
0) = I1(c

i
0) \ {di1, . . . , dimi

} ∪ {ai1, . . . , aimi
}, i = 1, . . . ,n, (3.18)

we have the following lemma.

23

Lemma 3.21 Let ⊲⊳ be an equivalence relation on C. Then, we have:

(i) If for each i ∈ {1, 2, . . . ,n}, either

(a) #[ci0]⊲⊳ = 1; or

(b) [ci0]⊲⊳ ⊆ {c10, . . . , cn0} and for all j , i with ci0 ⊲⊳ c
j

0
, we have

#
({

ai1, . . . , a
i
mi

}

∩ [α]⊲⊳
)

− #
({

di1, . . . , d
i
mi

}

∩ [α]⊲⊳
)

= #
({

a
j

1
, . . . , a

j
m j

}

∩ [α]⊲⊳
)

− #
({

d
j

1
, . . . , d

j
m j

}

∩ [α]⊲⊳
)

, ∀α ∈ C;

or else

(c) [ci0]⊲⊳ 1 {c10, . . . , cn0} and #
({

ai
1
, . . . , aimi

}

∩ [α]⊲⊳
)

= #
({

di
1
, . . . , dimi

}

∩ [α]⊲⊳
)

, ∀α ∈ C,

then we have
⊲⊳∈ ΛG1

⇔ ⊲⊳∈ ΛG2
.

(ii) Otherwise, ⊲⊳< ΛG1
∩ΛG2

.

3.5.3 Deleting and adding multiple edges without rewirings

Let G2 be the network obtained from G1 by both removing and adding multiple edges
to G1 such that no rewiring occurs. Assume the removed edges are

(d1, c1), (d2, c2), . . . , (ds, cs) (3.19)

and the added edges are
(b1, a1), (b2, a2), . . . (br, ar), (3.20)

where (di, ci) , (b j, a j), for all 1 ≤ i ≤ s and 1 ≤ j ≤ r. Moreover, as we are assuming no
rewiring, for every two edges (di, ci) and (b j, a j) of the same type, we have ci , a j, i.e. no
pair of edges can be put together as a rewiring.

Denote by G the network obtained from G1 by removing the edges (3.19). Then, G2

is obtained from G by adding the edges (3.20). Let GE = G1 − G and GF = G2 − G.

Lemma 3.22 LetG2 be obtained fromG1 by both deleting the multiple edges (3.19) and adding
the multiple edges (3.20), such that there are no edges (di, ci) and (b j, a j) of the same type with
ci = a j. Let ⊲⊳∈ ΛGi

be a balanced equivalence relation on Gi for some i ∈ {1, 2}. Then, we have
that ⊲⊳ is balanced on G j for j ∈ {1, 2}, j , i, if and only if it is balanced on GE and GF, i.e.,

⊲⊳∈ ΛG j
⇔ ⊲⊳∈ ΛGE

∩ΛGF
.

Proof Let ⊲⊳ be an equivalence relation on the set of cells C of the networks G1,G2

and GE,GF. Assume that ⊲⊳∈ ΛGi
for some i ∈ {1, 2}. First note that, as ⊲⊳ refines ∼Ii and

I1(x) = I2(x) + IE(x) − IF(x), ∀ x ∈ C,

24

we have that if ⊲⊳ refines the input relations for GE and GF then it also refines ∼I j for
j ∈ {1, 2}, j , i. Moreover, we have

m([α]⊲⊳, I1(x)) = m([α]⊲⊳, I2(x)) +m([α]⊲⊳, IE(x)) −m([α]⊲⊳, IF(x)), ∀α ∈ C. (3.21)

As ⊲⊳∈ ΛGi
is a balanced equivalence relation on Gi then, for x ⊲⊳ y, we have

m([α]⊲⊳, Ii(x)) = m([α]⊲⊳, Ii(y)), ∀α ∈ C .

Since there is no rewiring, we have

m([α]⊲⊳, IE(x)) = 0 or m([α]⊲⊳, IF(x)) = 0, ∀α, x ∈ C .

Therefore, we can conclude from (3.21), that

m([α]⊲⊳, I j(x)) = m([α]⊲⊳, I j(y))

if and only if

m([α]⊲⊳, IE(x)) = m([α]⊲⊳, IE(y)) and m([α]⊲⊳, IF(x)) = m([α]⊲⊳, IF(y)) .

That is, ⊲⊳ is balanced for G j if and only if it is balanced for both GE and GF. ¤

3.5.4 Deleting and adding multiple edges including rewirings

We discuss now the cases where G2 is a network obtained from a network G1 by
removing and adding multiple edges to G1, but where some of edge deletions and
additions involve rewirings. That is, following the notations (3.19)-(3.20), we have
edges (di, ci) and (b j, a j) of the same type and such that ci = a j. One of the directions of
Lemma 3.22 still holds. More precisely, we have:

Lemma 3.23 Let ⊲⊳ be an equivalence relation on the set of cells C of the networks G1,G2 and
GE,GF. Assume ⊲⊳ is a balanced equivalence relation on Gi, for some i ∈ {1, 2}. If ⊲⊳ is balanced
on both GE and GF, then it is balanced on G j. I.e.,

⊲⊳∈ ΛGE
∩ΛGF

⇒ ⊲⊳∈ ΛG j
. (3.22)

Proof Consider the proof of Lemma 3.22 till equation (3.21) which holds. Again, as
we are assuming that ⊲⊳ is a balanced equivalence relation on Gi, for x, y ∈ C such that
x ⊲⊳ y, we have

m([α]⊲⊳, Ii(x)) = m([α]⊲⊳, Ii(y)), ∀α ∈ C .
It follows then, from (3.21), that if

m([α]⊲⊳, IE(x)) = m([α]⊲⊳, IE(y)) and m([α]⊲⊳, IF(x)) = m([α]⊲⊳, IF(y)),

then
m([α]⊲⊳, I j(x)) = m([α]⊲⊳, I j(y))

and so ⊲⊳ is balanced for G j. ¤

25

The reverse direction of (3.22) does not hold in general. A simple example is to
consider a network G1 of 2 cells with I1(1) = {2} and I1(2) = {1} and a network G2

with the same set of cells and such that I1(1) = {1} and I1(2) = {1}. The network G2

is obtained from G1 by removing the edge (2, 1) and adding the edge (1, 1), that is,
by a rewiring. We have that GE is the network of the 2 cells with IE(1) = {2} and
IE(2) = {} and GF is the network of the 2 cells with IF(1) = {1} and IE(2) = {}. Then,
⊲⊳= {{1, 2}} ∈ ΛG1

= ΛG2
, despite of the fact that ⊲⊳< ΛGE

= ΛGF
. Note that in this case,

although ⊲⊳= {{1, 2}} ≡∼I1=∼I2 , it does not refine the input relations for GE and GF.

Oneway to go around this is to decompose the graph operation into two operations:
one concerns the rewiring part while the other forms a rewiring-free deletion/addition
edge operation. More precisely, assume some of the deleted/added edges in (3.19)-
(3.20) can be paired up as rewiring. Then, by successively applying all these rewirings
on G1, one obtain a network G, from which G2 can then be obtained by a rewiring-free
deletion/addition edge operation. Let

(d1, c1), (d2, c2), . . . , (ds, cs), (3.23)

be the edges to be deleted from G and

(b1, a1), (b2, a2), . . . (br, ar), (3.24)

be the edges to be added to G to obtain G2.
Recall that ΛR

G stands for the set of recoverable balanced equivalence relations on

G from G1. We say that a balanced equivalence relation ⊲⊳ for G2 is recoverable from G1

through the rewiring network G if ⊲⊳∈ ΛR

G. Denote by Λ
R,G
G2

the set of all such ⊲⊳’s. Then,

Λ
R,G
G2

:= ΛR

G ∩ΛG2
= ΛG1

∩ΛG ∩ΛG2
,

where the balanced relations in ΛG1
∩ ΛG can be determined by Lemma 3.21 and the

balanced relations in ΛG ∩ΛG2
can be determined by Lemma 3.22.

