
DEPARTMENT OF
MATHEMATICS

MADALENA BRAVO FERRO DA ASCENSÃO

BSc in Mathematics Applied to Economics and Management

CRYPTOGRAPHIC KEY EXCHANGE
PROTOCOLS: ALGEBRAIC STRUCTURES,
STICKEL’S PROTOCOL, AND MONOID
INVESTIGATIONS

MASTER IN MATHEMATICS AND APPLICATIONS
SPECIALIZATION IN PURE MATHEMATICS

NOVA University Lisbon
22 May, 2024

DEPARTMENT OF
MATHEMATICS

CRYPTOGRAPHIC KEY EXCHANGE PROTOCOLS:
ALGEBRAIC STRUCTURES, STICKEL’S PROTOCOL, AND
MONOID INVESTIGATIONS

MADALENA BRAVO FERRO DA ASCENSÃO

BSc in Mathematics Applied to Economics and Management

Adviser: Doutor António Malheiro
Full Professor, NOVA University Lisbon

Co-adviser: Doutor André Carvalho
Junior Researcher, University of Porto

Examination Committee

President: Doutora Magda Stela de Jesus Rebelo
Associate Professor, NOVA University Lisbon

Arguer: Doutor João Jorge Ribeiro Soares Gonçalves de Araújo
Full Professor, NOVA University Lisbon

MASTER IN MATHEMATICS AND APPLICATIONS
SPECIALIZATION IN PURE MATHEMATICS

NOVA University Lisbon
22 May, 2024

Cryptographic Key Exchange Protocols: Algebraic Structures, Stickel’s Protocol,
and Monoid Investigations

Copyright © Madalena Bravo Ferro da Ascensão, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LAT
E
X processor and the NOVAthesis template (v7.1.11) [22].

https://github.com/joaomlourenco/novathesis

Abstract

This thesis provides a comprehensive examination of cryptographic key-exchange proto-

cols leveraging algebraic structures for key encoding. The focal point of our investigation

is Stickel’s protocol. We not only elucidate the protocol but also implement it in Python.

Subsequently, we conduct thorough testing and benchmark its execution time, revealing

a possible exponential relationship with the input size. This observation aligns with the

findings of Myasnikov, Shpilrain, and Ushakov.

The research extends to the exploration of East’s work, which offers various presenta-

tions of the partition monoid. Furthermore, we delve into specific submonoids, namely

Ln, Rn, and the inverse symmetric monoid In. For In we conclude that the presentation

is not confluent. We ended the study by inferring that the presentation of the partition

monoid by East is not complete.

The thesis culminates in the formulation of a complete presentation for the planar rook

monoid, a notable submonoid of the partition monoid. This investigation is motivated by

the consideration of partition monoid as potential alternative platform forStickel’s protocol.

The synthesis of these cryptographic protocols and algebraic structures contributes to a

deeper understanding of the interplay between algebraic structures and cryptographic key

exchange, paving the way for potential advancements in secure communication protocols.

Keywords: Cryptography, Partition monoid, Planar rook monoid, Rewriting systems,

Stickel protocol

ii

Resumo

Esta tese fornece uma análise abrangente de protocolos de troca de chaves criptográficas

que utilizam estruturas algébricas para codificação de chaves. O ponto central da nossa

investigação é o protocolo de Stickel. Não só elucidamos o protocolo, mas também o

implementamos em Python. Posteriormente, realizámos testes abrangentes e avaliámos o

tempo de execução, revelando uma possível relação exponencial com o tamanho do input.

Esta observação está alinhada com as descobertas de Myasnikov, Shpilrain e Ushakov.

A investigação estende-se à exploração do trabalho de East, que oferece várias apre-

sentações do monoide de partição. Além disso, aprofundámos submonoides específicos,

nomeadamente Ln, Rn, e o monoide simétrico inverso In. Para In, concluímos que a

apresentação não é confluente. Terminámos o estudo, inferindo que a apresentação do

monoide de partição por East não é completa.

A tese culmina na formulação de uma apresentação completa para o monoide de torre

planar, um notável submonoide do monoide de partição. Esta investigação é motivada

pela consideração do monoide de partição como potencial plataforma alternativa para

o protocolo de Stickel. A síntese desses protocolos criptográficos e estruturas algébricas

contribui para uma compreensão mais profunda da interação entre estruturas algébricas

e troca de chaves criptográficas, abrindo caminho para possíveis avanços em protocolos

de comunicação segura.

Palavras-chave: Criptografia, Monoide de partição, Monoide de torre plana, Protocolo de

Stickel, Sistemas de reescrita

iii

Contents

List of Figures vi

1 Introduction 1

2 Preliminaries on Combinatorial Semigroup Theory 3
2.1 Elementary semigroup theory . 3

2.2 Homomorphisms . 4

2.3 Congruences and Quotients . 5

2.4 Free semigroups . 5

2.5 Presentations . 6

2.6 Normal forms . 7

2.7 Rewriting systems . 7

2.8 Background on Combinatorial Group Theory 9

2.8.1 The word problem . 9

2.8.2 The conjugacy problem . 10

2.8.3 The decomposition and factorisation problems 10

3 Cryptography 12
3.1 Public key encryption . 13

3.1.1 From key establishment to encryption 14

3.2 Cryptographic protocols . 15

3.2.1 Protocols based on the conjugacy search problem 15

3.2.2 Protocols based on the decomposition problem 16

3.2.3 The Diffie-Hellman Key Exchange Protocol 17

4 Stickel’s Key Exchange Protocol 18
4.1 Linear algebra attack . 19

4.2 Linear algebra attack implementation . 21

4.2.1 The code . 21

4.2.2 Alice and Bob encryption . 24

iv

4.2.3 Eve’s attack . 25

4.3 Linear algebra attack analysis . 26

5 The partition monoid 29
5.1 The partition monoid . 30

5.2 Important subsemigroups . 32

5.2.1 The (full) transformation semigroup 32

5.2.2 The symmetric inverse semigroup 35

5.3 A presentation for the partition monoid 38

6 The planar rook monoid 41
6.1 The planar rook monoid . 41

6.2 The generators . 42

6.3 A complete presentation for PRn . 49

6.4 Another presentation of PRn . 53

7 Conclusions 55

Bibliography 57

Appendices

A Appendices 61

v

List of Figures

4.1 Time complexity attack: describes the amount of machine time it takes to

execute an algorithm depending the dimension (k) of the matrix. 27

5.1 A graphical representation of a partition from ∈ P6. 30

5.2 Calculating the product of two partitions α, β ∈ P6. 31

5.3 The simple transposition si ∈ Sn. 32

5.4 The map λij ∈ Ln. 33

5.5 The diagrams of the elements α and α̂. 34

5.6 The map ρij ∈ Rn. 34

5.7 The elements α and β of PT 2. 36

5.8 The product of α and β in P2. 36

5.9 An element of I6. 36

5.10 The map ε ∈ In. 36

5.11 The map εi ∈ In. 37

5.12 The map ei ∈ In. 37

6.1 An element of the planar rook monoid. 41

6.2 A non-element of the planar rook monoid . 41

6.3 The map ri ∈ PRn . 42

6.4 The map li ∈ PRn . 42

6.5 The map ei ∈ PRn . 43

6.6 The map r2r3r1r2e5l6l8l7 ∈ PRn . 44

6.7 Scheme for checking the confluence property for the (R4) rule. 54

vi

1

Introduction

In a digital society, protecting information requires a combination of technical expertise

and legal knowledge. Despite efforts, there is no guarantee of fulfilling all information

security objectives.

Cryptography serves as the principal mechanism for implementing technical safe-

guards. The field of cryptography has witnessed significant evolution over time, notably

in the advancement of two fundamental cryptographic techniques: symmetric and asym-

metric encryption, also known as public-key encryption.

Key exchange protocols facilitate the secure establishment of shared keys between two

parties, typically over an insecure communication channel. Often, these parties, referred

to as Alice and Bob, generate a shared secret key without prior agreement to communicate

via an open channel. The adversary’s primary objective is to uncover this shared secret

key, as its discovery compromises the encryption system.

In the past four decades, cryptographic protocols rooted in group and semigroup

theory have garnered increasing attention and development.

Our research is driven by the exploration of algebraic structures like monoids within

cryptographic key exchange protocols, aiming to assess their suitability as alternative

platforms for Stickel’s key exchange protocol. Consequently, our investigation is energised

by the proposition of utilising the partition monoid as a new platform for Stickel’s protocol,

with a focus on obtaining normal forms as a necessary consideration. Recognising the

importance of normal forms, we meticulously analyse a presentation for the partition

monoid to determine its completeness, thus facilitating the acquisition of normal forms.

In the initial chapters, we introduce the fundamental concepts of elementary semigroup

theory and essential principles for comprehending cryptographic aspects. We offer a

succinct overview of the evolution of cryptography and explore topics such as public key

encryption and various cryptographic protocols.

In the fourth chapter delves into an article by Myasnikov et al. (see [29]), focusing

specifically on Stickel’s key exchange protocol. Our investigation comprises a compre-

hensive examination of the protocol, which includes its implementation in Python and

scrutiny of a linear algebra attack proposed by Myasnikov et al. Through exhaustive

1

CHAPTER 1. INTRODUCTION

testing, we experimentally corroborate Myasnikov’s results.

In the fifth chapter further delves into a meticulous analysis of one of East’s presenta-

tions for the partition monoid (see [8]), with the objective of assessing its completeness.

Our investigation concludes that East’s presentation does not constitute a complete pre-

sentation for the partition monoid. Lastly, in the sixth chapter, we shift our focus to a

submonoid of the partition monoid, known as the planar rook monoid, and present a

complete presentation for it.

The conclusion of our thesis contains the principal discoveries and contributions; and

outlines potential directions for future research endeavours.

2

2

Preliminaries on Combinatorial

Semigroup Theory

In this chapter, we will introduce some concepts and basic results that will be used

throughout the thesis and we will review the fundamental principles of cryptography

essential for understanding the cryptographic aspects.

2.1 Elementary semigroup theory

A binary operation ◦ on a set S is a map ◦ : S × S → S. A set S equipped with a binary

operation ◦ : S×S → S is a semigroup if the operation is associative, i.e., x◦
(
y ◦ z

)
=

(
x ◦ y

)
◦z

for all x, y, z ∈ S.

An element e in S serves as a left identity if ex = x for all x ∈ S, a right identity if xe = x

for all x ∈ S, and as an identity if ex = xe = x for all x ∈ S. If a semigroup has an identity,

it is termed a monoid.

Consider an element z in S. If zx = z for all x ∈ S, z is a left zero. If xz = z for all x ∈ S,

z is a right zero. When zx = xz = z for all x ∈ S, z is a two-sided zero or simply a zero.

Suppose that we are given a semigroup S without an identity and introduce a new

element 1 not in the semigroup S. Extend the multiplication on S to S ∪ {1} by defining

1x = x1 = x for all x ∈ S. This extension proves to be associative, rendering S ∪ {1} a

monoid with identity 1. Similarly, with a new element 0 now in S, extend the multiplication

on S to S ∪ {0} by 0x = x0 = 00 = 0 for all x ∈ S. This extension maintains associativity,

and S ∪ {0} is a semigroup with zero 0.

Let M be a monoid, and consider an element x ∈ M . If there exists x′
such that xx′ = 1,

then x′
is a right inverse for x, making x right invertible. Similarly, if there exists x′′

such

that x′′x = 1, then x′′
is a left inverse of x, and x is left invertible. If x is both left and right

invertible, it is invertible.
Therefore, for an invertible element x in a monoid M , the unique right and left inverses

of x are denoted by x−1
. A monoid where every element is invertible is termed a group.

Consider a non-empty subset T of S. It is a subsemigroup if it remains closed under

3

CHAPTER 2. PRELIMINARIES ON COMBINATORIAL SEMIGROUP THEORY

multiplication, i.e., TT ⊆ T . A proper subsemigroup refers to any subsemigroup excluding S

itself. If a subsemigroup is also a monoid, it is referred to as a submonoid. If a subsemigroup

is a group, it is termed a subgroup.

Let S be a semigroup and Ti = {Ti : i ∈ T} a collection of subsemigroups of S. If the

intersection ∩i∈ITi is non-empty, then it is also a subsemigroup.

Consider X ⊆ S, and let T be the collection of subsemigroups of S that contain X . Since

S is one of such subsemigroups, T is non-empty, and its intersection is a subsemigroup.

In fact, it is the smallest subsemigroup of S that contains X . The subsemigroup, denoted

⟨X⟩, is called the subsemigroup generated by X , and we have that ⟨X⟩ = {x1x2 · · · xn : n ∈
N, xi ∈ X}. If ⟨X⟩ = S, then X is generating set for S, and X generates S. Therefore, if there

exists a finite generating set for S, then S is finitely generated.

For a subset X of a monoid M , the submonoid generated by X , denoted Mon⟨X⟩, is

defined as the intersection of all submonoids of M that contain X and have 1M as their

identity. We can express Mon⟨X⟩ as the set {1M } ∪ {x1x2 · · · xn : n ∈ N ∪ {0}, xi ∈ X}.

Let M be a monoid, as let X be a subset of M . If the submonoid generated by X ,

denoted as Mon⟨X⟩, is equal to the entire monoid M , i.e. Mon⟨X⟩ = M , then X is a

formally defined as a monoid generating set for M , and M is said to generate itself as a

monoid.

It is worth noting that if X is a generating set for M , then X is also a monoid generating

set. Conversely, if X is a monoid generating set for M , then X ∪ {1M } is a generating set

for M . Thus, M is finitely generated if and only if there is a finite monoid generating set

for M .

For a subset X of a group G, the subgroup generated by X , denoted Gp⟨X⟩, is defined

as subgroups of G that contain X , have 1G as their identity and their inverses via the

group operation. We can express Gp⟨X⟩ as the set {1G} ∪ {x1x2 · · · xn : n ∈ N ∪ {0}, xi ∈
X or x−1

i ∈ X}.

Let G be a group, as let X be a subset of G. If the subgroup generated by X , denoted

as Gp⟨X⟩, is equal to entire the group G, i.e. Gp⟨X⟩ = G, then X is defined as a group
generating set for G.

2.2 Homomorphisms

Let S and T be semigroups. A map φ : S → T is a homomorphism if

(
xy

)
φ =

(
xφ

) (
yφ

)
for

all x, y ∈ S. Suppose now that S and T are monoids, then φ is a monoid homomorphism if(
xy

)
φ =

(
xφ

) (
yφ

)
for all x, y ∈ S and 1Sφ = 1T .

A monomorphism is an injective homomorphism. A surjective homomorphism is also

known as an epimorphism.

If φ : S → T is a surjective homomorphism, then T is a homomorphic image of S. An

isomorphism is a bĳective homomorphism. If there is an isomorphism φ : S → T , then we

say S and T are isomorphic and denote this by S ≃ T .

4

2.3. CONGRUENCES AND QUOTIENTS

The kernel of homomorphism φ : S → T is the binary relation.

ker φ = {
(
x, y

)
∈ S × S : xφ = yφ}.

2.3 Congruences and Quotients

A binary relation ρ on S is

• left compatible if

(
∀x, y, z ∈ S

) (
x ρ y ⇒ zx ρ zy

)
;

• right compatible if

(
∀x, y, z ∈ S

) (
x ρ y ⇒ xz ρ yz

)
;

• compatible if

(
∀x, y, z, t ∈ S

) ((
x ρ y

)
∧

(
z ρ t

)
⇒ xz ρ yt

)
.

A left compatible equivalence relation is a left congruence; a right compatible equivalence

relation is a right congruence; and a compatible equivalence relation is a congruence.
Define ρC

as the smallest left and right compatible relation containing ρ; and ρ#
is the

smallest congruence containing ρ, called the congruence generated by ρ.

Consider a congruence ρ on S. The set of ρ-classes of S is the quotient set of S by ρ,

denoted as S/ρ. Let

[
x

]
ρ ∈ S/ρ be the ρ-class of x for every x ∈ S. This may be expressed

as follows:

[
x

]
ρ = {y ∈ S : y ρ x}.

We define a multiplication on S/ρ by:[
x

]
ρ

[
y

]
ρ =

[
xy

]
ρ .

This multiplication is well-defined, in the sense that if we chose different representa-

tives for the ρ-classes

[
x

]
ρ and

[
y

]
ρ , we would get the same answer:([

x
]
=

[
x′]) ∧

([
y

]
=

[
y′]) ⇒

(
x ρ x′) ∧

(
y ρ y′) ⇒ xy ρ x′y′ ⇒

[
xy

]
ρ =

[
x′y′]

ρ .

The set S/ρ, equipped with the defined multiplication, is commonly referred to as the

quotient or factor of S by the equivalence relation ρ. The natural map ρ# : S → S/ρ, which

assigns each element x to its corresponding ρ-class

[
x

]
ρ is a surjective homomorphism.

Theorem 2.3.1. (First Isomorphism Theorem)
Let φ : S → T be a homomorphism. Then ker φ is a congruence, and S/ker φ ≃ imφ.

2.4 Free semigroups

An alphabet is an abstract set of symbols called letters. Let A be an alphabet and let F be

a semigroup. Let τ : A → F be an embedding of A into F . If, for any semigroup S and

map φ : A → S, there is a unique homomorphism φ+ : F → S such that τφ = φ, then the

semigroup F is said to be free on A.

A word over A is a finite sequence

(
a1, a2, . . . , am

)
, where each term ai of the sequence

is a letter from A. The length of this word is m. There is also word of length 0 is called the

empty word.

5

CHAPTER 2. PRELIMINARIES ON COMBINATORIAL SEMIGROUP THEORY

The set of all words (including the empty word) over A is denoted A∗
and the set of

all non-empty words (that is, of length 1 or more) over A is denoted A+
.

The multiplication of sequences is defined by concatenation and this multiplication is

associative:

∀
(
a1, a2, . . . , am

)
,
(
b1, b2, . . . , bn

)
∈ A∗,(

a1, a2, . . . , am
) (

b1, b2, . . . , bn
)
=

(
a1, a2, . . . , am, b1, b2, . . . , bn

)
.

