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Resumo

Os fibrados de Higgs e o seu espaço moduli têm vindo a desempenhar um papel preponderante
na matemática moderna. Neste texto, depois de rever os preliminares necessários, introduzimos
o espaço moduli de fibrados vetoriais sobre uma superfície de Riemann. Através do seu espaço
cotangente, motivamos a definição de fibrado de Higgs e descrevemos o seu espaço moduli. De
seguida, introduzimos a aplicação de Hitchin e o conceito de curva espetral. Descrevemos as
fibras da aplicação de Hitchin para curvas espetrais integrais, o que inclui o caso genérico das
curvas espetrais suaves. Por fim, provamos o resultado principal do texto, que é ver que a
aplicação de Hitchin torna o espaço moduli de fibrados de Higgs num sistema completamente
integrável.

Palavras-chave: Superfície de Riemann, fibrado vetorial, fibrado de Higgs, espaço moduli,
aplicação de Hitchin, curva espetral, sistema integrável, Lagrangiano.
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Abstract

Higgs bundles and their moduli space have taken a prominent role in modern mathematics.
In this text, after reviewing the necessary preliminaries, we introduce the moduli space of vector
bundles on a Riemann surface. Through its cotangent bundle, we motivate the definition of a
Higgs bundle and describe their moduli space. Afterwards, we introduce the Hitchin map and
the concept of spectral curve. We describe the fibers of the Hitchin map for integral spectral
curves, which includes the generic case of smooth spectral curves. At the end, we prove the main
result of the text, that the Hitchin map gives the moduli space of Higgs bundles the structure of
a completely integrable system.

Keywords: Riemann surface, vector bundle, Higgs bundle, moduli space, Hitchin map,
spectral curve, integrable system, Lagrangian.
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Introduction

Vector bundles are ubiquitous in geometry. If we consider smooth vector bundles over a
compact Riemann surface X, their classification is simple – up to isomorphism, there is a single
smooth vector bundle for every rank n and degree d. The holomorphic case however is quite
different and leads us to consider the moduli space of holomorphic vector bundles N (n, d) of
rank n and degree d. It is a variety of its own and so we would like to study its cotangent bundle.
It turns out that cotangent vectors to a point E will be holomorphic maps Φ : E → E ⊗K,
where K is the canonical bundle of X. These are instances of one of the main objects of this
thesis: Higgs bundles.

A Higgs bundle on X is then a pair (E,Φ) consisting of a holomorphic vector bundle E and
a holomorphic map Φ : E → E ⊗K, called the Higgs field. Such objects were introduced by
Nigel Hitchin in [Hit87b], arising from certain equations in mathematical physics. As with vector
bundles, we will not be concerned with single Higgs bundles, but rather with their moduli space.
These spaces are known to possess a very rich topological and geometric structure, requiring tools
from several branches of geometry (differential, symplectic, algebraic) to tackle its complexity,
whose interplay makes its study all the more interesting.

Although their properties already make them objects worth studying in their own right,
moduli spaces of Higgs bundles also show up in various, seemingly disparate, areas of mathematics,
making their study quite a pertinent one. They can be found, for example, when studying the
representation theory of the fundamental group of X.

More recently, excitement over Higgs bundles has built over their relevance to the Langlands
program, an ambitious collection of conjectures purporting to establish vast connections between
number theory and geometry. Moreover, their moduli spaces constitute a fundamental example
where mirror symmetry can be tested. This is a concept arising from theoretical physics,
specifically string theory, but which has proven to be a very rich theory from the mathematical
point of view as well, via a conjectural equivalence of categories associated to two Calabi-Yau
varieties.

A crucial fact that makes moduli spaces of Higgs bundles so relevant to mirror symmetry is
that they come equipped with an integrable system structure – the so called Hitchin system.
The description of said structure is the main goal of this thesis. The main tool we will use to
that purpose is the Hitchin map, which, roughly speaking, takes a Higgs bundle (E,Φ) and
gives us the coefficients of the characteristic polynomial of its Higgs field Φ. Stripping away
the sophisticated notions of modern geometry, we are essentially following the philosophy of
studying an endomorphism through its eigenvalues and eigenspaces. Through this map, the
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2 Introduction

moduli space becomes an integrable system which, although we do not delve into it here, leads
us into the aforementioned applications in Physics.

We will be particularly focused on the fibers of the Hitchin map. Through the construction
of spectral curves (objects encoding the eigenvalues of the Higgs field), we will be able to
describe the generic fibers as isomorphic to Jacobians – complex tori – which will be Lagrangian
subvarieties of the moduli space. We will also venture outside the generic case and say some
words on the simpler singular fibers.

Structure of the text

Section 1 is devoted to introducing the basic concepts needed to understand the rest of the
text. We start with Riemann surfaces and vector bundles, the foundations of all the constructions
in this text. We then review the concepts of sheaves and divisors and the several links between
them and vector bundles. After we describe how holomorphic vector bundles can be seen as
certain operators defined on a smooth vector bundle, a point of view that will last through
the entire text, we briefly describe the cohomology of holomorphic vector bundles and the
hypercohomology of complexes made up of such objects. We also review the equivalence between
Riemann surfaces and smooth algebraic curves, and introduce the compactified Jacobian of a
singular curve. We end this section by reviewing the basics of symplectic geometry needed to
grasp the concept of an completely integrable system.

In Section 2 we first describe the construction of the moduli space of holomorphic vector
bundles over a Riemann surface. The analytical point of view is preferred since it allows for a
somewhat intuitive discussion of the subject, although it does have the disadvantage that we
cannot be fully rigorous without bringing in tools from advanced Functional Analysis which are
outside of the scope of this text. We also introduce Higgs bundles and construct their moduli
space – the main object of this thesis – motivating the definition via the cotangent space of the
moduli space of vector bundles. We finish the section by describing the symplectic structure of
the moduli space of Higgs bundles.

Section 3 makes up the core of this text. After a brief discussion on what the characteristic
polynomial of a Higgs field is, we are ready to define the Hitchin map. We then focus on spectral
curves, their construction and properties. We see how to relate their Jacobians to the fibers of the
Hitchin map via the BNR-correspondence theorem. Finally, we check the complete integrability
of the moduli space, and along the way we also give a description of the tangent space of the
smooth fibers.

To conclude, we present, in appendix A, some more technical definitions and results from
algebraic geometry that are used throughout the text.



Chapter 1

Preliminaries

1.1 Riemann surfaces

The base object of all our constructions in this text will be a compact Riemann surface (a
complex manifold of dimension 1). We follow [Mir95].

A Riemann surface is a topological space X satisfying the following properties: it is second
countable and Hausdorff (these are technical conditions that we impose in order to exclude
pathological objects), connected, and, most importantly, it is equipped with a complex structure.

A complex structure is a maximal complex atlas, i.e., a collection of charts

{Φα : Uα → Vα}

where the Uα are open sets of X such that⋃
α

Uα = X

and the Vα are open sets of C. Moreover, the charts are compatible, that is, for every α, β such
that Uα ∩ Uβ 6= ∅, the transition function

Φβ ◦ Φ−1
α : Φα(Uα ∩ Uβ)→ Φβ(Uα ∩ Uβ)

is holomorphic.
A map between two Riemann surfaces X and Y is holomorphic if at every point p of X

we can find charts covering p and its image where the expression of the map in coordinates is
holomorphic.

Using that C is homeomorphic to R2, any Riemann surface can be seen as a real 2 dimensional
manifold. In particular, in the case of compact Riemann surfaces, the underlying real manifold
can be classified as follows.

Proposition 1.1 ([Mir95, Proposition 1.23]). Every compact Riemann surface is diffeomorphic
to the g-holed torus, for some unique integer g ≥ 0.

The number g in the proposition is known as the topological genus of the compact Riemann
surface.

One particularly fruitful way of building Riemann surfaces is by considering zeroes of
polynomials, as in the following example.

3



4 1.2. Vector bundles

Example 1.2 (Plane algebraic curves). Consider f ∈ C[z, w], a polynomial in two variables.
Using the implicit function theorem, we see that, at a point p in the zero locus of f

X = {(z, w) ∈ C2 | f(z, w) = 0}

such that ∂f
∂z or ∂f

∂w does not vanish, X is locally a graph of a holomorphic function. If this
happens for all p ∈ X, we say X is an affine non singular plane curve.

More precisely, it is possible, using the same theorem, to define compatible charts in X,
equipping it with a complex structure. If f is irreducible, then X is connected and thus a
Riemann surface. It is not however, compact. In order to compactify it, we consider the following.