Remark 3.24 In general, the choice of G is not unique, for given G1 and G2. Thus, Λ
R,G
G2

will differ for different G. An example is given in Figure 6, where there are two choices
of G given by GR1

and GR2
. More precisely, there are two ways to realize the addition

of the self loop (1, 1): it can be thought as a rewiring from the edge (2, 1) of G1, which
results in GR1

, or it is a rewiring from the edge (3, 1) of G1, which gives GR2
. Consider

⊲⊳= {{1, 3}, {2}}, which is balanced on both G1 and G2. However, it is balanced for the
rewiring network GR2

but not for GR1
. ^

As shown in Remark 3.24, some recoverable equivalence relations may not be
recoverable through all rewiring networksG. However, there is always an appropriate
choice of G for a given recoverable equivalence relation. More precisely, let ⊲⊳∈ ΛG1

∩
ΛG2

be recoverable. One can choose rewirings that preserve the ⊲⊳-classes in the

26

1 2

3

1 2

3

1

3

2

3

1 2

G

G

 G

 2

G 1 2

 R
 1

 R

Figure 6: The network G2 on the right can be obtained from the network on the left G1

by deletion of two edges and two types of rewirings of one edge directed to cell 1.

following way. For every cell c with #[c]⊲⊳ > 1, assuming d1, d2, . . . , ds are to be deleted
from I(c) and a1, a2, . . . , ar are to be added to I(c), we take rewiring of form (c; di, a j) for
di ⊲⊳ a j until such form of rewiring is not possible any more. Then, consider every
two ⊲⊳-equivalent cells c, c′. If d′

1
, d′2, . . . , d

′
s′ and a′

1
, a′2, . . . , a

′
r′ denote the elements to be

deleted from and to be added to I(c′), respectively, then we form two rewirings of
form (c; d, a) and (c′; d′, a′) simultaneously whenever d ⊲⊳ d′ and a ⊲⊳ a′ until choices are
exhausted. For ⊲⊳-equivalent cells, after these two rounds of rewirings, they are left
only with cells to be deleted from their input sets (or only with cells to be added). The
rewiring network G that is obtained by theses two rounds of rewirings is a “preferred”
choice for the given ⊲⊳. That is, ⊲⊳ is recoverable throughG. For the example of Figure 6,
this would lead to GR2

. In short, for every ⊲⊳∈ ΛG1
∩ ΛG2

, there is a rewiring network

G such that

(i) G is obtained from G1 by successive rewirings;

(ii) G2 is obtained from G by rewiring-free deletions and additions of edges; and

(iii) ⊲⊳∈ ΛG1
∩ΛG ∩ΛG2

.

4 Graph operations on nodes

In this section, we analyze the change in lattices of balanced equivalence relationswhen
nodes are removed or/and added to networks (togetherwith their edges). In Subsection
4.1, we consider the case of removing from a network a single node, together with all its
edges. The accompanied algorithm is presented in Subsection 4.2 and a computational

27

example is included in Subsection 4.3. In Subsection 4.4, we extend our results to graph
operations involving multiple nodes.

4.1 Deletion of a node

Recall that every balanced equivalence relation is a refinement of the input equivalence
relation on the set of cells of the network. Thus, if there is no directed edge from the
removed cell to the other cells, removing the cell with all its edges will not change
the input relation between the other cells. We show that, in this case and in the case
where the network is homogeneous, the lattice of the new network can be completely
recovered from the initial one.

In what follows, we denote by “−” the multiset subtraction; that is, given two
multisets A,B, by “A − B” we mean the multiset composed of elements x such that
x ∈ A and x < B with multiplicity m(x,A − B) = m(x,A). For the usual set subtraction,
we continue to use “\”.

Let G1 = (C1,E1,∼C1
,∼E1

) be a coupled cell network and co ∈ C1. Let G2 be the
network obtained from G1 by removing the node co together with all its edges. That is,
G2 = (C2,E2,∼C2

,∼E2
), where C2 = C1 \ {co} and E2 = E1 − R for R = {(a, b) ∈ E1 : a =

co or b = co}. For x ∈ C2, we have

I2(x) =















I1(x), if co < I1(x),

I1(x) − {co}, otherwise.
(4.25)

Definition 4.1 Let MGi
denote the set of all equivalence relations on Ci. Define two

maps between the sets MG1
and MG2

:

Proj : MG1
→MG2

Lift : MG2
→MG1

⊲⊳ 7→ ⊲⊳′, ⊲⊳′ 7→ ⊲⊳′,

where ⊲⊳′ is obtained from ⊲⊳ in the following way,

[c]⊲⊳′ =



















[c]⊲⊳ , if co < [c]⊲⊳

[c]⊲⊳ \ {co} , if co ∈ [c]⊲⊳
,

and ⊲⊳′ is defined by

[c] ⊲⊳′ =



















[c]⊲⊳′ , if c , co

{co} , if c = co

.

^

Example 4.2 Let C1 = {1, 2, 3, 4}, co = 1 and the equivalence relations ⊲⊳1= {{1, 2}, {3, 4}}
and ⊲⊳2= {{2}, {1, 3, 4}} on C1. Then ⊲⊳

′
1
:= Proj(⊲⊳1) = Proj(⊲⊳2) :=⊲⊳

′
2= {{2}, {3, 4}} and the

lifting of ⊲⊳′
1
(and so of ⊲⊳′2) is {{1}, {2}, {3, 4}}. ^

28

Remark 4.3 (i) Note that, while the lifting is an injective map, the projection is not, in
general, injective.
(ii) If ⊲⊳∈MG1

then ⊲⊳′ ≺ ⊲⊳. Moreover, if [c0]⊲⊳ = {c0} then ⊲⊳′ =⊲⊳. ^

Lemma 4.4 If ⊲⊳∈ ΛG1
is such that #[co]⊲⊳ = 1 then its projection ⊲⊳′:= Proj(⊲⊳) ∈ ΛG2

.

Proof Let ⊲⊳∈ ΛG1
be such that #[co]⊲⊳ = 1. We need to show

m([α]⊲⊳′ , I2(x)) = m([α]⊲⊳′ , I2(y)), ∀α ∈ C2,

whenever x, y ∈ C2 are such that x ⊲⊳′ y and x , y. Let x, y ∈ C2 be such that x ⊲⊳′ y and
x , y. Then, by definition of projection, we have x ⊲⊳ y. As ⊲⊳ is balanced, we have

m([α]⊲⊳, I1(x)) = m([α]⊲⊳, I1(y)), ∀α ∈ C1 .

Due to #[co]⊲⊳ = 1, i.e., [co]⊲⊳ = {co}, it follows from the definition of projection that
[α]⊲⊳′ = [α]⊲⊳ and co < [α]⊲⊳ for all α ∈ C2. Consequently,

m([α]⊲⊳′ , I2(x)) = m([α]⊲⊳, I1(x) − {co}) = m([α]⊲⊳, I1(x)) = m([α]⊲⊳, I1(y))
= m([α]⊲⊳, I1(y) − {co}) = m([α]⊲⊳′ , I2(y)), ∀α ∈ C2 .

