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Abstract

We analyze the impact of interior symmetries on the multiplicity of the eigenvalues
of the Jacobian matrix at a fully synchronous equilibrium for the coupled cell systems
associated to homogeneous networks. We consider also the special cases of regular and
uniform networks. It follows from our results that the interior symmetries, as well as the
reverse interior symmetries and quotient interior symmetries, of the network force the existence
of eigenvalues with algebraic multiplicity greater than one. The proofs are based on the
special form of the adjacency matrices of the networks induced by those interior symmetries.

Keywords: Coupled systems, interior symmetry, multiple eigenvalues.

1 Introduction

A coupled cell system is a set of individual dynamical systems, or cells, that are coupled together
through interactions. Such systems can be represented by a directed graph, a coupled cell network,
whose nodes correspond to cells and whose edges represent couplings. Two cells are called
identical, if they have the same phase space and the same internal dynamics (cf. Golubitsky et
al. [5]). Here we assume that the internal dynamics of a cell is modeled by a system of ordinary
differential equations.

This paper is mainly concerned with homogeneous networks, which are coupled cell networks
of identical cells that are identically coupled. A homogeneous network is called regular, if all
the couplings (arrows or edges) are of the same type. The valency of a homogeneous network is
the number of arrows that input to each cell.
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An important feature of homogeneous networks is that the diagonal subspace A, formed by
setting all cell coordinates equal in the total phase space, is always flow-invariant by admissible
coupled systems. Moreover, the restriction of these systems to A gives the set of all vector fields
on A (cf. Theorem 5.2 of Golubitsky et al. [8]). Suppose that a homogeneous cell system admits a
fully synchronous equilibrium in A. We say that the system undergoes a local synchrony-breaking
steady-state bifurcation, if the synchronous equilibrium loses its stability and bifurcates to a state
with less synchrony, as a bifurcation parameter crosses certain critical value.

Itis known that a steady-state bifurcation occurs only if some real eigenvalue of the Jacobian
at the equilibrium becomes zero, as the bifurcation parameter is varied. When a pair of
complex conjugate eigenvalues of the Jacobian crosses the imaginary axis as the bifurcation
parameter crosses the critical value, the system presents a Hopf bifurcation. In this case, under
additional nondegeneracy conditions, the steady-state bifurcates to a periodic solution. In
non-symmetric systems, the eigenvalues are generically simple, so the bifurcation analysis is
straightforward. In the presence of symmetry, however, multiple eigenvalues appear even
under generic assumptions, and in this case the bifurcation analysis problem turns to be highly
degenerate (cf. Golubitsky et al. [6]).

It seems that for homogeneous cell systems, multiple eigenvalues occur more frequently
than for general systems. More importantly, they are very often not forced by symmetry alone.
Recall that a symmetry of a coupled cell network is a permutation on the set of cells and arrows
such that it preserves the network structure. In [5], Golubitsky et al. introduced a less stringent
form of symmetry for coupled cell networks — interior symmetry. Following Antoneli et al. [2],
we say that a network G has an interior symmetry on a subset S of cells, if S together with all the
arrows directed to it form a subnetwork that has a nontrivial symmetry. Notice that a symmetry
of a network is a particular case of an interior symmetry. Throughout the paper, when referring
to interior symmetry, we include the case of symmetry, and by interior symmetry, we mean
nontrivial interior symmetry.

The main goal of this paper is to address how interior symmetry may result in multiple
critical eigenvalues at synchrony-breaking bifurcations. Without loss of generality, we assume
the synchronous equilibrium is at the origin. As similar to the case of regular networks (cf.
Leite et al. [10]), the Jacobian of a homogeneous coupled cell system at a fully-synchronized
equilibrium at the origin is determined by the cell internal dynamics and the adjacency matrices
of different types of arrows. More precisely, let G be an n-cell homogeneous network with s type
of arrows, whose cell internal dynamics is r-dimensional. Thus, the total phase space is (R")".
Let A;, 1=1,2,...,s, be the adjacency matrix of the [-th type of arrows in G, i.e. A; = [aij]1<i j<n
is a matrix whose entry a;; is the number of the [-th type arrows connecting cell j to i. Let a
be the linearized internal dynamics at the origin, §; be the linearized internal coupling at the
origin with the /-th type of input, for / = 1,2,...,s. Note that a and f; are r X r matrices. Then,
the Jacobian at the origin is of the form

]g:a®ln+ﬁ1®A1+---+ﬁm®As.

In the case s = 1, G is a regular network, for which we write f = ; and Ag = A1 Let
Ui, ..., Un be the eigenvalues of AQ' Then, as it is shown in Leite et al. [10] and Aguiar et
al. [1], the eigenvalues of | G are the union of the eigenvalues of the r X r matrices a + u;, for
j=1,...,n, including algebraic multiplicity. Thus, for regular networks, our problem reduces
to understanding how interior symmetry may affect the multiplicity of the eigenvalues of Ag.
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Examples show that interior symmetry often forces multiple eigenvalues, and frequently, with
geometric multiplicity smaller than the algebraic multiplicity (cf. [1] and [10]).

In the case s > 1, there is generally no straightforward relation between the spectrum of
I and that of the A;’s (cf. Golubitsky et al. [4] where the product of two regular networks
was considered). However, as we will see, using interior symmetry, it is possible to relate the
multiplicities of the eigenvalues of ] with those of the A;’s.

The main reason why interior symmetry may result in multiple eigenvalues is that it imposes
restrictions on the network structure and thus on the form of adjacency matrices of the network.
For example, an interior symmetry (ij) on the set of cells C = {1,...,n} of a regular network G
given by the permutation of cells i and j corresponds to the following constraints on the entries
of Ag

aji = ajj, Aij = aji and ik = Ajk, forall k € C\ {l, ]}

Interior symmetries are common for regular networks specially when they have at most
one connection from one cell to another, as is the particular case of uniform networks. Following
Stewart [13], we say that a network is uniform, if it has no multiple arrows or self-couplings.
As we will see, interior symmetries force the existence of integer eigenvalues for the adjacency
matrix of a regular network. It is known that for a regular network G with valency v all the
eigenvalues A of Ag satisfy [|A]| < v. Thus, for example, if the network has valency v = 2, in the
presence of interior symmetries, the eigenvalues —1,0 and 1 will arise very often. Moreover,
as we will see in Subsection 3.1.6, for regular uniform networks, interior symmetry forces the
existence of eigenvalues for Ag in {-2,-1,0,1}.

We define other variations of interior symmetry in a network such as reverse interior symmetry
and quotient interior symmetry, which may also result in multiple eigenvalues for the Jacobian at
the origin of the corresponding coupled cell systems. A reverse interior symmetry is an interior
symmetry of the reverse network, where the direction of arrows of G is reversed. A quotient
interior symmetry is a short-hand notion of an interior symmetry of a quotient network of G,
which is obtained by restricting G to a balanced equivalence relation on the cells. If a quotient
network has a reverse interior symmetry, then we call this symmetry a quotient reverse interior
symmetry.

The paper is organized as follows. In Section 2, we recall concepts from coupled cell
networks, give preliminary definitions of various interior symmetries and collect a few results
from linear algebra. In Subsection 3.1, we study how interior symmetry can give rise to multiple
eigenvalues for the Jacobian at the origin of coupled cell systems associated to regular networks.
We discuss several important groups of interior symmetries, such as the cyclic group Zj, the
dihedral group Dy, the alternating group Ay and the symmetric group Si. In Subsection 3.2,
we extend this discussion to homogeneous networks. We give some concluding remarks in
Section 4. Throughout the paper, numerous examples will be used to illustrate our results.

2 Preliminaries

In this section, we summarize necessary concepts from coupled cell networks. We restrict our
attention to homogeneous coupled cell networks since they are our main case of study. For
more general definitions and results on coupled cell networks, we refer to Golubitsky et al. [7],
Golubitsky et al. [8] and references therein.



Definition 2.1 A coupled cell network consists of a finite set C = {1,--- ,n} of nodes or cells and
a finite set & = {(c,d) : ¢,d € C} of edges or arrows and two equivalence relations, ~c on cells
in C and ~f on edges in &, with the consistency condition: if e; ~g ey, for ey = (c1,d1) € E and
ez = (cp,dp) € E, then ¢ ~¢c ¢z and dy ~¢ dp. We write G = (C, &, ~¢, ~E). O

For an edge e = (c,d) € &, c is called the head cell and d is called the tail cell; and e is called an
input edge of c. The set of all input edges of c is called the input set of c and denoted by I(c).
Two cells c and d in a network are said to be input-equivalent, if there is an edge-type preserving
isomorphism f : I(c) — I(d) between their input sets. Note that the relation of input-equivalence
refines the relation of cell-equivalence.

Definition 2.2 A homogeneous network is a coupled cell network with only one input-equivalence
class. A regular network is a homogeneous network with only one edge-equivalence class. It
follows that in a homogeneous network all cells are of identical type and receive the same
number (per type) of input edges. This number, which is the cardinality of the input set, is
called the valency of the network. o

We follow the multiarrow formalism in Golubitsky et al. [8] and thus allow multiple arrows
of the same type between two cells and self-coupling arrows. We call the networks without
multiple arrows nor self-coupling arrows uniform networks (cf. Stewart [13]).

A coupled cell network can be represented graphically by a directed graph, where cells are
placed at the nodes and arrows identify the connections. Alternatively, the architecture of a
homogeneous network with s edge-equivalence classes can be given by s adjacency matrices
A1, Ay, ..., As. More precisely, the I-th adjacency matrix A; of an n-cell homogeneous network G
is an n X n matrix, whose (i, j)-entry equals to the number of the I-th type arrows directing from
cell j to cell i.

Example 2.3 Consider the 5-cell homogeneous network G with 2 types of arrows and valency
4, which is shown in Figure 1. Let A; (resp. Aj) be the adjacency matrix of the arrows with

Figure 1: A homogeneous network G with valency 4.

solid (resp. hollow) arrow head. Then,

01100 10010
100 01 00110
Aj=({1 00 01|, A=]01010 (2.1)
100 01 01100
00110 01001



Example 2.4 Consider the two subnetworks G;, G, obtained from the network G in Example
2.3, by only keeping all arrows with solid (resp. hollow) arrow head. Then, G;, G, are regular
networks, as shown in Figure 2, with the adjacency matrix given by Aj, A> respectively. (cf.

(2.1)).

Figure 2: Regular networks G, G, obtained from G in Figure 1.

Notice that G is an example of a uniform network, while G, is not. m|

2.1 Symmetry and symmetric groups

We adapt and simplify the definition of a symmetry of a general coupled cell network in
Antoneli et al. [3] to a symmetry of a homogeneous network.