Let F ∈ C[x, y, z] be an homogeneous polynomial and consider its zero locus

X = {[x : y : z] ∈ CP2 | F (x, y, z) = 0}.

If we define X0 as the set of points in C2 where the polynomial F (1, y, z) vanishes, and similarly
sets X1 and X2 for the other coordinates, we obtain three affine plane curves, each of them
sitting inside an open set of CP2 isomorphic to C (where the corresponding coordinate does not
vanish).

If X does not have any point where all three partial derivatives of F vanish simultaneously,
the three affine curves will be non-singular, and X, obtained by “gluing”, will be a compact
Riemann surface inside of CP2 – a projective non-singular plane curve. Its genus g can be
determined as a function of the degree d of F via the formula

g = (d− 1)(d− 2)
2 .

Remark 1.3. More generally, we can define complex manifolds of higher dimension (the two
dimensional case will be useful to us later) as spaces locally homeomorphic to Cn and with
holomorphic transition functions. The basic examples are the complex projective spaces CPn

and complex tori (quotients of Cn by lattices).

1.2 Vector bundles

We now consider vector bundles over Riemann surfaces. We start with the general definition
of a smooth vector bundle (see [Wel08, Section I.2]).

Definition 1.4. Let X be a manifold. A smooth complex vector bundle of rank n over X
is a manifold E equipped with a smooth surjective map π : E → X satisfying the following
conditions.

1. For all p ∈ X, the fiber over p, Ep := π−1(p), has a complex vector space structure of
dimension n;

2. the space E is locally trivial, i.e., for all p ∈ X, there is a neighborhood U of p in X and a
diffeomorphism Φ : π−1(U)→ U ×Cn (called a local trivialization of E over U), satisfying
the following conditions:
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• πU ◦ Φ = π (where πU : U × Cn → U is the projection onto the first factor);

• for all q ∈ U , the restriction of Φ to Eq is a linear isomorphism between Eq and
{q} × Cn ∼= Cn;

3. suppose Φ : π−1(U)→ U × Cn and Ψ : π−1(V )→ V × Cn are two local trivializations of
the bundle E such that U ∩ V 6= ∅. Then the composition

Φ ◦Ψ−1 : (U ∩ V )× Cn → (U ∩ V )× Cn

is of the form
Φ ◦Ψ−1(p, v) = (p, τ(p)v),

for some smooth map τ : U ∩ V → GL(n,C) (called a transition function).

E is said to be the total space of the vector bundle and X its base. If n = 1, E is said to be a
line bundle.

A vector bundle on a complex manifold X is said to be holomorphic if the projection π and
the transition functions τ are holomorphic.

Every holomorphic vector bundle over a complex manifold has a smooth counterpart (a
smooth vector bundle over a smooth manifold).

Vector bundles generalize the product space E = X × Cn, where π : E → X is given by
projection onto the first factor. In fact, property 2. of the definition tells us that, locally, vector
bundles are indistinguishable from products.

Example 1.5. Complex projective space CPn can be thought of as the space of all lines through
the origin in Cn+1. The tautological line bundle p : E → CPn has total space E defined as the
subspace CPn × Cn+1 whose elements are pairs (l, z) with z ∈ l, and p(l, z) = l.

Let Ui be the standard open sets of CPn where the i-th coordinate is non-zero. Then
ψi : p−1(Ui)→ Ui × C, defined by ψi(l, z) = zi gives a local trivialization of E. On Ui ∩ Uj , we
have

ψi ◦ ψ−1
j (l, w) =

(
l,
zi
zj
w

)
,

where l = [z0 : · · · : zn].
The bundle E is then an example of a holomorphic vector bundle over the complex manifold

CPn.

Definition 1.6. An isomorphism between smooth vector bundles π1 : E1 → X and π2 : E2 → X

over the same base X is a diffeomorphism g : E1 → E2 taking each fiber π−1
1 (p) to the

corresponding fiber π−1
2 (p) through a linear isomorphism.

An isomorphism between holomorphic vector bundles is defined similarly, by requiring that
h be biholomorphic.

A smooth/holomorphic vector bundle is said to be trivial if it is isomorphic (in its respective
category) to the product bundle.



6 1.3. The tangent and cotangent bundles of a Riemann surface

Definition 1.7. A smooth/holomorphic section of a vector bundle π : E →M is a smooth/holo-
morphic map σ : M → E satisfying π◦σ = IdM . That is, for each p ∈M , σ(p) is in its respective
fiber Ep.

A smooth/holomorphic local section is a smooth/holomorphic map σ : U → E defined on an
open set U of M such that π ◦ σ = idU .

Canonical constructions in linear algebra (those that not depend on a choice of basis) allow us
to define new bundles starting from already existing ones, in both the smooth and holomorphic
settings. Starting with vector bundles E and F , the constructions we will use in this text are

• the direct sum E ⊕ F ;

• the tensor product E ⊗ F ;

• the symmetric powers SiE and the exterior powers
∧iE – the top exterior power

∧rkE E

is called the determinant of E, and denoted by detE (it is a line bundle);

• the dual bundle E∗;

• the bundle of linear maps Hom(E,F ) and of endomorphisms End(E);

• the bundle Aut(E), although not a vector bundle since its fibers are isomorphic to
GL(rkE,C), is also a natural object to consider (it is a bundle of groups).

Example 1.8. Going back to Example 1.5, the tautological bundle on CPn is just one of a
whole family of line bundles defined on projective space. The dual of the tautological bundle,
called the hyperplane bundle, is denoted by O(1) due to the fact that its global sections are the
homogeneous polynomials of degree 1 in n+ 1 variables. Tensoring O(1) with itself m > 0 times,
we obtain the bundle O(m), whose global sections are polynomials of degree m. Dualizing we
obtain the bundles O(−m), which have no global sections (in particular the tautological bundle
would be written as O(−1)).

1.3 The tangent and cotangent bundles of a Riemann surface

Our starting point is the idea of studying the geometry of a real manifold through its tangent
and cotangent bundles – leading us to vector fields and k-forms. We follow [Huy05, Section 1.3].

Consider a Riemann surface X. Thinking of X as a real manifold, with standard coordinates
x, y, at each p ∈ X there is a tangent space TpX, spanned by the vectors (as an R vector space)
∂
∂x and ∂

∂y .
Since X is a complex manifold, there is a natural (R-linear) complex structure Ip on each

TpX, defined by
∂

∂x
7→ ∂

∂y
,

∂

∂y
7→ − ∂

∂x
.

Likewise, the cotangent space T ∗pX is spanned by the dual forms dx and dy, and the complex
structure Ip acts by

dx 7→ −dy, dy 7→ dx.
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We now complexify these spaces in order to get the 2-dimensional complex vector spaces

TpX ⊗ C and T ∗pX ⊗ C.

Each of these spaces has a direct sum decomposition into their i and −i eigenspaces for the
complex structure Ip (in fact, its C-linear extension). We call them their (1, 0) and (0, 1) parts,
respectively,

TpX ⊗ C = T 1,0
p X ⊕ T 0,1

p X,

T ∗pX ⊗ C = (T ∗pX)1,0 ⊕ (T ∗pX)0,1. (1.1)

By making the change of variables to z and z̄, using that

x = z + z̄

2 , y = z − z̄
2i

and
dx = dz + dz̄

2 , dy = dz − dz̄
2i ,

we find that the 1-dimensional complex spaces (T ∗pX)1,0 and (T ∗pX)0,1 are spanned by dz and
dz̄, respectively.

Dualizing, we get the tangent vectors

∂

∂z
:= 1

2

(
∂

∂x
− i ∂

∂y

)
and ∂

∂z̄
:= 1

2

(
∂

∂x
+ i

∂

∂y

)
,

which span the spaces T 1,0
p X and T 0,1

p X.
With our new basis, note that a smooth function f is holomorphic if and only if

∂f

∂z̄
= 0

since this condition is equivalent to the Cauchy-Riemann equations.

1.3.1 Types of forms and operations on them

Now letting p vary over X, we consider the (complexified) bundle T ∗X. Its smooth sections
are the 1-forms, and the direct sum decomposition in (1.1) allows us to define forms of type
(1, 0) (sections of T ∗X1,0) and of type (0, 1) (sections of T ∗X0,1).

We now define forms of type (p, q) as smooth sections of the bundle∧p,q
T ∗X :=

(∧p
T ∗X1,0

)
⊗
(∧q

T ∗X0,1
)
.