Therefore, ⊲⊳′∈ ΛG2
. ¤

Remark 4.5 For any ⊲⊳∈ MG1
, we have #[co] ⊲⊳′ = 1. Thus, if ⊲⊳′ ∈ ΛG1

, then by

Lemma 4.4, we have Proj(⊲⊳′) = Proj(⊲⊳) = ⊲⊳′∈ ΛG2
. ^

Recall that ∼I1 and ∼I2 denote the input equivalence relations on G1 and G2, respec-
tively. Consider the equivalence relation ∼′I1 := Proj(∼I1) on C2. Thus:

[c]∼′
I1
= [c]∼I1 ∩ C2, ∀ c ∈ C2 .

Lemma 4.6 If ⊲⊳2∈ ΛG2
is such that ⊲⊳2≺∼′I1 then its lift ⊲⊳2 := Lift(⊲⊳2) ∈ ΛG1

.

Proof Let ⊲⊳2∈ ΛG2
be such that ⊲⊳2 ≺ ∼′I1 . Let x, y ∈ C2 be such that x , y and x ⊲⊳2y.

In particular, x, y , co. We show that

m([α] ⊲⊳2 , I1(x)) = m([α] ⊲⊳2 , I1(y)), ∀α ∈ C1 .

Note that, since x ⊲⊳2 y and ⊲⊳2 is balanced, we have

m([α]⊲⊳2 , I2(x)) = m([α]⊲⊳2 , I2(y)), ∀α ∈ C2 .

In the case α , co, we have [α] ⊲⊳2 = [α]⊲⊳2 . Thus,

m([α] ⊲⊳2 , I1(x)) = m([α]⊲⊳2 , I1(x) − {co}) = m([α]⊲⊳2 , I2(x)) = m([α]⊲⊳2 , I2(y))
= m([α]⊲⊳2 , I1(y) − {co}) = m([α] ⊲⊳2 , I1(y)) .

Otherwise, α = co. Then, [α] ⊲⊳2 = {co}. Thus,

m([co] ⊲⊳2 , I1(x)) = m({co}, I1(x)) = m({co}, I1(x) − I2(x))

29

and
m([co] ⊲⊳2 , I1(y)) = m({co}, I1(y)) = m({co}, I1(y) − I2(y)) .

Note that ⊲⊳2 ≺ ∼I2 , since every balanced equivalence relation on G2 refines ∼I2 . As
⊲⊳2≺∼′I1 and so ⊲⊳2 ≺∼I1 , it follows that x ∼I1 y and x ∼I2 y. Thus, there is a bijection
preserving edge equivalence relation between I1(x) − I2(x) and I1(y) − I2(y). Therefore,

m({co}, I1(x) − I2(x)) = m({co}, I1(y) − I2(y))

and so
m([co] ⊲⊳2 , I1(x)) = m([co] ⊲⊳2 , I1(y)) .

¤

Lemma 4.7 Let ⊲⊳∈ ΛG1
. For its projection ⊲⊳′:= Proj(⊲⊳) and the corresponding lifting

⊲⊳′ := Lift(⊲⊳′), we have
⊲⊳′∈ ΛG2

⇒ ⊲⊳′ ∈ ΛG1
.

Proof Since ⊲⊳∈ ΛG1
, we have ⊲⊳≺∼I1 . It follows from the definition of projection that

⊲⊳′= Proj(⊲⊳) ≺∼′I1= Proj(∼I1). Thus, by Lemma 4.6, we have ⊲⊳′ = Lift(⊲⊳′) ∈ ΛG1
if

⊲⊳′∈ ΛG2
. ¤

Example 4.8 Figure 7 shows a 4-cell network G1 and the 3-cell network G2 obtained
fromG1 by removing cell 1. Note that ⊲⊳= {{1, 3}, {2, 4}} ∈ ΛG1

and ⊲⊳′= {{3}, {2, 4}} ∈ ΛG2
.

Lemma 4.7 states that ⊲⊳′ = {{1}, {3}, {2, 4}} ∈ ΛG1
.

1 2

34

2

34

Figure 7: (Left) A 4-cell network G1. (Right) The 3-cell network G2 is obtained from the
network G1 by removing cell 1.

^

Definition 4.9 A balanced equivalence relation ⊲⊳2∈ ΛG2
is called recoverable from ΛG1

,

if there exists ⊲⊳∈ ΛG1
such that Proj(⊲⊳) = ⊲⊳2.

In what follows, we denote by ΛR

G2

the set of all balanced equivalence relations in

ΛG2
that are recoverable from ΛG1

.

Returning to the networks of Example 4.8, we have that the balanced equivalence
relation ⊲⊳′= {{3}, {2, 4}} of G2 is recoverable from ΛG1

, since it is the projection of

30

the balanced equivalence relation ⊲⊳′ = {{1}, {3}, {2, 4}} ∈ ΛG1
. We show in the next

proposition that every recoverable equivalence relation of G2 is the projection of a
balanced equivalence relation ⊲⊳ of G1 with #[co]⊲⊳ = 1.

Proposition 4.10 Let G2 be the network obtained from G1 by removing the cell co ∈ C1. We
have

ΛR

G2

= { Proj(⊲⊳) : ⊲⊳∈ ΛG1
with #[co]⊲⊳ = 1} .

Proof First note that, by Lemma 4.4, if ⊲⊳ in ΛG1
with #[co]⊲⊳ = 1, then the projection

⊲⊳′= Proj(⊲⊳) is in ΛG2
and so in ΛR

G2

.

Let ⊲⊳′ be a recoverable balanced relation inΛR

G2

. Since ⊲⊳′ is recoverable, there exists

⊲⊳∈ ΛG1
such that Proj(⊲⊳) = ⊲⊳′. Thus, it follows from Lemma 4.7 that, ⊲⊳′ is a balanced

relation in ΛG1
with #[co] ⊲⊳′ = 1 and such that Proj(⊲⊳′) =⊲⊳′. ¤

Remark 4.11 An alternative proof of Proposition 4.10 can be given more from an alge-
braic approach. We begin by recalling that a synchrony subspace for a general network
is a polydiagonal space that is left invariant under all the network adjacency matrices,
one for each edge type. See the discussion after Theorem 2.9. Without loss of generality,
we can assume thatG1 andG2 have only one edge type and thatG2 is obtained fromG1

by deleting the first node. Let AG1
be the adjacency matrix of G1 and AG2

the matrix

obtained from AG1
by making all the entries in the first row and in the first column

equal to zero. Thus, if AG1
= [ai j] then

AG1
= AG2

+ B

where B is the n × n matrix

B =





















































a11 a12 · · · a1n

a21 0 · · · 0

· · · · · · · · · · · ·

an1 0 · · · 0





















































,

and AG2
is given by (as a block matrix)

AG2
=































0 0 · · · 0
0
... AG2

0































,

where AG2
is the adjacency matrix of G2.

31

We start by observing that if two cells c, d ∈ C2 = C1 \ {1} = {2, . . . ,n} are such that
c ∼I1 d and c ∼I2 d then ac1 = ad1. This follows from the definition of input relation
applied to one edge type: the c, d row sums for both adjacency matrices AG1

and AG2

have to coincide.
Let ⊲⊳2∈ ΛR

G2

. We have that ⊲⊳2 is a balanced relation forG2 such that ⊲⊳2= Proj(⊲⊳1) for

a balanced relation ⊲⊳1 for G1. We have to show that in fact ⊲⊳2= Proj(⊲⊳) for a balanced
relation ⊲⊳ for G1 where [1]⊲⊳ = {1}. Take the polydiagonal ∆⊲⊳2 ⊆ Rn−1 associated with
⊲⊳2. We know that it is of synchrony for G2. That is, it is AG2

-invariant. Take now the

polydiagonal subspace of Rn defined by

∆ := {(x1, . . . , xn) ∈ Rn : (x2, . . . , xn) ∈ ∆⊲⊳2} .