It can be seen that a semigroup is free on A if and only if it is isomorphic to A+
(with

the operation given by concatenation), and for this reason we will say that A+
is the free

semigroup on A.

Proposition 2.4.1. Let A be an alphabet and let F be a semigroup. Then F is free on A if and
only if F ≃ A+

A proof of 2.4.1 can be found in [4].

Similarly, the free monoid over a set can be seen as the monoid where its elements are

all finite sequences of zero or more elements from that set. The operation in this monoid

is defined by the concatenation of these elements, and the identity element is the unique

sequence with zero elements, often called the empty word and denoted by ε or λ. When

referring to the free monoid on a set A, we denote it by A∗
.

We can write a1a2 · · · an for (a1, a2, . . . , an) and ε for the empty word. We denote the

length of u ∈ A∗
by |u|. Observe that |u| = 0 if, and only if u = ε.

2.5 Presentations

The concept of a semigroup presentation is to specify a semigroup as a quotient of a free

semigroup: that is, as a quotient A+
/σ for some congruence σ on the free semigroup A+

.

It is sufficient to specify the alphabet A in order to specify the free semigroup. To define

the congruence σ, all that is needed is to define some binary relation ρ that produces σ.

The pair ⟨A|ρ⟩, where A is an alphabet and ρ is a binary relation on A+
, is denoted

by semigroup presentation. We often call the elements of ρ (which are pairs words in A+
)

defining relations. Thus, we think of semigroup presented by ⟨A|ρ⟩ as the largest semigroup

generated by A and satisfying the defining relations in ρ. This presentation defines any

semigroup isomorphic to A+
/ρ#

. If A and ρ are finite, then a presentation is also finite. A

semigroup is finitely presented if it can be defined by a finite presentation.

Let the alphabet A represent a generating set for S. Then, when S is given by a

presentation ⟨A|ρ⟩, the words in A+
act as representing elements of S. In general, each

element of S will have more than one representative in A+
. If u, v ∈ A+

,

(
u, v

)
∈ ρ#

represent the same element, that is, we say that u and v are equal in S, and we express

them as follows: u =S v.

An elementary ρ-transition is a pair

(
u, v

)
∈

(
ρS

)C
, where ρS

is the smallest symmetric

relation containing ρ and called the symmetric closure of ρ. Thus,

(
u, v

)
is an elementary

6

2.6. NORMAL FORMS

ρ-transition if and only if v can be obtained from u by substituting a subword y for a

subword x of u, where

(
x, y

)
∈ ρ or

(
y, x

)
∈ ρ.

Proposition 2.5.1. Let S be presented by ⟨A|ρ⟩. Then u =S v if and only if there is a sequence
u0, . . . , un with u0 = u, un = v, and each

(
ui, ui+1

)
being an elementary ρ-transition.

For more details, including the proof of this proposition, see [4].

We could go over freedom and presentations again, but with monoids rather than

semigroups. A monoid F is a free on A if and only if F ≃ A∗
. Each monoid is the quotient

of a monoid that is free.

A monoid presentation is a pair ⟨A|ρ⟩ defining a monoid M ; the generators A are monoid

generators and the defining relations in ρ can be of the form

(
u, ε

)
or

(
ε, u

)
. Also, u =M v

if and only if there is a sequence of elementary transitions from u to v (the analogue of

Proposition 2.5.1).

2.6 Normal forms

Any equivalence relation ρ on a set of objects M defines the quotient set M/ρ whose

elements are equivalence classes. Description of the quotient set is referred to as the

classification problem for M with respect to the equivalence relation. The normal form of

an object M is a "selected representative" from the class

[
M

]
.

A normal form is required to possess two crucial properties:

1. Every object under consideration must have precisely one normal form.

2. Two objects sharing the same normal form must be equivalent.

The uniqueness requirement in property 1 is occasionally relaxed, permitting the normal

form to be unique up to a simple equivalence.

Principal hiding mechanisms for cryptographic protocols often assume the existence

of normal forms for group elements.

2.7 Rewriting systems

Rewriting is the process of substituting different words for subterms in a formula; this is

sometimes made easier by reduction or rewriting systems. These systems are essentially

made up of a set of objects, and relations that determine how these objects should be

transformed. However, rewriting can be non-deterministic, allowing for the applicability

of more than one rule or for a rule to be applied in many ways to a word. Rewriting

systems give a variety of possible rule applications rather than a definite solution for

converting one word into another.

In the presentation ⟨A|R⟩, the set R and its elements are referred to as rewriting system

and rewriting rules, respectively. A rewriting rule r ∈ R is often expressed as follows:

7

CHAPTER 2. PRELIMINARIES ON COMBINATORIAL SEMIGROUP THEORY

r =
(
u, v

)
or alternatively expressed by u →R v. If R and A are both finite, we say that

presentation ⟨A|R⟩ is finite.
A binary relation →R on A∗

is denoted as single-step reduction (when the context is

clear we just use →), as follows:

w1 →R w2 ⇔ w1 = xuy and w2 = xvy

for any x, y ∈ X∗
and

(
u, v

)
∈ R. The transitive and reflexive closure of →R is denoted by

∗−→R. To represent the transitive closure of →R, we use
+−→R. If there is a word w2 ∈ X∗

such that w1 →R w2, then a word w1 ∈ X∗
is said to be R-reducible. A term is referred

to as R-irreducible, or just irreducible, if it is not R-reducible. The set of all R-irreducible

words is denoted by Irr
(
R

)
.

The rewriting system R on A is considered noetherian if there are no infinite descending

chains in the relation →R, in other words, the relation is well-founded.

w1 →R w2 →R w3 →R · · · →R wN →R

We say that a rewriting system is confluent if whenever we have w1
∗−→R w2 and

w1
∗−→R w′

2 there is a word z ∈ A∗
such that w2

∗−→R z and w′
2

∗−→R z. If R is simultaneously

noetherian and confluent we say that R is complete. A presentation is called noetherian,

confluent, or complete if it possesses the respective properties in its rewriting system.

It is simple to check that, if R is a noetherian rewriting system, each congruence class

of M
(
A; R

)
contains at least one irreducible element. Assuming R is noetherian, then R

is a complete rewriting system if and only if each congruence class of a complete rewriting

system fixes a unique irreducible word in the class.

The following proposition is direct consequence of the First Isomorphism Theorem

(Theorem 2.3.1).

Proposition 2.7.1. Let M be a monoid, R a rewriting system on A and ρ the congruence generated
by R. Let φ : A∗ → M be a surjective homomorphism, such that

1. ρ = ker φ; and

2. φ
(
A

)
generates M .

Then, the monoid M is defined by the presentation ⟨A|R⟩.

The following proposition provides us with sufficient conditions to ensure that a

complete rewriting system exists for a monoid M .

Proposition 2.7.2. Let M be a monoid and R a noetherian rewriting system on A. Let φ : A∗ → M

be a surjective homomorphism such that

1. φ
(
u

)
= φ

(
v

)
for each relation

(
u, v

)
∈ R;

2. the restriction of φ to Irr
(
R

)
is one-to-one.

8

2.8. BACKGROUND ON COMBINATORIAL GROUP THEORY

Then, R is a complete rewriting system that defines M .

There are obvious analogous definitions and results to those above obtained by replac-

ing monoid by semigroup and the free monoid A∗
by the free semigroup A+

.

An application of Proposition 2.7.2 can be found in [23].

2.8 Background on Combinatorial Group Theory

In group theory, decision problems are important. These entail deciding whether a

property holds for a certain input. For instance, we can be interested in deciding if two

elements are conjugate or whether two subgroups are isomorphic. Variants of several

decision problems involving subsets of groups have been studied more recently. For

example, we may study the rational subset membership problem (a overview of it can

be found in [21]). The conjugacy problem has also been approached in two distinct

ways in [19] and [5]: either we want to determine if two elements are conjugate with a

conjugator that belongs to a certain subset, or we want to determine whether an element

has a conjugate in a certain subset. Similar variations have been studied for groups and

semigroups for the intersection, twisted conjugacy, and equality problems (see more

details in [1], [5] and [33]).

Algorithmic problems in (semi)group theory are classified into two types:

1. Decision problems are characterised by the following: when presented with a property

P and an object O, the task is to determine whether the object O has the property P .

2. Search problems, on the other hand, are of the following nature: when provided with

a property P and the knowledge that there are objects with the property P , the

objective is to identify as least one such object that possesses the property P .

In group-based cryptography, it is typical for the security of a protocol to depend on

a search version of a decision problem. This entails looking for a witness while being

aware that a specific attribute holds for our input. These problems are mostly decidable,

but their complexity is what attracts our interest. Group theorists have not studied search

problems for a long time, but cryptography has piqued interest in them.

Some important algorithmic problems in groups were formulated by the German

mathematician Max Dehn in the early 20th century. We will introduce some of Dehn’s

problems, such as the word problem and the conjugacy problem, as well as other relevant

problems in cryptography. For further details, we refer the reader to [27].

2.8.1 The word problem

The word problem (WP) involves determining, given a recursive presentation of a group

G and a element g ∈ G, whether or not g equals the identity element 1 in G. The word

problem can be dissected into two distinct components, framed as list the "whether" and

9

CHAPTER 2. PRELIMINARIES ON COMBINATORIAL SEMIGROUP THEORY

"not" aspects, or equivalently, the "yes" and "no" parts. When a group is represented by

a recursive presentation using generators and relators, the "yes" component of the word

problem can be addressed through a recursive method.

Quoting the proposition of [29]:

Proposition 2.8.1. Let ⟨X; R⟩ be a recursive presentation of a group G. Then the set all words
g ∈ G such that g = 1 in G is recursively enumerable.

2.8.2 The conjugacy problem

The conjugacy problem (CP) involves determining, given a recursive presentation of a group

G and two elements g, h ∈ G, whether or not there exists an element x ∈ G such that

x−1gx = h. Similar to the word problem, the conjugacy problem can be subdivided into

the "yes" and "no" parts. The "yes" part is always recursive, as one can systematically

enumerate all the conjugates of a given element.

The conjugacy search problem (CSP) entails finding, given a recursive presentation of

a group G and two conjugate elements g, h ∈ G, a specific element x ∈ G such that

x−1gx = h. As mentioned earlier, the conjugacy search problem always has a recursive

solution, allowing for the systematic listing of all conjugates associated with a given

element. However, similar to the word search problem, this type of solution may be

time-consuming and inefficient.

2.8.3 The decomposition and factorisation problems

The decomposition problem involves a recursive presentation of a group G, two subgroups

A, B ≤ G and two elements g, h ∈ G. The task at hand is to determine whether there exist

two elements x ∈ A and y ∈ B that satisfy x · g · y = h.

One of the natural ramifications of the conjugacy search problem is the decomposition
search problem. This problem involves a recursive presentation of a group G, two subgroups

A and B along with two elements g, h ∈ G. The objective is to identify two elements,

x ∈ A and y ∈ B, that satisfy x · g · y = h, assuming there exists at least one combination

of x and y that satisfies this condition.

It is important to note that some x and y satisfying the equality x · g · y = h always

exist (e.g. x = 1, y = g−1h), so the emphasis is on having them satisfy the conditions

x ∈ A and y ∈ B. Therefore, the term "subgroup-restricted" is typically not used for this

decomposition search problem.

A special case of the decomposition search problem, where A = B, is known as the

double coset problem. Another special case, where g = 1, deserves attention.

The factorisation problem deals with an element w in a recursively presented group

G, along with two subgroups A, B ≤ G. The aim is to ascertain whether there are two

elements a ∈ A and b ∈ B such that a · b = w.

10

2.8. BACKGROUND ON COMBINATORIAL GROUP THEORY

The factorisation search problem involves an element w in a recursively presented group

G and two recursively generated subgroups A, B ≤ G. The objective is to find any two

elements a ∈ A and b ∈ B that satisfy a · b = w, provided at least one such pair of elements

exists.

11

3

Cryptography

The concept of information is assumed to be well-understood, and a foundational compre-

hension of issues related to information security is essential for delving into cryptography.

Information security aspects differ and adapt in response to specific situations and re-

quirements. Historically, protocols and mechanisms have been developed to address

security challenges in physical document-based information systems, often involving

mathematical algorithms. Compliance with regulations and procedural methodologies

are essential for ensuring security.

In a digital society, safeguarding information requires a combination of technical

expertise and legal knowledge. Despite efforts, there is no complete guarantee of fulfilling

every information security objective. Cryptography serves as the primary means to

realise technical safeguards involving mathematical techniques related to confidentiality,

data integrity, entity authentication, and data origin authentication. Four fundamental

objectives, presented in [25], construct a framework for information security from all the

information security objectives:

(
1
)

Privacy or Confidentiality;

(
2
)

Data integrity;

(
3
)

Authentication; and

(
4
)

Non-repudiation:

1. Confidentiality is a service that restricts access to information to only those authorised

to have it. Security is a term that means the same as confidentiality and privacy.

2. Data integrity is a service that addresses the unauthorised changes to data. To ensure

data integrity, one must have the ability to detect data manipulation by unauthorised

parties, which includes actions such as insertion, deletion, and substitution.

3. Authentication is a service that deals with identification and applies to both individ-

uals and information. In communication, it is essential that both parties identify

each other, while information sent over a channel must be authenticated in terms of

its origin, date of origin, data content, and time sent. Consequently, this aspect of

cryptography is usually divided into two major categories: entity authentication and

data origin authentication. Data origin authentication provides implicit data integrity

by detecting any message modifications that alter the source.

12

3.1. PUBLIC KEY ENCRYPTION

4. Non-repudiation enables entities to prevent denial of their previous commitments or

actions. In situations where disputes arise due to an entity denying certain actions,

a trusted third party intervention is necessary to resolve the disagreement. For

instance, an entity may grant authorisation for the purchase of property by another

entity but later deny such authorisation.

The world of cryptography has undergone significant evolution over time, dating

back to the era of Caesar and potentially even earlier. This evolution is evident in the

development of two fundamental cryptographic techniques: symmetric and asymmetric

encryption.

To begin with, there is a fundamental distinction between public key (or asymmetric),

cryptographic techniques introduced in 1976, and symmetric ciphers, which have been in

use since the time of Caesar or even earlier.

In symmetric cipher, having knowledge of the decryption key is essentially the same as,

or often identical to, having knowledge of the encryption key. This means that two parties

communicating with each other must establish an agreement on a shared secret before

initiating communication over an open channel. In contrast, understanding the encryption

and decryption keys in asymmetric ciphers does not involve the same information (through

any feasible computation). For instance, the decryption key could be kept confidential,

while the encryption key is made public, allowing multiple individuals to encrypt, but

only one individual to decrypt.

To avoid ambiguity, a common convention is to use the term private key in association

with public key cryptosystems and secret key in association with symmetric key cryptosys-

tems. This convention is motivated by the following rationale: it takes two or more parties

to share a secret, but a key is truly private only when one party alone knows it.

In [29], applications of algorithmic problems in group theory to cryptography are

discussed, encompassing classical challenges like Dehn’s problems (the word problem,

the conjugacy problem, and the isomorphism problem) as well as new problems rooted

in cryptography (see [32]).

The primary focus is on the foundational components of cryptography, specifically

the methods that enable two entities, typically referred to as Alice and Bob, to create a

shared secret key without prior agreement. These processes are termed key establishment
protocols. It’s essential to underscore that successfully establishing a shared secret key

transitions Alice and Bob into the realm of symmetric cryptography. This approach offers

notable benefits, as having a shared secret facilitates efficient encryption and decryption

operations.

3.1 Public key encryption

Consider an entity, let’s refer to it as Alice, possessing a public key denoted as e and

a corresponding private key denoted as d. The real challenge will lie in attempting to

13

CHAPTER 3. CRYPTOGRAPHY

compute the private key d from the public key e (a task that, in secure systems, is nearly

impossible).

The public key fundamentally guides the encryption process, while its private counter-

part governs the decryption. When another entity, let’s say Bob, intends to send a message

to Alice, it uses Alice’s public key to encrypt the message, resulting in a ciphertext. This

ciphertext is then transmitted to Alice, who can decrypt it using her private key.

A crucial advantage of such systems is the ease of distributing authentic public keys, a

task much simpler than securely sharing secret keys, as demanded by symmetric systems.

For an adversary, the primary objective is to decrypt the ciphertext intended for another

entity. If they succeed, the encryption system is considered compromised. An even more

significant achievement would be key recovery, implying the derivation of Alice’s private

key. If this occurs, the encryption system is declared completely compromised, as the

adversary can now decrypt every ciphertext intended for Alice.

Consider an encryption scheme comprising sets of encryption and decryption trans-

formations denoted as {Ee : e ∈ K} and {Dd : d ∈ K}, respectively, where K represents

the key space. The encryption scheme is termed symmetric-key if, for each associated en-

cryption/decryption key pair

(
e, d

)
, it is computationally "easy" to determine d knowing

only e and to determine e from d. Since e = d in the majority of practical symmetric key

encryption schemes, the term symmetric key becomes appropriate.

3.1.1 From key establishment to encryption

Suppose that Alice and Bob share a secret key K. This key is a part of a set represented as

K. This set is typically referred to as key space.
Let H : K → {0, 1}n

be any (public) function from the set K to the set of bit strings of

length n. It is recommended to select a sufficiently large value for n. For instance, if K
is finite, n should be at the very least log2|K|. However, if K is infinite, n can be as large

as computational resources allow. Such functions are commonly termed as hash functions.
These hash functions often serve dual purposes: they act as condensed representations or

digital imprints of data, and they also ensure the integrity of messages.

Encryption: Bob encrypts his message m ∈ {0, 1}n
as

E
(
m

)
= m ⊕ H

(
K

)
,

where ⊕ is addition modulo 2.

Decryption: Alice computes:(
m ⊕ H

(
K

))
⊕ H

(
K

)
= m ⊕

(
H

(
K

)
⊕ H

(
K

))
= m,

thus recovering the message m.

Note that this encryption has an expansion factor of 1, meaning that the encryption of a

message is of the same length as the original message.