Any k-form decomposes as a sum of forms of type (p, q), with p+ q = k, i.e., we have the
following bundle decomposition ∧k

T ∗X =
⊕
p+q=k

∧p,q
T ∗X

which induces a decomposition of their respective spaces of smooth sections

Ωk(X) =
⊕
p+q=k

Ωp,q(X).



8 1.3. The tangent and cotangent bundles of a Riemann surface

The local expressions of these forms, on a chart with coordinate z and domain U , are

fdz ∈ Ω1,0(U), fdz̄ ∈ Ω0,1(U), fdz ∧ dz̄ ∈ Ω1,1(U),

where f is a smooth function on U .
The decomposition of k-forms into sums of forms of type (p, q) also induces a decomposition

of the exterior derivative operator. If d : Ωk(X)→ Ωk+1(X) is the usual exterior derivative of
forms and πp,q : Ωk(X)→ Ωp,q(X) is the canonical projection, we define two new operators

∂ := πp+1,q ◦ d : Ωp,q(X)→ Ωp+1,q(X)

and
∂̄ := πp,q+1 ◦ d : Ωp,q(X)→ Ωp,q+1(X).

Note that, since X has complex dimension 1, the only non-zero forms are those of type (0, 0),
(1, 0), (0, 1) and (1, 1), so the whole ensemble of forms and operators just described can be seen
in the following diagram

Ω0,0(X)

Ω1,0(X) Ω1(X) Ω0,1(X).

Ω1,1(X)

d
∂̄∂

∂̄
d

∂

Locally we have
∂f = ∂f

∂z
dz, ∂̄f = ∂f

∂z̄
dz̄, df = ∂f + ∂̄f ;

and

∂̄(fdz) = −∂f
∂z̄
dz ∧ dz̄, ∂(fdz̄) = ∂f

∂z
dz ∧ dz̄, d(fdz + gdz̄) = ∂̄(fdz) + ∂(gdz̄),

where f and g are smooth functions.

Lemma 1.9. The operators ∂ and ∂̄ have the following properties.

• d = ∂ + ∂̄;

• ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0;

• they obey the Leibniz rule

∂(α ∧ β) = (∂α) ∧ β + (−1)p+qα ∧ (∂β),

for α ∈ Ωp,q and β ∈ Ωr,s (the same formula holds true for ∂̄).

In particular we have that the chain

0 Ωp,0(X) Ωp,1(X) 0∂̄ ∂̄
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is a differential complex. Its cohomology groups

Hp,q(X) := ker(∂̄ : Ωp,q → Ωp,q+1)
Im(∂̄ : Ωp,q−1 → Ωp,q)

are called the Dolbeault cohomology groups. For example H0,0(X) is the space of holomorphic
functions on X and H1,0(X) is the space of holomorphic differentials.

From now on, we will view T 1,0X and (T ∗X)1,0 as holomorphic line bundles, and will denote
them simply by TX and T ∗X.

Remark 1.10. Let X be a compact Riemann surface with atlas {ϕi}i. Since the ϕi are compatible
charts, the composition Tij = ϕi ◦ ϕ−1

j is biholomorphic. The transition functions of the
holomorphic tangent bundle TX are then tij : Ui ∩ Uj → C∗ defined by tij = T ′ij ◦ ϕi. Dualizing,
the transition functions of the holomorphic cotangent bundle T ∗X are defined by sij = 1

T ′ij
◦ ϕi.

Besides the regular k-forms on X, we will also need the following.

Definition 1.11. Let π : E → X be a smooth vector bundle over a manifold X. We denote by
Ωk(X,E) (or by Ωk(E)) the space of smooth k-forms on X with values in E, defined as sections
of the bundle

∧k T ∗X ⊗ E.
If π : E → X is a complex vector bundle over a complex manifold X, then we denote by

Ωp,q(E) the space of smooth forms of type (p, q) with values in E, defined similarly as smooth
sections of

∧p,q T ∗X ⊗ E.

Since Ωk(X) = Ωk(X,X × C), this concept generalizes k-forms on X. Note also that Ω0(E)
is the space of C∞ sections of E and Ω1(E) is the space of sections of Hom(TM,E), i.e., for
every p ∈ X, sp is a linear map between TpM and Ep.

1.4 Sheaves, divisors and the degree of a vector bundle

In this section, we give a brief overview of sheaves, divisors, and how they relate to line
bundles. We follow [Mir95], [GH94], and [Don11].

Given a topological space X, a sheaf F on X is an assignment of a set F(U), whose elements
are called sections, to every open set U of X, together with a map ρUV : F(U) → F(V ) for
every inclusion V ⊆ U , called a restriction map. This assortment of sets and maps must satisfy
the following conditions.

• If W ⊂ V ⊂ U , then ρUW = ρVWρUV ;

• whenever an open set U has an open cover Ui and we have si ∈ F(Ui) such that they agree
on the intersections, i.e., ρUi,Ui∩Uj (si) = ρUj ,Ui∩Uj (sj), for all i, j, then there is a unique
s ∈ F(U) such that ρUUi = si, for all i.

Examples of well known sheaves are the sheaf of continuous functions on a topological space,
and the sheaves of smooth functions or of smooth k-forms on a smooth manifold. On a complex
manifold X, the sheaf of holomorphic functions OX is called its structure sheaf.
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Remark 1.12. Like the examples above, most of the time the sets F(U) will have additional
algebraic structure, as abelian groups or modules over a sheaf of rings. In that case, the
restriction maps will be morphisms in the corresponding category.

An important notion associated to any sheaf F over a space X is that of its stalk over a
point p ∈ X, denoted by Fp. It is built considering the set of all sections of F over all open sets
containing p, together with an equivalence relation that says that two sections are equivalent if
they coincide on a common smaller domain. The stalk is then the set of all equivalence classes,
which we call germs at p. For example, OX,p is the space of germs at p of holomorphic functions
of X. The support of a sheaf F , denoted by suppF , is the set of points p ∈ X such that Fp 6= 0.

Whenever we have a holomorphic vector bundle E over a Riemann surface X, we can consider
the sheaf of its holomorphic sections O(E). Over a trivializing open set U of E, giving a section
over U is the same as giving n holomorphic functions over U (where n = rkE), and so we have

O(E)(U) ∼= O⊕nX (U).

The sheaf O(E) is then said to be locally free. It is also true that any sheaf of this type
corresponds to the sheaf of sections of some vector bundle (see, for example, [Wel08, Theorem
1.13, page 40]).

In most of the literature, there is in fact no distinction made between the holomorphic vector
bundle E and its sheaf of holomorphic sections O(E), a convention which we follow in this text
as well. The usefulness of this is that it allows us to use both algebraic and differential geometric
methods to study these objects, depending on the situation at hand.

Restricting our attention now to line bundles, we have that, for a line bundle L and a
trivializing open set U

O(L)(U) ∼= OX(U).

The sheaf O(L) is said to be invertible; this is because there is a natural abelian group structure
on the set of (isomorphism classes of) line bundles with the tensor product operation. We call
this the Picard group of X and denote it by Pic(X).

A divisor D on a compact Riemann surface X is a finite linear combination of points of X
with integer coefficients

D =
∑
i

nipi, ni ∈ Z, pi ∈ X.

The set of divisors together with addition forms an abelian group denoted by Div(X). A divisor
D is said to be effective if all the integer coefficients are non-negative, also denoted by D ≥ 0.

A divisor is called principal if it is the divisor of a meromorphic function f on X

div(f) =
∑
p∈X

ordp(f) · p.

These form a subgroup of Div(X) denoted by PDiv(X). Two divisors are said to be lin-
early equivalent if their difference is a principal divisor (i.e., they are on the same coset of
Div(X)/PDiv(X)).

Divisors are related to line bundles in the following way. Let p be a point of the Riemann
surface X. We associate to this point a holomorphic line bundle Lp corresponding to the
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invertible sheaf O(p) whose sections are the meromorphic functions with at worst a simple pole
at p. Now, to any divisor D =

∑
i nipi we associate the line bundle

LD =
⊗
i

Lni
pi
,

whose invertible sheaf of sections will be denoted by O(D). If we add a principal divisor to
D, then the isomorphism class of O(D) does not change and so we have a well defined map
Div(X)/PDiv(X) → Pic(X), which turns out to be an isomorphism. To recover a divisor
from a line bundle, we take any meromorphic section and record its divisor of zeros and poles,
all divisors obtained in this way will be linearly equivalent, so we have a well defined inverse
Pic(X)→ Div(X)/PDiv(X).