Trivially, ∆ is AG2
-invariant. If we show now that ∆ is also B-invariant, it follows then

that it is also AG1
-invariant, as AG1

= AG2
+ B. We conclude then that ∆ is a synchrony

subspace for G1 where, by construction of ∆, we have ∆ = ∆⊲⊳ for the balanced relation
⊲⊳ on C = {1, . . . ,n} defined by: [1]⊲⊳ = {1} and [c]⊲⊳ = [c]⊲⊳2 for c , 1. Thus ⊲⊳2= Proj(⊲⊳).

It remains to show that ∆ is B-invariant. Let x = (x1, . . . , xn) ∈ ∆. If c ⊲⊳2 d for c, d , 1,
then xc = xd. By hypothesis ⊲⊳2= Proj(⊲⊳1) for a balanced relation ⊲⊳1 forG1. Thus c ⊲⊳1 d.
In particular, we have c ∼I1 d and c ∼I2 d, and as remarked above, we conclude that
ac1 = ad1. Now [Bx]c = ac1x1 and [Bx]d = ad1x1, and so [Bx]c = [Bx]d. ^

Remark 4.12 For every ⊲⊳2∈ ΛR

G2

, the quotient network G2/ ⊲⊳2 is obtained from the quotient

network G1/ ⊲⊳1, with ⊲⊳1= Li f t(⊲⊳2) ∈ ΛG1
, by removing the node [co]⊲⊳1 together with all its

edges.

Obviously, in general, there can be balanced equivalence relations in ΛG2
that are

not recoverable from the ones in ΛG1
.

Example 4.13 Figure 8 shows an example of a 5-cell networkG1 and the 4-cell network
G2 obtained from G1 by removing cell 1. In this case, as ∼I1 is the trivial equivalence
relation on C1 = {1, 2, 3, 4, 5} with classes {{1}, {2}, {3}, {4}, {5}}, we have that ΛG1

= {∼I1}.
Now, G2 is homogeneous (regular) and every equivalence relation on C2 = {2, 3, 4, 5} is
balanced. Note that G2 is S4-symmetric. Apart from the trivial relation on C2, all the
other relations in ΛG2

are not recoverable from the ones in ΛG1
.

^

We note that in the previous example, whereΛG2
, ΛR

G2

, we have ∼I2 ⊀ ∼′I1 . Indeed,
we have:

Proposition 4.14 Let G2 be the network obtained from G1 by removing the cell co ∈ C1. If

∼I2 ≺ ∼′I1
then, every balanced relation in ΛG2

is recoverable from ΛG1
. That is,

ΛG2
= ΛR

G2

.

32

1

2 3

45

2 3

45

Figure 8: (Left) A 5-cell network G1. (Right) The 4-cell network G2 is obtained from the
network G1 by removing cell 1 and it is S4-symmetric.

To show Proposition 4.14, we first prove a preliminary result.

Proposition 4.15 Let G2 be the network obtained from G1 by removing the cell co ∈ C1. If
⊲⊳2∈ ΛG2

is such that ⊲⊳2 ≺ ∼′I1 then ⊲⊳2∈ Λ
R

G2

.

Proof Let ⊲⊳2∈ ΛG2
be such that ⊲⊳2 ≺ ∼′I1 and let ⊲⊳:= Lift(⊲⊳2). From the definition of

lifting, we have #[co]⊲⊳ = 1. By Proposition 4.10, it suffices to prove that ⊲⊳∈ ΛG1
. Since

⊲⊳2 is balanced on G2 it follows, from Lemma 4.6, that ⊲⊳ is balanced on G1. We have
then ⊲⊳∈ ΛG1

, with #[co]⊲⊳ = 1 and ⊲⊳2= Proj(⊲⊳). Thus ⊲⊳2∈ ΛR

G2

. ¤

Proof of Proposition 4.14 Let ⊲⊳′∈ ΛG2
. Then, ⊲⊳′ ≺ ∼I2 . Given the transitivity of the

relation of refinement, as ∼I2 ≺ ∼′I1 , we also have ⊲⊳′ ≺ ∼′I1 . From Proposition 4.15, it

follows that ⊲⊳′∈ ΛR

G2

. ¤

Corollary 4.16 If G1 is a homogeneous network, or there is no directed edge in G1 from the
removed cell co to the other cells in C1, then ΛG2

= ΛR

G2

.

Proof If G1 is a homogeneous network, then ∼′I1 is the equality relation on C2, and so
∼I2 refines ∼′I1 . If there is no directed edge from the removed cell co in G1 to the other
cells, then ∼′I1=∼I2 . In both cases, by Proposition 4.14, the result follows. ¤

In the next proposition, we describe those balanced equivalence relations ⊲⊳′∈ ΛG2
\

ΛR

G2

. Note that ⊲⊳′ ⊀ ∼′I1 if and only if

∃ a, b ∈ C2with a ⊲⊳′ b s.t. m(co, I
e

1 (a)) , m(co, I
e

1 (b)) (4.26)

for some input type e.

Proposition 4.17 Let G2 be the network obtained from G1 by removing the cell co ∈ C1. If

∼I2 ⊀ ∼′I1
then, the set of balanced relations in ΛG2

that are not recoverable from ΛG1
is given by

ΛG2
\ΛR

G2

=
{

⊲⊳′∈ ΛG2
: ⊲⊳′ ⊀ ∼′I1

}

=
{

⊲⊳′∈ ΛG2
: (4.26) is satisfied

}

.

33

Proof First suppose that ⊲⊳′∈ ΛG2
is such thatm(co, I

e

1
(a)) = m(co, I

e

1
(b)) for all a, b ∈ C2

with a ⊲⊳′ b and every input type e. Then, ⊲⊳′≺∼′I1 and from Proposition 4.15 it follows

that ⊲⊳′ is in ΛR

G2

.

Now, if the equivalence relation ⊲⊳′∈ ΛG2
is such that (4.26) holds for some input type

e, then there can not exist ⊲⊳ ∈ ΛG1
with ⊲⊳′:= Proj(⊲⊳) such that a ⊲⊳ b, since otherwise,

we would have ⊲⊳⊀∼I1 , which is a contradiction. Thus ⊲⊳′< ΛR

G2

. ¤

4.2 Algorithm for deletion of a node

In the following, we present an algorithm that generates the lattice of balanced equiv-
alence relations of G2 based on that of G1, where G2 is obtained from G1 by removing
the cell co. As before, without loss of generality, we can assume G1 has only one cell
type and one edge type, since as shown in [2], the calculation of the lattice of syn-
chrony subspaces for a general coupled cell network reduces to this particular kind of
networks.

In the case ∼I2⊀ ∼′I1 , we define the following subset of C2 × C2:

CI2 = {(a, b) ∈ C2 × C2 : a ∼I2 b, a < b, m(co, I1(a)) , m(co, I1(b))} .

For every (a, b) ∈ CI2, consider ⊲⊳(a,b)∈MG2
defined by:

[a]⊲⊳(a,b) = {a, b} and #[x]⊲⊳(a,b) = 1, ∀x , a, b .

Take then
M(a,b) = {⊲◦⊳ ∈ ΛG2

: ⊲⊳(a,b)≺ ⊲◦⊳ } .