Definition 2.5 Let G = (C, &, ~¢, ~g) be a homogeneous network. A symmetry of G is a per-
mutation ¢ on C such that there is a bijection between the edges (0(a), 0(b)) and (a,b), which
preserves the edge-equivalence relation ~g, for alla,b € C. o

Let G be an n-cell homogeneous network with s edge-equivalence classes, whose adjacency
matrices are given by Aj, Ay, ..., As. Write A} = [az(.;.)]nxn, for!=1,2,...,s. Then, a permutation
o is a symmetry of G, if and only if
O _ 0 P —
i = Aoy vVi,j=12,...,n,1=1,2,...,s.
It is clear that the set of all symmetries of an n-cell homogeneous network G forms a group,
which can be identified canonically with a subgroup of the symmetric group S,, that is defined

as the group of all permutations of n symbols. Let iy, ..., ix € IN be distinct positive integers. We
use the standard notation (7; . .. i) to denote a k-cycle in S,,, which is a permutation o defined by

o: ijiy forj=1,...k-1,
ikl—>i1

I—1 fOI'l%{lll,...,l'k}.

A 2-cycle is called a transposition. Every permutation can be written as a product of simple
transpositions. A permutation is called even (resp. odd), if it can be expressed as a product of an
even (resp. odd) number of transpositions. The subset of S,, consisting of all even permutations
is a subgroup called the alternating group A,,. A group generated by permutations 01,0, ...,0x
will be denoted by (o1,02,...,0m).



Example 2.6 Consider the k-cycle (12... k) in Sx and the cyclic group
Zy=(12 ... k)

generated by the k-cycle. Let G be a Zj-symmetric homogeneous network of k cells and
A1,Ay,. .., As be the adjacency matrices of G. Then, every A, is of the form

ailr a2 ... A1k-1 41k
a1 a1l a2 . a1k-1

M1 Mk A - Ag—2 |, (2.2)
aip a4z ... a1k a11

where every row vector is obtained by shifting the preceding row vector to the right by one
element. m]

A matrix of the form (2.2) is called a circulant matrix, which is often written as

circ(ary, aa, - - ., a1k)

for a shorthand. Circulant matrices and their spectral information are needed for our later
discussions. It is known that all circulant matrices of the form (2.2) share the same eigenvectors

vj:(l,a)j,a)?,...,a)]]?_l), for a)]':f,’%, j=01,...,k-1, (2.3)

which are eigenvectors of the following eigenvalues

2 k-1
A]' =a1 +€l120)]'+a13a)]» +---+a1ka)]. , ] = 0,1,...,k-1. (24)

Another concept that we will need later is that of a centrosymmetric matrix, which is a matrix
that is symmetric about its center. More formally,

Definition 2.7 A square matrix A = [a;;]uxx is called centrosymmetric, if the following relation is
satisfied
aij = Au+1-pn+1-j), YL j=1,2,...,n,

which is equivalent to the relation

A=JA],
where | = [ejiluxn is the exchange matrix; that is, €;,,41-; = 1 and ¢;; = O forall j # n+1 -,
i=1,2,...,n,ie. ithas 1 on the anti-diagonal and 0 elsewhere. O

Example 2.8 Consider the network G in Example 2.3. The symmetry group of G is
Z> = ((15)2 4)).

The adjacency matrices A;’s of any 5-cell homogeneous network having this symmetry are
centrosymmetric matrices of the form

a1 a2 a3 di4 ais
ap1 ax a3 dz4 a25
az1 asp 4asz asy 4as
azs Ap4 a3 a2 0d21
a5 a4 413 a2 an



2.2 Interior symmetry

The concept of interior symmetry of a coupled cell network is a generalized notion of a symmetry
of a coupled cell network. Roughly speaking, it is a permutation of the cells that preserves
certain amount of input structure. The notion of interior symmetry was first introduced by
Golubitsky et al. [5]. We adapt and simplify the definition in [5] to define an interior symmetry
of a homogeneous network as follows.

Definition 2.9 Let G = (C, &, ~¢, ~g) be a homogeneous network. Let S C C be a subset. An
interior symmetry of G on S is a permutation o on C such that o fixes every element in C \ S,
and there is a bijection between edges (o(a), 0(b)) and (a, b), which preserves edge-equivalence
relation ~g, fora € S, b € C. O

Note that in the case S = C, an interior symmetry on C is precisely a symmetry of G. In what
follows, when referring to interior symmetry, we also include the case of symmetry.

Let G be an n-cell homogeneous network with s edge-equivalence classes, whose adjacency
matrices are given by Aj, Ay, ..., As. Write A; = [al(;-)]nxn/ forl/=1,...,s. Then, a permutation o
is an interior symmetry of G on S, if and only if

af.? = afjgi)n(j), VieS, jeC, 1=1,...,s (2.5)

Following the formulation in Antoneli et al. [2], one can characterize the interior symmetry
using symmetry of subnetworks. Given a network G and a subset S C C, define Gg =
(C,I(S), ~c»~E) to be the subnetwork of G, whose set of cells is C (together with its cell-
equivalence relation ~¢) and whose set of arrows is the input set I(S) of S. The edge-equivalence
relation on I(S) is given by the restriction of the edge-equivalence ~¢ of & to I(S).

Proposition 2.10 (cf. [2]) Let G be a coupled cell network and S C C be a subset of cells of the set
of cells of G. Consider the network G g as defined above. Then the group of interior symmetries of the
network G on S can be canonically identified with the group of symmetries of the network G g.

Example 2.11 Consider the homogeneous network G in Example 2.3. Let S = {2,3,4}. Then,
the network G g has an S3-symmetry, as shown in Figure 3. Thus, G has an interior symmetry
Sz on S.

Figure 3: An S3-symmetric network G S for S ={2,3,4}.



Indeed, adjacency matrices A;’s of any 5-cell homogeneous networks with Sz interior symmetry
on S ={2,3,4} are of form

411 a2 413 414 45

azr dx a3 dz3 a5

a1 Aazz dzp a3 425

azr a3 a3 Az a5

4s1 Aasp As3  ds4 455

2.3 Reverse interior symmetry

We introduce a new concept of symmetry for coupled cell networks, the reverse interior symmetry.
To do so, we need the notion of the reverse network GX of a coupled cell network G, which is a
network defined on the same set of cells, but with all the edges in the reversed direction.

Definition 2.12 Let G = (C, &, ~c, ~E) be a coupled cell network. Define
ER:={(d, ) : (c,d) € E.
and an equivalence relation ~gx on EX by
(b,a) ~gr (d,c) & (a,b) ~ (c,d).
The reverse network GR of G is the network given by Gk = (C, ER ~c, ~ER). o

Note that the adjacency matrices of GX are given by the transpose of the adjacency matrices of G.
Also, a reverse network of a homogeneous (resp. regular) network may not be homogeneous
(resp. regular) again.

Definition 2.13 Let G = (C, &, ~¢, ~g) be a coupled cell network and G be its reverse network.
Let S € C be a subset. A permutation o is called a reverse interior symmetry of G on S, if o is an
interior symmetry of GX on S. o

That is, the group of reverse interior symmetries of G on S can be canonically identified with
the group of interior symmetries of G on S. Roughly speaking, a reverse interior symmetry is
a permutation of the cells that preserves certain amount of output structure.

Let G be a homogeneous network with s type of arrows whose adjacency matrices are
A1, Ay, ..., As. Then, a permutation ¢ is a reverse interior symmetry of G on § if and only if
aij = As(i)o(j)s Vi e Cand Vj €S,

forl=1,...,s.

Example 2.14 Consider the homogeneous network G in Example 2.3. Then, the reverse network
QR is as shown in Figure 4. It can be verified that gR has an interior symmetry (15) on S = {1, 5}.
Thus, (1 5) is a reverse interior symmetry of G. m|

Note that a symmetry of a coupled cell network G is both an interior symmetry and a reverse
interior symmetry of G, but the reverse may not be true.

Example 2.15 Consider the two networks in Figure 5, which are reverse to each other. Both
networks have S3 as an interior symmetry on S = {1, 2, 3}, thus S3 is a reverse interior symmetry
of both networks on §. However, neither network has an S3-symmetry. m]



Figure 5: Two networks that are reverse to each other.

2.4 Balanced equivalence relation

Given an equivalence relation »< on the set of cells of a coupled cell network, we can color the
nodes of the network in the following way: two cells i, j receive the same color precisely when
they belong to the same »-equivalence class. The coloring is called balanced, or equivalently
»< is called a balanced equivalence relation, if any pair of cells with the same color have the same
number and type of input arrows from cells of color b, for every b.

More formally,

Definition 2.16 (cf. [8]) Givena coupled cellnetwork G = (C, &, ~¢, ~E), an equivalence relation
>« on the set C is called balanced, if for every c,d € C with c » d, there exists a bijection
B : I(c) — I(d) between their input sets, which preserves the edge-equivalence relation ~g, and
such that for all i € I(c), the tail cells of i and (i) are in the same »<-class. O

The next proposition states that every interior symmetry permutation determines a balanced
equivalence relation.

Proposition 2.17 Let G be an n-cell homogeneous network and o be an interior symmetry of G on a
subset S C C. If v is an equivalence relation on the cells C of G such that

crad & c,d belong to the same orbit under o,

then > is balanced.



Proof Letc,d be such that c > d. Then, 0"(c) = d for some m € IN. Note that ¢" is an interior
symmetry of G on S, for all m € IN. Thus, by the definition of interior symmetry, there exists
an edge-equivalence preserving bijection between the edges (6" (c), 0™(x)) and (c, x), for every
input arrows (c, x). Thus, there exists a bijection between the input sets of d = ¢”(c) and ¢, which
preserves the edge-equivalence relation. On the other hand, the tail cells x and ¢™(x) are in the
same orbit by g, thus are in the same ><-class. Therefore, ><is a balanced equivalence relation. m

Let X g be the group of all interior symmetries of G on a subset S € C. Let K C X g be
a subgroup. By Proposition 2.17, every permutation in K determines a balanced equivalence
relationon G. In fact, the set of all these equivalence relations forms a sublattice of the total lattice
of balanced equivalence relations on G (cf. Stewart [12]). Moreover, the balanced equivalence
relation > determined by the subgroup K is given by the join of all the equivalence relations
determined by permutations in K and corresponds to the top element of this sublattice.

2.5 Quotient networks and quotient interior symmetry

Given a balanced equivalence relation < on a coupled cell network G, a quotient network G, =
(Cosy Ene, ~C.., ~E..) can be defined naturally as follows: the cells in C.. are the »<-equivalence
classes of the cells of G and the edges in &.. from quotient cell [c].« to quotient cell [d].., where
[c]-« denotes the »<-equivalence class of ¢, are in correspondence with the edges (¢’,d’) of G,
for all ¢’ v« ¢, d’ »a d. The cell-equivalence ~c_ and edge-equivalence ~g,_, relations for G,. are
induced from those of G. Since < is balanced, the quotient network G.. is well-defined. See
Golubitsky et al. [8].