14

3.2. CRYPTOGRAPHIC PROTOCOLS

3.2 Cryptographic protocols

A protocol is essentially a multi-participant process laid out as a series of instructions.

These instructions detail the actions necessary for two or more entities to achieve a specific

goal. In more detail, a key establishment protocol is a type of protocol through which

a mutual secret is created and shared between two or more entities, paving the way for

subsequent cryptographic endeavours, as pointed out in [25].

In [2], there is an introduction to a concise algebraic protocol designed for key es-

tablishment. This protocol aims to facilitate the exchange of secret key between two

parties communicating only over an open channel. The strength of the protocol lies in the

challenges associated with deciphering equations within algebraic constructs, especially

within groups. As the protocol unfolds, each participant performs algebraic operations

involving multiplications, followed by a transformation within a monoid or group.

After these calculations, their results are communicated via the open channel. Both

entities then engage in a secondary calculation to obtain a mutual secret key. This post-

calculation is based on an algorithm designed to solve the word problem in the monoid

or group.

In the case that the protocol is group-based, [2] showed that an adversary (observing

all communications over the public channel) can break the scheme and determine the

secret key as long as a system of conjugate equations about the associated group is feasible

to solve.

It is well documented that there are certain groups where the word problem is solvable

in polynomial time but the conjugacy problem is hard (see, for example, [26]).

Now, we introduce some protocols, particularly the Diffie-Hellman key exchange

protocol, because it serves as inspiration for the other protocols.

3.2.1 Protocols based on the conjugacy search problem

Consider a group G in which the word problem is solvable. For any elements w, a ∈ G, the

notation wa
denotes a−1wa. While the conjugacy decision problem is of great relevance in

group theory, the conjugacy search problem carries more relevance in complexity theory,

but is less enticing in the context of group theory. If it is established that u is conjugate to

v, a possible method is to systematically compare words expressed as ux
with v until there

is a match. This straightforward method, however, is often burdened with an exponential

time complexity dependent on the length v making it largely inefficient.

Therefore, in the absence of any recognised alternative solutions for the conjugacy search
problem within the group G, it is plausible to suggest that x → ux

is a one-way function

and build a (public key) cryptography protocol on that:

Following a simple protocol, from [18]:

1. An element w ∈ G is made public.

2. Alice selects a private element a ∈ G and sends wa
to Bob.

15

CHAPTER 3. CRYPTOGRAPHY

3. Bob then selects his private element b ∈ G and sends wb
to Alice.

4. Alice computes wba
, while Bob calculates wab

.

If a and b are selected from subgroups of a group of G where elements mutually

commute, it follows that ab = ba. This guarantees that Alice and Bob can obtain a common

private key: wab = wba
. Public subgroups A and B within G are defined by their generating

sets, ensuring that for any a ∈ A and b ∈ B, the condition ab = ba remains true.

Choosing an appropriate group structure for the given protocol is not straightforward.

Some requirements for the group have been suggested in [31]:

(P0) The group should be recognised and established. In particular, the conjugacy

problem within the group should be either well studied or related to another known

problem, possibly from another mathematical domain.

(P1) The word problem in G should have a fast solution, ideally by a deterministic

method in linear or quadratic time. Better yet, there should be a computationally efficient

"normal form" for the elements of G.

(P2) The conjugacy search problem should not be solvable in subexponential-time

using a deterministic approach.

(P3) The elements of G should be disguised in such as a way that x can not be retrieved

from x−1wx by inspection.

(P4) G should be a group of super-polynomial (i.e., exponential or "intermediate")

growth. This implies that the number of elements of length n in G must grow faster

than any polynomial in n. This is essential to prevent attacks that exploit the key space

completely. The "length n" typically refers to the length of the shortest word representing

a group element, but in a more general situation, it may refer to the length of a different

description, such as, "information complexity".

3.2.2 Protocols based on the decomposition problem

In [29], it is showed that solving the conjugacy search problem is unnecessary for an

adversary to get the common secret key the previous; it is sufficient to solve the seemingly

easier decomposition search problem.

Note that the conjugacy search problem is a special case of the decomposition problem

where w′
is conjugate to w and x = y−1

. The claim that the decomposition problem should

be easier than the conjugacy search problem is intuitively clear since it is generally easier

to solve an equation with two unknowns than a special case of the same equation with

just one unknown.

In [26], the authors give a formal description of a typical protocol based on the

decomposition problem. There is a public group G, and two public subgroups A, B ≤ G

commuting element-wise, i.e., ab = ba for any a ∈ A, b ∈ B.

16

3.2. CRYPTOGRAPHIC PROTOCOLS

1. Alice randomly selects private elements a1a2 ∈ A. Then she sends the elements

u = a1wa2 to Bob.

2. Bob randomly selects private elements b1b2 ∈ B. Then he sends the element

v = b1wb2 to Alice.

3. Alice computes KA = a1va2 = a1b1wb2a2, and Bob computes KB = b1ub2 =

b1a1wb2a2. Since aibi = biai in G, one has KA = KB = K (as an element of G),

which is now Alice’s and Bob’s common secret key.

3.2.3 The Diffie-Hellman Key Exchange Protocol

The domain of public key cryptography can be traced the seminal paper by Diffie and

Hellman [6]. In 2002 [14], Martin Hellman also acknowledged Merkle’s work: "The system

(. . .) has since become known as Diffie-Hellman key exchange. Although this system was

first described in an article by Diffie and myself, it is a public key distribution system, a

concept developed by Merkle, and should therefore be called Diffie-Hellman-Merkle key

exchange if names are to be associated with it. I hope this little pulpit can help in that effort

to recognize Merkle contributed equally to the invention of public key cryptography". The

algorithm was delineated and Diffie, Hellman, and Merkle recognised as its inventors in

the now expired U. S. Patent 4,200,770.

We will now describe the protocol: group Z∗
p of integers modulo p, where p is prime

and g is primitive mod p, is used in the simplest and original implementation of the

protocol. A more general description of the protocol uses an arbitrary finite cyclic group.

1. Alice and Bob mutually settle on a finite cyclic group G and choose a generating

element g in G. The group G will be written multiplicatively.

2. Alice selects a random natural number a and sends ga
to Bob.

3. Bob selects a random natural number b and sends gb
to Alice.

4. Alice computes KA = gba
.

5. Bob computes KB = gab
.

Since the operation is commutative, Alice and Bob both obtain a shared secret key, as

K = KA = KB .

17

4

Stickel’s Key Exchange Protocol

Stickel’s protocol has similarities with the classical Diffie-Hellman protocol, although it

cannot be considered a formal generalisation of the latter.

In 2005, Stickel proposed the following protocol (see [34]):

Let G be a public nonabelian finite group, and a, b ∈ G be public elements such that

ab ≠ ba. Let N and M be the orders of a and b, respectively.

The process can be outlined as follows:

1. Alice picks two random natural numbers n < N , m < M and sends u = anbm
to

Bob;

2. Bob picks two random natural numbers r < N , s < M and sends v = arbs
to Alice;

3. Alice computes KA = anvbm = an+rbm+s
;

4. Bob computes KB = arubs = an+rbm+s

Both Alice and Bob compute K, where K = an+rbm+s
, giving them a shared secret key.

There is also a variant of this protocol that seems favoured:

Let w ∈ G be public.

1. Alice selects two random natural numbers n < N, m < M , an element c1 from the

center of the group G, and sends u = c1anwbm
to Bob;

2. Bob selects two random natural numbers r < N, s < M , an element c2 from the

center of the group G, and sends v = c2arwbs
to Alice;

3. Alice computes KA = c1anvbm = c1c2an+rwbm+s
;

4. Bob computes KB = c2arubs = c1c2an+rwbm+s
.

It is worth noting that the elements ci belong to the center of the group and so they

commute with every other element of the group.

Although G has been described as a group, a semigroup would suffice. Stickel’s

suggestion is to use the group of invertible k × k matrices over a finite field F2l .

18

4.1. LINEAR ALGEBRA ATTACK

While this approach is adaptable to any semigroup, vulnerabilities are tied to the

specific platform. Some attacks can be effective if G is a group, but might not apply

universally across all semigroups.

Note: In the pursuit of acquiring the shared secret key K an adversary (Eve) only

needs do identify any elements x, y ∈ G such that

xa = ax, yb = by, u = xwy.

If Eve manages to identify such elements x and y, she can then leverage Bob’s commu-

nicated value, v = c2arwbs
to deduce:

xvy = xc2arwbs y = c2arxwy bs = c2arubs = K.

It follows from this observation that multiplying by ci does not really augment the

protocol’s security.

Solving the above system of equations in G is equivalent to solving the (subsemigroup-

restricted) decomposition search problem:

Given a recursively presented (semi)group G, two recursively generated

sub(semi)group groups A, B ≤ G, and two elements u, w ∈ G, find two elements x ∈ A

and y ∈ B that would satisfy x · w · y = u, provided that such a pair exists.

In the context of Stickel’s scheme, the sub(semi)groups A and B are the centralisers

of the elements a and b, respectively. This set is a subsemigroup of G; if G is group, then

this set is a subgroup.

Stickel’s scheme holds security equivalent to, or maybe weaker than, those models that

are fundamentally built on the presumed difficulty of the decomposition search problem.

This is because there exist strategies to compromise Stickel’s scheme without attacking the

relevant decomposition search problem. For instance, an approach proposed by Sramka

[34] targets the retrieval of one of the exponents n, m, r, s in Stickel’s protocol. Unlike other

attacks that target only the shared secret key, Sramka’s strategy aims to reveal a private

key.

4.1 Linear algebra attack

In this section, we will present an attack to Stickel’s key exchange protocol.

Consider G the group of invertible k × k matrices over a finite field F2l , where k = 31.

Recall that Stickel’s proposal was to use this group with this value of k. Although the

value of l was not specified in [34], it is reasonable to assume 2 ≤ l ≤ k. The specific

selection of matrices a, b, w is not so important for the attack; what is important is that a

and b are invertible. We notice however that the choice of matrices a and b in [34] (the

fact that the entries of these matrices are either 0 or 1) provides an extra weakness to the

scheme.

19

CHAPTER 4. STICKEL’S KEY EXCHANGE PROTOCOL

The matrices stated in [34] are constructed as follows:

Let p
(
x

)
and q

(
x

)
be two different irreducible polynomials of degree n over the field F2

consisting of the zero and unit element only. Let a and b be the corresponding companion

matrices. To be specific, if e.g.

p
(
x

)
= xn

+Σn−1
i=0 cix

i

then 

0 0 · · · · · · c0

1 0 0 . . . c1

0 1 . . .
. . . c2

...
. . .

. . . 0 cn−2

0 0 · · · 1 cn−1


is the corresponding n × n companion matrix.

Assume further that n, as well as, 2n − 1 are prime numbers. Such numbers 2n − 1 are

called Mersenne primes and n is called Mersenne exponent.

Remember, that for Eve’s success, it suffices to discover a solution to the system:

xa = ax, yb = by, u = xwy, where a, b, u, w are known and x, y unknown k × k matrices

over F2l . The first two equations can each be broken down into k2
linear equations in

terms of the matrix entries of x and y. A helpful manoeuvre is to multiply both sides of

the equation u = xwy by x−1
on the left to get

x−1u = wy.

Given that xa = ax is equivalent to x−1a = ax−1
, let’s use x1 = x−1

and replace the

system of equations by:

x1a = ax1, yb = by, x1u = wy.

Now, each equation here can again be decomposed into k2
linear equations for the

(unknown) entries of the matrices x1 and y. The total number of linear equations to be

addressed is 3k2
with 2k2

unknowns. Remember that a solution to this system helps to

find the shared key K if and only if x1 is invertible because K = xvy, where x = x−1
1 .

Using the known invertible matrix u, multiply both sides of the equation x1u = wy by

u−1
on the right to get x1 = wyu−1

. By eliminating x1 from the system, we obtain:

wyu−1a = awyu−1, yb = by.

Now, the only unknown is the matrix y, leading to 2k2
linear equations for k2

entries of y.

It is worth noting that determining a matrix’s invertibility is straightforward, as it

aligns with matrix reduction to echelon form. Interestingly, in the tests of [29], there was

often just a single variable left undefined, making the final step (checking for invertibility)

20

4.2. LINEAR ALGEBRA ATTACK IMPLEMENTATION

redundant. If there is a unique, non-zero solution to the system, then the associated

matrix y must be invertible. In all our tests, as shown in the following section, the system

has a unique non-zero solution, which means that we can experimentally corroborate the

results of Myasnikov, Shpilrain and Ushakov.

One possible improvement to consider is the use of non-invertible components such as

a, b, w. Specifically, this indicates that the foundational platform ought to be a semigroup

containing non-invertible elements. If matrices are to be employed, it is logical to consider

the semigroup of all k × k matrices over a finite ring (not necessarily a field). Such a

semigroup typically has a lot of non-invertible elements. Hence, selecting a, b, w non-

invertible should be feasible, rendering the linear algebra attack ineffective. Another

benefit of not limiting to invertible matrices is the flexibility to employ not just powers

aj
of a given element, but combinations like Σ

p
i=1ci · ai

, where ci are constants from the

foundational ring.

Stickel’s scheme becomes compromised if the associateddecomposition searchproblem

is deciphered. Up to this point, no specific abstract (semi)group has been proved to resist

current attack strategies targeting the decomposition search problem.

4.2 Linear algebra attack implementation

We wrote a code in Python implementing Stickel’s key exchange protocol and constructing

the linear algebra attack proposed by Myasnikov et al.

4.2.1 The code

Before explaining the code for the linear algebra attack described in the previous section,

it should be noted that for the matrices proposed by Stickel, if ab = ba, then a = b this will

increase the efficiency of the code’s implementation.

Proposition 4.2.1. Let a, b be matrices over a finite field F2 constructed as proposed by Stickel
(4.1). If ab = ba then a = b.

Proof. Let a, b ∈ G be public elements of a public nonabelian finite group G. Assume that

a and b are Stickel matrices of form:

a =



0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 a1

0 1 0 0 · · · 0 a2

0 0 1 0 · · · 0 a3

0 0 0 1 · · · 0 a4
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 ak


and b =



0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 b1

0 1 0 0 · · · 0 b2

0 0 1 0 · · · 0 b3

0 0 0 1 · · · 0 b4
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 bk


21

CHAPTER 4. STICKEL’S KEY EXCHANGE PROTOCOL

Let the matrices product of ab and ba,

ab =



0 0 0 · · · 0 1 bk

0 0 0 · · · 0 a1 1+a1bk

1 0 0 · · · 0 a2 b1+a2bk

0 1 0 · · · 0 a3 b2+a3bk

0 0 1 · · · 0 a4 b3+a4bk

...
...

...
. . .

...
...

...

0 0 0 · · · 1 ak bk−1+akbk


and

ba =



0 0 0 · · · 0 1 ak

0 0 0 · · · 0 b1 1+b1ak

1 0 0 · · · 0 b2 a1+b2ak

0 1 0 · · · 0 b3 a2+b3ak

0 0 1 · · · 0 b4 a3+b4bk

...
...

...
. . .

...
...

...

0 0 0 · · · 1 bk ak−1+bkak


Assuming commutativity, we now have ab = ba, if and only if

0 0 0 · · · 0 1 bk

0 0 0 · · · 0 a1 1+a1bk

1 0 0 · · · 0 a2 b1+a2bk

0 1 0 · · · 0 a3 b2+a3bk

0 0 1 · · · 0 a4 b3+a4bk

...
...

...
. . .

...
...

...

0 0 0 · · · 1 ak bk−1+akbk


=



0 0 0 · · · 0 1 ak

0 0 0 · · · 0 b1 1+b1ak

1 0 0 · · · 0 b2 a1+b2ak

0 1 0 · · · 0 b3 a2+b3ak

0 0 1 · · · 0 b4 a3+b4bk

...
...

...
. . .

...
...

...

0 0 0 · · · 1 bk ak−1+bkak


=⇒

=⇒ a = b

□

The code and comments can be found in Appendices A.

First, some auxiliary functions were created. These were used to perform operations

between elements and between matrices.

The functions f2add(a,b) and f2multiply(a,b) are built to perform the sum and

product in F2, respectively, not only of numbers but also variables.

The next auxiliary function built is matrixaddF2 whose purpose is to add matrices

with entries in F2. The function matrixaddF2, receives two square matrices (the entries

can be numbers or variable), a and b, and the dimension of the matrices as input and uses

the function f2add to calculate the sum of the matrices entry by entry in F2.

22

4.2. LINEAR ALGEBRA ATTACK IMPLEMENTATION

The function matrixmultiplyF2 is designed to implement the product between matri-

ces with entries in F2. Specifically, it uses the aforementioned f2add function for addition

and f2multiply for multiplication.

Once the auxiliary functions are defined, the field is defined. To do this, we work with

the galois module in Python. So we define field of order 2, GF(2).

We defines two matrices, a and b, over F2 following Stickel’s proposal: their sub-

diagonals are filled with 1′s and their last columns are filled with the coefficients of

the respective random irreducible polynomials of degree k constructed according to the

constraint a ≠ b. Then, we calculate the powers, an
and bm

, and consequently u = anbm

and its inverse.

For multiplication by a matrix Y of variables, the function matmul() does not work,

so it is necessary to use the function we defined to perform the product of matrices in

F2. It is necessary to make integer vector copies of matrices an
, bm

and u−1
using the

function numpy.array. These copies allow the calculation of products between matrices of

elements and matrices of variables in the function matrixmultiplyF2. One improvement

that could potentially be made is to avoid these copies, as this would make the code more

efficient. For other products that do not involve variables, matmul() is used to make the

code more efficient.

Once the matrix Y of symbols has been created, the two equations of the system are

defined: eq1 and eq2.

To solve the system, let’s transform the problem into a system of the type AX = 0. This

is done by moving the right-hand side (rhs) to the left-hand side (lhs), adding the two

sides of equation. This results in a normalised equation (eq1norm and eq2norm), where

the right-hand side is a zero matrix and the left-hand side is the sum of the two original

sides. This is a sum, because in F2 addition and subtraction coincide.