It follows then from Proposition 4.17 that, if ∼I2 ⊀ ∼′I1 , then

ΛG2
\ΛR

G2

=
⋃

(a,b)∈CI2
M(a,b) .

Algorithm 4.18 Let G1 be a network having only one cell type and one edge type. Let
G2 be the network obtained from G1 by deleting a node co ∈ C1 together with all its
edges. Denote by A the adjacency matrix of the network G2 whose eigenvalues λi with
i = 1, . . . , t have algebraic and geometric multiplicities ma

i
and m

g

i
, respectively.

1 Let ΛG2
:= { Proj(⊲⊳) : ⊲⊳∈ ΛG1

s.t. #[co]⊲⊳ = 1}.

2 If ∼I2≺∼′I1
4 then return ΛG2

and exit the algorithm. If ∼I2 6≺ ∼′I1 and G2 is regular

then let ΛG2
:= ΛG2

∪ {C2}.5

3 Consider the subset CI2 of C2 × C2.

4The cases where G1 is regular, or there is no directed edge in G1 from the removed cell co to the other
cells in C satisfy this condition. See Corollary 4.16.

5The equivalence relation with only the class C2 corresponds to the full synchronous subspace of G2.

34

4 For each (a, b) ∈ CI2

4.1 Consider the polydiagonal P := {x ∈ Rn−1 : xa = xb}.
4.2 For each i = 1, . . . , t, consider the subspace J1

λi
:= Eλi ∩ P.

4.3 If for all i = 1, . . . , t, J1
λi
is the zero subspace then go to step 4.

4.4 Consider only the nonzero subspaces J1
λi j
, say for j = 1, . . . , s.

4.5 Take J
pi j

λi j
according to (3.15), for j = 1, . . . , s.

4.6 Let Ṽ be the set of synchrony subspaces returned by AlgorithmA.1 executed
on A restricted to

J
pi1
λi1
⊕ · · · ⊕ J

pis
λis
.

4.7 Let Λ̃ be the set of balanced equivalence relations corresponding to Ṽ.

4.8 Let ΛG2
:= ΛG2

∪ Λ̃.

5 Return ΛG2
.

^

4.3 Example

Example 4.19 Consider the networks G1,G2,G3 and G4 given by Figure 9, where G2,
G3, G4 are obtained by successively removing nodes 6, 5 and 3 from G1. We start by

2

3

1 4

5

2

3

1 4

5

2

3

1 4 2 1 4

G
2

G
3 G

4
G
1

6

Figure 9: The network G2 is obtained from G1 by removing the cell 6; the network G3

is obtained from G2 by removing the cell 5; and the network G4 is obtained from G3 by
removing the cell 3.

generating the lattice ΛG1
using Algorithm 6.3 in [2]. Then, we obtain successively the

latticeΛGi
based onΛGi−1

usingAlgorithm 4.18, for i = 2, 3, 4. The result is summarized

in Tables 4– 6.
More precisely, the input equivalence relations of Gi’s are listed below:

∼I1= {{1, 4, 5, 6}, {2, 3}}, ∼I2= {{1, 2, 3, 4, 5}}, ∼I3= {{1, 4}, {2, 3}}, ∼I4= {{1}, {2, 4}}.

35

⊲⊳10= {{1}, {2}, {3}, {4}, {5}, {6}}

⊲⊳1
1
= {{1}, {2, 3}, {4}, {5}, {6}}

⊲⊳12= {{1}, {2}, {3}, {4, 5}, {6}}

⊲⊳13= {{1, 4}, {2, 3}, {5}, {6}}

⊲⊳1
4
= {{1}, {2, 3}, {4, 5}, {6}}

⊲⊳15= {{1, 6}, {2}, {3}, {4, 5}}

⊲⊳16= {{1, 4, 5}, {2, 3}, {6}}

⊲⊳17= { {1, 6}, {2, 3}, {4, 5}}

⊲⊳18= { {1, 4, 5, 6}, {2, 3}}

Table 4: The lattice of balanced relations for the network G1 of Figure 9.

⊲⊳20= {{1}, {2}, {3}, {4}, {5}}

⊲⊳2
1
= {{1}, {2, 3}, {4}, {5}}

⊲⊳22= {{1}, {2}, {3, 5}, {4}}

⊲⊳23= {{1}, {2}, {3}, {4, 5}}

⊲⊳2
4
= {{1}, {2, 3, 5}, {4}}

⊲⊳25= {{1}, {2}, {3, 4, 5}}

⊲⊳26= {{1, 2}, {3}, {4, 5}}

⊲⊳27= {{1, 4}, {2, 3}, {5}}

⊲⊳28= {{1}, {2, 3}, {4, 5}}

⊲⊳29= {{1}, {2, 4}, {3, 5}}

⊲⊳2
10
= {{1, 2}, {3, 4, 5}}

⊲⊳2
11
= {{1, 4}, {2, 3, 5}}

⊲⊳2
12
= {{1, 2, 3}, {4, 5}}

⊲⊳2
13
= {{1, 4, 5}, {2, 3}}

⊲⊳2
14
= { {1}, {2, 3, 4, 5}}

⊲⊳2
15
= { {1, 2, 3, 4, 5}}

Table 5: The lattice of balanced relations for the network G2 of Figure 9.

ΛG3
= {⊲⊳3

0
, ⊲⊳3

1
, ⊲⊳3

2
} ΛG4

= {⊲⊳40, ⊲⊳41}

⊲⊳3
0
= {{1}, {2}, {3}, {4}} ⊲⊳40= {{1}, {2}, {4}}

⊲⊳3
1
= {{1}, {2, 3}, {4}} ⊲⊳4

1
= {{1}, {2, 4}}

⊲⊳3
2
= {{1, 4}, {2, 3}}

Table 6: The lattices of balanced relations for the networks G3 and G4 of Figure 9.

and their corresponding projections are given by

∼′I1= {{1, 4, 5}, {2, 3}}, ∼
′
I2
= {{1, 2, 3, 4}}, ∼′I3= {{1, 4}, {2}}.

Note that we have
∼I2⊀ ∼′I1 , ∼I3≺ ∼′I2 , and ∼I4⊀ ∼′I3 .

Consider the networkG2 as obtained fromG1 by removing the node 6. Since∼I2⊀∼′I1 ,
there can be balanced equivalence relations on G2 that are not recoverable from G1 (cf.

36

Proposition 4.17). At step 1 of Algorithm 4.18, ΛG2
is set to be the set of recoverable

equivalence relations on G2 given by (cf. Proposition 4.10)

ΛR

G2

= {⊲⊳20, ⊲⊳21, ⊲⊳23, ⊲⊳27, ⊲⊳28, ⊲⊳213}

=
{

Proj(⊲⊳10), Proj(⊲⊳
1
1), Proj(⊲⊳

1
2), Proj(⊲⊳

1
3), Proj(⊲⊳

1
4), Proj(⊲⊳

1
6)
}

.

At step 2, since ∼I2⊀ ∼′I1 and G2 is regular, let ΛG2
:= ΛG2

∪ {⊲⊳2
15
}. At step 3, the

following set
CI2 = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5)},

is considered. For every ⊲⊳(a,b)∈M(a,b) with (a, b) ∈ CI2, the step 4 then finds all balanced
equivalence relations ⊲◦⊳ ∈ ΛG2

such that ⊲⊳(a,b)≺ ⊲◦⊳ . Altogether we obtain Table 5.