Let G be a homogeneous network of n-cells with s edge-equivalence classes whose adjacency
matrices are Ay, Ay, ..., As. Let >« be a balanced equivalence relation, which divides the cells
of G into p equivalence-classes. Then, G.. is a homogeneous network of p-cells with s edge-
equivalence classes. Denote the adjacency matricesof G,.. by A1, Az, ..., As.. LetA;, = [ﬁg;;]pxp.
Then, for a = [i], B =[]~ in Ci, we have (cf. Proposition 2.3, [1])

ag; =) aY. (2.6)
ke[jl<
Example 2.18 Let G be the homogeneous network in Example 2.3. As shown in Example 2.8 and
Example 2.11, G has a symmetry Z, = ((15)(24)) and an interior symmetry Sz on S = {2, 3, 4}.
Consider »<1= {{1}, {2, 3,4}, {5}} and »x= {{1,5},{2,4}, {3}}. As seen in Subsection 2.4, both >« ,><,
are balanced equivalence relations on G. Let G; (resp. G,) be the quotient network induced by
< (resp. »<). Then, the adjacency matrices of G, are

020 110
A, =1 01|, A, =|020]|
0 20 011
and the adjacency matrices of G, are
011 110
A,={2 00| Ay =|011
200 020
The networks G, G, are shown in Figure 6. m|
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Figure 6: Quotient networks for G in Figure 1 given by the Sz-interior symmetry (left) and
75 = {(15)(24))-symmetry (right).

Note that a quotient network of a uniform network is a regular network which may not be
uniform in general.

One can also consider interior symmetry and reverse interior symmetry of quotient net-
works.

Definition 2.19 Let G be a coupled cell network. We say that a permutation o is a quotient
(interior) symmetry of G, if G has a quotient network G, which has ¢ as an (interior) symmetry,
for some balanced equivalence relation ><;. Similarly, we say that a permutation y is a quotient
reverse (interior) symmetry of G, if G has a quotient network G, which has y as a reverse (interior)
symmetry, for some balanced equivalence relation »<;. o

Example 2.20 Based on Example 2.18, we conclude that the homogeneous network in Figure 1
has a quotient symmetry ((1 5)), since G, is symmetric with respect to (1 5) in Figure 6 (left). O

In many cases, symmetric properties of the total network may be inherited by quotient
networks. Yet, the following examples show that there may be no definite relation between the
(interior) symmetry of the total network and the (interior) symmetry of its quotient networks.

Example 2.21 Consider the three-cell bidirectional ring pictured in Figure 7 which is Ss-
symmetric and whose quotient networks have no symmetry nor interior symmetry. m|

Figure 7: The three-cell bidirectional ring.

On the other hand, networks that quotient to (interior) symmetric networks tend to have
(interior) symmetry. Consider the 5-cell networks given in Figures 9, 10 and 11. All of them
have a quotient network which is isomorphic to the S3-symmetric network in Figure 7, for
the balanced equivalence relation {{1},{2,3},{4,5}}. At the same time, they all have interior
symmetries. More examples can be found in Aguiar et al. [1], where all the five cell regular
networks admitting the three-cell bidirectional ring as a quotient network are listed.

However, there can exist networks without any symmetry nor interior symmetry which
have an (interior) symmetric quotient network.
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Example 2.22 Consider the 6-cell regular network in Figure 8. It can be directly verified that it

Figure 8: A regular network without symmetry nor interior symmetry with the Sz-symmetric
three-cell bidirectional ring as a quotient network.

has no nontrivail symmetry nor interior symmetry, but it quotients to the three-cell bidirectional
ring, for the balanced equivalence relation {{1,2}, {3,4}, {5, 6}}. O

2.6 Direct sum decomposition of R"

Let G be an n-cell homogeneous network with adjacency matrices A, Ay, ..., As and »< be a
balanced equivalence relation on G. As seen in the previous subsection, there is an associated
quotient network G,., whose adjacency matrices are given by A;,_, A;_, ..., A, (cf. (2.6)). Based
on results on regular networks (cf. Section 4 of Golubitsky et al. [5]), one can show that><induces
a direct sum decomposition of R" such that every A; has a form of block matrix containing A; _,
for1=1,2,...,s (cf. Theorem 2.9 in Aguiar et al. [1] for regular networks).

More precisely, given a balanced equivalence relation >, define
A(R") = {x eR": x, =x,4 if c><d, Yc,d € C},

which is a linear subspace of R". Then, A.(R") is Aj-invariant, for every I = 1,2,...,s, since »
is balanced (cf. Theorem 4.3 in Golubitsky et al. [8]). Let Iy, ..., I, be the »-equivalence classes
of order greater than one and I = U;’:l I;. Define

W={xeR": x;=0¥jeC\I and in:Oforlslsm 2.7)
iEIl

U = A(R™). (2.8)

Note that if = is defined by an interior symmetry o (cf. Subsection 2.4), then both W and U are
o-invariant subspaces. Since W N U = {0}, we can decompose R" as a direct sum

R'=Wa U (2.9)

Then, with respect to a basis adapted to (2.9), every adjacency matrix A; has a block form

A 0
A"[c AIN]'

where A is the [-th matrix of the quotient network G,. associated to the balanced equivalence
relation »<.
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3 Interior symmetries and multiple eigenvalues

In this section, we analyze how the interior symmetry of a homogeneous network may affect the
multiplicity of eigenvalues of the Jacobian at a fully-synchronized equilibrium of the associated
coupled cell system. We start with the case for regular networks in Subsection 3.1, and then
generalize the results to homogeneous networks in Subsection 3.2.

Beyond the notion of interior symmetry introduced by Golubitsky et al. [5], we defined
in Section 2 two further concepts of interior symmetry: the reverse interior symmetry, which is
the interior symmetry of the reverse network and the quotient interior symmetry, which is the
symmetry of a quotient network.

The results presented in the following two subsections are stated for interior symmetry, but
they can be easily extended for reverse interior symmetry and quotient interior symmetry. This
follows from the fact that all the arguments we will use are based on the special form of the
adjacency matrices of the networks, which is forced by interior symmetry. Since analogous form
of adjacency matrices can be also induced by reverse interior symmetry and quotient interior
symmetry, the results also apply to networks with reverse interior symmetry and quotient
interior symmetry. More technically, note that each adjacency matrix A;, for = 1,...,s, of a
homogeneous network G corresponds to the transpose of the adjacency matrix Af of the reverse
network GX. Thus, the eigenvalues of A, coincide with those of AF. Consequently, multiple
eigenvalues of A; may appear not only due to the interior symmetry of G, but also due to its
reverse interior symmetry. As seen in Subsection 2.6, for each quotient network G,. there is a
special basis such that each adjacency matrix A;, for/ = 1,...,s, of G has a block lower-triangular
form with the adjacency matrix A; of the quotient network at one of the diagonal blocks. Thus,
the eigenvalues of the adjacency matrix A; of a quotient network G,. are also eigenvalues of
A;. Therefore, multiple eigenvalues of A; may appear not only due to the interior symmetry of
G, but also due to its quotient interior symmetry.

In summary, from the results presented in the following two subsections, it follows that
the interior symmetries, reverse interior symmetries and quotient interior symmetries of reg-
ular and homogeneous networks favor multiple eigenvalues of the Jacobian matrix at a fully-
synchronized equilibrium for the associated coupled cell systems.

3.1 Regular networks

Let G be an n-cell regular network with r-dimensional cell internal dynamics. Let uy,..., uy
be the eigenvalues of the adjacency matrix Ag of G. As it is shown in Leite et al. [10] and
Aguiar et al. [1], the eigenvalues of the Jacobian ]g of the associated coupled systems at a
fully-synchronized equilibrium are the union of the eigenvalues of the r X ¥ matrices

a+up, forj=1,...,n
including algebraic multiplicity.
Remark 3.1 It follows that if Ag has one eigenvalue with multiplicity m,, then | G has r eigen-

values with multiplicity at least m, (note that it can also happen that some of the r eigenvalues
are equal).

As mentioned before, interior symmetry imposes restrictions on the network structure and
thus on the entries of the adjacency matrix. By Remark 3.1, to analyze the effect of interior
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symmetries on the multiplicity of the eigenvalues of the Jacobian, it is sufficient to concentrate
on the influence of interior symmetries on the multiplicity of the eigenvalues of Ag.

As we will see, interior symmetries force the existence of integer eigenvalues for the adja-
cency matrix Ag of a regular network G. Moreover, all the eigenvalues A of Ag satisfy [|A|| < v,
where v is the valency of G. Thus, for regular networks with valency 2, the eigenvalues —1,0
and 1 will arise very often, in the presence of interior symmetry.

3.1.1 Product interior symmetry

We show that the case of product interior symmetries can be inferred from their component
symmetries.

Let G be an n-cell regular network having interior symmetry groups X g, forj=1,...,7,0n
]
disjoint subsets S; of cells of G. We say that G has a product interior symmetry

ZS:):'Sl X...XZS,
where S = U;:l S;. Let >« be the balanced equivalence relation induced by & S/ forj=1,...,r.
]

Then, the balanced equivalence relation »< induced by X S is given by

cead & cp<jd  forsome j. (3.10)
Set U = Aw(R"). Let il ,Ié, ... ,I;;j be the »<j-equivalence classes of order greater than one and
I/ =}, Il Define

Wi={xeR": x;=0¥ieC\I and ) x=0forl<l<p), j=12...r
iel]

Let I = J',; I/. Note that dimW; = |Sj| - pj, dimU = |C\ ]| + L’_; p; and W; N W; = {0},
UnW;=1{0},fori#jj=1,2,...,r. Thus, we have

R'=Wio..0oW, 0l (3.11)
Theorem 3.2 Let G be an n-cell regular network having a product interior symmetry Lg = Lg X...X

Lg on disjoint subsets S; of cells of G. Then, with respect to the decomposition (3.11), the adjacency
matrix Ag of G takes the form

A 0 -~ 0 O
0 A2 .-~ 0 0
o o0 -~ A 0
By By -+ B, A

where Al is a matrix of order (ISjl — pj) X (1Sl = pj) for j = 1,...,r, and Aw is the adjacency matrix of
the quotient network associated with v« (cf. 3.10)).

Proof Let W be the linear subspace induced by »< (cf. (2.7)). Note that W =W &...®& W,.
Then, as discussed in Section 2.6, with respect to the decomposition

R'=Weal,
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Ag takes the form

A 0

C A |
It remains to show that A is a block matrix of diagonal form, with respect to the dimensions
of the Wj’s, j = 1,...,r. Observe that to show that the entries of the j-th column of A are all

zeros except those on the diagonal block, it is enough to show that (W; & U) is Ag-invariant.
Letxe Wjforaje{l,2,...,rfand y = Agx. We need to show that y € W; @ U, i.e.

yi:ylr ViNkl, Vk?ﬁ]

Since x € Wj, the i-th component x; of x is zero except when i € S;. Thus, the value of y; (resp.
y1) depends only on the (i, m)-th (resp. (I, m)-th) entries of Ag, where m € §;. When i >4 [ and
k # j, we have i, I ¢ S;. Thus, the (i, m)-th entry of Ag is equal to the (I, m)-th entry of Ag, for
all m € S;. It follows that y; = y, for all i »< [, k # j.