The dimension of the null space, i.e. the number of basis vectors, indicates the number

of free variables. The greater the dimension of the null space, the greater the number of

free variables and the greater the number of solutions.

The code is working with a matrix equation in F2 and aims to find a solution matrix,

Ysolution, that is invertible. If the null space has dimension 1, this means that there is

only one basis vector, or in other words, one solution to the equation. If there is more

than one possible solution due to a null space of dimension greater than 1, we try linear

combinations of the solutions until we have an invertible matrix.

With the matrix Y calculated, it is possible to solve the equation x1 = yu−1
, where

x1 = x−1
. Thus the solutions have been found.

The function kfind(x,y,q) was also defined with the purpose of computing the

shared secret key, K, where the input are the previously discovered matrices, x and y, and

a message, v, which Eve intercepts.

Finally, the function kshared(a,b,r,s,m,n) was generated, which is the "real" shared

secret key, meaning that if the attack is successful, the matrix resulting from this function

will be the same as the one discovered by Eve, kfind(x,y,q).

23

CHAPTER 4. STICKEL’S KEY EXCHANGE PROTOCOL

4.2.2 Alice and Bob encryption

Now let’s look at an example of Alice’s and Bob’s encryption and Eve’s attack. Recall,

a, b ∈ G are public elements and, N and M are the orders of a and b, respectively. Suppose

that k = 7:

1. Alice picks two random natural numbers n < N , m < M and sends u = anbm
to

Bob;

1 Matrix a^(n):
2 [[1 1 0 0 0 0 1]
3 [1 1 1 0 0 0 0]
4 [1 1 1 1 0 0 0]
5 [1 0 1 1 1 0 1]
6 [1 0 0 1 1 1 1]
7 [0 0 0 0 1 1 0]
8 [1 0 0 0 0 1 1]]
9

10 Matrix b^(m):
11 [[1 0 0 0 1 0 0]
12 [0 1 0 0 0 1 0]
13 [0 0 1 0 0 0 1]
14 [1 0 0 1 1 0 0]
15 [0 1 0 0 1 1 0]
16 [0 0 1 0 0 1 1]
17 [0 0 0 1 0 0 1]]
18

19 Matrix u:
20 [[1 1 0 1 1 1 1]
21 [1 1 1 0 1 1 1]
22 [0 1 1 1 0 1 1]
23 [0 1 1 0 1 1 0]
24 [0 1 1 0 1 0 0]
25 [0 1 1 0 1 0 1]
26 [1 0 1 1 1 1 0]]

2. Bob picks two random natural numbers r < N , s < M and sends v = arbs
to Alice;

1 Matrix a^(r):
2 [[0 0 0 1 0 1 0]
3 [1 0 0 0 1 0 1]
4 [0 1 0 0 0 1 0]
5 [0 0 1 1 0 1 1]
6 [1 0 0 0 1 1 1]
7 [0 1 0 1 0 0 1]
8 [0 0 1 0 1 0 0]]
9

10 Matrix b^(s):
11 [[1 1 1 1 1 1 0]
12 [1 1 1 1 1 1 1]
13 [0 1 1 1 1 1 1]

24

4.2. LINEAR ALGEBRA ATTACK IMPLEMENTATION

14 [1 1 0 0 0 0 1]
15 [1 1 1 0 0 0 0]
16 [1 1 1 1 0 0 0]
17 [1 1 1 1 1 0 0]]
18

19 Matrix v:
20 [[0 0 1 1 0 0 1]
21 [1 1 1 0 0 1 0]
22 [0 0 0 0 1 1 1]
23 [1 0 1 1 0 1 0]
24 [0 0 0 1 0 1 0]
25 [1 1 0 0 0 1 0]
26 [1 0 0 1 1 1 1]]

3. Alice computes KA = anvbm = an+rbm+s
;

4. Bob computes KB = arubs = an+rbm+s

1 Shared secret key matrix :
2 [[0 0 0 0 1 0 0]
3 [0 0 0 1 1 0 0]
4 [0 0 0 0 1 1 0]
5 [0 0 0 1 0 0 1]
6 [1 0 0 0 0 0 0]
7 [0 1 0 1 0 1 0]
8 [0 0 1 0 1 0 1]]

4.2.3 Eve’s attack

Eve’s goal is to discover the shared secret key K = an+rbm+s
. Recall that, as shown in

Section 4, to obtain this key, it suffices to identify the elements x, y ∈ G such that

xa = ax

yb = by

u = xy,

where a, b, u are known.

After solving the system of equations, the solution Ysolutionmatrix represents exactly

the element y that Eve needed to identify. Once y has been identified, the only task left is

to find the element x. With x−1 = yu−1
, it possible to calculate the inverse of the element

Eve needs to identify. Having identified x and y, Eve can proceed with protocol attack.

Eve’s attack is made using the function defined by kfind(x,y,q).

1 Matrix Y:
2 [[1 0 0 0 1 0 0]
3 [0 1 0 0 0 1 0]

25

CHAPTER 4. STICKEL’S KEY EXCHANGE PROTOCOL

4 [0 0 1 0 0 0 1]
5 [1 0 0 1 1 0 0]
6 [0 1 0 0 1 1 0]
7 [0 0 1 0 0 1 1]
8 [0 0 0 1 0 0 1]]
9

10 Matrix x^(-1)=x1:
11 [[1 1 0 1 1 0 1]
12 [1 1 1 0 1 1 0]
13 [0 1 1 1 0 1 1]
14 [0 1 1 0 0 0 0]
15 [0 1 1 0 1 0 1]
16 [0 1 1 0 1 1 1]
17 [1 0 1 1 0 1 1]]
18

19 Matrix x:
20 [[1 1 0 0 0 0 1]
21 [1 1 1 0 0 0 0]
22 [1 1 1 1 0 0 0]
23 [1 0 1 1 1 0 1]
24 [1 0 0 1 1 1 1]
25 [0 0 0 0 1 1 0]
26 [1 0 0 0 0 1 1]]
27

28 Secret key matrix (K):
29 [[0 0 0 0 1 0 0]
30 [0 0 0 1 1 0 0]
31 [0 0 0 0 1 1 0]
32 [0 0 0 1 0 0 1]
33 [1 0 0 0 0 0 0]
34 [0 1 0 1 0 1 0]
35 [0 0 1 0 1 0 1]]

4.3 Linear algebra attack analysis

The focus of our analysis lies in understanding the execution time of our algorithms

for matrices of different sizes. The study of algorithmic behaviour with large inputs is

commonly known as asymptotic time complexity.

The time complexity of an algorithm delineates the duration required for its execution

in relation to the size of its input. There are "fast" algorithms, whose time complexity is

given by some polynomial (or smaller than some polynomial), such as O(logx), and "slow"

algorithms, whose complexity is given by some exponential function.

A Turing machine is a "prototypical computer", a general abstract model of a "com-

puting device". This device has a programme, reads and writes data from a tape and

maintains an internal state. We used a machine to carry out the linear algebra attack for

Stickel’s protocol and perform time analysis, with the following layout:

26

4.3. LINEAR ALGEBRA ATTACK ANALYSIS

antonio - 10.141.137.11

vnc://10.141.137.11

Hardware Overview:

Model Name: Mac Studio

Model Identifier: Mac13,2

Model Number: Z14K000YHPO/A

Chip: Apple M1 Ultra

Total Number of Cores: 20 (16 performance and 4 efficiency)

Memory: 128 GB

System Firmware Version: 8419.41.10

OS Loader Version: 8419.41.10

Serial Number (system): XHPF741LFD

Hardware UUID: 3AFA8CDC-E1DE-5229-9593-0E7B90C5F6B5

Provisioning UDID: 00006002-001C59242147401E

Activation Lock Status: Disabled

After successfully attacking the protocol, it is possible to draw some conclusions about

the time it takes to break the protocol. Therefore, we decided to analyse how the time

varies with k.

We collected 3 time counts for each value of k, resulting in an average of values for

each k. The final data presents the average times (in seconds) from k = 3 to k = 31.

Remark 4.3.1. Analysing the graph in Figure 4.1, the execution time of our algorithm appears to
grow exponentially with the size of the matrices (k).

Figure 4.1: Time complexity attack: describes the amount of machine time it takes to

execute an algorithm depending the dimension (k) of the matrix.

27

CHAPTER 4. STICKEL’S KEY EXCHANGE PROTOCOL

Moreover, in all our tests, there is only one non-trivial solution, allowing us to experi-

mentally corroborate the results of Myasnikov et al. [29]. Notice that the matrix bm
will

always be a non-trivial solution since m is less than the order of the matrix.

Suppose that au−1 = u−1a.

In the system,
yb = by

yu−1a = ayu−1
⇐⇒


yb = by

yau−1u = ayu−1u

⇐⇒


yb = by

ya = ay.

It should be noted that Stickel [34] did not mention anything about the commutativity

of a and bkm
, for all k and the commutativity of b and any power of a. We are unsure if

the fact that a and bm
commute implies a and b commute (and therefore a = b). Should

this be the case, the protocol’s definition a priori excludes them.

We do not know if this solution has not been presented to us because it is a priori

excluded when we impose the condition that a and b not commute, or if there may exist

the possibility of commutativity between a and bm
. In case it exists, bkm

for all k becomes

a non-trivial solution, just as akr
for all k also becomes a non-trivial solution since r is less

than the order of the matrix.

28

5

The partition monoid

Diagram algebras (i.e., algebras with a basis consisting of diagrams) have received consid-

erable attention since the introduction of the Brauer algebra [3] in 1937. Other diagram

algebras are the Temperly-Lieb algebra [11] and the Jones algebra [17]. The motivation

for the study of these algebras is substantial, as they emerge in a diverse range of mathe-

matical disciplines, including statistical mechanics, knot theory, and the investigation of

algebraic groups. The previously mentioned three algebras, along with numerous more,

are subalgebras of the partition algebras [24], which have as its basis all set-partitions of a

2n-element set; these partitions are represented as (equivalence classes of) graphs on 2n

vertices.

The study of Schur-Weyl duality in the representation theory of the symmetric group

naturally leads to the partition algebra; a comprehensive exposition and a long list of

references can be found in Halverson and Ram’s survey-style article [13].

Diagram algebras can also be viewed as instances of semigroups, with examples

including (full) transformation semigroups (see, for example, [15] or [16]) or the symmetric

and dual symmetric inverse semigroups (see [20] and [10], respectively.)

Wilcox [35] actually realised the partition algebra as a twisted semigroup algebra

of the partition monoid Pn, which is also taken into consideration in [13]. From this

perspective, a lot of information can be determined from different aspects of the monoid’s

structure, including the algebra’s cellularity [12]. A characterisation of the semisimplicity

of the partition algebras, the construction of Murphy elements and Specht modules, and

a presentation of Pn in terms of generators and relations are among the main results of

[13], although the proof provided for this presentation is far from being complete.

Such a presentation is crucial because it allows representations (homomorphisms into

other algebras) to be built from presentations by selecting the images of the generators

and checking that the relations are maintained. The multiplication of the partition algebra

is complex, which makes this representation-building technique very desirable.

Let’s consider the possibility of using the partition monoid as a platform for the

Stickel’s protocol. We begin by understanding the existence of a complete presentation

in order to obtain normal forms. Therefore, we will study East’s article and one of the

29

CHAPTER 5. THE PARTITION MONOID

presentations he provides for the partition monoid to determine if it is complete or not.

In this chapter, we will present certain aspects of the structure of Pn and introduce

three submonoids Ln, In, Rn, where Ln is a submonoid of (an isomorphic copy of) the

full transformation semigroup, In is (isomorphic to) the symmetric inverse semigroup,

and Rn is an anti-isomorphic copy of Ln. Also, we would like to highlight the existence

of natural factorisation Pn = LnInRn. Next, we study East’s presentation for Pn in which

he uses this natural factorisation and the known presentations for the three submonoids.

While the Halverson-Ram presentation has 3n − 2 generators, this presentation has n2

generators. Finally, we conclude that East’s presentation is not a complete presentation

for the partition monoid.

5.1 The partition monoid

Let n represent the finite set {1, . . . , n}, where n is a positive integer that we will fix

throughout this Section. Additionally, we define n′ = {1′, . . . , n′} as a set corresponding

to n. A partition on n ∪ n′
, sometimes called just a partition, is a set of pairwise-disjoint

non-empty sets whose union is n∪n′
. We will discuss an associative operation that creates

a partition monoid, or set Pn, containing all partitions of n∪n′
. The blocks are represented

by sets A1, . . . , Ak and we denote α as {A1, . . . , Ak}. A block Ai is said to be trivial if it

has only one element. A graph on the vertex set n ∪ n′
may represent a partition α ∈ Pn.

Vertices 1, . . . , n are arranged in a row (growing from left to right) and in a parallel row

immediately below. After that, we add edges so that two vertices are connected by a path

only if they are in the same α-block. To illustrate, the partition

{{1, 2′, 3′}, {2}, {3}, {4, 1′, 4′, 5′}, {5, 6, 6′}} ∈ P6

is represented by the graph shown in figure 5.1.

1 2 3 4 5 6
• • • • • •
• • • • • •
1′ 2′ 3′ 4′ 5′ 6′

Figure 5.1: A graphical representation of a partition from ∈ P6.

While it is evident that such a graphical representation is not unique, we will identify

two graphs on the vertex set n ∪ n′
if they share the same connected components. We

will make as distinction between a partition and a graph that represents it. To describe

the product, let α, β ∈ Pn. Firstly, stack the graphs representing α and β so that vertices

1, . . . , n of α are identified with vertices 1′, . . . , n′
of β. Connect the edges of α with the

edges of β and delete the middle row of vertices. The connected components of this graph

are then constructed; the resulting graph is the product αβ. Figure 5.2 gives an example.

30

5.1. THE PARTITION MONOID

1 2 3 4 5 6
α = • • • • • •

• • • • • •
1′ 2′ 3′ 4′ 5′ 6′

1 2 3 4 5 6

β = • • • • • •

• • • • • •
1′ 2′ 3′ 4′ 5′ 6′

1 2 3 4 5 6

αβ = • • • • • •

• • • • • • →
• • • • • •
1′ 2′ 3′ 4′ 5′ 6′

1 2 3 4 5 6
• • • • • •
• • • • • •
1′ 2′ 3′ 4′ 5′ 6′

Figure 5.2: Calculating the product of two partitions α, β ∈ P6.

We now go over the notation and terminology that we will be using to study partitions.

Similar ideas from the theory of transformations semigroups serve as the basis for these

definitions. In consideration of this, let α ∈ Pn. For i ∈ n ∪ n′
, let iα represent the α block

that contains i. The domain and codamain of α are defined as the sets

dom
(
α

)
= {i ∈ n|iα ∩ n′ ≠ ∅},

codom
(
α

)
= {i ∈ n|i′

α ∩ n ≠ ∅}.

Additionally, we define the kernel and the cokernel of α to be the equivalences

ker
(
α

)
= {

(
i, j

)
∈ n × n|iα = jα},

co ker
(
α

)
= {

(
i, j

)
∈ n × n|i′

α = j′
α}.

The ker
(
α

)
and co ker

(
α

)
equivalency classes of n are referred to as the kernel-classes

and cokernel-classes of α. In order to demonstrate these concepts, let θ stand for

the partition shown in figure 5.1. Then dom
(
θ
)

= {1, 4, 5, 6} and codom
(
θ
)

=

{1, 2, 3, 4, 5, 6}, and the kernel-classes and cokernel-classes are by {{1}, {2}, {3}, {4}, {5, 6}}
and {{1, 4, 5}, {2, 3}, {6}}, respectively.

The definitions make it clear right away that

dom
(
αβ

)
⊆ dom

(
α

)
, ker

(
α

)
⊆ ker

(
αβ

)
,

codom
(
αβ

)
⊆ codom

(
β

)
, co ker

(
β

)
⊆ co ker

(
αβ

)
for all α, β ∈ Pn.

31

CHAPTER 5. THE PARTITION MONOID

5.2 Important subsemigroups

The partition monoid encompasses several well-researched and well-known subsemi-

groups, such as the (full) transformation semigroup and the symmetric and dual sym-

metric inverse semigroups. In this Section, our focus will be on the submonoid of the

(full) transformation semigroup and the symmetric semigroup. For more details on these

semigroups see [8].

5.2.1 The (full) transformation semigroup

The (regular) semigroup Tn, encompassing all transformations on n or all functions from n
to itself under the composition operation, is known as the (full) transformation semigroup

on n. The symmetric groups Sn is the group of units of Tn and consists of all permutations

on n. Let

Tn = {α ∈ Pn|each block of α contains exactly one element of n′}

The graphical elements of Tn reveals a natural one-one correspondence ϕ : Tn → Tn. The

surjective homomorphism ϕ : Tn → Tn is evident from the multiplication rules in Tn and

Pn, allowing us to identify the submonoid Tn with the transformation semigroup Tn. We

often write iα for the image of i under the transformation associated with α, given α ∈ Tn

and i ∈ n.

The symmetric group Sn ⊆ Tn is isomorphic to the subgroup Sn. The subgroup Sn is

identified as the group of units of Tn.

Sn = {α ∈ Pn|each block of α contains one element of n and one of n′},

In 1987, Moore [28] presented the symmetric group Sn, which we now describe.

For 1 ⩽ i ⩽ n − 1, we define si ∈ Sn to be simple transposition which interchanges i and

i+1; see figure 5.3.

1 i i+1 n

• · · · • • • • · · · •

• · · · • • • • · · · •

1′ i′ i+1′ n′

Figure 5.3: The simple transposition si ∈ Sn.

Let S = {s1, . . . , sn−1} be alphabet, and consider the relations

(S1) s2
i = 1, for all i;

(S2) sisj = sjsi, if |i − j| > 1;
(S3) sisjsi = sjsisj , if |i − j| = 1.

32

5.2. IMPORTANT SUBSEMIGROUPS

Theorem 5.2.1. (Moore [28]) The symmetric group Sn has (monoid) presentation ⟨S|
(
S1

)
−

(
S3

)
⟩

via
ϕS : S∗ → Sn : si → si.

The congruence on S∗
generated by relations (S1)-(S3) is denoted by ∼S .