Next, consider the network G3 which is obtained from G2 by removing the node 5.
Since ∼I3≺ ∼′I2 , we have (cf. Proposition 4.14)

ΛG3
= ΛR

G3

= {⊲⊳30, ⊲⊳31, ⊲⊳32} =
{

Proj(⊲⊳20), Proj(⊲⊳
2
1), Proj(⊲⊳

2
7)
}

and Algorithm 4.18 exits at step 2. For the network G4 which is obtained from G3 by
removing the node 3, the recoverable equivalence relations are given by

ΛR

G4

= {⊲⊳40} =
{

Proj(⊲⊳30)
}

.

Since ∼I4⊀ ∼′I3 , Algorithm 4.18 goes on to step 3 considering

CI2 = {(2, 4)}.

Using ⊲⊳(2,4)= {{1}, {2, 4}}, step 4 then finds an additional balanced equivalence relation
{{1}, {2, 4}} on G4 (cf. Table 6). ^

4.4 Adding a node

The approach of Subsection 4.1 is completely applicable to the case of adding a node
in the following sense. As before, consider that the network G1 is obtained from the
network G2 by adding a node co together with some edges from/to c0. Then, a balanced
equivalence relation ⊲⊳∈ ΛG1

is called recoverable from ΛG2
, if there exists ⊲⊳2∈ ΛG2

such

that ⊲⊳= Lift(⊲⊳2). Denote by ΛR

G1

the set of all balanced equivalence relations in ΛG1

that are recoverable from ΛG2
. By Lemma 4.6, if ⊲⊳2∈ ΛG2

is such that ⊲⊳2≺∼′I1 then

its lift ⊲⊳2 := Lift(⊲⊳2) ∈ ΛG1
. On the other hand, if ⊲⊳2∈ ΛG2

is such that ⊲⊳2⊀∼′I1 ,
then Lift(⊲⊳2) ⊀ Lift(∼′I1). Note that any refinement ∼ of ∼I1 such that #[co]∼ = 1 must
refine Lift(∼′I1), we conclude that Lift(⊲⊳2) cannot be a balanced relation forG1. It follows
then from this discussion that

ΛR

G1

=
{

Lift(⊲⊳2) : ⊲⊳2∈ ΛG2
∧ ⊲⊳2≺∼′I1

}

, (4.27)

37

which is a parallel of Proposition 4.10. In fact, ΛR

G2

(in case of deleting a node) can be

written as
ΛR

G2

= { Proj(⊲⊳) : ⊲⊳∈ ΛG1
∧ ⊲⊳≺ Lift(∼I2)} (4.28)

Moreover, in analogue to Proposition 4.14, we have

∼I1≺ Lift(∼I2) ⇒ ΛG1
= ΛR

G1

. (4.29)

Indeed, for any ⊲⊳1∈ ΛG1
, we have ⊲⊳1≺∼I1≺ Lift(∼I2) and thus #[co]⊲⊳1 = 1. In particular,

we have ⊲⊳1= Lift(⊲⊳2) for ⊲⊳2:= Proj(⊲⊳1), where ⊲⊳2 is balanced by Lemma 4.4. Also
since ⊲⊳1≺∼I1 , we have ⊲⊳2= Proj(⊲⊳1) ≺∼′I1 . Therefore, ⊲⊳1∈ Λ

R

G1

.

4.5 Graph operations on multiple nodes

We extend our results now to the cases of deletion or addition of several nodes, and
both the addition and deletion of several nodes.

4.5.1 Deleting multiple nodes

One can show that Propositions 4.10 and 4.14 remain valid for deletion of multiple
nodes. To this end, one only needs to adjust the definition of projection and use
the same definition of recoverable relations. For a network G2 obtained from G1 by
removing nodes {c1, c2, . . . , cs} together with all their edges, the recoverable relations are
precisely

ΛR

G2

= { Proj(⊲⊳) : ⊲⊳∈ ΛG1
s.t. [ci]⊲⊳ ⊂ {c1, c2, . . . , cs} ∀ i = 1, 2, . . . , s} .

Example 4.20 In Example 4.19, the network G4 can be viewed as obtained from G2 by
removing the nodes 3, 5 andwe can recoverΛG4

usingΛG2
. If∼′′I2 denotes the projection

of ∼I2 to G4, then ∼I4≺∼′′I2 . In this case of G4, all balanced equivalence relations are
recoverable from G2 by

ΛG4
= { Proj(⊲⊳) : ⊲⊳∈ ΛG2

s.t. [3]⊲⊳ ⊂ {3, 5} ∧ [5]⊲⊳ ∈ {3, 5}}.

^

4.5.2 Adding multiple nodes

We can extend the discussion at Subsection 4.4 to the case of addition of multiple
nodes in the following way. Let G1 be a network obtained from G2 by adding nodes
{c1, c2, . . . , cs} together with some edges from/to ci’s. Define the lift of ⊲⊳2∈MG2

, denoted

by ⊲⊳2, where [ci]⊲⊳2 = {ci}, for i = 1, . . . , s and [x]⊲⊳2 = [x]⊲⊳2 for x ∈ C2. The projection
can be canonically extended. The definition of recoverable relations then follows. It can
be directly verified that Lemma 4.6 and thus (4.27)-(4.29) remain valid for the above
defined lift and projection.

38

4.5.3 Deleting a node and adding another one

Let G1,G,G2 be related by

G1
del. co−→ G add. ao−→ G2,

i.e.,G2 is obtained fromG1 by first deleting a node co and then adding a node ao. Denote
by Projco (resp. Projao) and Liftco (resp. Liftao) the projection and liftingmaps related to
the deletion (resp. the addition) operation. A balanced equivalence relation ⊲⊳2∈ ΛG2

is

called recoverable from G1, if there exists ⊲⊳∈ ΛR

G such that ⊲⊳2= Liftao(⊲⊳). Recall that Λ
R

G
denotes the set of balanced relations onG recoverable fromG1, andΛ

R

G2

denotes the set

of balanced relations onG2 recoverable fromG. We denote byΛ
R,G1

G2

the set of balanced

relations on G2 that are recoverable from G1. Using our previous results (4.27)-(4.28),
we have

ΛR

G = { Projco(⊲⊳1) : ⊲⊳1∈ ΛG1
∧ ⊲⊳1≺ Liftco(∼I)}

and
ΛR

G2

= { Liftao(⊲⊳) : ⊲⊳∈ ΛG ∧ ⊲⊳≺ Projao(∼I2)}.

Consequently, we have

Λ
R,G1

G2

= { Liftao(⊲⊳) : ⊲⊳∈ ΛR

G ∧ ⊲⊳≺ Projao(∼I2)}

= { Liftao(Projco(⊲⊳1)) : ⊲⊳1∈ ΛG1
∧ ⊲⊳1≺ Liftco(∼I) ∧ Projco(⊲⊳1) ≺ Projao(∼I2)} .

(4.30)

4.5.4 Deleting and adding multiple nodes

The general case of multiple deletion and addition of nodes can be analyzed using the
above discussion. More precisely, let G2 be the network obtained from G1 by deleting
nodes {c1, c2, . . . , cs} and adding nodes {a1, a2, . . . , ar} (together with some edges from or
to ai’s). If Projc and Liftc (resp. Proja and Lifta) denote the projection and lift related
to the deletion (resp. addition) operation, then we have (similar to (4.30))

Λ
R,G1

G2

= { Lifta
(

Projc(⊲⊳1)
)

: ⊲⊳1∈ ΛG1
∧ ⊲⊳1≺ Liftc(∼I) ∧ Projc(⊲⊳1) ≺ Proja(∼I2)}.