Therefore, we have AgW]- C W; ® U. Combined with the fact AQU C U, we conclude that
(W;e U)is Ag-invariant, forj=1,2,...,r [ ]

Corollary 3.3 Under the assumptions of Theorem 3.2, we have that the set of eigenvalues of the adjacency
matrix Ag of G is given by the disjoint union of the set of eigenvalues of A’ and the set of eigenvalues of

A, forj=1,2,...,1.

Taking into account Theorem 3.2 and Corollary 3.3, in what follows, we shall concentrate on
interior symmetry groups that cannot be written as a product of subgroups. We will certainly
not consider here all subgroups of S,, with this property, as the number of subgroups increases
exponentially with 7 (cf. Holt [9] for an enumeration of subgroups and conjugacy classes of the
subgroups of S, for n < 18).

In this paper, we will be primarily interested in the following subgroups of S;:
(i) the symmetric groups Sy = ((i1 ... i), (i1 12)), with2 <k < n;
(ii) the alternating groups Ay, with2 <k <m;
(iii) the dihedral groups Dy = (i1 ... i), (i2 i) (i3 ix-1) - - - (ij ix42-j)), With 2 <k < n;
(iv) the cyclic groups Zy = (i1 ... ix)), with2 <k <n.

Note that S, ~ Dy ~ Z; and S3 ~ Ds.

3.1.2 Si- and Ai-Interior symmetry

We show that

Theorem 3.4 Let G be an n-cell reqular network having an interior symmetry group Sy or Ay on a
subset S C Cof k cells of G, for 2 < k < n. Let i and j be any two different cells in S. Then, the adjacency
matrix AQ = laapli<ap<n of G has the eigenvalue a;; — a;; with algebraic multiplicity at least k — 1. As
a result, the Jacobian | G has r eigenvalues with algebraic multiplicity at least k — 1.
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Proof Without loss of generality, we can assume S = {1,...,k}. First notice that for any
i,j,I,m € S, the product (i j)(I m) of two transpositions is an element in Ay C Sy. Since G has an
interior symmetry Sy (resp. Ag), the entries of Ag satisfy (cf. (2.5))

ajj = ajj, VZ,] eS

ajp = Ajm, Vi, j,l,meSwithi#landj#m

A =aj, Vi,j,ESand YieC\S.
Consider the balanced equivalence relation > induced by S (resp. Ay)

ba={{1,2,..., Kk}, {k+1},..., {n}}.

Let W, U be given by (2.7)—(2.8). Then, with respect to (2.9), the adjacency matrix Ag takes the

form
A 0
C A. |’

where A is a scalar matrix of order (k — 1) with the element (211 — a12) on the diagonal. Thus, the
adjacency matrix Ag has the eigenvalue (211 — a12) with algebraic multiplicity at least (k —1). It
follows from Remark 3.1 that the Jacobian ] G has r eigenvalues with algebraic multiplicity at
least k — 1. ]

Example 3.5 Let G be a 5-cell regular network that quotients to the three-cell bidirectional ring
R (cf. Figure 7). Examples of G are networks given in Figures 9, 10 and 11. By Theorem 3.4, the
adjacency matrix of R has —1 as an eigenvalue with algebraic multiplicity 2, as a result of the S3
(interior) symmetry of R. Thus, due to the Sz quotient interior symmetry of G, the adjacency
matrix of G has —1 as an eigenvalue with algebraic multiplicity at least 2. m|

3.1.3 Dj-Interior symmetry

We prove the following

Theorem 3.6 Let G be an n-cell reqular network having an interior symmetry group Dy for some
ke{3,...,n}. Set

(k=1)/2, ifkisodd,
k/2, ifkis even.

Then, the adjacency matrix AQ = [aijl1<i,j<n of G has m eigenvalues with algebraic multiplicity at least

2, ifk is odd; Ag has (m — 1) eigenvalues with algebraic multiplicity at least 2, if k is even. As a result, if

k is odd (resp. even), then the Jacobian J g has mr (resp. (m—1)r) eigenvalues with algebraic multiplicity
at least 2.

The following lemma will be needed for the proof of Theorem 3.6.

Lemma 3.7 Let m € IN. Consider the following two matrices of order m X m

a1 —ai3 a12 — a4 ai13 —4ais o Mm-1 T Mm+l . Am — A1,m+
a12 —ai4 a11 —ais a12 — a16 o Mm-2 — A1,m+1 M,m-1 — A1m
By = a13 — ais a12 — 16 a1 —aiyy a1,m-3 — Am aA1,m-2 — a1,m-1
M,m-1 — A,m+1  A1,m-2 — A1,m+1 a1,m-3 — A1m s a11 — a4 a2 —ai3
A1m — 01,m+1 A,m-1—Am  AAm-2 —A1,m-1 *°° aip — a3 ai1 —a ]
(3.12)
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ap +ais a2 +4ai4 m3 t+ais Mm-1 T A m+1 Om + A m+1
aip + a4 ai; +4ais a2 + a6 Mm-2 T A m+1 A1,m—1 t A1m
B, = a3 +ais a2 +4aie an +ayy Mm-3+a1m  Am—2 +A1,m-1
A m-1 T Aym+1 Am-2 T A1L,m+1 A1,m-3 T A1m a1 +as ajp +a13
A1m + A1,m+1 M m-1+a1m  Am—2 + a1,m-1 a2 +4a13 a; +4a
—2&!12 —26112 —2a12 —2&12
—25113 —26113 —2(113 —26!13
—2{5[14 —2a14 v —2a14 —2&14
+ . (3.13)
—2a1m —2a1m —2a1m —2ﬂ1m
| 201,41 —201,m41 —2a1,m41  —201,m41 |

Then, By and B, are similar.

Proof Notice thatany matrix M = (x;})uxm is similar to the matrix (xX;,—+1,m-j+1) by exchanging
rows R; with R,,_;;1 and exchanging columns C; with C,,_j41 for 1 <i < m. We will denote by
B; the matrix obtained in this way from Bj.

Forr=1,2,...,m—1, denote by O, the row operation

R, ~ R, +Ryy1+:---+Ry,

where the r-th row is replaced by the sum of the j-th row for r < j < m. It suffices to show that

Om-10m—2 - 0201B,07'0;* --- O, 1,01 = By. (3.14)

Write By = (bjj)mxm and denote by C = (c;j)mxm the left hand side of (3.14). We first show that
m
Y.bp, ifj=1,
p=i

Cl']‘ =

3 (3.15)
Z,(bpf - bp,j—l), ifl<j<m.
p=i

Notice that O;! represents the column operations

Ci1~>C—-C, Cup~>»Cun-GC,-, Cu~Cyu-0Ch.

Thus, it is clear that column operations and r-th row operations O, for r # i, do not change the
value of (i, 1)-th element. Thus, ¢;; is equal to the (i, 1)-th element of O;B;, i.e.

m
Ci1 = prl-
p=i

Assume j > 1. Then, column operations for i > j and row operations for i # j do not change
the value of (i, j)-th element. Thus, ¢;; is equal to the (i, j)-th element of OiBzOl‘lOg L. O]T_ll. We
need to differentiate the cases i < jand i > j, since it determines the order of the operations.
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Casel.i>j.
Let cx.) denote the (i, j)-th element of BzOfOE 1... O]T_ll for1 <1< j-1. Then,

m m
= ( )
C”_ZCP Z pj- )
p:
) (3) B 0O G (3) —
()= )= =, Z( )=

p

((] b _ G- 1>)_Z(bm by 1)

i
i

=
1

CaseIl. i < j.
Let cg.) denote the (i, j)-th element of OiBzOI1051 e O]T_ll_l for1 <I<j—i,and cl(.;.) denote the
(i, j)-th element of BzOflOgl e O]T_ll forj—i+1<I1<j-1. Then,

™ _ .M

Cij=¢.  —C..

ij i,j—1

(2) (2) (2) (2) (2) (2)
_(1] 1]2) (1]1 2)_ 111
=Y _ )

z] i,j-1

(] 1+1) (/ i+1 (] —i+2) (] i+2) (] z+2) (] i+2)

_Z( p.j-1 Z(( -2 ) (P] 1 pj-2 )

_ (J i+2) (] i+2)
Z( Cpj-1 )=

_Z( (=1 _ = 1)_2(% by 1)

Therefore, (3.15) is proved. It remains to show C = B;. Recall that a;j denotes the (i, j)-th element
of the adjacency matrix Ag. Consider the vector

_ T
v = (a11,412,M413, . - - s Wms A1,m+1,01,m+1, Amy - - - , 13, a12)
and the shifting operator p
_ T
pv = (12,11, 812,813, - - -, A1, A1 1, A1, Ay - - - 013) "

Notation: In the rest of the proof of Lemma 3.7, we use v}, to denote the p’-th element of v, with
p’ = p (mod k), for p € Z and v € R*. Also, we use a short-hand notation of (pv)p by pop.

Due to the symmetric form of v, we have
Um+q = Um—q+3, 4 € Z, (316)
and

Up = PUps1, Up = p_lvp_l, peEZ. (3.17)
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In terms of v and p, the matrix B; consists of the first m rows of the matrix

(—-p~2v,pv—p v, p*v—po,...,p" 20— p M, p" o — p~ 1+ Dy)
and B, consists of the first m rows of the matrix

m

W+ p20,pv+p 20, p?v+ ptu,..., p" 2o+ p Mo, p" o + pT DY) — 2(p7y, ..., p o).

Assume that1 <i<m, 1< j <m. By (3.15), we have

m m

i-1 —j-1 -2 -
Cij = Z(bw’ =bpj1) = Z((P] vp+p o) = (P +p ]UP))
p=i p=i
( = ) p]_lvi — p_]'oi + p_]_lvm — p]_zvm
(3.17)
= Uiojrl — Vitj T Ut jil — Om—j42
(3.16)

=" Vi_j41 — Uiy (3.18)

On the other hand, the (i, j)-th element of B; is equal to the (m — i + 1,m — j + 1)-th element of
By, which equals to

i i (3.17)
P i = P R0 1 = Ujmind — Vameicja3- (3.19)
By (3.16), we also have
(3.16)

Vimj+1 = Uktizjtl = U2mtl+i-jrl = Umt(m+i-j+2) = Uj-itl, (3.20)

and |

(3.16
Vom—i—j+3 = Ums(m-i—j+3) = Uitj- (3.21)

It follows from (3.18)—(3.21) that the (i, j)-th element of C coincides with the (i, j)-th element
of By,for1<i<m,1<j<m.

The case of j = 1 can be similarly proved. By (3.15), we have

m m
Cip = prl = Z(vp + p‘zvp - 2p_1vp)
p=i p=i

G174 - p~'0i+ p 20w — p~lom O = 0441 + Omsz — O
29 Vi — Uiy G20-620 Vo—i — Vom—is2 2 P" 0 i1 = p " v,
which is the (i, 1)-th element of B.
Consequently, we showed that C = B; and thus (3.14) holds. B crnma 3.7,

Proof of Theorem 3.6 Without loss of generality, assume G has an interior symmetry Dy on the
cells {1,...,k}. Due to this interior symmetry, the entries of Ag satisfy

aij = al(j+l—i)(mod kys for i, ],l ell,... Lk},
aij = aij, fori,lef{l,...,kfand je{k+1,...,n},

alj:al(k—j+2)/ fOl‘jG{Z,...,m,m+1}.
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Thus, Ag has the form
A D
Ag=[ EF ] (3.22)

where D is a k X (n — k) matrix with all rows equal and A is a (symmetric) circulant matrix

_ circ(a11a12a13 o Mm1Mm+1 - - - a13a12), if kis Odd,
circ(a11a12a13 o MmMm+1m - - - a13a12), if k is even.