5.2.1.1 The submonoid Ln

Let α ∈ Tn and the kernel-classes of α be K1, . . . , Kr. For the set {min
(
K1

)
, . . . , min

(
Kr

)
},

we write Mins
(
α

)
. We say that α is block preserving if iα < jα for every i, j ∈ Mins

(
α

)
and i < j. Put

Ln = {α ∈ Tn| α is block-order-preserving and codom
(
α

)
= k for some k ∈ n′}.

We will now describe a presentation for the submonoid Ln ⊆ Tn.

In [7], it was demonstrated that this set is a submonoid of Tn. It was then examined in

connection with the semigroup Tn\Sn of all non-invertible transformations on n. Let

λij ∈ Ln, for 1 ≤ i < j ≤ n denote the map given by

xλij =



x if 1 ≤ x < j,

i if x = j,

x − 1 if j < x ≤ n.

This map is also shown in figure 5.4.

1 i j n

• · · · • • • · · · • • • · · · •

• · · · • • • · · · • • · · · • •

1′ i′ j′ n′

Figure 5.4: The map λij ∈ Ln.

Define an alphabet L = {λij |1 ≤ i < j ≤ n}, and consider the relations

(L1) λklλin = λkl, for all i, k, l;

(L2) λjkλij = λikλij = λijλi,k−1, if i < j < k;

(L3)-(L5) λklλij =


λijλk−1,l−1, if i < j < k < l;
λijλk,l−1, if i < k < j < l;
λi,j+1λkl, if i < k < l ≤ j ≤ n − 1.

Theorem 5.2.2. (East [7]) The monoid Ln has presentation ⟨L|
(
L1

)
−

(
L5

)
⟩ via

ϕL : L∗ → Ln : λij → λij .

33

CHAPTER 5. THE PARTITION MONOID

The congruence on L∗
generated by relations (L1)-(L5) is indicated by ∼L, and for any

w ∈ L∗
, we write w for the transformation wϕL ∈ Ln. Now, we will describe a set of

normal forms for words over L. We define an order ≺ on the alphabet L by

λij ≺ λrs if and only if i < r or i = r and j > s.

We define a word λi1j1 . . . λikjk
∈ L∗

to be ascending if λi1j1 ≺ · · · ≺ λikjk
. An ascending

word λi1j1 . . . λikjk
is considered normal if jr ≤ n − r+1 for every r in k. Let the set of all

normal words over L be represented by NL ⊆ L∗
. Write N

(
k
)

L for the set of all normal

words of length k where 0 ≤ k ≤ n − 1. The following facts were proved in [7], as key

steps in the proof of Theorem 5.2.2.

Lemma 5.2.3. We have the following:

1. Every word over L is ∼L-equivalent to a unique normal word.

2. If w ∈ N

(
k
)

L , then codom
(
w

)
= {1, . . . , n − k}.

Lemma 5.2.4. We have the ∼L= ker ϕL.

The proof can be found in [7].

5.2.1.2 The submonoid Rn

There exists a natural anti-involution ∧ : Pn → Pn, mapping α ∈ Pn to the partition α̂

obtained by reflecting α vertically. For example, if α a partition, then α̂ is obtained, as

shown in figure 5.5.

α = • • • • • •
• • • • • •

α̂ = • • • • • •
• • • • • •

Figure 5.5: The diagrams of the elements α and α̂.

Let Rn = L̂n represent the image monoid of Ln under the mapping; consequently, Rn is

anti-isomorphic to Ln. Based on the results of section 5.2.1.1, let ρij ∈ Rn for 1 ≤ i < j ≤ n.

1 i j n

• · · · • • • · · · • • • · · · • •

• · · · • • • · · · • • • • · · · •

1′ i′ j′ n′

34

5.2. IMPORTANT SUBSEMIGROUPS

Figure 5.6: The map ρij ∈ Rn.

It becomes apparent that Rn is generated by the partitions ρij . By inverting each word in

the relations (L1)-(L5), it is possible to derive a presentation for Rn from the one for Ln

outlined in 5.2.2. Define an alphabet R = {ρij |1 ≤ i < j ≤ n}, and consider the relations

(R1) ρinρkl = ρkl for all i, k, l;

(R2) ρijρjk = ρijρik = ρi,k−1ρij if i < j < k;

(R3)-(R5) ρijρkl =


ρk−1,l−1ρij , if i < j < k < l;
ρk,l−1ρij , if i < k < j < l;
ρklρi,j+1, if i < k < l ≤ j ≤ n − 1.

Theorem 5.2.5. The monoid Rn has a presentation ⟨R|
(
R1

)
−

(
R5

)
⟩ via

ϕR : R∗ → Rn : ρij → ρij .

The congruence on R∗
generated by relations (R1)-(R5) is indicated by ∼R, and for any

w ∈ R∗
, we write w for the partitions wϕR ∈ Rn. We may convert knowledge about

Ln into information about Rn (and vice-versa) because to the duality between relations

(L1)-(L5) and (R1)-(R5). Formally, we define an anti-isomorphism as:

∧ : L∗ → R∗ : λij → ρij .

Following this, we have w1 ∼L w2 if and only if ŵ1 ∼R ŵ2. Remember that the set of all

normal words over L is denoted by NL. The elements of the set NR = N̂L = {ŵ|w ∈ NL}
are now defined as normal words over R. The set of all normal words (over R) of length k

is denoted as N

(
k
)

R .

Lemma 5.2.6. We have the following:

1. Every word over R is ∼R-equivalent to a unique normal word.

2. If w ∈ N

(
k
)

R , then dom
(
w

)
= {1, . . . , n − k}.

5.2.2 The symmetric inverse semigroup

5.2.2.1 A presentation for submonoid In

The partial transformation on n is the (regular) semigroup PT n of all partial transforma-

tions on n, or all partially defined functions from n to itself.

A natural injective map ϕ′ : PT n → Pn exists. If n ≥ 2, this map is not a homomorphism:

let α and β be elements of PT 2 shown in figure 5.7. Then, the multiplication rule in PT 2

yields the empty partial transformation represented below by αβ and multiplying in P2

returns

(
αϕ′) (

βϕ′)
, as illustrated in figure 5.8.

α = • •
• •

β = • •
• •

35

CHAPTER 5. THE PARTITION MONOID

αβ = • •
• •

Figure 5.7: The elements α and β of PT 2.

(
αϕ′) (

βϕ′) = • •
• •

Figure 5.8: The product of α and β in P2.

Restricting ϕ′
to the symmetric inverse semigroup In ⊆ PT n, which is the semigroup of

all injective partial transformations on n, makes it simple to verify that we indeed obtain

an embedding. As a result, we can associate In with its image

In = {α ∈ Tn|every non-trivial block of α contains exactly one element of n and one of n′}.

under ϕ′
. In figure 5.9, an example of an element of I6 is shown.

1 2 3 4 5 6
• • • • • •
• • • • • •
1′ 2′ 3′ 4′ 5′ 6′

Figure 5.9: An element of I6.

Now, we will look at Popova’s presentation [30] for In, which expands upon Moore’s

presentation for Sn. Let ε ∈ In be the partial permutation, given by:

1 n − 1 n

ε = • · · · • •

• · · · • •

1′ (
n − 1

)′
n′

Figure 5.10: The map ε ∈ In.

Given the alphabet I = S ∪ {ε}, consider the relations

(I1) s2
i = 1, for all i;

(I2) sisj = sjsi, if |i − j| > 1;
(I3) sisjsi = sjsisj , if |i − j| = 1;
(I4) ε2 = ε;
(I5) εsi = εsi, if i ≤ n − 2;
(I6) εsn−1εsn−1 = sn−1εsn−1ε = εsn−1ε.

36

5.2. IMPORTANT SUBSEMIGROUPS

Theorem 5.2.7. (Popova [30]) The symmetric inverse semigroup In has presentation ⟨I|
(
I1

)
−(

I6
)
⟩ via

ϕI : I∗ → In =


si → si,

ε → ε.

The congruence on I∗
generated by relations (I1)-(I6) is indicated by ∼I . Once more, for

w ∈ I∗
, we denote by w the partial permutation wϕI ∈ In.

For each 1 ≤ i ≤ n, we define the word as εi =
(
si . . . sn−1

)
ε

(
sn−1 . . . si

)
and for every

1 ≤ i ≤ n+1, we have ei = εn . . . εi. The maps are represented in figures 5.11 and 5.12,

respectively.

1 i − 1 i i+1 n

εi = • · · · • • • · · · •

• · · · • • • · · · •

1′ (
i − 1

)′
i′ (

i+1
)′

n′

Figure 5.11: The map εi ∈ In.

1 i − 1 i i+1 n

ei = • · · · • • • · · · •

• · · · • • • · · · •

1′ (
i − 1

)′
i′ (

i+1
)′

n′

Figure 5.12: The map ei ∈ In.

We define the rewriting system on the generating set I , orienting the relations (I1)-(I6)

from left to right since it appears to be the "natural" orientation for performing reductions.

Thus, the rewriting system (I1)-(I6) is defined as follows:

(I1) s2
i → 1, for all i;

(I2) sjsi → sisj , if j − i > 1;
(I3) sjsisj → sisjsi, if j = i+1;
(I4) ε2 → ε;
(I5) εsi → siε, if i ≤ n − 2;
(I6) εsn−1εsn−1 → sn−1εsn−1ε → εsn−1ε.

The Shortlex is a total ordering for finite sequences of objects that can themselves be totally

ordered. In the Shortlex order. The words are sorted by length of the words and when

this first criteria do not specified the order, .i.e. when two words have the same length,

then we use the criteria of the lexicographical order.

The lexicographic order on I is ε > sn−1 > sn−2 > . . . sj > · · · > si > · · · > s1, where

i < j.

37

CHAPTER 5. THE PARTITION MONOID

Lemma 5.2.8. The rewriting system (I1)-(I6) is noetherian.

Proof. We define a total order ≺ on the alphabet I by

si ≺ sj ≺ ε if and only if i < j < n.

Next, it is necessary guarantee that there are no infinite descending sequences.

We consider I∗
with a Shortlex order. Let u, v ∈ I∗

and if u → v, then we have u > v.

Thus, we can conclude the rewriting system is noetherian. □

Proposition 5.2.9. The rewriting system (I1)-(I6) is not confluent and so not complete.

Proof. Consider the word sn−1εsn−1εsn−2. We aim reduce it as follows:

sn−1εsn−1εsn−2
∗−→ εsn−1sn−2ε.

But the same word can still be reduced as,

sn−1εsn−1εsn−2
∗−→ sn−1εsn−1sn−2ε.

Since both words obtained after reduction are irreducible, it is not possible to find a

common word w such that εsn−1sn−2ε
∗−→ w and sn−1εsn−2ε

∗−→ w. The rewriting system

(I1)-(I6) is not confluent and so not complete.

□

The next result shows that there is a natural factorisation Pn = LnInRn and it serves as

the foundation for how we derive a presentation for Pn.

Proposition 5.2.10. Let α ∈ Pn. Then α = βγδ for unique β ∈ Ln, γ ∈ In and δ ∈ Rn, with
dom

(
γ

)
⊆ codom

(
β

)
and codom

(
γ

)
⊆ dom

(
δ
)
.

The proof of this proposition can be found in [8].

5.3 A presentation for the partition monoid

We now introduce a presentation for the partition monoid Pn using the results from the

previous subsection. The surjective homomorphism is defined using Proposition 5.2.10.

ϕ :
(
L ∪ I ∪ R

)∗ → Pn :


λij 7→ λij ,

sr 7→ sr,

ε 7→ ε,

ρij 7→ ρij .

Consider the relations

38

5.3. A PRESENTATION FOR THE PARTITION MONOID

(RL1)-(RL9) ρklλij =



ελi−1,j−1ρkl, if l < i;
ελk,j−1ρkl, if l = i;
ελi,j−1ρkl, if i < l < j;
ελkiρki, if k < i < j = l;
ε, if i = k < j = l;
ελikρik, if i < k < l = j;
ελijρk,l−1, if k < j < l;
ελijρi,l−1, if j = k;
ελijρk−1,l−1, if j < k;

(SL1)-(SL8) srλij =



λijsr−1, if r > j;
λi,j+1, if r = j;
λi,j−1, if r = j − 1 > i;
λij , if r = j − 1 = i;
λijsr, if i < r < j − 1;
λi+1,jsr, if i = r < j − 1;
λi−1,jsr, if r = i − 1;
λijsr, if r < i − 1;

(RS1)-(RS8) ρijsr =



sr−1ρij , if r > j;
ρi,j+1, if r = j;
ρi,j−1, if r = j − 1 > i;
ρij , if r = j − 1 = i;
srρij , if i < r < j − 1;
srρi+1,j , if i = r < j − 1;
srρi−1,j , if r = i − 1;
srρij , if r < i − 1;

(EL1) λijε = λij , for all i, j;
(EL2) ελin = ε, for all i;
(EL3) ελij = λijsn−1ε, if j < n;
(RE1) ερij = ρij , for all i, j;
(RE2) ε = ε, for all i;
(RE3) ρijε = εsn−1ρij , if j < n.

Symbolically, represent by ∼ the congruence on

(
L ∪ I ∪ R

)∗
generated by the relations

(L1)-(L5), (R1)-(R5), (I1)-(I6), (RL1)-(RL9), (SL1)-(SL8), (RS1)-(RS8), (EL1)-(EL3), (RE1)-

(RE3). Thus, Pn has the following presentation via ϕ:〈
L ∪ I ∪ R |

(L1)-(L5), (R1)-(R5), (I1)-(I6), (RL1)-(RL9),

(SL1)-(SL8), (RS1)-(RS8), (EL1)-(EL3), (RE1)-(RE3).

〉

Following our usual overline notation, write w = wϕ ∈ Pn for each word w in

(
L ∪ I ∪ R

)∗
.

Proposition 5.3.1. The East’s presentation is not complete presentation for the partition monoid.

39

CHAPTER 5. THE PARTITION MONOID

Proof. For a rewriting system to define a complete presentation, it is necessary for the

rewriting system to satisfy two properties: being confluent and noetherian.

The same word we used in proposition 5.2.9 continues to derive εsn−1sn−2ε
∗−→ w and

sn−1εsn−2ε
∗−→ w; and these words are irreducible. Therefore, the same argument is valid

to prove that the rewriting system proposed by East for the partition monoid does not

satisfy the confluence property.

In conclusion, East’s presentation does not define a complete presentation for the partition

monoid.

□

In this section, our goal was to verify if the presentation given by East was complete.

We concluded that the rewriting system does not define a complete presentation for the

partition monoid.

We therefore decided to study a submonoid of the partition monoid, the planar rook

monoid, with the aim of providing a complete presentation for it. The importance of

having a complete presentation lies in the existence of normal forms, since they will be

necessary to consider the partition monoid as a platform for the Stickel’s key exchange

protocol. The following section is dedicated to this endeavour.

40

6

The planar rook monoid

6.1 The planar rook monoid

The planar rook monoid, denoted PRn, is the submonoid of the rook monoid In whose

graphical representations are planar, meaning they have no crossings edges. Note that in

the rook monoid the blocks are identified with the edges in the graphical representation.

In the graphical representation of an element of PRn, we can easily list the elements in

the domain, which are in the top line of the diagram, and their corresponding images in

the bottom line of the diagram.

In the figures 6.1 and 6.2, we can observe some examples of elements of the planar rook

monoid and non-elements, respectively, using a diagramatic form.

1 2 3 4 5
• • • • •
• • • • •
1′ 2′ 3′ 4′ 5′

Figure 6.1: An element of the planar rook monoid.

1 2 3 4 5
• • • • •
• • • • •
1′ 2′ 3′ 4′ 5′

Figure 6.2: A non-element of the planar rook monoid

The elements of the planar rook monoid can also be viewed as order preserving one-to-one

maps on the ordered set {1 < 2 < · · · < n}. A map α is said to be order preserving if,

for all a, b ∈ Dom
(
α

)
, aα ≤ bα, whenever a < b. The requirement for our maps to be

one-to-one order preserving ensures that our diagrams are planar.

The monoid of all order preserving one-to-one maps on a chain with n elements is also

known as the monoid POIn of all injective order preserving partial transformations (see

[9]).

41

CHAPTER 6. THE PLANAR ROOK MONOID

We shall refer to the elements of the planar rook monoid as planar diagrams. The rank of

a planar diagram in PRn is the number of edges of its graphical representation.

The planar rook monoid has size

(2n
n

)
as we are choosing a subset of size n from a set of

size 2n. Indeed, a subset X of n ∪ n′
of size n determines a planar diagram α: take X ∩ n

as the domain of α, and X ∩ n′
as n′\codom

(
α

)
. In figure 6.1, the set X = {1, 2, 4, 5, 4′}

determines the given planar diagram.

6.2 The generators

In this section, we will exhibit a set of generators for PRn.

Consider the following elements of the Planar Rook Monoid: For i ∈ {1, . . . , n − 1}, let ri

denote the map given by

xri =


x′

if 1 ≤ x < i ∧ i+1 < x ≤ n,

(
x+1

)′
if x = i,

whose diagram is shown in the following figure:

1 2 i − 1 i i+1 i+2 n

ri = • • · · · • • • • · · · •
• • · · · • • • • · · · •

1′ 2′ (
i − 1

)′
i′ (

i+1
)′ (

i+2
)′

n′

Figure 6.3: The map ri ∈ PRn

For i ∈ {1, . . . , n − 1}, let li denote the map by

xli =


x′

if 1 ≤ x < i ∧ i+1 < x ≤ n,

(
x − 1

)′
if x = i+1,

whose diagram is shown in the following figure:

1 2 i − 1 i i+1 i+2 n

li = • • · · · • • • • · · · •

• • · · · • • • • · · · •

1′ 2′ (
i − 1

)′
i′ (

i+1
)′ (

i+2
)′

n′

Figure 6.4: The map li ∈ PRn

For i ∈ {1, . . . , n}, let ei denote the map by

xei = x if 1 ≤ x < i ∧ i+1 ≤ x ≤ n,

42

6.2. THE GENERATORS

whose diagram is shown in the following figure:

1 2 i − 1 i i+1 i+2 n

ei = • • · · · • • • • · · · •
• • · · · • • • • · · · •

1′ 2′ (
i − 1

)′
i′ (

i+1
) (

i+2
)′

n′

Figure 6.5: The map ei ∈ PRn

Let A be the alphabet A = {r1, . . . , rn−1} ∪ {l1, . . . , ln−1} ∪ {e1, . . . , en}. Let ϕ be the

homomorphism given by

ϕ : A∗ → PRn :


ri 7→ ri,

li 7→ li,

ei 7→ ei.