The degree of a divisor is defined to be the sum of its integer coefficients, i.e.,

deg
(∑

i

nipi

)
=
∑
i

ni.

On a compact Riemann surface, any principal divisor has degree zero, so we have a map
deg : Pic(X) → Z, which we can take as defining the degree of a line bundle. The kernel of
this map, the space of isomorphism classes of degree zero line bundles, is called the Jacobian of
X, and is denoted by Jac(X). An important property of the Jacobian is that it is an abelian
variety (meaning that it is algebraic) in particular it is a complex torus. It turns out that it has
dimension g (the genus of the Riemann surface X). Moreover, we denote by Jacd(X) the space
of isomorphism classes of degree d line bundles.

Remark 1.13. One consequence of the definition of degree is that a line bundle L can only admit
global sections if degL ≥ 0.

One way to extend the notion of degree to higher rank bundles E is to define degE :=
deg(detE). The intuitive idea behind the degree is that it is a topological invariant that measures
how “twisted” the vector bundle is. For instance, all trivial bundles have degree zero (there is
no “twist”). We will need to use certain properties of the degree, in particular, how to calculate
the degree of a bundle built from others whose degree is known.

Proposition 1.14 (Properties of the degree, [GH94, page 446], [MT97, page 185]).
Let E,F be two vector bundles over a compact Riemann surface X. Then

• degE ∈ Z;

• deg(E ⊕ F ) = degE + degF ;

• deg(E ⊗ F ) = rkF degE + rkE degF .

Remark 1.15. The notion of divisors can be generalized to higher dimensional complex manifolds.
On a complex surface, a divisor is a linear combination of integral curves, where integral means
that the curve is irreducible and reduced. The correspondence between divisors and line bundles
still holds in higher dimensions (see [GH94, page 133]).
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1.5 Holomorphic vector bundles and Dolbeault operators

In this section we introduce a fundamental idea, which is seeing a holomorphic vector bundle
E as a pair (E, ∂̄E), where E is its underlying smooth vector bundle and ∂̄E is a Dolbeault
operator.

A Dolbeault operator on E is a C-linear map ∂̄E : Ω0(E)→ Ω0,1(E) that satisfies a Leibniz
rule, i.e., for f ∈ C∞(X) and s ∈ Ω0(E), we have

∂̄E(fs) = ∂̄f ⊗ s+ f∂̄Es,

and ∂̄2
E = 0 (this is always satisfied for bundles over a Riemann surface).

From a Dolbeault operator we can get holomorphic transition functions in the following
manner (see [Hit89, §2]). Suppose rkE = n and consider two non-disjoint trivializations U and
V . Over U we can find n sections (s1, . . . , sn) which are linearly independent at each point of X
(called a local frame of E over U), and over V we find another n sections (t1, . . . , tn) with the
same property. Over U ∩ V , these are related by

ti =
∑
j

aijsj ,

where A = (aij)i,j is the transition function between the two trivializations. Applying the
operator ∂̄E to the equation, we obtain

∂̄Eti =
∑
j

(∂̄aij ⊗ sj + aij ∂̄Esj).

If we can guarantee that the sections si and ti satisfy ∂̄Esi = 0 = ∂̄Eti (i.e., they are
holomorphic), then it follows that ∂̄aij = 0, i.e., the transition function is holomorphic. The
problem of finding such local frames si and ti, guaranteed to exist by the condition ∂̄2

E = 0, is
one of Analysis, which can be checked, for example, in [DK90, Theorem 2.1.53 (page 45) and
Section 2.2.2 (page 50)].

The point we want to emphasize here is that, once we find holomorphic local frames, then it
follows that the transition functions are holomorphic.

If we already have a holomorphic vector bundle E with underlying smooth bundle E, then
we can recover the ∂̄E operator as follows (see also [Huy05, Lemma 2.6.23]). Consider the exact
sequence

0 OX Ω0(X) Ω0,1(X) 0,∂̄

and tensor it by O(E)(X), obtaining

0 O(E)(X) Ω0(E) Ω0,1(E) 0.∂̄E

This last complex also allows us to define the Dolbeault cohomology groups of the holomorphic
vector bundle E as

Hp,q(X,E) := ker(∂̄E : Ωp,q(E)→ Ωp,q+1(E))
Im(∂̄E : Ωp,q−1(E)→ Ωp,q(E))

.
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Dolbeault operators can be extended to associated bundles. For instance, starting with
holomorphic vector bundles E and F , the Dolbeault operator ∂̄E,F that gives the bundle
Hom(E,F ) its holomorphic structure is built by imposing a Leibniz rule

∂̄F (f(s)) = (∂̄E,F f)(s) + f(∂̄Es),

for all f ∈ Ω0(Hom(E,F )) and s ∈ Ω0(E). Hence we define

∂̄E,F f := ∂̄F ◦ f − f ◦ ∂̄E ∈ HomΩ0(X)(Ω0(E),Ω0,1(F )) ∼= Ω0,1(Hom(E,F )).

It can be checked that this induces on Hom(E,F ) the right holomorphic structure.
In this text we will be working mostly in the case where F = E. The associated Dolbeault

operator ∂̄E,E on Ω0(EndE) will usually be denoted by ∂̄E and it should be clear from the
context which version of the operator is being used at any given moment.

Remark 1.16. We can now give a reinterpretation of a isomorphism of holomorphic vector bundles
(recall Definition 1.6) as follows. Let g : E → F be a smooth bundle isomorphism. Then it is
holomorphic if and only if

∂̄F ◦ g − g ◦ ∂̄E = 0,

i.e., the following diagram commutes

Ω0(E) Ω0(F )

Ω0,1(E) Ω0,1(F ).

g

∂̄E ∂̄F

g

1.6 Cohomology and hypercohomology

Starting with a sheaf F on a space X, we can attach to it a series of cohomology spaces
H i(X,F) (under certain conditions on F – more details in Appendix A.2). We start by defining
H0(X,F) = F(X) (the global sections of F) and the derived functor construction gives us the
rest. In this text, we will work mainly with finite rank locally free sheaves, and so these will
always be finite dimensional vector spaces whose dimensions we denote by hi(X,E). We collect
in this section some results about them which will be used throughout.

In the following theorems, X is a n-dimensional compact complex manifold, Ωp
X :=

∧p T ∗X
its sheaf of holomorphic p-forms, and E a holomorphic vector bundle over X. The line bundle∧n T ∗X is called the canonical bundle of X and denoted by K.

Theorem 1.17 (Dolbeault). The Dolbeault cohomology of E computes the sheaf cohomology of
E ⊗ Ωp

X , i.e.,
Hp,q(X,E) ∼= Hq(X,E ⊗ Ωp

X).

Theorem 1.18 (Serre duality). The following pairing is non-degenerate

Hp,q(X,E)×Hn−p,n−q(X,E∗) −→ C

(α, β) 7−→
∫
X
α ∧ β.
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In particular, it follows that,

Hq(X,E) ∼= Hn−q(X,E∗ ⊗K)∗.

If n = 1, i.e., X is a compact Riemann surface, then K = T ∗X and Dolbeault’s theorem
gives us the following isomorphisms

H0,q(X,E) ∼= Hq(X,E),

H1,q(X,E) ∼= Hq(X,E ⊗K).

Moreover, Serre duality becomes

H0(X,E) ∼= H1(X,E∗ ⊗K)∗,

H1(X,E) ∼= H0(X,E∗ ⊗K)∗.

Finally, we have the following result, valid only for Riemann surfaces.

Theorem 1.19 (Riemann-Roch). Let X be a compact Riemann surface of genus g and E a
holomorphic vector bundle over X. We have the following equality relating the dimensions of the
sheaf cohomology of E with its rank and degree

h0(X,E)− h1(X,E) = deg(E) + (rkE)(1− g).

Remark 1.20. On a compact Riemann surface, the canonical bundle has degree 2g − 2 [Mir95,
Proposition V.1.14].

Consider now a complex C• of sheaves onX. We can associate to it a series of hypercohomology
spaces Hi(X,C•) (see [GH94, page 446]). As with cohomology (see Theorem A.6), we will be
using the fact that, for any short exact sequence of complexes

0 −→ C• −→ D• −→ E• −→ 0

there is a long exact sequence of hypercohomology

· · · −→ Hi(C•) −→ Hi(D•) −→ Hi(E•) −→ Hi+1(C•) −→ · · · .