It follows from (2.4) that the eigenvalues A;, j = 0,...,k — 1 of A are real and satisfy A; = Aj_ s
for j=1,...,m. Thatis, A has m eigenvalues with algebraic multiplicity at least 2, if k is odd; A
has (m — 1) eigenvalues with algebraic multiplicity at least 2, if k is even. Our goal is to prove
the same property for Ag-

Case I: Assume that k is odd.

Consider the balanced equivalence relation == {{1,2,...,k},{k + 1},..., {n}} induced by Dj.
Motivated by the direct sum decomposition (2.9), we define a basis 8 = {by, by, ..., b,} in R" by

Cir] — Ck—it1, forl<i<m

=261 + €i_mt1 + Cheivm+ls form+1<i<2m

b; = (3.23)

e t+exy+---+e, fori=k
e, fork+1<i<n,

where {ey,e,...,e,} denote the standard basis in R" (cf. Example 3.8 for k = 7). Then, the
adjacency matrix Agin the basis 8 has the form

Bi 0 |,
B‘lAgB: 0 B, ,
C |A-

where By, By are matrices of order m X m given by (3.12)—(3.13) and A.. is the adjacency matrix
of the quotient network induced by ». By Lemma 3.7, B; and B; are similar matrices, thus have
the same eigenvalues. Consequently, A has m eigenvalues of multiplicity at least 2. It follows
from Remark 3.1 that the Jacobian J, G has mr eigenvalues with algebraic multiplicity at least 2.

Notice that we can obtain an “optimal” basis 8B by applying the operations specified in the
proof of Lemma 3.7 to 8, so that Ag has two copies of By lying on the diagonal. More precisely,
let R = O;-10m—2--- 0201 be the total row operation on By and S the total row switching
operation such that SB; S~! = B;. Then, we have

SRB,R71S71 = B;.

Set
I, O 0
O=| 0 SR 0 ,
0 0 In—Zm

where I; stands for the identity matrix of order i X i. Define a new basis by

B=180"
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Then, the adjacency matrix Ag has the form

1 Bi 0 0
B AgB=|_ 0 B
c A
A precise formula of B=1{b1,by,..., b} is given by
€is1 — Ch—itls forl<i<m
—€k—i t Ck—iy1 t+ €ix1 — €ix2, form+1<i<2m-—1
bi ={=2¢; + ey + ¢y, fori=2m (3.24)
e1+e+---+e, fori=2m+1=k
e;, fork+1<i<mn,

(cf. Example 3.8 for k = 7).
Case II: Assume that k is even.

Similar to the case of odd k, we try to find an optimal basis for the diagonal form of Ag-
Motivated by the direct sum decomposition (2.9), define the following basis 8

€i+1 — Ck—i+1, forl<i<m-1
e1—ex+e3—e4- -+ ep_1 — e, fori=m
bi = 3=2e1 + €j_s1 + Cheivmil, form+1<i<2m-1 (3.25)
ept+ey+---+¢, fori=2m==k
e;, fork<i<mn,

(cf. Example 3.9 for k = 8). Then, the adjacency matrix Agin the basis 8 has the form

B, 0
-1 _ a * 0
B AgB=| 0 0 B, ,
c A

where B1, B, are matrices of order (m — 1) X (m — 1),
a=da— 26112 + 26!13 - 26!1,4 + .-+ (—1)m_12a1,m + (—1)ma1,m+1 (326)

and A.. is the adjacency matrix of the quotient network. More precisely,

a1 —ai3 a2 — a4 a13 —ais o A1m-1 T A1,m+1
a2 — a4 a11 —ais a2 — 16 cee aA1,m-2 — a1,m
By = a13 —ais a12 —aie a1 —aiy o Mm-3 — A1,m-1
Mm-1—Am+l Mm-2 —Am Am-3 —A1,m-1 a1 —ai3
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ap +as a2 + a4 a3 +4ais o ALm-1 T A1,m+1

aip + a4 a1 +ais a2 +4aie T Mm-2 T A1m
By = ai3 +ais a12 + a1 a1 +ayy o Am-3 T a1,m-1
A m—1 T Ay m+1 Mm—2 T A1m Am-3 T Aym-1 a11 +ai3
201, — 201, m41 241 -1 — 241,11 e 2a12 — 241 41
=201, + 201 m+1 =201, ;-1 + 201,m4+1 e —2a1p + 2a1,m41
+ 201, — 201,m41 201 -1 — 201 41 e 2a1p — 241 ;41
| (=1)"Qayn = 2a1,me1) (1" Q2a1,m-1 = 2a1,m41) -+ (=1)"(2a12 — 241 1m41)
[ —26112 —26!12 s —26112
—2&13 —2a13 s —2&13
+| —2a14 —-2a14 -+ 2014
| —2H1m —Zalm s —2a1m

Analog to Lemma 3.7, one can show that By and B, are similar. Indeed, denote by O; the
row operation

Rr ~ Ry +2Ru1 —2Rpp+ -+ (-1)""2Ryq, r=1,2,...,m—2.

Then,
0107 -+ Oy-301m-2B,0;1, 0.1 .-~ 05107 = By. (3.27)

By applying the operations specified in (3.27) to 8, we can obtain a new basis 8. Let R =
0103 -+ 04,-30,,—2. Define

L, O 0
o=|0 R 0 | B=80".
0 O In—2m+1

Then, the adjacency matrix Agin the basis $ has the form

B4 0
~ 1 ~ a 0
B AQB: 0 0 B
1
CN ‘Am

It follows that A has (m — 1) eigenvalues of multiplicity at least 2 and thus, by Remark 3.1, the
Jacobian | G has (m — 1)r eigenvalues with algebraic multiplicity at least 2.

A precise formula of B=1{by,..., by is given by

i+l — Chitl, forl<i<m-1
e1—ey+e3—eg - +eq—e, fori=m
bi = {(=1)"2ey —ep + - + (1) e ) + €immat + Choizms1, form+1<i<2m-—1
e1+e+---+e, fori=2m=k
e, fork+1<i<n,
(3.28)
(cf. Example 3.9 for k = 8). M Theorem 3.6.
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Example 3.8 Let G be a 9-cell regular network with an interior symmetry D7 on the cells
{1,2,3,4,5,6,7}. Then, with respect to the basis (cf. (3.23))

[ 0 0 o -2 -2 =21 0 017
1 0 0 1 0 0 100
0 1 0 0 1 0 1 0 O
0 0 1 0 0 1 1 00
B=| 0 o -1 0 0 1 1 0 0/,
0 -1 0 0 1 0 1 00
-1 0 0 1 0 0 1 00
0 0 0 0 0 0 010
O 0 0 O 0O 0 O0O0 1]
the adjacency matrix Ag has the form
B 0 0
B‘lAgB =l 0 B ,
Ci G |Ax
where
ai] —aiz aip —ai4 a1z — a4
Bi=|an—m4 ann—ms ap—a3 |,
a3 —ajg aip —aiz ail —4a
a1 — 2a1p + a3 —a1p + a14 a13 — 2a12 + a4
By =| a1p—2a13 +a14 an — 2413 +4ay aip — a3 ,
a13 — a4 a1p — 2014 + 413 a11 — 2414 + arp
apn + 26112 + 2a13 + 2(114 aig  a19
Awa = | ag1 +agy +ag3 +agy +ags +dage +4asy  adgg  dge |,
A91 + a9y + 93 + Ag4 + 495 + Aos + Ag7  A9g 499
and
0 0 0
Ci=| agp—ag; ag3—ags g4 —4ags |,
agp —ag97 (93 — 96 194 — A95
0 0 0
Co=| —2ag1 +asy +agy —2ag +asz +asg —2ag1 +asq +ass

—25[91 + a9y + a9y —26191 + ag3 + dgg —2a91 + dgq + ags

Consider a new basis (cf. (3.24))

0 0 0 0 0 -210 0]
1 0 0 0 -1 1 100
0 1 0 -1 1 0 100
0 0 1 1 0 0 100

8= 0 0 -1 1 0 0 100
0 -1 0 -1 1 0 100

-1 0 0 0 -1 1 100
0 0 0 0 0 0 010
0O 0 0 0 0 O 0O 1]




Then, the adjacency matrix A is of form

1 Bi 0 0
B AQB = 0 Bl 7
7’ ’
Ci G | A
where
0 0 0
Ci=| asy—as; as3—ass dsa —ass |,
(92 —dg97 93 — 096 94 — 95
0 0 0
C, =| —as3 +agy +ags —age —asy +ag3 +ags —agy —2ag) + agy + agy

—93 + A94 + A95 — 96 —A9 + A93 + A9 — Ag7 —2491 + A9 + A97

Example 3.9 Let G be a 10-cell regular network with an interior symmetry Dg on the cells
{1,2,3,4,5,6,7,8}. Then, with respect to the basis (cf. (3.25))

[0 0 0 1 -2 -2 -21 0 0]
1 0 0 -1 1 0 0 100
o 1 0 1 0 1 0 100
0o 0 1 -1 0 0 1 100
B = o 0o 0 1 0 0 0 100
{0 o0 -1 -1 0o 0 1 100}
0 -1 0 1. 0 1 0 100
-10 0 -1 1 0 0 100
0o 0 0 0 0O O 0 010
o 0 0 0 0 0 0 00 1]
the adjacency matrix Ag has the form
Bl 0
-1 _ a M 0
B AG8 = 0 0 B, ,

Ci G G |Ax
where a = a1 — 2a1p + 2a13 — 2&11/4 + a1s,
a1 = [2a14 — 2a15, 2a13 — 2a15, 2412 — 2a15),

aj]1 —aiz dip —di4 a3z —Aais
Bi=|anp—ms ann—a5s ap—ais |,
a1z —ais dip —di4 a4l —ais

a1 — 2a1p +a13 + 2a14 — 2415 —ayp + 213 + a14 — 2415 ai3 — ais
By = a1 — 2413 — a14 + 2415 a1y — 4ay3 + 3a15 —a12 — 2413 + d14 + 2415 p
a13 — a15 aip +2a13 — a4 — 2415 an + 2a12 +ay3 — 2414 — 2435
a1 + 2a1p + 2a13 + 2a14 + ai5 a9 41,10
A = A91 + a9y + A93 + Ag4 + 495 + A9 + Ag7 + A9y ag9  A910 |,

a10,1 T a102 +a10,3 + 4104 + 4105 t 4106 T 4107 + 4108 4109 210,10
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and