The goal of this subsection is to prove the following result:

Proposition 6.2.1. Aϕ generates PRn.

We begin with an example.

Example 6.2.2. Consider the following element α of PRn given by the diagram

1 2 3 4 5 6 7 8 9
α = • • • • • • • • •

• • • • • • • • •
1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

We have rank
(
α

)
= 4, dom

(
α

)
= {1, 2, 7, 9} and codom

(
α

)
= {3′, 4′, 6′, 7′}. It is easy to check

that α = r2r3 r1r2 e5 l6 l8l7 as it can be seen in the following figure:

1 2 3 4 5 6 7 8 9
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

α = • • • • • • • • • =
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

1 2 3 4 5 6 7 8 9
= • • • • • • • • •

• • • • • • • • •
1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′

43

CHAPTER 6. THE PLANAR ROOK MONOID

Figure 6.6: The map r2r3r1r2e5l6l8l7 ∈ PRn

For 1 ≤ i ≤ j < n, let rij denote the element of PRn given by ri ri+1 . . . rj−1 rj .

The following lemma follows easily:

Lemma 6.2.3. The element rij is the map of PRn whose graphical representation is given by

1 i − 1 i j j+1 j+2 n

• · · · • • · · · • • • · · · •

• · · · • • · · · • • • · · · •

1′ (
i − 1

)′
i′ j′ (

j+1
)′ (

j+2
)′

n′

For 1 ≤ i ≤ j < n, let lij denote the element of PRn given by lj lj−1 . . . li+1 li.

Lemma 6.2.4. The element lij is the map of PRn whose graphical representation is given by

1 i − 1 i j j+1 j+2 n

• · · · • • · · · • • • · · · •

• · · · • • · · · • • • · · · •

1′ (
i − 1

)′
i′ j′ (

j+1
)′ (

j+2
)′

n′

Definition 6.2.5. Given i1, . . . , ik, j1, . . . , jk ∈ n, with k ∈ {1, . . . , n − 1}, we say that the pair
of sequences

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfies the r-block condition if:

1. i1 < · · · < ik;

2. j1 < · · · < jk;

3. is < js, for all 1 ≤ s ≤ k; and

4. is+1 ≤ js+1, for all 1 ≤ s < k.

Definition 6.2.6. We say that an element α ∈ PRn has an r-block if there exists k ∈ {1, . . . , n−1}
and blocks {is, j′

s}, for 1 ≤ s ≤ k, with
((

i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfying the r-block condition.

An r-block of α is said to be maximal if it is not contained in any other r-block of α.

Example 6.2.7 (Continued 6.2.2). The element α has 4 non-trivial blocks, namely
{1, 3′}, {2, 4′}, {6′, 7}, {7′, 9}. Also, α has a maximal r-block given by the set {1, 3′} ∪ {2, 4′}.

Similarly we can define l-blocks.

Definition 6.2.8. Given i1, . . . , ik, j1, . . . , jk ∈ n, with k ∈ {1, . . . , n − 1}, we say that the pair
of sequences

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfies the l-block condition if:

44

6.2. THE GENERATORS

1. i1 < · · · < ik;

2. j1 < · · · < jk;

3. js < is, for all 1 ≤ s ≤ k; and

4. js+1 ≤ is+1, for all 1 ≤ s < k.

Definition 6.2.9. We say that an element α ∈ PRn has an l-block if there exists k ∈ {1, . . . , n−1}
and blocks {is, j′

s}, for 1 ≤ s ≤ k, with
((

i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfying the l-block condition.

An l-block of α is said to be maximal if it is not contained in any other l-block of α.

Example 6.2.10 (Continued 6.2.2). The set {6′, 7} ∪ {7′, 9} is the only maximal l-block of α.

Lemma 6.2.11. The element of PRn, rikjk
. . . ri1j1 , with

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfying

the r-block condition, has a unique maximal r-block {i1, j′
1} ∪ · · · ∪ {ik, j′

k}.

Lemma 6.2.12. The element of PRn, li1j1 . . . likjk
, with

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfying

the l-block condition, has a unique maximal l-block {i1, j′
1} ∪ · · · ∪ {ik, j′

k}.

Definition 6.2.13. An interval on n is any subset of the form {i, i+1, . . . , j − 1, j}, for i, j ∈ n,
with i ≤ j, which we denote by

[
i, j

]
. Similarly, we define intervals in n′, which we denote by[

i′, j′], for i′, j′ ∈ n′, with i′ ≤ j′.

Lemma 6.2.14. For any α ∈ PRn, a maximal r-block (respectively, l-block) is contained in a
minimal (with respect to inclusion) interval I =

[
i, j

]
∪

[
i′, j′], for fixed i, j ∈ n, in such a way

that any non-trivial block in α does not intersect the interval I .

Proof. Consider a maximal r-block {i1, j′
1} ∪ · · · ∪ {ik, j′

k} of α as in Definition 6.2.6. Take

i = i1 and j = jk+1. Clearly, the maximal r-block {i1, j′
1} ∪ · · · ∪ {ik, j′

k} is contained in

I =
[
i, j

]
∪

[
i′, j′]

. It follows from the maximally of the r-block that a non-trivial block of

α as a trivial intersection with I .

The proof is similarly for the l-block case. □

Definition 6.2.15. The index of a maximal r-block (respectively, maximal l-block) in an element
α is the interval defined in Lemma 6.2.14.

Definition 6.2.16. We shall call a simple block in an element α ∈ PRn any block of the form
{i, i′}, for fixed i ∈ n.

Lemma 6.2.17. Any element α in PRn, has a unique decomposition, as union of blocks, into
maximal r-blocks, maximal l-blocks, simple blocks and trivial blocks.

Proof. Non trivial blocks in α have the form {i, j′} for i, j ∈ n, which can be simple

blocks, r-blocks or l-blocks. Each maximal r-block is a union of r-blocks. Similarly, for

maximal l-block. So, α can be viewed as the union simple blocks, maximal r-blocks,

maximal l-blocks and trivial blocks. The uniqueness of the decomposition follows from

Lemma 6.2.14. □

45

CHAPTER 6. THE PLANAR ROOK MONOID

For 1 ≤ i ≤ j < n, let rij denote the element of A∗
given by ri ri+1 . . . rj−1 rj and lij denote

the element lj lj-1 . . . li1 li of A∗
. Applying the homomorphism ϕ, the image of rij is given

by rij and the image of lij , is given by lij i.e., rijϕ = rij and lijϕ = lij .

We are now able to prove the main proposition of this subsection.

Proof of Proposition 6.2.1. Let α ∈ PRn. By Lemma 6.2.17, α can be viewed has a union of

maximal r-blocks, maximal l-blocks, simple blocks and some trivial blocks.

By Lemma 6.2.14, any maximal r-block and any maximal l-block is contained in a minimal

interval

[
i, j

]
∪

[
i′, j′]

. Foreach maximal r-block in α, let Rij denote the element rikjk
. . . ri1j1 ,

with i = i1 and j = jk+1, as in Lemma 6.2.11. Similarly, let Lij denote the element

li1j1 . . . likjk
, with i = j1 and j = ik+1, as in Lemma 6.2.12.

Denote by X the set of indexes from the set n, which are not the index of a maximal

r-block of α, nor in the index of a maximal l-block of α, nor in a simple block of α.

The element α is the product of the elements Rij , Lij , corresponding to the maximal

r-blocks and l-blocks, respectively, and the et’s, with t ∈ X .

We can conclude that elements ri, li and ei generate all elements of PRn, thus completing

the proof. □

Lemma 6.2.18. Any element of PRn can be uniquely written as the product of maximal r-blocks,
maximal l-block, and ei’s, in such a way that the indexes are in ascending order.

Proof. Note that if Rij (or Lij) and Rst(or Lst) correspond to a maximal r-block (or a

maximal l-block), then

[
i, j+1

]
∩

[
s, t+1

]
= ∅, and so RijRst = RstRij (or LijLst = LstLij).

Also, if Rij (or Lij) corresponds to a maximal r-block (or l-block) and k ∈ X with X

as in the proof of Proposition 6.5, then

[
i, j+1

]
∩ {k} = ∅, and so Rijek = ekRij (or

Lijek = ekLij). □

Example 6.2.19. (Continued 6.2.2)
As we identified previously, the element α has 4 non-trivial blocks, namely
{1, 3′}, {2, 4′}, {6′, 7}, {7′, 9}. The maximal r-block is given by the set {1, 3′} ∪ {2, 4′}, and
according to the Definition 6.2.5 and Lemma 6.2.11, we can express the maximal r-block as follows:
r2 3 r1 2.
The maximal l-block = {6′, 7} ∪ {7′, 9}, and according to the Definition 6.2.8 and Lemma 6.2.12,
we can express the maximal l-block as follows: l6 l7 8.
Also, we identify the trivial blocks: {5} and {5′}, which we can represent with the element e5.
By Lemma 6.2.17, we can represent any element in PRn by the product of the maximal r-blocks,
maximal l-blocks, simple blocks and trivial blocks. Thus, with the blocks identified, we used the
Lemma 6.2.18 to write the element.
As the indexes are in ascending order, we write the element as r2 3 r1 2 e5 l6 l7 8, or it can also be
written as r2r3 r1r2 e5 l6 l8l7.

Let N be the subset of A∗
where words have the form

w[
s1,s∗

1
] · · · w[

st,s∗
t

],

46

6.2. THE GENERATORS

with s1 ≤ s∗
1 < s2 ≤ s∗

2 < · · · < st ≤ s∗
t and sl, s∗

l ∈ n, where each w[
sl,s

∗
l

]
can be either:

1. rikjk
. . . ri1j1 , with

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfying the r-block condition, and

sl = i1 and s∗
l = jk+1; or

2. li1j1 . . . likjk
, with

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfying the l-block condition, and sl =

j1 and s∗
l = ik+1; or

3. ei with sl = s∗
l = i.

Furthermore, if w[
sl,s

∗
l

]
is of types 1 or 2 and w[

sl+1,s∗
l+1

]
is of type 3, then s∗

l +1 < sl+1.

6.2.0.1 Combinatorial representation of r-blocks

In this subsection we will introduce a combinatorial representation of the r-blocks previ-

ously mentioned. This new representation will allow us to clearly understand how can

we have another reading of the r-blocks.

By Lemma 6.2.11, the element of PRn, rikjk
. . . ri1j1 , with

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satis-

fying the r-block condition, has a unique maximal r-block {i1, j′
1} ∪ · · · ∪ {ik, j′

k}.

Let

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
be a pair of sequences satisfying the r-block condition. For

each s ∈ {1, . . . , k}, consider a row sequence of js − is+1 boxes filled with the numbers

from is up to js, which we will call the s-row. Now, for s ∈ {1, . . . , k − 1} position the

s+1-row in top of the s-row in such a way that the a box filled with a symbol t ∈ n is in

top of a box filled with the symbol t − 1. We will obtain a diagram of boxes filled with

symbols from n, which we call the r-block diagram of the pair of sequences.

For example, the pair

((
1, 3, 4, 8

)
,
(
5, 6, 8, 9

))
has r-block diagram:

8 9
4 5 6 7 8
3 4 5 6

1 2 3 4 5

Note that a similar l-block diagram could be drawn from a pair of sequences((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfying the l-block condition.

We claim that the r-block diagrams obtained from sequences satisfying the r-block condi-

tion have a skew shape. Indeed, condition (1) of Definition 6.2.5, implies that the s+1-row

has leftmost box either in the north or in the northeast of the leftmost box of the s-row;

condition (2), implies a similar condition but for the rightmost box; and condition (4),

ensures that the leftmost box of the s+1-row is to the north or northwest of the rightmost

box of the s-row.

Also note that an l-block diagram also has a skew shape.

We shall call the row reading of an r-block diagram to the word from {r1, . . . , rn-1}∗
,

where the index of the symbols ri are obtained form reading the r-block diagram from

the topmost row to the bottom most row, going on each row from left-to-right. Similarly,

47

CHAPTER 6. THE PLANAR ROOK MONOID

we define the column reading of an r-block diagram to the word from {r1, . . . , rn-1}∗
,

where the index of the symbols ri are obtained form reading the r-block diagram from

the leftmost column to the rightmost column, going on each column from top-to-bottom.

The words in case (1) of the definition of the set NP R correspond to the row reading of the

r-block diagram of the respective pair of sequences satisfying the r-block condition.

Note that the words in case (2) of the definition of the set NP R corresponds to the row

reading, now going from the bottom most row to the topmost row, and on each row reading

from right-to-left, of the l-block diagram of the respective pair of sequences satisfying the

l-block condition.

In the example above the r-block diagram has row reading

r8r9 r4r5r6r7r8 r3r4r5r6 r1r2r3r4r5 and column reading r1 r4r3r2 r5r4r3 r6r5r4 r8r7r6r5 r9r8.

Lemma 6.2.20. For any r-block diagram the row reading and the column reading represent the
same element of PRn.

Proof. It is clear form the graphical representation of the elements of PRn that any two

elements ri, rj , with |i − j| > 1, commute, that is, rirj = rjri. So, fixing a box, filled with a

symbol i, on the r-block diagram the letter ri will commute with every other symbol rj ,

with j being a symbol in a box positioned to the northeast.

Hence, consider the symbol, say i0, at the top of the leftmost column. Then ri0 will

commute with every other symbol rj , where j is in a box to the northeast. So, if we take

the row reading of the r-block diagram, which will include the letter ri0 , it will be equal

in PRn, to the word where the letter ri0 is moved to the beginning of the word.

Now, consider new the r-block diagram where we remove the box (with content i0) we

have now considered. Proceed in the same way as in the previous paragraph. Using this

procedure, the word that we obtain with the indexes that are being removed from the

r-block diagram, is precisely the column reading of the r-block diagram. Thus the two

words represent the same element of PRn. □

Note that the column reading of an r-block diagram corresponds to the reading that is

smaller with respect to the lexicographic order. Also the row reading of an l-block diagram

is smaller with respect to the lexicographic order.

Let NP R be the subset of A∗
, where the words have the form as in the set N , but where

the condition (1) is replaced by the following condition:

1’ the column reading of a pair of sequences satisfying the r-block condition.

The following result follows from the graphical representation of elements of PRn and

the previous lemma.

Proposition 6.2.21. The set NP R is in one-to-one correspondence with the elements of PRn,
under the mapping ϕ.

48

6.3. A COMPLETE PRESENTATION FOR PRn

6.3 A complete presentation for PRn

To review the definition and some properties of rewriting systems, refer to Section 2.7.

Consider the following relations on the alphabet A: for any 1 ≤ i ≤ j < n,

(PRComm) xjyi → yixj , for any x, y ∈ {r, l, e} and |i − j| > 1;

(PR1)-(PR4) (PR5)-(PR9)
i < j i < j

ri rj . . . ri → ri rj . . . ri+1 rj . . . ri rj → rj-1 . . . ri rj

li rj . . . ri → ei rj . . . ri+2 (j > i+1) rj . . . ri lj → rj-2 . . . ri ej+1 (j > i+1)

ei rj . . . ri → ei rj . . . ri+1 rj . . . ri ej+1 → rj-1 . . . ri ej+1

xi lj . . . li → lj . . . li (x ∈ {r, l, e}) lj . . . li xj → lj . . . li (x ∈ {r, l})

lj . . . li ej+1 → lj . . . li

(PR10)-(PR20) (PR21)-(PR29)
i < j and |i − j| = 1 |i − j| = 0

rili+1 → eili+1 riri → eiei+1
liri+1 → liei+2 lili → eiei+1
riei+1 → eiei+1 eiei → ei

liei+1 → li
rili → ei+1

ri+1li → eiri+1 liri → ei

ri+1ei → eiri+1
li+1ri → riei+2 eiri → eiei+1
li+1ei → eili+1 eili → li

ei+1ri → ri riei → ri

ei+1li → eiei+1 liei → eiei+1
ei+1ei → eiei+1

Let us denote by R the set of all relations (PRComm) and (PR1)-(PR29). Now, we need to

prove that all these relations hold in PRn. The verification process is straightforward but

long. We illustrate that the relations (PR9) and (PR14) in the following paragraphs. We

leave it up to the reader to carry out the remaining relations checks.

For example, the diagram for lijej+1 → lij (PR9) looks like,

lijej+1 =

49

CHAPTER 6. THE PLANAR ROOK MONOID

1 i
(
i+1

)
j

(
j+1

) (
j+2

) (
k − 1

)
k

• . . . • • • • • . . . • •

= • . . . • • • • • . . . • • =

• . . . • • • • • . . . • •

1′ i′ (
i+1

)′
j′ (

j+1
)′ (

j+2
)′ (

k − 1
)′

k′

1 i
(
i+1

)
j

(
j+1

) (
j+2

) (
k − 1

)
k

= • . . . • • • • • • . . . • • =

• . . . • • • • • • . . . • •

1′ i′ (
i+1

)′
j′ (

j+1
)′ (

j+2
)′ (

k − 1
)′

k′

= lij

and the diagram for ri+1li → eiri+1 (PR14) has the following appearance:

ri+1li =

1
(
i − 1

)
i

(
i+1

) (
i+2

) (
k − 1

)
k

• . . . • • • • . . . • •
= • . . . • • • • . . . • • =

• . . . • • • • . . . • •
1′ (

i − 1
)′

i
(
i+1

)′ (
i+2

)′ (
k − 1

)′
k′

1
(
i − 1

)
i

(
i+1

) (
i+2

) (
k − 1

)
k

• . . . • • • • . . . • •
= • . . . • • • • . . . • • =

1′ (
i − 1

)′
i

(
i+1

)′ (
i+2

)′ (
k − 1

)′
k′

1
(
i − 1

)
i

(
i+1

) (
i+2

) (
k − 1

)
k

• . . . • • • • . . . • •
= • . . . • • • • . . . • • =

• . . . • • • • . . . • •
1′ (

i − 1
)′

i
(
i+1

)′ (
i+2

)′ (
k − 1

)′
k′

= eiri+1.

