

GEOMETRY AND TOPOLOGY SEMINAR

A tower of surfaces near the Bogomolov–Miyaoka–Yau line

Carlos Rito

Universidade de Trás-os-Montes e Alto Douro (UTAD) / CMAT

Abstract. For complex smooth algebraic surfaces of general type the Bogomolov–Miyaoka–Yau inequality $K^2 \leq 9\chi$ holds. Surfaces on the line $K^2 = 9\chi$ are ball quotients and have infinite fundamental group, and it is natural to ask how close one can get to this line using simply connected surfaces.

In this talk, I will explain how computer experiments with the fundamental group of a ball quotient surface, the Cartwright–Steger surface, led us to a geometric construction of an infinite tower of surfaces on the line $K^2 = 9\chi - 18$, which is parallel and asymptotically close to the Bogomolov–Miyaoka–Yau line.

The experiments revealed a recurring pattern of index–3 subgroups, suggesting the existence of successive $\mathbb{Z}/3$ -covers. Guided by this observation, we construct a sequence of surfaces using triple covers branched on suitable configurations of singularities. We show that the first few surfaces are simply connected and conclude with a conjecture that this holds for the entire tower.

THURSDAY, FEBRUARY 05

10H30

ROOM: 1.08