In the text, we will only work with simple complexes made up of just two sheaves, which will
always be sheaves of sections of a holomorphic vector bundle, and their Dolbeault resolutions,
so the hypercohomology groups of a complex C• : E Fd are calculated according to the
double complex

0 0

0 Ω0(E) Ω0(F ) 0

0 Ω0,1(E) Ω0,1(F ) 0.

0 0

d

∂̄E −∂̄F

d
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from which we obtain the complex

0 Ω0(E) Ω0,1(E)⊕ Ω0(F ) Ω0,1(F ) 0.f g

The maps f and g are defined as

f = ∂̄E + d,

g = d− ∂̄F ,
(1.2)

and the three non-zero hypercohomology spaces are

H0(C•) = ker f,

H1(C•) = ker g/ Im f,

H2(C•) = Ω0,1(F )/ Im g.

(1.3)

1.7 Algebraic curves and the compactified Jacobian

Recall Example 1.2, where we saw that smooth plane algebraic curves are Riemann surfaces.
This gives us a glimpse into a much deeper relationship between Riemann surfaces and algebraic
curves. In fact, any compact Riemann surface can be embedded in a projective space CPn and
is thus a smooth algebraic curve (roughly speaking, the zero set of a collection of homogeneous
polynomials) and vice versa (see [GH94, Chapter 2]). Via Serre’s GAGA theorems, we are
justified in working with Riemann surfaces in the algebraic category, and so we will follow the
standard practice of blurring the distinction between the algebraic and analytic categories, as
they give rise to completely parallel theories.

We will, however, want to go somewhat further in considering algebraic curves that are
not necessarily smooth – they may have singular points (going back to Example 1.2, these are
points where the three partial derivatives vanish simultaneously). Moreover, we will also want
to consider line bundles on these types of curves and so we need to know something about
their Jacobians, thought of as the set of isomorphism classes of rank 1 locally free sheaves. In
order to do that, we will restrict ourselves to integral curves X and consider their normalization
ν : X̃ → X, obtained by successively blowing up the singularities. Then X̃ is a smooth projective
curve and ν is a birational morphism (see [Liu02, Section 8.4.1] and [Har77, Exercise II.5.8, page
232]). If, for example, the singularities of X are r simple nodes, we have the following exact
sequence (see a proof in [GO12, Proposition 4.1])

0 (C∗)r Jac(X) Jac(X̃) 0.ν∗ (1.4)

It tells us that Jac(X) is a fiber bundle over Jac(X̃) (the regular Jacobian of a smooth curve)
with non-compact fibers. We can compactify this Jacobian by adding the rank 1 torsion free
sheaves (of degree 0, see Definition 1.24 below) on X.

First we recall that, for a module M over an integral domain A, we define the torsion
submodule Mtors to be the set of elements m ∈M such that there exists a non-zero a ∈ A with
am = 0.
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Definition 1.21. Let F be a sheaf of OX -modules over an integral curve X. Its torsion subsheaf
Ftors is such that Ftors(U) = F(U)tors, for every affine open set U of X. We say that F is torsion
free if Ftors = 0.

If F is coherent and non-zero then, by [Pot97, Lemma 2.6.1, page 28], there is a non-empty
open subset U of X such that F|U ∼= OnX |U , for some n ≥ 0. The number n is called the rank of
the torsion-free sheaf F . This tells us that a torsion-free coherent sheaf is in fact locally free on
almost the entire curve. Moreover, on a smooth curve there is in fact no distinction between
being torsion-free and being locally free, a fact that we record in the following result.

Proposition 1.22 ([Pot97, Lemma 5.2.1, page 72]). Torsion-free coherent sheaves on a smooth
curve are locally free.

Remark 1.23. If Ftors 6= 0, then it is supported on a finite number of points of X, and the
converse is true as well (by [Liu02, Exercise 1.14 (d), page 174] together with [Har77, Exercise
5.6 (c), page 124]).

To make sense of the degree of a torsion-free sheaf, we use the following definition.

Definition 1.24. The degree of a rank 1 torsion-free sheaf L on a curve X is defined such that
Riemann-Roch holds, i.e.,

deg(L) := h0(X,L)− h1(X,L) + g − 1,

and it has all the usual properties of the degree of a locally free sheaf (see [Pot97, page 30]
and [New78, page 130]).

The number g in the formula above is the arithmetic genus of the curve X, defined by

g = 1− h0(X,OX) + h1(X,OX). (1.5)

If X is smooth, then its arithmetic genus coincides with the topological genus defined in
Proposition 1.1 (see [Mir95, page 192]).

The property of being torsion-free can also be checked at the stalks and it means that, for
every p ∈ X, Fp is a torsion-free OX,p-module.

Example 1.25 (A rank 1 torsion free sheaf that is not locally free). Let X be the singular
plane algebraic curve defined by the equation xy = 0. Its normalization ν : X̃ → X consists of
two disjoint copies of the affine line (see Figure 1.1).

Consider then the pushforward sheaf ν∗OX̃ . For p ∈ X \ {(0, 0)}, we have the isomorphisms
of stalks

(
ν∗OX̃

)
p
∼=
(
O
X̃

)
ν−1(p)

∼= (OX)p, since ν is an isomorphism away from (0, 0). So ν∗OX̃
is a rank 1 locally free sheaf when restricted to X \ {(0, 0)}.

But, if ν−1(0, 0) = {q1, q2}, we have(
ν∗OX̃

)
(0,0)
∼= O

X̃,q1
⊕O

X̃,q2

and
OX,(0,0) =

{
(f, g) ∈ O

X̃,q1
⊕O

X̃,q2
| f(q1) = g(q2)

}
.
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(0, 0)

q1

q2

p

n−1(p)

X

X̃

n

Figure 1.1: Normalization of the singular curve xy = 0.

Now
(
ν∗OX̃

)
(0,0)

is torsion-free as a OX,(0,0)-module since if it were not, that would mean that
O
X̃,q1

would not be torsion-free as a O
X̃,q1

-module, which is absurd.

However,
(
ν∗OX̃

)
(0,0)

is not free of rank 1 as a OX,(0,0)-module. In order to see why, we first
note that (

ν∗OX̃
)

(0,0)
∼= C[z]⊕ C[z]

and
OX,(0,0) ∼= {(α1, α2) ∈ C[z]⊕ C[z] | α1(0) = α2(0)}.

Suppose there exists (f1, f2) ∈ C[z]⊕ C[z] such that

C[z]⊕ C[z] = OX,(0,0) · (f1, f2),

then for every g ∈ C[z], f1|g which means that f1 ∈ C and the same is true for f2. At least one
of the fi is non-zero so suppose f1 6= 0. But then there must exist (α1, α2) ∈ C[z]⊕ C[z] with
α1(0) = α2(0) such that 0 = α1f1

1 = α2f2

which implies that α2(0) = α1(0) = 0, which is absurd.
In fact, it is not free of any rank. Take any two (non-zero) pairs (f1, f2) and (g1, g2) in

C[z]⊕ C[z]. Since the polynomials in the pairs (zg1, zg2) and (−zf1,−zf2) all vanish at 0, the
equation

(zg1, zg2)(f1, f2) + (−zf1,−zf2)(g1, g2) = 0
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tells us that there are no two linearly independent elements in
(
ν∗OX̃

)
(0,0)

as a OX,(0,0)-module,
and so it cannot be a free module of any rank ≥ 2.

We then obtain a new object, the compactified Jacobian of the singular curve X, denoted
by Jac(X) (similarly, we denote by Jacd(X) the space of rank 1 torsion-free sheaves on X of
degree d). Although we will not study this object in detail in this text, we would like to mention
that it is a singular variety, unlike the Jacobian of a smooth curve. However, if X is integral
and embedded in a surface, then Jac(X) is irreducible (see [Reg80] and [Kas13] for more on the
compactified Jacobian).

1.8 Integrable systems

We shall now review the basics of symplectic geometry, adapted to the complex/holomorphic
case, and having as a destination the definition of a completely integrable system. We follow
[Aud96], [Sil08], and [HSW99].

Definition 1.26. A symplectic manifold is a pair (M,ω), where M is a complex manifold and
ω is a closed non-degenerate holomorphic 2-form on M , i.e., a form of type (2, 0) (called the
symplectic form).

Remark 1.27. The non-degeneracy of ω implies that M has even dimension.