0 0 0
Ci=| a9 —asg ag3 — agy Aoy — aoe |,
a102 —a10,8 a10,3 —410,7 4104 — A10,6
0
Cy = A91 — A9 + A93 — A94 + A95 — A9 + A97 — A9g ’
a10,1 — A102 + 4103 —A104 + 4105 — 4106 T 4107 — 410,8
0 0 0
C3 = —26191 + dgp + agg —26191 + a9z + agy —26!91 + gy + agg

—2a10,1 +a102 +a108 —2a101 +a103 + a0y  —2a101 + 104 + A10,6
Consider a new basis (cf. (3.28))

0 0 0 1 -2 2 -2100
1 0 0 -1 1 -2 2 100
o 1.0 1 0 1 -2100
o 0 1 -1 0 0 1 100
7= o 0 0 1 0 0 0 100
o 0 -1 -1 0 0 1 100
o -1 0 1 0 1 2100
-1 0 0 -1 1 -2 2 100
o 0 0 0 0 0 O 01O
o 0 0 0 0 O 0 0O01
Then, the adjacency matrix Ag is of form
By 0
Blags=| o] @4 |0
G~ - 0 B
C, C C |Ax

where Eli = [2&14 — 2ay15,2a13 — 4a14 + 2a15,2a17 — 4a13 + 4a14 — 2a15],

0 0 0
C =
1= a9y — dgg 93 — dg7 94 — 96 ’
a102 — 4108 @103 —A10,7 @104 — 10,6

0
’
G = A91 — A92 +Aa93 — A94 + Ag5 — Age t+ A97 — dog ’
a10,1 — 4102 + 4103 — 4104 t+ 4105 — 40,6 + 4107 — 4108
0 0 0
CL = —2(191 + a9y + dgg 21191 —2a9p + a9z + agy — 2a9g —21191 + 2a9> — 2a93 + Agyq + Age — 2a97 + 2a9g .0

3
—2a191 +a102 + a0 20101 — 28102 + d103 +a107 — 24108  —2410,1 + 24102 — 24103 + A104 + 10,6 — 24107 + 24108

3.1.4 X g-Interior symmetry with Dy C X g C S

In this subsection, we consider regular networks G with an interior symmetry group X g with
Dy € £ g C Sy. Besides the result of Theorem 3.6 that applies to G, we show that the multiplicity

25



of the eigenvalues of the adjacency matrix Ag can be directly analyzed using the eigenvalues
of the circulant part A of Ag.

As shown in Subsection 3.1.3, the adjacency matrix of a regular network having an interior
symmetry at least Dy is of the form

A D
AQZ[E F]

where D is a k X (n — k) matrix with all rows equal and A is a circulant matrix of order k X k being
of the form

(3.29)

circ(ag1apais . . .a a ...ap3ay), if kis odd,
:{ (11412413 - - . A1 4181 m41 - - - A13012) (3.30)

circ(auaualg e MmMm1m - - - 11131112), if k is even.
It follows from (2.4) that the eigenvalues A;, j = 0,...,k — 1 of A are real and satisfy A; = Ae—js
for j =1,...,m. Thatis, A has m eigenvalues with algebraic multiplicity at least 2, if k is odd;

A has (m — 1) eigenvalues with algebraic multiplicity at least 2, if k is even. In Theorem 3.6 we
proved the same property for AQ'

Now, using the proof of Theorem 3.6, we show that

Theorem 3.10 Let G be an n-cell regular network with an interior symmetry L.g such that Dy C
z S C Si. Let Ag be the adjacency matrix of G, A be given by (3.30) and A; be eigenvalues of A, for

j= ., k—1 given by (2.4). Then, there exists a basis B of R", which is mdependent of entries of Ag
such that
A 0 - 0
_1 _ A 0 _ 0 AZ .« 0
B AQB—[ c oAl for A = S | (3.31)
0 0 - Mg

where A« is the adjacency matrix of the quotient network induced by X g.

Proof Consider the k-cell regular network G, whose adjacency matrix is given by A in (3.29).
Since G is ¥ g-interior symmetric, G, is I g-symmetric. Let B, be a basis in R¥ given by (3.24)
for odd k and (3.28) for even k. As shown in the proof of Theorem 3.6, we have

-1, = M 0
TRy
where M is a matrix of order (k — 1) X (k — 1) of form
B, 0 B, 0 ,
M=1o B | @ o 22 |
! 0 By

for odd k or even k, respectively. Letv; be the eigenvector of A; givenby (2.3), forj =0,1,...,k—1.
Set V ={vy,...,0_1,v}. Then,

o [A 0
VAV—[OAO.

Thus, we have
-1 N1l M 0 - A0
(B,'v) [0 /\0](8"1‘/):[0 AO].
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Moreover, it can be verified that
~—1 X 0
B, V= [ 0 1 ]’

for a matrix X of order (k — 1) X (k — 1). Consequently, we have
XTMX = A.

On the other hand, let B be a basis in R” given by (3.24) for odd k and (3.28) for even k. Then,

C A
Now set
- X 0 o
X = , B:.=8BX.
[ 0 In—k+l ]
Then, B is a basis such thfat (8.31) holds, for C = C’X. Moreover, 8 is also independent of the
entries of Ag, since both B, and V are independent of the entries of Ag. [ ]

Consequently, the influence of £ g on the eigenvalues of Ag, and thus of | G can be directly
examined by looking at eigenvalues of A.

Example 3.11 Let k = 12, m = 6 and n > 12. Consider an n-cell regular network G with an
interior symmetry at least D1, on the set of cells {1,2,...,12}. Let Ag be the adjacency matrix,

A be the circulant part of AQ (cf. (3.29)) and A; be the eigenvalues of A, for j =0, 1,...,11. By
(24), Aj = Ap-j, for j=1,2,...,5 and, denoting by A; ; both the eigenvalues A; and Aj, we have

AO =4a11 + 25[12 + 2ﬂ13 + 2a14 + 26115 + 2”16 + ﬂ17(= QM)
A111 = a11 + ra1p + r2a13 — rad1s — 116 — A1y

A210 = a11 + 12a12 — 12013 — 2414 — 12415 + 1216 + 417
Asg = a1 — 2a13 + 2a15 — ayy

Ayg = a11 — raa12 — 1213 + 2a14 — 12015 — 12a16 + 17
Asz7 = a1 — riap + 123 — 12415 + a1 — a1z

Aé =ai — 26112 + 2&13 - 26114 + 2(115 - 26[16 + a17(: El)

where 1 = 2Rew; = \/5, T = 2Rea)% = 1. Note that
(i) if a1z = a16, then Ay 11 = As7;
(i) if a1p = @16 and a13 = ay5, then Ay 11 = A39 = A5 7;
(iii) if a;p = a13 = a14 = a6 = ar7 and ayy = a5, then Ay 11 = Ap10 = As7 and Az 9 = Ag;
(iv) ifayn = a;p = a13 = a15 = a1 = a17, then Ay 11 = A39 = As7 and Ay19 = Ag;
(v) if aip = a;3 = a15 = a16 and a4 = ay7, then Ay,11 = Ao10 = A39 = A5 7;
(vi) if a1 = a13 = a14 = @15 = @16 = ar7, then Ay 11 = Ao 10 = A39 = Aag = As7 = As.
Thus, by Theorem 3.10, the following holds for any n-cell regular network G with n > 12 having

a X g-interior symmetry:
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(i) if g =(D12,(26812)(3 11)(4 10)(59)), then Ag has 3 eigenvalues of multiplicity at least
2 and 1 eigenvalue of multiplicity at least 4;

(i) if g = (D12,(26 8 12)(3 59 11)(4 10)), then Ag has 2 eigenvalues of multiplicity at least
2 and 1 eigenvalue of multiplicity at least 6;

(iii) if £ g =(D12,(159)(234 6781011 12)), then Ag has 1 eigenvalue of multiplicity at least
2, 1 eigenvalue of multiplicity at least 3 and 1 eigenvalue of multiplicity at least 6;

(iv) if £g =(D12,(410)(123567891112)), then Ag has 1 eigenvalue of multiplicity at least
2, 1 eigenvalue of multiplicity at least 3 and 1 eigenvalue of multiplicity at least 6;

(v) if 2o =(D12,(2356891112)(4 7 10)), then A has 1 eigenvalue of multiplicity at least 2
S G & plicity
and 1 eigenvalue of multiplicity at least 8;

(vi) if ZS =(D1,(23456789101112)) = Sy, then Ag has 1 eigenvalue of multiplicity at
least 11.

3.1.5 Zj-Interior symmetry

Consider an n-cell regular network G with adjacency matrix Ag = [aijli<i j<n, which has an
interior symmetry Z; for some 3 < k < n on some subset of k cells which, up to a reordering of
the cells, we can assume to be the first k cells. Then,
A D
Ag = | E F ]

where D is a k X (n — k) matrix with all rows equal and A is a circulant matrix
A = circ(ay, a2, 43, - - -, 01k)-

Examples show that in general, Ag does not have multiple eigenvalues due to Zj-interior
symmetry. In fact, even with additional equalities on {a13,413, ...a1x}, as long as the resulting
symmetry is less than Dy, Ag seems to be free of multiple eigenvalues in general.

3.1.6 Cyclic interior symmetry of regular uniform networks

Despite of the fact that cyclic interior symmetries are not sufficient for the adjacency matrix of
regular networks to have multiple eigenvalues, this may become different if they are uniform
networks.

Recall that uniform reqular networks are regular networks without multiple arrows nor self-
coupling arrows (cf. Stewart [13]). In the next two subsections, we analyze two particular types
of cyclic interior symmetry groups and show their influence on the multiplicity of eigenvalues
of adjacency matrices of uniform networks. As we will see, for regular uniform networks,
interior symmetry forces the existence of eigenvalues in {-2,-1,0, 1}.

28



Zy X ... X Zy-Interior symmetry

We show that

Theorem 3.12 Let G be an n-cell reqular network with a product interior symmetry Zo X ... X Zp on r
disjoint subsets Sy = {ix, jx} of cells of G, fork = 1,2, ..., r. Then, the adjacency matrix Ag = [aijli<i j<n
of G has r eigenvalues (a;; — a; ), for k = 1,2,...,r. Moreover, if G is a uniform network, then
(aikik - aikjk) S {—1, 0, 1},f01’ k=1,2,...,r.

Proof Without loss of generality, we assume Sy = {2k — 1,2k} fork =1,2,...,r. Then,
ZyX...X2Zy={12),...,2r—12r)).
Due to this interior symmetry, the entries of Ag satisfy
Aji = Aix1,is1,  @iirl = Gip1,;  and  a; = a;,q),
foralli=1,3,...,2r—1and foralll #i,i+ 1.
Consider the balanced equivalence relation
= {{1,2},{3,4},...,2r=1,2r},{2r + 1},..., {n}}

induced by Z; X ... X Z, and the basis 8 = {by, by, ..., b,} given by

€2k—1 — €2k, ifl<k<r
b = {€2i-n-1 + €241, ifr+1<k<2r
€k, f2r+1<k<mn,

adapted to the decomposition in (3.11). It follows from Theorem 3.2 that

_ A 0
1 _
B AQB — [ B A|><1 ]/
where
a1 —arn 0 0 Cee 0
0 a33 — Aazq 0 N 0
A= 0 0 ass —ase - .- 0
0 0 0 e A2p_12p-1 — A2r—12r

Thus, (a2k—1,2k-1 — a2¢—1,2) are eigenvalues of Ag, fork=1,2,...,r.