From the previous considerations, the following lemma holds:

Lemma 6.3.1. R ⊆ ker ϕ.

Lemma 6.3.2. R is noetherian.

Proof. Let us denote by > the ShortLex order on the set A∗
, where the order > on the

alphabet A is given by

rn−1 > ln−1 > en > rn−2 > ln−2 > en−1 > · · · > r2 > l2 > e3 > r1 > l1 > e2 > e1.

50

6.3. A COMPLETE PRESENTATION FOR PRn

It is well known that the ShortLex order is a total order on A∗
and is well-founded (i.e.,

there are no infinite descending sequences). Recall that in ShortLex the words are sorted

by the length of the words and, in case the two words have the same length, we use the

order > on A given above, going from left-to-right on the words.

It is straightforward to check that for any relation u, v ∈ R, we have u > v. Since ShortLex

is compatible with left and right concatenation, we deduce that whenever u → v we have

u > v. Thus R is noetherian as required. □

To make the application of the rewriting rules more comprehensible for the reader, let us

provide an example demonstrating the use of the rules mentioned.

Example 6.3.3. Consider the word w given by l8l9r4r5r6r7r8r3r4l1l2l3l4l5.
Our objective is to rewrite this word in normal form by applying the relations (PRComm) and
(PR1)-(PR29).
Let’s apply the rewriting rules sequentially, from left to right in the word.
Recall that any element of PRn can be uniquely written as the product of maximal r-blocks,
maximal l-blocks, and ei’s, in such a way that the indexes are in ascending order.
We apply the relations to the word w from left to right. The element l9 can move along in the word
until we find the element r8, successively applying the rule (PRComm).

l8l9r4r5r6r7r8r3r4l1l2l3l4l5
∗−→ l8r4r5r6r7l9r8r3r4l1l2l3l4l5.

Applying the rule li+1ri → riei+2 (PR16) in l9r8, we have the following reduction:

l8r4r5r6r7l9r8r3r4l1l2l3l4l5 → l8r4r5r6r7r8e10r3r4l1l2l3l4l5.

Now, we have used some relations to make the successive reductions and the elements that have
undergone the reductions are identified in bold, as follows:

l8r4r5r6r7r8e10r3r4l1l2l3l4l5
∗−→ r4r5r6l8r7r8e10r3r4l1l2l3l4l5 → r4r5r6r7e9r8e10r3r4l1l2l3l4l5 →

r4r5r6r7r8e10r3r4l1l2l3l4l5
∗−→ r4r3r5r4r6r7r8e10l1l2l3l4l5

∗−→ l1r4r3l2r5r4l3l4r6l5r7r8e10.

The rewriting rules used, identified in the sequence below are: (PRComm), (PR16) and (PR18).
Thus, the word l1r4r3l2r5r4l3l4r6l5r7r8e10 is equivalent to the initial one; it is merely expressed
in normal form according to the rewriting system R.
To verify the accuracy of the applied rules, we can represent both words on a diagram and ensure
their equivalence.

Lemma 6.3.4. NP R = Irr
(
R

)
.

Proof. We begin by showing that NP R ⊆ Irr
(
R

)
. Consider a word of the form

w[
s1,s∗

1
] · · · w[

st,s∗
t

],

as in the description of NP R. Notice that s∗
i < si+1. If w[

si,s
∗
i

]
is a word corresponding to

the column reading of a pair of sequences satisfying the r-block condition, then the letter

51

CHAPTER 6. THE PLANAR ROOK MONOID

rs∗
i

is not in the word w[
si,s

∗
i

]
. The same occurs if w[

si,s
∗
i

]
is a word corresponding to a

pair of sequences satisfying the l-block condition. Furthermore, if w[
sl,s

∗
l

]
is of types 1 or

2, in the definition of NP R, and w[
sl+1,s∗

l+1

]
is of type 3, then s∗

i +1 < si+1. Hence, the left

hand-side of a relation from R can not be applied in such a way that it overlaps the two

words w[
si,s

∗
i

]
and w[

si+1,s∗
i+1

]
.

Now, suppose w[
si,s

∗
i

]
is a word corresponding to the column reading of a pair of sequences

satisfying the r-block condition. A reading of a column is irreducible as rj . . . ri, with

i < j, is not the left-hand side of a relation in R. Attending to the description of the r-block

condition, the left-hand side of the relations (PR1)-(PR9), can not be applied in such a

way that it overlaps two readings of columns. Also note that the left-hand side of the

relations (PR21), can not be applied. A similar reasoning can be applied to words w[
si,s

∗
i

]
corresponding to a pair of sequences satisfying the l-block condition. We have shown that

NP R ⊆ Irr
(
R

)
.

To prove the converse inclusion we will do some observations. We shall refer to r, l and e

as the types of generators. An irreducible element satisfies the following properties:

a) the indexes of two consecutive generators can not be equal;

b) it is not possible to have a factor xjyi, for x, y ∈ {r, l, e}, with j > i+1;

c) the indexes of two consecutive generators from a different type can not be an i+1
followed by an i;

d) it is not possible to have a factor ei+1ei;

e) it is possible to have a factor xj . . . xi, with j > i, but there is no factor of the form

yixj . . . xi nor of the form xj . . . xiyj , for any y ∈ {r, l, e};

f) there is no factor of the form xj . . . xiej+1.

Indeed, part a) follows from relations of the form (PR21-PR29); part b) follows from

relations of the form (PRComm); part c) follows from relations of the form (PR14-PR19);
part d) follows from relations of the form (PR20); part e) follows from relations of the

form (PR1-PR9); and part f) follows from relations of the form (PR7) and (PR9).
The above properties show that an irreducible word must have the form

w[
s1,s∗

1
] · · · w[

st,s∗
t

],

with s1 ≤ s∗
1 < s2 ≤ s∗

2 < · · · < st ≤ s∗
t and sl, s∗

l ∈ n, where each w[
sl,s

∗
l

]
can be either an

element of {r1, . . . , rn-1}∗
, {l1, . . . , ln-1}∗

or some ei with sl = s∗
l = i.

Now notice that if w[
sl,s

∗
l

]
is an element of {r1, . . . , rn-1}∗

, then the subscripts must be in

increasing order except when we have a column, that is, factor xj . . . xi, with j > i, of

consecutive generators. If we have two consecutive columns, say xp . . . xq xj . . . xi, with

j > i and p > q, then q < i from relations (PR1) and (PRComm); and from relations (PR1)
and (PRComm) we deduce that p < j. Thus two consecutive columns will either be in

52

6.4. ANOTHER PRESENTATION OF PRn

distinct maximal r-blocks, when q < p, or they will be part of the same r-block. So each

w[
sl,s

∗
l

]
will correspond to the column reading of a pair of sequences satisfying the r-block

condition.

A similar reasoning shows that if w[
sl,s

∗
l

]
is an element of {l1, . . . , ln-1}∗

, then is a sequence

li1j1 . . . likjk
, with

((
i1, . . . , ik

)
,
(
j1, . . . , jk

))
satisfying the l-block condition.

This shows that Irr
(
R

)
⊆ NP R. □

Lemma 6.3.5. The restriction of ϕ to Irr
(
R

)
is injective.

Proof. From the previous lemma we know that NP R = Irr
(
R

)
. Therefore, the result

follows from Proposition 6.2.21, since ϕ has a one-to-one correspondence with PRn,

under the mapping ϕ. □

From Proposition 2.7.2, we conclude that R is a complete rewriting system that defines

PRn.

Theorem 6.3.6. The rewriting system R on the generating set A defines a complete presentation
of the monoid PRn.

6.4 Another presentation of PRn

A known presentation for the planar rook monoid also denoted POIn in [9], was studied

by Fernandes and is found in [9], is as follows:

Theorem 6.4.1. The planar rook monoid (also denoted POIn) is defined by the presentation
⟨X | R⟩, where

X = {x0 :=
[
n − 1, 1

]r
, x1 := l2, . . . , xn−1 := ln }

and R given by the rules:
(R1) xix0 = x0xi+1, 1 ≤ i ≤ n − 2;
(R2) xjxi = xixj , 2 ≤ i+1 ≤ n − 1;
(R3) x2

0x1 = x2
0 = xn−1x2

0, 2 ≤ i+1 ≤ n − 1;
(R4) xi+1xixi+1 = xi+1xi = xixi+1xi, 1 ≤ i ≤ n − 2;
(R5) xixi+1...xn−1x0x1...xi−1xi = xi, 0 ≤ i ≤ n − 1;
(R6) xi+1...xn−1x0x1...xi−1x2

i = x2
i , 1 ≤ i ≤ n − 1;

where xi...xj = ε if j < i.
Furthermore, POIn has rank n.

However, in contrast to the complete presentation for PRn described above, this one is

not complete.

Proposition 6.4.2. The rewriting system R is not complete.

Proof. For a rewriting system to define a complete presentation, it is necessary for the

rewriting system to satisfy two properties: being confluent and noetherian.

53

CHAPTER 6. THE PLANAR ROOK MONOID

Orienting the relations as given in the previously from left to right, it is easy to verify that

R is noetherian.

However, it is not confluent. The confluence property suggests that by reducing the same

word in different ways, both reductions have to converge on the same word. In this case,

that is not the situation; applying the necessary rules to each of the reductions will result

in different words.

For example, the rule used to arrive at the contraction is (R4), xi+1xixi+1 = xi+1xi. Orienting

the relations as given previously from left to right, we have xi+1xixi+1 → xi+1xi.

Thus,

Figure 6.7: Scheme for checking the confluence property for the (R4) rule.

Conclude that, as the system did not verify the confluence property, the rewriting system

R is not complete. □

54

7

Conclusions

In this thesis we study cryptographic key-exchange protocols that use algebraic structures

for key encoding. In particular, we were interested in the cryptography scheme for the

Stickel’s key exchange protocol. The original protocol was introduced by Stickel ([34]).

The main objective of our work is to propose a new platform for the protocol under study.

What was done

At the beginning of the fourth chapter, we recalled Stickel’s protocol introduced by Stickel

([34]). We wrote Python code to implement Stickel’s key exchange protocol and construct

the linear algebra attack by Myasnikov et al. ([29]).

We ran the code to test and benchmark its execution time, which revealed a possible

exponential relationship with input size. In our tests, only a non-trivial solution was

found, allowing us to experimentally corroborate the results of Myasnikov.

Since Stickel’s key exchange protocol maintains weak security, we decided to investigate

the possibility of using the partition monoid as a platform for this protocol. As emphasised

throughout the thesis, obtaining normal forms is important because they are necessary

for considering the partition monoid as a platform for Stickel’s key exchange protocol.

In the fifth chapter, recognising the significance of normal forms, we began by studying a

presentation given by James East for the partition monoid ([8]). In this presentation, East

proposes the existence of natural factorisation for the partition monoid. The factorisation

comprises three submonoids: Ln, the submonoid of the full transformation semigroup;

In, the symmetric inverse semigroup; and Rn, an anti-isomorphic copy of Ln.

We concluded that the monoid In is not confluent, and hence not complete.

Given the result obtained, it was not possible for us to derive the normal forms from

East’s presentation. Therefore, we decided to study a submonoid of the partition monoid,

the planar rook monoid, with the aim of providing a complete presentation for it. The

importance of having a complete presentation lies in the existence of normal forms.

In the last chapter we studied the planar rook monoid and successfully constructed a

complete presentation for it. Additionally, we evaluated another presentation proposed by

Fernandes ([9]), concluding that it is not compete. This achievement not only addresses the

55

CHAPTER 7. CONCLUSIONS

limitations encountered with East’s presentation but also establishes a robust foundation

for future research endeavours in cryptographic protocol design and analysis.

In conclusion, our thesis makes significant strides in advancing both theoretical under-

standing and practical application in the fields of semigroup theory and cryptography.

By identifying vulnerabilities in existing protocols and exploring novel approaches to

address them, we contribute to the ongoing effort of developing secure cryptographic

systems.

Inspiration for further research

In conclusion, our thesis has established a foundation for future research in cryptographic

key exchange protocols. Future efforts can be concentrated on key objectives.

Firstly, to discover complete presentations for the submonoids Ln (and Rn) and In.

Subsequently, constructing a complete rewriting system for the partition monoid using the

normal forms given from the complete rewriting system of the partition monoid, aiming

to implement Stickel’s protocol using this new platform.

Lastly, conducting an evaluation of the security of the proposed protocol, ensuring its

resilience and efficacy in real-world cryptographic scenarios.

By pursuing these future research directions, it will contribute to the advancement of

cryptographic theory and the development of secure communication protocols in digital

environments.

56

Bibliography

[1] I. J. Aalbersberg and H. J. Hoogeboom. “Characterizations of the decidability of

some problems for regular trace languages”. In: Math. Systems Theory 22.1 (1989),

pp. 1–19. issn: 0025-5661. doi: 10.1007/BF02088289. url: https://doi.org/10

.1007/BF02088289 (cit. on p. 9).

[2] I. Anshel, M. Anshel, and D. Goldfeld. “An algebraic method for public-key

cryptography”. In: Mathematical Research Letters 6 (1999), pp. 287–291. url: https:

//api.semanticscholar.org/CorpusID:11621019 (cit. on p. 15).

[3] R. Brauer. “On algebras which are connected with the semisimple continuous

groups”. In: Ann. of Math. (2) 38.4 (1937), pp. 857–872. issn: 0003-486X. doi:

10.2307/1968843. url: https://doi.org/10.2307/1968843 (cit. on p. 29).

[4] A. J. Cain. “Nine Chapters on the Semigroup Art”. In: Lecture notes for M 431
Semigroups (2013) (cit. on pp. 6, 7).

[5] A. Carvalho. “On generalized conjugacy and some related problems”. In: Comm.
Algebra 51.8 (2023), pp. 3528–3542. issn: 0092-7872. doi: 10.1080/00927872.2023

.2186132. url: https://doi.org/10.1080/00927872.2023.2186132 (cit. on p. 9).

[6] W. Diffie and M. E. Hellman. “New directions in cryptography”. In: IEEE Trans.
Inform. Theory IT-22.6 (1976), pp. 644–654. issn: 0018-9448. doi: 10.1109/tit.197

6.1055638. url: https://doi.org/10.1109/tit.1976.1055638 (cit. on p. 17).

[7] J. East. “A presentation for the singular part of the full transformation semigroup”.

In: Semigroup Forum 81.2 (2010), pp. 357–379. issn: 0037-1912. doi: 10.1007/s00

233-010-9250-1. url: https://doi.org/10.1007/s00233-010-9250-1 (cit. on

pp. 33, 34).

[8] J. East. “Generators and relations for partition monoids and algebras”. In: J. Algebra
339 (2011), pp. 1–26. issn: 0021-8693. doi: 10.1016/j.jalgebra.2011.04.008.

url: https://doi.org/10.1016/j.jalgebra.2011.04.008 (cit. on pp. 2, 32, 38,

55).

57

https://doi.org/10.1007/BF02088289
https://doi.org/10.1007/BF02088289
https://doi.org/10.1007/BF02088289
https://api.semanticscholar.org/CorpusID:11621019
https://api.semanticscholar.org/CorpusID:11621019
https://doi.org/10.2307/1968843
https://doi.org/10.2307/1968843
https://doi.org/10.1080/00927872.2023.2186132
https://doi.org/10.1080/00927872.2023.2186132
https://doi.org/10.1080/00927872.2023.2186132
https://doi.org/10.1109/tit.1976.1055638
https://doi.org/10.1109/tit.1976.1055638
https://doi.org/10.1109/tit.1976.1055638
https://doi.org/10.1007/s00233-010-9250-1
https://doi.org/10.1007/s00233-010-9250-1
https://doi.org/10.1007/s00233-010-9250-1
https://doi.org/10.1016/j.jalgebra.2011.04.008
https://doi.org/10.1016/j.jalgebra.2011.04.008

BIBLIOGRAPHY

[9] V. H. Fernandes. “The monoid of all injective order preserving partial transforma-

tions on a finite chain”. In: Semigroup Forum 62.2 (2001), pp. 178–204. issn: 0037-1912.

doi: 10.1007/s002330010056. url: https://doi.org/10.1007/s002330010056

(cit. on pp. 41, 53, 55).

[10] D. G. Fitzgerald and J. Leech. “Dual symmetric inverse monoids and representation

theory”. In: Journal of the Australian Mathematical Society. Series A. Pure Mathematics
and Statistics 64.3 (1998), pp. 345–367. doi: 10.1017/S1446788700039227 (cit. on

p. 29).

[11] F. Goodman and H. Wenzel. “The Temperly Lieb algebra at roots of unity”. In:

Pacific J. Math. 161 (1993), pp. 307–334 (cit. on p. 29).

[12] J. J. Graham and G. I. Lehrer. “Cellular algebras”. In: Invent. Math. 123.1 (1996),

pp. 1–34. issn: 0020-9910. doi: 10.1007/BF01232365. url: https://doi.org/10

.1007/BF01232365 (cit. on p. 29).

[13] T. Halverson and A. Ram. “Partition algebras”. In: European J. Combin. 26.6

(2005), pp. 869–921. issn: 0195-6698. doi: 10.1016/j.ejc.2004.06.005. url:

https://doi.org/10.1016/j.ejc.2004.06.005 (cit. on p. 29).

[14] M. Hellman. “An overview of public key cryptography”. In: IEEE Communications
Magazine 40.5 (2002), pp. 42–49. doi: 10.1109/MCOM.2002.1006971 (cit. on p. 17).

[15] P. M. Higgins. “Techniques of semigroup theory”. In: The Clarendon Press, Oxford
University Press, New York (1992) (cit. on p. 29).