Definition 1.28. A vector field X on M is said to be symplectic if iXω is a closed 1-form, i.e.,
d(iXω) = 0. X is said to be Hamiltonian if iXω is exact, i.e., there exists f ∈ H0(M,OM ) such
that iXω = df .

The submanifolds of M can be classified according to how the symplectic form behaves on
their tangent bundle. The following will be of particular importance to us.

Definition 1.29. A submanifold N of a symplectic manifold is said to be Lagrangian if
dimN = dimM

2 , and ω|N = 0.

The non-degeneracy of ω allows us to define an isomorphism between sections of TM (vector
fields) and T ∗M (1-forms) using the interior product

X 7−→ iXω.

The following is then a well-defined concept.

Definition 1.30. Let f ∈ H0(M,OM ). The Hamiltonian vector field associated to f is the
(unique) vector field Xf such that iXf

ω = df .

Hamiltonian vector fields allow us to define the following bilinear pairing on the space of
holomorphic functions of M .

Definition 1.31. On any symplectic manifold (M,ω), we define the Poisson bracket {·, ·} on
H0(M,OM ) by

{f, g} = ω(Xf , Xg) = df(Xg) = −dg(Xf ).

Two functions f, g ∈ H0(M,OM ) are said to Poisson-commute if {f, g} = 0.
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Definition 1.32. A symplectic manifold (M,ω) with dimM = 2n is a completely integrable
system if there exist n functions f1, . . . , fn ∈ H0(M,OM ) such that

1. the fi are functionally independent – for every point p in an open dense subset U of M ,
the 1-forms (dfi)p are independent (equivalently, the vectors Xfi

(p) are independent);

2. the fi Poisson-commute with each other.

Proposition 1.33. Let (M,ω) be a completely integrable system via the n functions f1, . . . , fn.
Letting F = (f1, . . . , fn), if c is a regular value of F , then F−1(c) is a Lagrangian submanifold
of M .

Proof. If c is a regular value of F , then F−1(c) is a submanifold of M with dimension equal to
dimM − n = n.

Moreover, at every point p ∈ F−1(c), the 1-forms (dfi)p are linearly independent and so the
corresponding Hamiltonian vector fields Xi at p form a basis of TpF−1(c). Since the functions
Poisson commute, we have, for all i, j,

ω(Xi, Xj) = {fi, fj} = 0. �

As a first example of a completely integrable system, we present the cotangent space to the
Jacobian of a compact Riemann surface X of genus g. We omit most details here since it will be
greatly expanded in Section 3.3.

Example 1.34. Let X be a Riemann surface and Jac(X) its Jacobian. It is a complex torus
so it has trivial cotangent bundle, i.e., T ∗ Jac(X) ∼= Jac(X) × H0(X,K) (we shall see, in
Proposition 2.7, that the tangent space at any point of Jac(X) is isomorphic to H1(X,OX) ∼=
H0,1(X,OX)). The symplectic form ω coming from the Liouville 1-form will be (see Section 2.3)

ω((Ȧ, Φ̇), (Ḃ, Ψ̇)) =
∫
X

(Ȧ ∧ Ψ̇− Ḃ ∧ Φ̇).

Consider the map
h : T ∗ Jac(X) −→ H0(X,K)

(L,Φ) 7−→ Φ.

We have h0(X,K) = g, and Serre duality tells us that H0(X,K)∗ ∼= H1(X,OX). Consider a
basis α1, . . . , αg of H0(X,K)∗, with representatives β1, . . . , βg ∈ Ω0,1(X,OX), and the functions
f1, . . . , fg : T ∗ Jac(X)→ C, defined by

fi(L,Φ) =
∫
X
βi(Φ).

It can be seen that the Hamiltonian vector fields Xi are (βi, 0), meaning that the fi Poisson
commute and are functionally independent, so we have a completely integrable system. Thus,
for every Φ ∈ H0(X,K), h−1(Φ) will be a Lagrangian subvariety.
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Chapter 2

Higgs bundles and their moduli
space

2.1 The moduli space of vector bundles

Let X be a compact Riemann surface of genus g ≥ 2. Smooth complex vector bundles on
X are classified by their rank n and degree d [Pot97, Corollary 3.5.4]. When turning to the
holomorphic case however, the situation is not so simple, giving rise to the notion of a moduli
space of vector bundles, whose construction we describe here.

Recall from Section 1.5 that a holomorphic vector bundle E can be thought of as a pair
(E, ∂̄E), where E is the underlying smooth vector bundle and ∂̄E a Dolbeault operator. Fixing E,
we start by considering the space of all possible Dolbeault operators on it

A∂̄ = A∂̄(E) := {∂̄E | ∂̄E is a Dolbeault operator on E}.

We call A∂̄ the configuration space.
For the remainder of the text, we will not make the distinction between the holomorphic

vector bundle E and its underlying smooth bundle, since it will always be clear which one we
are referring to (e.g., Ωk(E) will always means Ωk(E)).

Proposition 2.1. The configuration space A∂̄ is an affine space over Ω0,1(EndE).

Proof. Let ∂̄1, ∂̄2 ∈ A∂̄ , f ∈ C∞(X), and s ∈ Ω0(E). We have

(∂̄1 − ∂̄2)(fs) = ∂̄f ⊗ s+ f∂̄1s− ∂̄f ⊗ s− f∂̄2s = f(∂̄1 − ∂̄2)(s),

which means that ∂̄1 − ∂̄2 ∈ Ω0,1(EndE).
Conversely let ∂̄E ∈ A∂̄ and A ∈ Ω0,1(EndE). Then

(∂̄E +A)(fs) = ∂̄E(fs) +A(fs) = ∂̄f ⊗ s+ f∂̄Es+ f(As) = ∂̄f ⊗ s+ f(∂̄E +A)s,

which means that ∂̄E +A satisfies the Leibniz rule and so belongs to A∂̄ . �

Now, consider the action of the group of gauge transformations Gc := Ω0(AutE) on A∂̄ . It
acts by conjugation on the Dolbeault operators,

g · ∂̄E := g−1 ◦ ∂̄E ◦ g.

21



22 2.1. The moduli space of vector bundles

Note that (E, ∂̄E) and (E, g · ∂̄E) are isomorphic as holomorphic vector bundles, by applying
Remark 1.16 to the map g−1, and seeing that

(g · ∂̄E) ◦ g−1 − g−1 ◦ ∂̄E = 0.

We could first consider the full space of orbits A∂̄/Gc. However it turns out to be quite
unwieldy for our purposes (it is not even Hausdorff, see [Tha96, Section 2]). What we shall do
instead is “throw away the unstable bundles”, according to the following definition.

Definition 2.2. The slope µ of a holomorphic vector bundle E is defined as

µ(E) := degE
rkE .

A holomorphic vector bundle E is said to be stable (respectively semistable) if for any proper
non-zero holomorphic subbundle F ⊂ E, we have µ(F ) < µ(E) (respectively µ(F ) ≤ µ(E)).

A semistable bundle E is polystable if it is a direct sum of stable bundles, with all of the
summands having slope equal to µ(E).

Remark 2.3. We have the following chain of inclusions

{stable} ⊆ {polystable} ⊆ {semistable}.

We shall denote by Ass
∂̄

and As
∂̄
the spaces of semistable and stable holomorphic vector

bundles, respectively, in A∂̄ .

Remark 2.4. Stability and semistability of vector bundles are open conditions ([Pot97, Proposition
7.2.6, page 115]), i.e., As

∂̄
and Ass

∂̄
are open sets of A∂̄ .

We start by defining the smooth locus of the moduli space, considering only the orbits of the
gauge group acting on the stable bundles

N s(n, d) := As
∂̄
/Gc.

This is the moduli space of stable bundles. It is smooth and projective if n and d are coprime,
otherwise it is still smooth but only quasi-projective (see [Pot97, Theorem 7.2.1 and Section
8.3, Theorem 8.3.2] and [New78, Theorem 5.8 and Remark 5.9]). To compactify it, we add the
(strictly) semistable bundles, but now we cannot simply identify points in the same orbit; a
stronger identification must be made, which we describe as follows (see [Pot97, page 76] for
details).