If G is a uniform network, then a;; € {0, 1} and consequently, (a2—1,2c-1 — d2x-1,2¢) € {-1,0, 1},
fork=1,2,...,r.
|

Corollary 3.13 Let G be an n-cell uniform network with a product interior symmetry Zs X ... X Zy on
r disjoint subsets Sy of cells of G, fork = 1,2,...,r. Assume that r > 4. Then, the adjacency matrix Ag

of G has at least one multiple eigenvalue.

Proof By Theorem 3.12, Ag = laijli<i j<n has r eigenvalues Ay := a;; —a;;, € {-1,0,1}, for
k=1,2,...,r. Thus, if r > 4, values of A;’s must be duplicated for some k. ]
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Figure 9: The 5-cell uniform network G in Example 3.14.

Example 3.14 Let G be the 5-cell uniform network given in Figure 9 and Ag = [aij]5x5 be the
adjacency matrix.

The network G has an interior symmetry group Z, X Z, = {(2 3),(4 5)). It follows from
Theorem 3.12 that ax; — a3 = 0 and a4 — a45 = 0 are eigenvalues of Ag. Thus, 0 is an eigenvalue
of algebraic multiplicity at least 2 for Ag-

Moreover, consider the balanced equivalence relation »<= {{1}, {2, 3}, {4, 5}} induced by Z, x
Z; = {2 3),(4 5)). Then, the quotient network G.. has an interior symmetry S3 on the set
Coe = {[1]w, [2]:, [3]}, for [1]we = {1}, [2]wc = {2,3} and [3].« = {4,5}. Let Aw = [djj]3x3 be the
adjacency matrix of G,.. By Theorem 3.4, 311 — 12 = —1is an eigenvalue of algebraic multiplicity
at least 2 for the adjacency matrix A... Thus, by Theorem 3.2 and Corollary 3.3, -1 is an
eigenvalue of algebraic multiplicity 2 for AQ'

Lastly, the remaining eigenvalue of Ag is given by the valency 2 of the network. m|

Example 3.15 Let G be the 5-cell uniform network given in Figure 10 and Ag = [aij]sxs be the
adjacency matrix. Using Theorem 3.2, Corollary 3.3 and Theorem 3.12, we show that besides

Figure 10: The 5-cell uniform network G in Example 3.15 .

the valency 2 of the network, Ag has 0 and -1 as eigenvalues, both with algebraic multiplicity
2.

We first consider the interior symmetry group Z, = ((2 3)) of G. Then, the eigenvalues of
Ag are ay; — a3 = 0 with algebraic multiplicity at least 1 and those of the quotient network
G, induced by the balanced equivalence relation v<;= {[1].<, [2]o;, [3]s;, [4]:<,}, for [1]m; =
{1}, 2], = {2,3}, [3], = {4} and [4]., = {5}.

The quotient network G, in turn, has an interior symmetry Z, = (([2]., [4].,)). Let
A, = (ﬁ}].)4x4 be the adjacency matrix of G,.,. Then, the eigenvalues of A, are 57;2 —d,, =
(a2 +a23) — a5 = —1 with algebraic multiplicity at least 1 and those of the quotient network G.,.,
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induced by the balanced equivalence relation o= {[1],, [2]<,, [3]:«,}, fOT [1]oe, = {[1]se,}, [2]:, =
{[2]<;, [4], } and [3]os, = {[3]:, }-

Further, the quotient network G.,., has an interior symmetry Z, = (([1]., [3].,)). Let Ase, =

(ﬁfj)gxg be the adjacency matrix of G,,. Then, the eigenvalues of A.., are d%l - 5%3 =a11—ayg = —1

with algebraic multiplicity at least 1 and those of the quotient network G,., for the balanced
equivalence relation sa3= {[1]oe;, [2]<;}, With [1]oe; = {[1]sey, [B],} and [2]oe; = {[2]s, }-

The quotient network G,., also has an interior symmetry Z, = (([1]w; [2]:;)). Let Asyy =
(071-3]»)2><2 be the adjacency matrix of G,.,. By Theorem 3.12, d%l —47?2 = (a11+a14)— (@ +a13+a15) =0
is an eigenvalue of algebraic multiplicity 1 for A.,. m]

V4-Interior symmetry

We discuss in this subsection n-cell uniform networks with an interior symmetry group
Vy:=(( kD), k) )) C Sy,
where i, j, k, | are distinct cells of G.

Theorem 3.16 Let G be an n-cell uniform network having an interior symmetry group Va = {(i j)(k1), (ik)(j1)) C
S, onasubset {i, j, k, 1} of cells of G. Then, the adjacency matrix Ag = [aapli<a,p<n has the 3 eigenvalues

—Aij + ik — ajj,
—Aij — ik + ajj,
Aij — ik — Ail,
which take value in {-2,-1,0,1}.
Proof Due to the interior symmetry Z, = ((i j)(k I)), the entries of Ag satisfy

a; =ajj, 4ij=4aji, ax=4dj, ajp=ajx and i, =aj,, Ym#ij k]
age = ay, Gy = Ak, Gk =44, G =a; and  ag, =ap, Ym#i,jk,1

Due to the interior symmetry Z, = {(i k)(j I)), they satisfy

Ajj = Agk,  Aik = Agi,  Aij = ag, Ay = agj  and  dyy = agy, Ym#1,j,k,1
ajj=ay, ajp=aj, aj=4ayg, ax=4a; and aj, =ay, Ym#*ijkl

Thus, due to the interior symmetry Vy, the entries of Ag satisfy

aij = Ajj = A = a4y, Aij = Aji = g = Ak, Aix = 4j] = A = 4y,

. 3.32
aj) = Aj = Agj = Agi, Qi = Ajy = O = A, YW F14, ]k, L (332)

Without loss of generality, we assume i = 1,j = 2,k = 3 and | = 4. Let »< be the balanced
equivalence relation induced by Z, = ((1,2)(3,4)), i.e.

= {{1,2},{3,4},{5},..., {n}}.
Let W, U be given by (2.7)—(2.8). Then, we have

R'=We U
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A basis B8 = {by, by, ..., b,} adapted to this decomposition is given by

€j—1 — €2k, if1<k<?2
by = €(k-2)-1 + €2(k-2), if3<k<4
€k, if5<k<n.

Then, the adjacency matrix Agin the basis 8 has the form
- A 0

1 —
5 4gB= [ C A ] '

where

a1 —aiz 413 —ai4
a3 —ag app—ap |

Since G is uniform, we have a1; = 0. Thus, A has eigenvalues (—-a1; + (413 — a14)), which are

also eigenvalues of Ag. Similarly, using symmetry Z, = ((13)(24)), one can show that A has

eigenvalues (—a13 + (412 — a14)). Thus, altogether Ag has the following 3 eigenvalues

—a12 413 — a4, —a4ip —a13 t+4ay, A2 — a3 —ay,

which take value in {-2, 1,0, 1}, since aqs € {0, 1}. ]

Corollary 3.17 Let G be an n-cell uniform network with adjacency matrix Ag = [aagli<a,p<n having
an interior symmetry group Va=Zy = {(i j)(k1), (i k)(jI),(a b)) C S, onasubset S = {i, j, k, 1} of cells of
G witha#binS. If (ab) = (i j) or (ab) = (k]) then —a;j € {-2,-1,0,1} is an eigenvalue ong with
algebraic multiplicity at least 2. Analogously, if (a b) = (i k) or (a b) = (j I), then —ay € {-2,-1,0,1}
is an eigenvalue of Ag with algebraic multiplicity at least 2; if (a b) = (i I) or (a b) = (j k), then
—a; € {-2,-1,0,1} is an eigenvalue of Ag with algebraic multiplicity at least 2.

Proof Consider A asanetwork having V, as an interior symmetry group. Then, by Theorem
3.16, Ag has the following 3 eigenvalues

—@ij + Ak — dit,  —@ij — Aig T A, i — Aig — A

We only give the proof for the case of (a b) = (i j) or (a b) = (k I). The other two cases can be
proved in a similar way. Due to the interior symmetry (i j) or (k [), we have a; = a;. Thus, —a;;
is an eigenvalue of algebraic multiplicity 2 in {-2,-1,0, 1}. []

Example 3.18 Let G be the 5-cell uniform network given in Figure 11 and Ag = [aijhi<i j<5 be
the adjacency matrix.

The network G has an interior symmetry group V4 < Z, =((23)(45),(2 4)(35), (a b)), on the
set of cells § = {2,3,4,5}, for (a b) = (2 5), as well as for (a b) = (3 4). By Corollary 3.17, the
adjacency matrix Ag has the eigenvalue —ags = ~1 with algebraic multiplicity at least 2.

In fact, using Theorem 3.2, Corollary 3.3 and Theorem 3.4, we can show that the algebraic
multiplicity of the eigenvalue —1 is at least 3. Note that G has an interior symmetry group
Z5 ={(23)(45)). Let == {{1}, {2, 3}, {4, 5}}. Then, with respect to the basis

b=(0,1,-1,0,0),(0,0,0,1,-1),(1,0,0,0,0),(0,1,1,0,0),(0,0,0,1,1)),
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Figure 11: The 5-cell uniform network G in Example 3.18 .

Ag is given by
A 0
C A |’
where A.. is the adjacency matrix of the quotient network associated with »< and

A= dp2 — 23 (4 — 25
A4p — 43 044 — 045

Since the quotient network is isomorphic to the (S3-symmetric) three-cell bidirectional ring in
Figure 7, by Theorem 3.4, A.. has a1; —aj; = —1 as an eigenvalue with algebraic multiplicity at
least 2. On the other hand, due to the fact that G also has an interior symmetry (2 4)(3 5) and
(34), we have a3 = ap4 = ag = ay5 and aps = a43. Also, since G is uniform, ax = aqq = 0. Thus,
the eigenvalues of A are —ay3 + (423 — a25), one of which is equal to —a5 = —1. Therefore, -1 is
an eigenvalue of Ag with algebraic multiplicity at least 3. m]

3.2 Homogeneous networks

We generalize our results on regular networks to homogeneous networks. Recall that a homo-
geneous network is a coupled cell network in which all cells are identical but which may have
multiple type of arrows. Let G be an n-cell homogeneous network with s types of arrows, whose
adjacency matrices are Ay, ..., A;. Let r be the dimension of the cell internal dynamics. Then,
the Jacobian at a fully-synchronized equilibrium has the form

Jg=a®l+) p®A, (3.33)
I=1

where «a is the linearized internal dynamics and f; is the linearized internal coupling for the I-th
type arrow, for/ =1,...,s.