[16] J. M. Howie. “An introduction to semigroup theory”. In: Academic Press [Harcourt
Brace Jovanovich, Publishers], London-New York (1976) (cit. on p. 29).

[17] V. F. R. Jones. “A quotient of the affine Hecke algebra in the Brauer algebra”. In:

Enseign. Math. (2) 40.3-4 (1994), pp. 313–344. issn: 0013-8584 (cit. on p. 29).

[18] K. H. Ko et al. “New Public-Key Cryptosystem Using Braid Groups”. In: Advances
in Cryptology — CRYPTO 2000. Ed. by M. Bellare. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2000, pp. 166–183 (cit. on p. 15).

[19] M. Ladra and P. V. Silva. “The generalized conjugacy problem for virtually free

groups”. In: Forum Math. 23.3 (2011), pp. 447–482. issn: 0933-7741. doi: 10.1515

/FORM.2011.015. url: https://doi.org/10.1515/FORM.2011.015 (cit. on p. 9).

[20] S. Lipscomb. “Symmetric Inverse Semigroups”. In: 1996. url: https://api.

semanticscholar.org/CorpusID:118680607 (cit. on p. 29).

[21] M. Lohrey. “The rational subset membership problem for groups: a survey”. In:

Groups St Andrews 2013. Vol. 422. London Math. Soc. Lecture Note Ser. Cambridge

Univ. Press, Cambridge, 2015, pp. 368–389 (cit. on p. 9).

[22] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/main/

template.pdf (cit. on p. i).

58

https://doi.org/10.1007/s002330010056
https://doi.org/10.1007/s002330010056
https://doi.org/10.1017/S1446788700039227
https://doi.org/10.1007/BF01232365
https://doi.org/10.1007/BF01232365
https://doi.org/10.1007/BF01232365
https://doi.org/10.1016/j.ejc.2004.06.005
https://doi.org/10.1016/j.ejc.2004.06.005
https://doi.org/10.1109/MCOM.2002.1006971
https://doi.org/10.1515/FORM.2011.015
https://doi.org/10.1515/FORM.2011.015
https://doi.org/10.1515/FORM.2011.015
https://api.semanticscholar.org/CorpusID:118680607
https://api.semanticscholar.org/CorpusID:118680607
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf

BIBLIOGRAPHY

[23] A. Malheiro. “Complete rewriting systems for codified submonoids.” In: Int. J.
Algebra Comput. 15.2 (2005), 207–216. issn: 0218-1967; 1793-6500/e. doi: 10.114

2/S0218196705002220. url: http://dx.doi.org/10.1142/S0218196705002220

(cit. on p. 9).

[24] P. Martin. “Temperley-Lieb algebras for non-planar statistical mechanics - The

Partition Algebra construction”. In: Journal of Knot Theory and Its Ramifications 03

(1994), pp. 51–82. url: https://api.semanticscholar.org/CorpusID:123668349

(cit. on p. 29).

[25] A. Menezes, P. van Oorschot, and S. Vanstone. “Handbook of applied cryptography”.

In: CRC Press Series on Discrete Mathematics and its Applications (1997) (cit. on pp. 12,

15).

[26] A. Miasnikov and P. Schupp. “Computational complexity and the conjugacy prob-

lem”. In: Computability 6.4 (2017), pp. 307–318. issn: 2211-3568. doi: 10.3233/com-

160060. url: https://doi.org/10.3233/com-160060 (cit. on pp. 15, 16).

[27] C. F. Miller. “On Group-Theoretic Decision Problems and Their Classification. (AM-

68)”. In: Princeton University Press (1971). url: http://www.jstor.org/stable/j.

ctt1b7x83g (cit. on p. 9).

[28] E. H. Moore. “Concerning the Abstract Groups of Order k! and
1
2k! Holohedrically

Isomorphic with the Symmetric and the Alternating Substitution-Groups on k

Letters”. In: Proc. Lond. Math. Soc. 28 (1896/97), pp. 357–366. issn: 0024-6115. doi:

10.1112/plms/s1-28.1.357. url: https://doi.org/10.1112/plms/s1-28.1.35

7 (cit. on pp. 32, 33).

[29] A. Myasnikov, V. Shpilrain, and A. Ushakov. “Group-based Cryptography”. In:

Advanced Courses in Mathematics (2000) (cit. on pp. 1, 10, 13, 16, 20, 28, 55).

[30] L. Popova. “Defining relations in some semigroups of partial transformations of a

finite set”. In: Uchenye Zap. Leningrad Gos. Ped. Inst. 218 (1961), pp. 191–212 (cit. on

pp. 36, 37).

[31] V. Shpilrain. “Assessing security of some group based cryptosystems”. In: Group
theory, statistics, and cryptography. Vol. 360. Contemp. Math. Amer. Math. Soc.,

Providence, RI, 2004, pp. 167–177. doi: 10.1090/conm/360/06577. url: https:

//doi.org/10.1090/conm/360/06577 (cit. on p. 16).

[32] V. Shpilrian. “Problems in group theory motivated by cryptography”. preprint on

webpage at https://arxiv.org/pdf/1802.07300.pdf. 2018 (cit. on p. 13).

[33] P. V. Silva. “On the rational subsets of the monogenic free inverse monoid”. In: J.
Algebra 618 (2023), pp. 214–240. issn: 0021-8693. doi: 10.1016/j.jalgebra.2022

.12.006. url: https://doi.org/10.1016/j.jalgebra.2022.12.006 (cit. on p. 9).

59

https://doi.org/10.1142/S0218196705002220
https://doi.org/10.1142/S0218196705002220
http://dx.doi.org/10.1142/S0218196705002220
https://api.semanticscholar.org/CorpusID:123668349
https://doi.org/10.3233/com-160060
https://doi.org/10.3233/com-160060
https://doi.org/10.3233/com-160060
http://www.jstor.org/stable/j.ctt1b7x83g
http://www.jstor.org/stable/j.ctt1b7x83g
https://doi.org/10.1112/plms/s1-28.1.357
https://doi.org/10.1112/plms/s1-28.1.357
https://doi.org/10.1112/plms/s1-28.1.357
https://doi.org/10.1090/conm/360/06577
https://doi.org/10.1090/conm/360/06577
https://doi.org/10.1090/conm/360/06577
https://arxiv.org/pdf/1802.07300.pdf
https://doi.org/10.1016/j.jalgebra.2022.12.006
https://doi.org/10.1016/j.jalgebra.2022.12.006
https://doi.org/10.1016/j.jalgebra.2022.12.006

BIBLIOGRAPHY

[34] E. Stickel. “A New Method for Exchanging Secret Keys”. In: Third International
Conference on Information Technology and Applications (ICITA’05). Vol. 2. 2005, pp. 426–

430. doi: 10.1109/ICITA.2005.33 (cit. on pp. 18–20, 28, 55).

[35] S. Wilcox. “Cellularity of diagram algebras as twisted semigroup algebras”. In: J.
Algebra 309.1 (2007), pp. 10–31. issn: 0021-8693. doi: 10.1016/j.jalgebra.2006.1

0.016. url: https://doi.org/10.1016/j.jalgebra.2006.10.016 (cit. on p. 29).

The NOVAthesis template (v7.1.11) [1]. (12cc90221730b8ba41bb3b1f8b517acd)Bibliography

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. U R L : https://github.com/joaomlourenco/novathesis/raw/main/template.pdf (cit. on p. 60).

60

https://doi.org/10.1109/ICITA.2005.33
https://doi.org/10.1016/j.jalgebra.2006.10.016
https://doi.org/10.1016/j.jalgebra.2006.10.016
https://doi.org/10.1016/j.jalgebra.2006.10.016
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf

A

Appendices

The code of the Linear Algebra attack on Stickel’s protocol in Python:

1 import galois
2 import random
3 import numpy as np
4 from sympy import symbols , Matrix , equation , solve , zeros , and add
5 from itertools import product
6

7 # This function should to addition in F2 (not only numbers but also
variables)

8 def f2add(a, b):
9 if a == b:

10 return 0
11 elif isinstance (a,int) and isinstance (b,int):
12 return 1
13 else:
14 result = a + b
15 if isinstance (result , Add):
16 for _, coef in result . as_coefficients_dict ().items ():
17 return sum(
18 varia for varia , coef in result . as_coefficients_dict ().

items () if coef % 2
19)
20 # If the result is a symbolic expression with odd coefficients , it

returns the sum of the terms odd the coeficients
21

22 return result
23

24 # This function should to the product in F2 (not only numbers but also
variables)

25 def f2multiply (a, b):
26 if isinstance (a, int) and isinstance (b, int):
27 return a * b # Normal multiplication for integers
28 elif isinstance (a, int):
29 return b if a == 1 else 0 # If a is 1, return b; otherwise , return

0
30 elif isinstance (b, int):

61

APPENDIX A. APPENDICES

31 return a if b == 1 else 0 # If b is 1, return a; otherwise , return
0

32

33 # This suggests that multiplication by 1 acts as an identity , while
multiplication by any other integer results in 0.

34

35 else:
36 return a * b # And operation for symbols
37

38

39 # The function should sum matrices in F2 (not only numbers but also
variables)

40 def matrixaddF2 (A, B, dimension):
41 result =zeros(dimension , dimension)
42 for i in range(dimension):
43 for j in range(dimension):
44 result [i,j]= f2add(A[i,j],B[i,j])
45 return Matrix (result)
46

47 # The function should do the product of matrices in F2 (not only numbers
bur also variables)

48 def matrixmultiplyF2 (A, B):
49 result = []
50 for i in range(A.shape [0]):
51 row = []
52 for j in range(B.shape [1]):
53 entry = 0
54 for k in range(A.shape [1]):
55 entry = f2add(entry , f2multiply (A[i, k], B[k, j]))
56 row. append (entry)
57 result . append (row)
58 return Matrix (result)
59

60 # Define the field
61 GF = galois .GF (2)
62

63 # k is the dimension of the matrices
64 k = 31
65

66 n = random . randint (1 ,2**k -2)
67 m = random . randint (1 ,2**k -2)
68

69 # Restriction that ab != ba
70 # Randomly generates an irreducible polynomial of degree k in F2
71

72 poly_a = galois . irreducible_poly (2, k, method =" random ")
73 while True:
74 poly_b = galois . irreducible_poly (2, k, method =" random ")
75 if poly_a != poly_b :
76 break

62

77

78 # Extract the coefficients to fill in the last column
79 alastcol = galois .Poly. coefficients (polya)
80 blastcol = galois .Poly. coefficients (polyb)
81

82 # Define matrix ’a’ as the Stickel matrices
83 a = galois . FieldArray .Zeros ((k,k))
84 for i in range (1,k):
85 a[i,i -1] = GF (1)
86

87 for i in range(k):
88 a[i][k -1] = alastcol [-i -1]
89

90 # Define the matrix ’a’ in a matrix of F2
91 a=GF(a)
92

93 # Define matrix ’b’ as the Stickel matrices
94 b = galois . FieldArray .Zeros ((k,k))
95 for i in range (1,k):
96 b[i,i -1] = GF (1)
97

98 for i in range(k):
99 b[i][k -1] = blastcol [-i -1]

100

101 # Define the matrix ’b’ in a matrix of F2
102 b=GF(b)
103

104 # Calculate the powers , the matrix ’u’ and the inverse of ’u ’. The result
is modulo 2, because we used Galois before

105 a_n = np. linalg . matrix_power (a,n)
106 b_m = np. linalg . matrix_power (b,m)
107 u = np. matmul (a_n ,b_m)
108 u_inv = np. linalg .inv(u)
109

110 # Create copies of a^(n), b^(m) and u^(-1) but as vectores of integers .
111 u = np.array(u)
112 a_z = np.array(a)
113 b_z = np.array(b)
114 u_inv_z = np.array(u_inv)
115

116 # Create the symbol matrix
117 Y= Matrix (symbols (’Y1:%d’ % (k*k + 1))). reshape (k, k)
118

119 # Define the two equations
120 # Since you ’re multiplying matrices by a matrix Y of symbols /variables , the

matmul modules don ’t work.
121 # So we use the function we defined like this to do the multiplication in

F2 for matrices when the product has Y.
122 # For the rest , we use matmul because it should be more efficient .

63

APPENDIX A. APPENDICES

123 eq1 = Eq(matrixmultiplyF2 (Y,np. matmul (u_inv ,a)),matrixmultiplyF2 (a_z ,
matrixmultiplyF2 (Y, u_inv_z)))

124 eq2 = Eq(matrixmultiplyF2 (Y,b_z),matrixmultiplyF2 (b_z ,Y))
125

126 # The sum of both sides of the equation : lhs= left -hand side e rhs= right -
hand side.

127 eq1norm = matrixaddF2 (eq1.lhs ,eq1.rhs ,k)
128 eq2norm = matrixaddF2 (eq2.lhs ,eq2.rhs ,k)
129

130 # Create a vector with the variables (not matrix , but vector)
131 Y_vec=np.array(symbols (’Y1:%d’ % (k*k + 1)))
132

133 # Define the matrix that defines the system Ax=0 (2k^2 x 2k^2)
134 Msyst =[]
135 for i in range(k):
136 for j in range(k):
137 Msyst. append (list ((eq1norm .row(i). jacobian (Y_vec)).row(j)))
138 Msyst. append (list ((eq2norm .row(i). jacobian (Y_vec)).row(j)))
139

140 # Msystint receives the matrix Msyst and converts the elements into
integers and then into elements of F2 and calculate the nullspace .

141 Msystint = GF ([[GF(int(element)) for element in row] for row in Msyst])
142 nulspac = Msystint . null_space ()
143

144

145 if len(nulspac)==1:
146 solution = nulspac [0]
147 dic_sub = {’Y’+str(i): solution [i -1] for i in range (1,k **2+1) }
148 Ysolution = Y.subs(dic_sub)
149 # This means that there is only one basis vector , or in other words , one

solution to the equation
150

151 else:
152 lista= list(product (range (2) , repeat =len(nulspac)))
153 j=0
154 solution = nulspac [j]
155 dic_sub = {’Y’+str(i): solution [i -1] for i in range (1,k **2+1) }
156 Ysolution = Y.subs(dic_sub)
157 while Matrix .det(Ysolution)%2 != 1:
158 j+=1
159 summands =[]
160 for i in range(len(lista[j])):
161 if lista[j][i]==1:
162 summands . append (i)
163 solution = nulspac [0]
164 for j in len(summands):
165 solution = solution + nulspac [j]
166 dic_sub = {’Y’+str(i): solution [i -1] for i in range (1,k **2+1) }
167 Ysolution = Y.subs(dic_sub)

64

168 # This means that there are several basis vectors , indicating several
possible solutions .

169 # It generates all possible combinations of coefficients (0 or 1) for the
basis vectors . Then the code iterates through combinations of these
basis vectors to try to find a solution matrix whose determinant is odd

(in F2 this means that the determinant is 1). This guarantees that the
matrix is invertible in F2.

170

171 Ysolutionmatrix =np.array(Ysolution)
172 return M
173

174 # Define the matrix ’Y_solution_matrix ’ in a matrix of F2
175 Ysolutionmatrix = GF(Ysolutionmatrix . astype (int))
176

177 # x^(-1) = yu ^(-1)
178 x_inv = np. matmul (Ysolutionmatrix ,u_inv)
179

180 x = np. linalg .inv(x_inv)
181

182 # u = xwy =xy
183 np. matmul (x, Ysolutionmatrix)
184

185

186 # Implement Eve ’s attack
187

188 r = random . randint (1 ,2**k -2)
189 s = random . randint (1 ,2**k -2)
190

191 # Calculate the powers
192 a_r = np. linalg . matrix_power (a,r)
193 b_s = np. linalg . matrix_power (b,s)
194

195 # Calculate v=a^(r)b^(s)
196 v = np. matmul (a_r ,b_s)
197

198 v_inv = np. linalg .inv(v)
199

200 # The fuction that allows Eve to discover the secret key
201 def kfind(x,y,q):
202 x_q = np. matmul (x,q)
203 k_find = np. matmul (x_q ,y)
204 return k_find
205

206 # The function that allows you to build the real secret key
207 def kshared (a,b,r,s,m,n):
208 a_r_n = np. linalg . matrix_power (a,r+n)
209 b_s_m = np. linalg . matrix_power (b,s+m)
210 k_shared = np. matmul (a_r_n ,b_s_m)
211 return k_shared

65

2024 Cryptographic Key Exchange Protocols: Algebraic Structures, Stickel’s Protocol, and Monoid Investigations Madalena Ascensão

	Front Matter
	Cover
	Front Page
	Copyright
	Abstract
	Resumo
	Contents
	List of Figures

	1 Introduction
	2 Preliminaries on Combinatorial Semigroup Theory
	2.1 Elementary semigroup theory
	2.2 Homomorphisms
	2.3 Congruences and Quotients
	2.4 Free semigroups
	2.5 Presentations
	2.6 Normal forms
	2.7 Rewriting systems
	2.8 Background on Combinatorial Group Theory
	2.8.1 The word problem
	2.8.2 The conjugacy problem
	2.8.3 The decomposition and factorisation problems

	3 Cryptography
	3.1 Public key encryption
	3.1.1 From key establishment to encryption

	3.2 Cryptographic protocols
	3.2.1 Protocols based on the conjugacy search problem
	3.2.2 Protocols based on the decomposition problem
	3.2.3 The Diffie-Hellman Key Exchange Protocol

	4 Stickel's Key Exchange Protocol
	4.1 Linear algebra attack
	4.2 Linear algebra attack implementation
	4.2.1 The code
	4.2.2 Alice and Bob encryption
	4.2.3 Eve's attack

	4.3 Linear algebra attack analysis

	5 The partition monoid
	5.1 The partition monoid
	5.2 Important subsemigroups
	5.2.1 The (full) transformation semigroup
	5.2.2 The symmetric inverse semigroup

	5.3 A presentation for the partition monoid

	6 The planar rook monoid
	6.1 The planar rook monoid
	6.2 The generators
	6.3 A complete presentation for PRn
	6.4 Another presentation of PRn

	7 Conclusions
	Bibliography
	A Appendices
	Back Matter
	Back Cover
	Spine