Given any semistable bundle E, we can associate to it a Jordan-Hölder filtration, i.e., a
sequence of subbundles

0 = F0 ⊂ F2 ⊂ · · · ⊂ Fk = E

such that each successive quotient Fi/Fi−1 is stable with slope equal to µ(E). The direct sum⊕
i Fi/Fi−1 is unique up to isomorphism, we denote it by Gr(E). Two bundles E1 and E2 are

then said to be S-equivalent if Gr(E1) ∼= Gr(E2). Every S-equivalence class has exactly one
polystable representative. If E is a stable bundle, then its filtration reduces to 0 ⊂ E, which
means that Gr(E) ∼= E and so two stable bundles are S-equivalent if and only if they are
isomorphic. By Remark 1.16, this means precisely that they are on the same orbit of the gauge
group.
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Definition 2.5. The moduli space of rank n and degree d semistable vector bundles on X is

N (n, d) := Ass
∂̄

� Gc,

where the double slash means we are identifying the S-equivalent bundles.

Remark 2.6. Identifying S-equivalent bundles is the same as identifying orbits whose closures
have non-empty intersection ([New78, Complement 5.8.1]).

One should note that our treatment of the moduli space in this work is not rigorous. Since
we are dealing with the quotient of an infinite dimensional manifold by an infinite dimensional
Lie group, there is some caution needed in order to make sense of such a construction, i.e., to
endow the space N (n, d) with the structure of a manifold. In order to invoke results from the
theory of Banach manifolds, we would need to complete the spaces we are considering, with
respect to certain Sobolev norms (see [DK90] for details).

The space N (n, d) is projective and singular precisely at the points represented by strictly
polystable bundles, except when g = 2, n = 2 and d is even ([NR69, Theorem 1, page 20]).

If n and d are coprime, then all semistable bundles are in fact stable, simply because
there is no way to write the irreducible fraction n/d with a smaller denominator. So indeed
N (n, d) = N s(n, d) if n and d are coprime.

All line bundles are stable (there are no non-zero proper subbundles) and so N (1, d) is the
space of all line bundles of degree d, i.e., Jacd(X). If d = 0, we recover the Jacobian Jac(X).

2.1.1 Tangent space

We will now describe the tangent space T[E]N (n, d), where E is a stable bundle, so that
[E] is a point in the smooth moduli space N s(n, d). This amounts to describing the quotient
TEAs∂̄/TEG

c(E), where TEGc(E) is the tangent space at E of the orbit Gc(E), given by the
infinitesimal action of the group of gauge transformations.

Since, by Proposition 2.1, A∂̄ is an affine space over Ω0,1(EndE) and As
∂̄
is an open set

(Remark 2.4), we have that, for any E ∈ As
∂̄
,

TEAs∂̄ = TEA∂̄ ∼= Ω0,1(EndE).

We now determine the infinitesimal action of ψ ∈ Ω0(EndE), the Lie algebra of Gc, on
∂̄E ∈ As∂̄ , getting

d

dt

∣∣∣∣
t=0

exp(−ψt)∂̄E exp(ψt) = −ψ∂̄E + ∂̄Eψ = ∂̄Eψ ∈ ∂̄E(Ω0(EndE)).

So we are looking at the Dolbeault cohomology group

H0,1(EndE) = Ω0,1(EndE)/∂̄EΩ0(EndE).

Together with Dolbeault’s theorem, we obtain the following identifications.

Proposition 2.7. If E is a stable vector bundle, then

T[E]N (n, d) ∼= H0,1(X,EndE) ∼= H1(X,EndE).
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We can now use this result to calculate the dimension of our moduli space.

Corollary 2.8. The dimension of the moduli space N (n, d) is 1 + n2(g − 1).

Proof. By the previous proposition, what we need to know is the value of h1(X,EndE), where
E is a stable bundle. It can be obtained via Riemann-Roch as

h1(X,EndE) = h0(X,EndE)− deg(EndE)− rk(EndE)(1− g).

The result follows from knowing that

deg(EndE) = deg(E ⊗ E∗) = rk(E) deg(E∗) + rk(E∗) deg(E) = 0;

and that h0(X,EndE) = 1. This is because, for a stable bundle E, we have H0(X,EndE) ∼= C,
i.e., every endomorphism of E is of the form λ idE , with λ ∈ C (a homothety), by [Pot97,
Corollary 5.3.4]. �

2.2 The moduli space of Higgs bundles

Let X be a compact Riemann surface of genus g ≥ 2, as in the previous section. Recall from
Section 1.6 that K := T ∗X is called the canonical bundle of X.

Definition 2.9. A Higgs bundle is a pair (E,Φ), where E is a holomorphic vector bundle on X,
and Φ, called the Higgs field, is a holomorphic section of the bundle EndE ⊗K, i.e., an element
of H0(X,EndE ⊗K).

Remark 2.10. Recall that, by Serre duality (Theorem 1.18) the following pairing is non-degenerate
(from now on, we omit the ∧ symbol inside the integral)

H0,1(X,EndE)×H1,0(X,EndE) −→ C

(Ȧ, Φ̇) 7−→
∫
X

tr(ȦΦ̇).

and, together with Dolbeault’s theorem, H1(X,EndE)∗ ∼= H0(X,EndE⊗K). This means that,
given a stable bundle E, a Higgs field on E is an element of the cotangent space T ∗[E]N (n, d). It
can then be seen in two ways: as a holomorphic map Φ : E → E ⊗K and, since EndE ⊗K ∼=
T ∗X ⊗EndE, as a holomorphic 1-form on X with values in the bundle EndE (locally, a matrix
valued form of type (1, 0)).

We now adapt the stability conditions of Definition 2.2 to the case of Higgs bundles, the main
difference being that we are only interested in Φ-invariant vector subbundles, i.e., subbundles F
such that Φ(F ) ⊆ F ⊗K.

Definition 2.11. A Higgs bundle (E,Φ) is stable if, for every proper, non-zero, Φ-invariant
subbundle F ⊂ E, µ(F ) < µ(E) (a similar adaptation is made to define semistable and polystable
Higgs bundles).

Remark 2.12. Note that any stable vector bundle can be made into a stable Higgs bundle by
taking Φ = 0.
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To describe the moduli space of Higgs bundles, we first consider the configuration space

H = {(∂̄E ,Φ) ∈ A∂̄ × Ω1,0(X,EndE) | ∂̄EΦ = 0}

and its subsets

Hss = {(∂̄E ,Φ) ∈ H | (∂̄E ,Φ) is semistable},

Hs = {(∂̄E ,Φ) ∈ H | (∂̄E ,Φ) is stable}.

Just like for vector bundles (recall Remark 2.4) stability of Higgs bundles is also an open condition
(it follows from the much more general results in [MFK94, Proposition 1.9, Theorem 1.10]).

As before, an element g ∈ Gc = Ω0(AutE) acts on Hss by conjugation

g · (∂̄E ,Φ) = (g−1 ◦ ∂̄E ◦ g, g−1 ◦ Φ ◦ g).

As with the moduli space of vector bundles, to obtain the smooth locus of the moduli space
of Higgs bundles, we take the stable bundles and identify them whenever they lie on the same
orbit of the gauge group action, and get the moduli space of stable Higgs bundles

Ms(n, d) := Hs/Gc.

We define the Jordan-Hölder filtration for Higgs bundles in a similar manner as before, and
so we also get a notion of S-equivalence, which allows us to consider the moduli space of Higgs
bundles

M(n, d) := Hss � Gc.

The spaceMs(n, d) is open and dense inM(n, d) and they are equal if n and d are coprime
([Nit91, Theorem 5.10]). Moreover, from Remark 2.12, N (n, d) ⊂M(n, d), for any pair (n, d).

Elements of the moduli spaceM(n, d) are equivalence classes represented by some Higgs
bundle (E,Φ). To alleviate notation, we will sometimes not make the distinction between the
class [(E,Φ)] and the bundle (E,Φ).

Example 2.13. Choose a square root K1/2 of the canonical bundle K (i.e., a line bundle K1/2

such that K1/2 ⊗K1/2 ∼= K) and a holomorphic section q of K2. Then we get a Higgs bundle
by considering E = K1/2 ⊕K−1/2 and the map

Φq =

0 q

1 0

 .
Note that, if α ∈ H0(X,K1/2) and β ∈ H0(X,K−1/2), we have0 q

1 0

α
β

 =

q ⊗ β
α

 ∈ H0(X, (K2 ⊗K−1/2)⊕K1/2).