Acknowledgements

HR thanks the University of Porto for its hospitality and acknowledges additional sup-
port from the European Regional Development Fund through the programme COM-
PETE and by the Portuguese Government through the FCT - Fundação para a Ciência
e a Tecnologia under the project PTDC/MAT/100055/2008.

39

References

[1] M. Aguiar, P. Ashwin, A. Dias, and M. Field. Dynamics of coupled cell networks:
synchrony, heteroclinic cycles and inflation. J. Nonlinear Sci. 21 (2) (2011) 271–323.

[2] M.A.D. Aguiar and A.P.S. Dias. Synchrony in Coupled Cell Networks. Preprint
2012.

[3] M.A.D. Aguiar and A.P.S. Dias. Synchrony in Product Coupled Cell Networks. In
preparation 2013.

[4] M.A.D. Aguiar and H. Ruan. Evolution of Synchrony under Combination of Cou-
pled Cell Networks. Nonlinearity 25 (2012) 3155–3187.

[5] J. W. Aldis. A polynomial time algorithm to determine maximal balanced equiva-
lence relations. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2) (2008) 407-427.

[6] F. M. Atay and T. Biyikoglu. Graph operations and synchronization of complex
networks. Physical Review E 72 (2005) 016217.

[7] G. Chen and Z. Duan. Network synchronizability analysis: A graph-theoretic
approach. Chaos 18 (2008) 037102.

[8] A. P. S. Dias and I. Stewart. Linear Equivalence and ODE-equivalence for Coupled
Cell Networks. Nonlinearity 18 (2005) 1003–1020.

[9] M. Field. Combinatorial dynamics. Dyn. Syst. 19 (3) (2004) 217–243.

[10] M. Golubitsky and I. Stewart. Nonlinear dynamics of networks: the groupoid
formalism. Bull. Amer. Math. Soc. 43 (3) (2006) 305–364.

[11] M. Golubitsky, I. Stewart and A. Török. Patterns of Synchrony in Coupled Cell
Networks with Multiple Arrows. SIAM J. Appl. Dynam. Sys. 4 (1) (2005) 78–100.

[12] A. Hagberg and D.A. Schult. Rewiring networks for synchronization. Chaos 18
037105 (2008) 1–7.

[13] H. Kamei. Construction of lattices of balanced equivalence relations for regular
homogeneous networks using lattice generators and lattices indices. Int. J. Bifur.
Chaos Appl. Sci. Engrg. 19 (11) (2009) 3691-3705.

[14] H. Kamei and P. J. A. Cock. Computation of Balanced Equivalence Relations and
Their Lattice for a Coupled Cell Network. SIAM J. Appl. Dynam. Sys. 12 (1) (2013)
352–382.

[15] W. Lu, F. M. Atay and J. Jost. Synchronization of Discrete-Time Dynamical Net-
works with Time-Varying Couplings. SIAM J. Math. Anal. 39 (4) (2007) 1231¢1259.

[16] N.M. Luscombe, M.M. Babu, H. Yu, M. Snyder, S. A. Teichmann, M. Gerstein. Ge-
nomic analysis of regulatory network dynamics reveals large topological changes.
Nature 431 (2004) 308–312. doi:10.1038/nature02782

40

[17] I. Stewart. The lattice of balanced equivalence relations of a coupled cell network.
Math. Proc. Cambridge Philos. Soc. 143 (1) (2007) 165–183.

[18] I. Stewart, M. Golubitsky and M. Pivato. Symmetry groupoids and patterns of
synchrony in coupled cell networks. SIAM J. Appl. Dynam. Sys. 2 (4) (2003) 609–
646.

[19] B. Zhang, H. Li, R. B. Riggins, M. Zhan, J. Xuan, Z. Zhang, E. P. Hoffman, R. Clarke
and Y. Wang. Differential dependency network analysis to identify condition-
specific topological changes in biological networks. Bioinformatics 25 (4) (2009)
526-532. doi: 10.1093/bioinformatics/btn660

A Adaptation of Algorithm 6.3 in [2]

Algorithm 6.3 in [2] obtains the lattice of nontrivial synchrony subspaces of a regular n-
cell networkG. It has as input the adjacencymatrixA of a regular n-cell networkG, with
valency v. If λ1 is the eigenvalue v of A with algebraic multiplicity 1, then it proceeds
considering the eigenspaces and generalized eigenspaces of the other eigenvalues, as
it is known in advance that the eigenspace corresponding to the valency v corresponds
to the trivial full synchronous polydiagonal space. (If the adjacency matrix A of G
has complex eigenvalues, the calculations are done on Cn, that is, interpreting A as
Ac : Cn → Cn.)

We give now the adaptation of this algorithm to our setup. Let A be a n × n square
matrix with real entries, obtained from an adjacency matrix of a not necessarily regular
n-cell networkwith set of cellsC. For c, c0 ∈ C, where c , c0 and c belongs to the∼I-class
of c0, consider the polydiagonal P = {x : xco = xc}. We are interested in executing
the adaptation of Algorithm 6.3 [2], considering A restricted to the largest A-invariant
subspace of Rn that has nonzero intersection with P, finding then the polydiagonal
subspaces that are left invariant under this restricted linear map. The changes we have
so to do in Algorithm 6.3 [2] are to guarantee that at each step, all the sets of conditions
that can give rise to a synchrony subspace include the condition xco = xc. This is done
to avoid considering artificial possibilities that we know in advance will not give rise
to a synchrony subspace.

Algorithm A.1 Let A be an n × n matrix with real entries. Let λi with i = 1, . . . , t and
t ≤ n be the eigenvalues of A, withma

i
andm

g

i
, respectively, the algebraic and geometric

multiplicities. Let P := {x : xco = xc}. If (1, . . . , 1) is an eigenvector of A corresponding
to an eigenvalue of A (the valency v of the network) with algebraic multiplicity 1, then
don’t consider at the above set of eigenvalues that eigenvalue.

1 [Find polydiagonals] For each eigenvalue λi, i = 1, . . . , t of A:

1.1 Let (v1, . . . ,vm
g

i
) be a basis of Eλi . Consider the matrix M whose columns

correspond to the eigenvectors v1, . . . ,vm
g

i
.

1.2 Let C = ∅. For every pair of rows l j, lk of M:

41

1.2.1 If l j = lk then C = C ∪ {x j = xk} and eliminate row lk of M. 6

1.3 Construct a four-column table for Eλi with a row containing: in the first entry
the set of the equality conditions C found in step 1.2; in the second entry
the corresponding polydiagonal dimension; in the third entry the basis of
eigenspace Eλi ; in the fourth entry the number of vectors of the basis, m

g

i
.

1.4 Let s be the number of remaining rows inM. Construct a newmatrixMwith
rows given by r j− rk for j = 1, . . . , s and k = j+ 1, . . . , swhere r j, rk are rows in

M. ThusM has s = s(s− 1)/2 rows, each corresponding to an equality x j = xk
with j, k ∈ {1, . . . ,n}.

1.5 Let S be the set of all the submatrices of M with s − 2 rows obtained from M
by elimination of rows. 7

1.6 While S , ∅,
1.6.1 Let N be a submatrix in S and S = S \ {N}.
1.6.2 Let r be the rank of N;

1.6.3 If r < m
g

i
then:

1.6.3.1 Let CN be the set of equalities given by the rows of N and C be
the set of equalities obtained in step 1.2. If there is no row in the
table of Eλi corresponding to set of equalities C ∪ CN then add a
new row to the table containing: in the first entry C ∪ CN; in the
second entry the correspondingpolydiagonal dimension; in the third
entry a basis of the subspace of the eigenvectors in Eλi that satisfy
the set of equality conditions (obtained from the solution set of the
homogeneous systemwith the coefficientmatrixN), and in the fourth
entry the number of vectors of the basis, m

g

i
− r.