3.2.1 Si- and Ai-Interior symmetry

We show that

Theorem 3.19 Let G be an n-cell homogeneous network with s types of arrows with adjacency matrices
Aq,...,A;. Let ]g be given by (3.33). Assume that all matrices A;, 1 = 1,...,s have an interior

symmetry Sy or A, on the same subset S C C of k cells of G, for some k € {3,...,n}. Then, the Jacobian
I has r eigenvalues of algebraic multiplicity at least k — 1.
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Proof Without loss of generality, we assume S = {1,...,k}. Write A; = [ﬂg-)]lsi,an, for | =
1,...,s. It follows from the proof of Theorem 3.4 that there is a basis 8 such that

B*Aﬂ%:[éljf ], Vi=1,. s,
1 By

0 _ 0

where A; is a scalar matrix of order k — 1, being equal to (a,; — 4,

);_1. For convenience, we
— 0 __0
denote a; := a;] —a,,.

Let B = I, ® B. Then, we have

_ s B
" a®Ik_1+Zﬁl®A; 0
B IQB = s =1 s
lzlﬁl ® C a®l, i1+ lz,lﬁl ® A><,
[ s
(0[ + Za,ﬁl) ® Ik_1 0
_ =1
- S S
Izlﬁl ®C a®l,_piq + 12‘1‘31 ® A><1

S
Thus, every eigenvalue of a + ) 4;B; is an eigenvalue of | G with algebraic multiplicity at least
I=1
k — 1. Therefore, ]g has r eigenvalues of multiplicity at least k — 1. [ |

3.2.2 Dy-Interior Symmetry

We show that

Theorem 3.20 Let G be an n-cell homogeneous network with s types of arrows with adjacency matrices
Aq,...,As. Let ]Q be given by (3.33). Assume that all matrices A;, | = 1,...,s have an interior
symmetry Dy, on the same subset S C C of k cells of G, for some k € {3, ...,n}. Set

I (k—=1)/2, ifkisodd,
B k/2, ifkis even.

Then, ], G has mr eigenvalues with algebraic multiplicity at least 2, if k is odd; Ife has (m —1)r eigenvalues
with algebraic multiplicity at least 2, if k is even.

Proof For simplicity, we present the proof for s = 2. The general case can be proved analo-
gously.

Without loss of generality, we assume that the Dj-interior symmetry is on the cells S =
{1,...,k}. It follows from the proof of Theorem 3.6 that the adjacency matrices A1 and A; can
be diagonalized to a “double-block” form using the same basis B given by (3.24) for odd k and
(3.28) for even k.

By applying this basis to A;, I = 1,2 in case of odd k, we have

1 B, 0
B AB=| 0 B , 1=1,2




where B, is a matrix of order m X m. Consider the following basis for | G

A ~.

B=I18.
Then, we have
. B1 0 0 B, 0 0
B jgB=a0L+pi®| 0 B +p2®| 0 By
Ci ‘AMl Cé ‘AMZ
a®l,+p1®B1+p2QB> 0 0
= 0 a®l, +p1®B1 + P2 B> .
ﬁ1®C’1+‘82®C§ ‘a®1n72m+ﬁ1®AM1+‘32®sz

Thus, every eigenvalue of (@« ® I, + 1 ® B1 + 2 ® By) is also an eigenvalue of | G Therefore, ]g
has mr eigenvalues with algebraic multiplicity at least 2.

In the case k is even, we have

B; 0
s U a;  * 0 _
B AB= 0 0 B , i=1,2
oA

1

where B; is a matrix of order (m — 1) X (m — 1). Consider again the basis B=1,®8. Then,

Bq 0 B> 0
»lr g ar * ay  * 0
B B=aol,+ 0 + 0
JgB=aeli+pr® 0 B p2® 0 B
cy | Aw, cy | Ay
a®1m,1+ﬁ1®31+ﬁ2®B2 0
_ 0 a+p1®a;+prRar P1 ®*1 + P2 @ # 0
B 0 a®1m_1+‘31®81+ﬁ2®32
pr1®Cy +p2®CY | @@Ly ome1 + P1 ® Ay + P2 ® Aws,

Thus, every eigenvalue of (@ ® I;,—1 + p1 ® By + 2 ® Bp) is also an eigenvalue of Jg- Therefore,
Ife has (m — 1)r eigenvalues with algebraic multiplicity at least 2. [

3.2.3 X g-Interior symmetry with Dy C X g C S

Let G be an n-cell homogeneous network with s types of arrows with adjacency matrices

A1, ..., As. Assume that every A;, for [ = 1,...,s, has an interior symmetry ZIS on the same

subset S € C such that D, C Eis C Sy. Let A; denote the upper left k X k-submatrix of A,

I =1,...,s (cf. (3.29)). Then, A, is a circulant matrix of the form (3.30). We show that the
multiplicity of the eigenvalues of Jg can be directly analyzed by the eigenvalues of Ay, ..., As.

Theorem 3.21 Let G be an n-cell homogeneous network with s types of arrows, where every adjacency

matrix A; has an interior symmetry Z.IS on the same subset S C C such that Dy C ZIS C Sy, for

1=1,2,...,s Let Aj be the upper left k X k-submatrix of A, for 1 = 1,2,...,s. Let )L;l) be the j-th

S
eigenvalue of Ay, for j=0,1,...,k=1,1=1,2,...,s (cf. (2.4)). Then, every eigenvalue of (o + Z/\§»l)ﬁl)
I=1
is an eigenvalue of]g,for j=1,..., k-1
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Proof We only present the proof for the case s = 2. The general case can be proved analogously.
Without loss of generality we assume S = {1,..., k.

Let 8 be the basis given by Theorem 3.10. Then, we have

(O]
A (()l) e 0
1 B Al 0 B 0 /\2 0 B
B AZB_[CI o | for A; = - : , 1=1,2.
0 0 A
Consider the basis 8 = I, ® 8. Then,
@—1] B_ 0(®1k_1+ﬁ1®/\1+ﬁ2®/\2 0
G B1®C1+p2®(C2 QL k1 +1®Q1+2®Q2

Let u € R" and v; be the eigenvector of A;l) and /\5.2) given by (2.3), for some j € {1,2,...,k - 1}.
Then,
(0( ®IL_1 + ﬁ1 ® A1 + ﬁz ®A2)(u ® 7)]) =au® vj + ﬁﬂ/l ® Aﬂ)]' + ﬁzu ®A20]'
=au®vj+pfu® )\;.DUj + pau® A;Z)vj

= (@ + A1 + AP Bou @ ;.

Thus, every eigenvalue of («a + AEl)ﬁl + /\;2)52) is an eigenvalue of (¢ ® [y_1 + f1 ® A1 + f2 ® Ap),
which is also an eigenvalue of ]g. [

Example 3.22 Let n > 12. Let G be an n-cell homogeneous network with 2 types of arrows
whose adjacency matrices A1, A> have an interior symmetry (respectively)

Zi? =(D12,(159)(2346781011 12)),
Zfs =(D12,(410)(123567891112)),

oncells {1,2,...,12}. Note that D1, C X}, C Sy, fori =1,2. An example of A, A; is

S

o
o
—_
o
o
o
o
o
—_
(@]
(@]
o
o
—_

0
0
0
1
0
0
Ay 0
1
0
0
0
1

OO R OO0 R OO O -
— OO O OO RrOOoOoOOo
[eNeN HeoloBeoNoNel =]
cNeNeoB SeoloNoBoRel =N

.N
1
0
0
0
1
0
0
0
1
0
0
0
0

Il
SO OO R OO ORrRrOOoOOor
OO O R OO O R, OOOoORrOo
_OR OO0 R OOOROO
ORRPR OO R OOORROoOOoOo

0
0
1
0
0
0
1
0
0
0
1
0
0

SO R OO OrRrOOoOOoOo
SO R OO ORrRrOOoOOoOo
[>NeoNeoNeNeol  HoloBoNeoRaol ™)
SO OO O OO OO O OO oo

O Rr OO0 R OO R OO
S OO O OO OO O OO
S
)
|
cNeNeoB SololoBoNeoN =)

—_ O OO O RR OO0 O
R OO O R OO0 OoO oo

S OO rRr OO R OO OoOR
SO R OO R OOO RO
OO OO R OO RO OO
SO O OO R OO0 OO
ORrRPR OO RO OooOo
S OO O OO R OO0 OO

0

N
o
o
o
o

The corresponding network is then as shown in Figure 12, where the arrows with solid
(resp. hollow) head depict connections given by A; (resp. A»).
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Figure 12: The 12-cell homogeneous network G in Example 3.22 with interior symmetries
239 =(D»,(159)(234678101112)) and X2, = (D1, (4 10)(1 2356 7 8 9 11 12)), for

S
S=1{1,...,12}.

Let A, be the upper left 12 x 12-submatrix of A; and /\;l) be the j-th eigenvalue of A; (cf.(2.4)),
forj=0,1,...,11,1 = 1,2. Then, we have (cf. Example 3.11 (iii)-(iv))

) _ 0 _ 0
/\1,11 - /\2,10 - /\5,7’

M _ 4@
A3,9 - Aé
and

@ _ 1@ _,0@ @ _ 1@
Al,ll - A3,9 - /\5,7' /\2,10 =Aq -

Thus, by Theorem 3.21, for every homogeneous network G with interior symmetries 219 and

Zé, every eigenvalue of (« + /\(11; 1Pt Agz; 711P2) is an eigenvalue of ] of multiplicity at least

4; every eigenvalue of (a + A(zlioﬁl + )\fioﬁz) is an eigenvalue of Ig of multiplicity at least 2;

O] @

every eigenvalue of (a + A5 1 + A of2) is an eigenvalue of | G of multiplicity at least 2; every

eigenvalue of (a + Afgﬁl + )\fg f2) is an eigenvalue of |, G of multiplicity at least 2. m]
4 Conclusions

Interior symmetry may be viewed as an appropriate generalization of symmetry for coupled
cell networks. Besides the original concept of interior symmetry, we introduced further notions

including quotient interior symmetry, reverse interior symmetry and quotient reverse interior
symmetry.
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For homogeneous coupled cell systems, we analyzed how multiple eigenvalues of the
Jacobian at fully-synchronized equilibria may occur due to these different types of interior sym-
metry. The groups of interior symmetry that we focused on are symmetric groups, alternating
groups, dihedral groups, cyclic groups and their products.

Based on our analysis, we concluded that the eigenvalue multiplicity of the Jacobian is
sensitively dependent on the interior symmetric properties of the underlying network structure,
and that symmetry alone is not sufficient to explain.

Indeed, in the examples we present throughout the paper, all the multiple eigenvalues are a
consequence of an interior symmetry, in one form or another. In the case of uniform networks,
already a relative weak interior symmetry may be sufficient to give rise to multiple eigenvalues.

Since, very easily, a homogeneous network has some type of interior symmetry we can say
that multiple eigenvalues of the Jacobian at a fully synchronous equilibrium are frequent for
homogeneous coupled cell systems.
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