1.6.4 Otherwise, r = m
g

i
:

1.6.4.1 Consider the set SN of all the submatrices ofN obtained by eliminat-
ing one row of N.

1.6.4.2 Let S = S ∪ SN.

1.7 If m
g

i
< ma

i
then:

1.7.1 Compute a basis of Im (A − λiIdn).

1.7.2 For each row in the table for Eλi ,

1.7.2.1 If the intersection of the subspace corresponding to the basis in that
row with Im (A − λiIdn) is a nonzero subspace then:

Let B1 be a basis of that intersection;

Let C be the first entry of the row (the set of equality conditions);

6If rows j and k ofM are equal that means that x j = xk for all vectors x = (x1, . . . , xn) ∈ Eλi and we can
eliminate one of those rows. In particular, rows c0 and c are equal and so xc0 = xc ∈ C.

7Each row r j − rk of the matrix M in step 1.4 corresponds to a set of coordinate equalities of the form

x j = xk for j , k. So, each submatrix of M in step 1.5 corresponds to a system of coordinate equalities.

The reason to consider only submatrices of M with rows up to s − 2 is that the minimum dimension for
any nontrivial polysynchronous subspace is 2 and there are s independent coordinate variables.

42

JordanChain(B1,C, 2).

2 [Find sum-dense set] 8 Consider the empty set S. For each table, for each row of
the table:

2.1 Let C be the set of equality conditions in that row and d the dimension of the
polydiagonal subspace ∆⊲⊳ given by those conditions.

2.2 If the number of vectors in that row of the table equals d, or equals d− 1 and
(1, ...1) is an eigenvector of A, 9 then there is an eigenvector basis of ∆⊲⊳ and
thus ∆⊲⊳ is a synchrony subspace. Let S = S ∪ {∆⊲⊳}.

2.3 If the number of vectors in that row of the table is lower than d − 1, or it
is d − 1 and (1, . . . , 1) is not an eigenvector of A, and there are more tables,
then look at the other tables to find all the rows whose equality conditions
include the set C of equality conditions.

2.3.1 If the total sum of the number of vectors equals d, or equals d − 1 and
(1, . . . , 1) is an eigenvector of A, then there is an eigenvector basis of ∆⊲⊳
and thus ∆⊲⊳ is a synchrony subspace. Let S = S ∪ {∆⊲⊳}.

2.3.2 If the total sum of the number of vectors is still less than d − 1, or it is
d − 1 and (1, . . . , 1) is not an eigenvector of A then:

2.3.2.1 Eliminate that row of the table.

2.3.2.2 Let c = #C. For each subset of c − 1 conditions containing the condi-
tion xc0 = xc of the initial set C of c conditions:

If there is no row at the table with that set of c − 1 conditions then
add a new row to the end of the table differing from the deleted row
only at the first and second entries: the first entry contains the set of
the c − 1 conditions and the second entry is n − c + 1, the dimension
of the corresponding polydiagonal.

Otherwise, change the corresponding row: replacing the third entry
by a basis of the subspace generated by the union of the bases in this
row and the one in the deleted row; changing the fourth entry by
the number of vectors of that basis. Move that row to the end of the
table.

3 [Find the irreducible sum-dense set] Decompose S into the disjoint union ∪r
i=1

S ji ,
where each set S ji contains the synchrony subspaces in S of dimension ji, with
ji−1 < ji, for i = 2, . . . , r. Let IG = S j1 .

3.1 For i = 2 to r:

3.1.1 For each subspace E in S ji , if it is not a sum of subspaces in IG, then let

IG = IG ∪ E.

8This step finds a sum-dense set containing the minimal synchrony set for the lattice of synchrony
subspaces. Recall [2, Theorem 5.11] where it is proved that theminimal synchrony set forms a sum-dense
set for the lattice of synchrony subspaces.

9(1, . . . , 1) is an eigenvector of A if the network is regular.

43

4 [Find the lattice] Let VG = Sum(IG). Return(IG,VG)

^

Algorithm A.2 [JordanChain(Bk−1,C, k)]

1 Let Vk−1 be the subspace generated by the basis Bk−1.

2 Let Vk be the subspace of vectors vk that satisfy (A − λiIdn) vk = vk−1 for some
vk−1 ∈ Vk−1.

10

3 Let BC be the basis at the third entry in the table for Eλi corresponding to the set
of equality conditions C.

4 If BC is a basis of Vk, then exit the JordanChain routine.

5 Complete the basis BC with a set Bk of vectors forming a basis of Vk.
11

6 Consider the matrixMwhose columns are the vectors of the basis Bk.

7 Construct a new matrix M with rows given by r j − rk, with r j and rk rows in M,
whenever x j = xk is in C. 12

8 Let S be the set of all submatrices of M of rank less than #Bk obtained from M by
elimination of rows but not eliminating the row corresponding to xc0 = xc.

9 Decompose S into disjoint union
⋃#Bk−1

i=0
Si, where each Si is the set of all matrices

in S with rank i. For each Si remove any matrix N that is a submatrix of a matrix
in Si different from N.

10 If S , ∅ then, for i = 0 to #Bk − 1:

10.1 While Si , ∅ do:
10.1.1 Let N ∈ Si and Si = Si \ {N}.
10.1.2 Let Bk be a basis of the subspace of < Bk > obtained from the solution set

of the homogeneous system with the coefficient matrix N.

10.1.3 Let CN be the set of equality conditions corresponding to the rows of N.
13

10.1.4 If CN = C, then change the row corresponding to the set C: replacing the

third entry by the basis B = BC ∪ Bk and the fourth entry by #B.

10Vk is a subspace of ker (A − λiIdn)
k.

11< BC >⊆ ker (A − λiIdn)
k−1 ⊆ Vk.

12If row r j − rk of M is zero, that means that x j = xk for all vectors in Vk.

13Equivalently, CN is the set of equality conditions satisfied by the vectors in < Bk >.

44

Otherwise, if there is no row at the table with the set of conditions CN,
then add a new row at the top of the table containing: in the first entry
CN; in the second entry the corresponding polydiagonal dimension; in

the third entry the basis B = BC ∪ Bk; in the fourth entry #B.

Else, go to step 10.1.

10.1.5 If the intersection of the subspace corresponding to the basis Bk with
Im (A − λiIdn) is a nonzero subspace then:

10.1.5.1 Let Bk be a basis of the intersection < B > ∩Im (A − λiIdn).

10.1.5.2 JordanChain(Bk,CN, k + 1).

^

Algorithm A.3 [Sum(IG)]
The set IG contains the irreducible sum-dense set of the lattice VG.

1 Let VG = IG.

2 Let s = #IG.

3 For i = 2 to s,

3.1 For every (possible) subset {∆⊲⊳ j1 , . . . ,∆⊲⊳ ji }, with jk , jl, of i synchrony sub-
spaces in IG,

3.1.1 Let ∆⊲⊳ = ∆⊲⊳ j1 + · · · + ∆⊲⊳ ji ,
3.1.2 If ∆⊲⊳ is a polydiagonal subspace then let VG = VG ∪ {∆⊲⊳}.

4 If (1, . . . , 1) is an eigenvector of A then return VG ∪ {∆0} where ∆0 is the full

synchronous polydiagonal space. Otherwise, return VG.

^

45