Since (K2 ⊗K−1/2)⊕K1/2 ∼= E ⊗K, we have that Φq is a Higgs field for the bundle E.
Note also that the bundle E is not stable since µ(K1/2) = deg(K1/2) = g−1 and µ(E) = 0, so

µ(K1/2) > µ(E). But if we take a subbundle L other than K1/2, the projection map L→ K−1/2
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is a non-zero holomorphic section of the line bundle L−1⊗K−1/2, which means, by Remark 1.13,
that deg(L−1 ⊗K−1/2) ≥ 0, telling us that deg(L) ≤ deg(K−1/2) < 0 = deg(E). So K1/2 is the
only destabilizing subbundle of E, but it is not Φq-invariant, so the Higgs bundle (E,Φq) is
stable.

The complement of T ∗N (n, d) inM(n, d) (recall Remark 2.10) is made out of pairs (E,Φ)
like the example above, where E is not stable by itself but becomes stable when the Higgs field
is added, meaning that the destabilizing subbundles of E are not invariant by the Higgs field.

2.2.1 Tangent space

We will now describe the tangent space T[(E,Φ)]M(n, d), where (E,Φ) is a stable bundle, as
the quotient T(E,Φ)Hs∂̄/T(E,Φ)Gc(E,Φ), following the same method of Section 2.1.1.

In order to see what is the tangent space of Hs at a point (∂̄E ,Φ), we need to linearize the
equation ∂̄EΦ = 0, which amounts to considering the map

F : A∂̄ × Ω1,0(EndE) −→ Ω1,1(EndE)
(∂̄E ,Φ) 7−→ ∂̄EΦ

and calculating its derivative at a point (∂̄E ,Φ), in a direction (Ȧ, Φ̇) ∈ Ω0,1(EndE)⊕Ω1,0(EndE).
Using the curve γ(t) = (∂̄E + tȦ,Φ + tΦ̇) in A∂̄ × Ω1,0(EndE), we get

DF(∂̄E ,Φ)(Ȧ, Φ̇) = d

dt
(∂̄E + tȦ)(Φ + tΦ̇)

∣∣∣∣
t=0

= d

dt
(∂̄EΦ + t∂̄EΦ̇ + t[Ȧ,Φ] + t2[Ȧ, Φ̇])

∣∣∣∣
t=0

= ∂̄EΦ̇− [Φ, Ȧ].

So we obtain a description of the tangent space of Hs as

T(∂̄E ,Φ)H
s = {(Ȧ, Φ̇) ∈ Ω0,1(EndE)⊕ Ω1,0(EndE) | ∂̄EΦ̇ = [Φ, Ȧ]}.

Now, the infinitesimal action of ψ ∈ Ω0(EndE) on ∂̄E has already been calculated as

d

dt

∣∣∣∣
t=0

exp(−ψt)∂̄E0 exp(ψt) = ∂̄E0ψ ∈ Ω0,1(EndE),

and the action on Φ is

d

dt

∣∣∣∣
t=0

exp(−ψt)Φ exp(ψt) = −ψΦ + Φψ = [Φ, ψ] ∈ Ω1,0(EndE),

where the first ψ in the commutator is to be understood as a map Ω1,0(E) → Ω1,0(E). Note
also that the tangent vectors coming from the infinitesimal action of Gc are in the tangent space,
since

DF(∂̄E ,Φ)(∂̄Eψ, [Φ, ψ]) = ∂̄E [Φ, ψ]− [Φ, ∂̄Eψ]

= [∂̄EΦ, ψ] + [Φ, ∂̄Eψ]− [Φ, ∂̄Eψ] = 0.
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We are now ready to identify the tangent space of M(n, d) at a point (E,Φ) with a
hypercohomology group of the complex

C• = C•(E,Φ) : EndE EndE ⊗K.[Φ,−] (2.1)

We calculate the hypercohomology groups by looking at its Dolbeault resolution (recall Sec-
tion 1.6)

0 0

0 Ω0(EndE) Ω1,0(EndE) 0

0 Ω0,1(EndE) Ω1,1(EndE) 0.

0 0

[Φ,−]

∂̄E −∂̄E

[Φ,−]

giving us the complex

0 Ω0(EndE) Ω0,1(EndE)⊕ Ω1,0(EndE) Ω1,1(EndE) 0,f g

where, by (1.2), the map f is given by the infinitesimal action

f(s) = (∂̄Es, [Φ, s]), s ∈ Ω0(EndE),

while g is given by (minus) the derivative of F

g(α, β) = −∂̄Eβ + [Φ, α], (α, β) ∈ Ω0,1(EndE)⊕ Ω1,0(EndE).

By (1.3) the first hypercohomology group H1(C•) of the complex C• in (2.1) is given by
H1(C•) = ker g/ Im f . Thus we have proved the following identification.

Proposition 2.14. Let (E,Φ) be a stable Higgs bundle representing a point inM(n, d). Then

T[(E,Φ)]M(n, d) ∼= H1(C•).

We can then use this to calculate the dimension of the moduli spaceM(n, d).

Corollary 2.15. The dimension of the moduli spaceM(n, d) is n2(2g − 2) + 2.

Proof. We have the following short exact sequence of complexes ([BR94, Remark 2.7])

D• C• E•

0 0 EndE EndE 0

0 EndE ⊗K EndE ⊗K 0 0,

[Φ,−]
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whose long exact sequence in hypercohomology is

0 H0(D•) H0(C•) H0(E•)

H1(D•) H1(C•) H1(E•)

H2(D•) H2(C•) H2(E•) 0.

Calculating the hypercohomology groups of D• and E• and the maps Hi(D•)→ Hi+1(E•)
(by unwinding the definitions) the above sequence becomes

0 H0(C•) H0(X,EndE) H0(X,End(E)⊗K)

H1(C•) H1(X,EndE) H1(X,End(E)⊗K)

H2(C•) 0

[Φ,−]

[Φ,−] (2.2)

so we have
dim(H0(C•))− h0(X,EndE) + h0(X,End(E)⊗K)

− dim(H1(C•)) + h1(X,EndE)− h1(X,End(E)⊗K)
+ dim(H2(C•)) = 0.

Now we can determine the quantity dim(H1(C•)) by first noting that, via Riemann-Roch, we get

−h0(X,EndE) + h1(X,EndE) = n2(g − 1),

and
h0(X,EndE ⊗K)− h1(X,EndE ⊗K) = n2(g − 1).

We then dualize sequence (2.2) to get

0 H2(C•)∗ H0(X,EndE) H0(X,End(E)⊗K)

H1(C•)∗ H1(X,EndE) H1(X,End(E)⊗K)

H0(C•)∗ 0

[−,Φ]

[−,Φ]

since, using Serre duality, we have, for i ∈ {0, 1}, H i(X,EndE ⊗ K)∗ ∼= H1−i(X,EndE),
and the map [Φ,−] is anti-self-adjoint. It then follows that dimH0(C•)∗ = dimH2(C•). But
dimH0(C•) = 1, since, by (1.3),

H0(C•) = ker f = {s ∈ Ω0(EndE) | ∂̄Es = 0 = [Φ, s]}

i.e., it is the group of holomorphic endomorphisms of the Higgs bundle (E,Φ) and, just like the
similar result for stable vector bundles used in Corollary 2.8, these are precisely the homotheties
(see [Wen16, Remark 4.2.8]). �
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Note that dimM(n, d) = 2 dimN (n, d), which is consistent with the fact that the cotangent
bundle of the moduli space of vector bundles is an open dense subset of the moduli space of
Higgs bundles (see [Hit87b]).

2.3 Symplectic geometry of the moduli space

Let (E,Φ) represent a point in T ∗N (n, d), i.e., (E,Φ) is a stable Higgs bundle with underlying
stable bundle E. There is a canonical symplectic form on

T[(E,Φ)](T ∗N (n, d)) ∼= T[E]N (n, d)⊕ TΦ(T ∗[E]N (n, d))
∼= H1(X,EndE)⊕H0(X,EndE ⊗K)

which Serre duality tells us is given by

((Ȧ, Φ̇), (Ḃ, Ψ̇)) 7→
∫
X

tr(ȦΨ̇− ḂΦ̇).

Thus we obtain a holomorphic symplectic form on the cotangent bundle T ∗N (n, d). It is actually
possible to extend this to the smooth locus of the whole moduli space of Higgs bundlesM(n, d)
using the same formula (see [Hit87b; Bis94]). So the moduli spaceM(n, d) becomes a symplectic
manifold.

Proposition 2.16. There is a holomorphic symplectic form ω onM(n, d), defined by

ω((Ȧ, Φ̇), (Ḃ, Ψ̇)) =
∫
X

tr(ȦΨ̇− ḂΦ̇)

where (Ȧ, Φ̇), (Ḃ, Ψ̇) ∈ Ω0,1(EndE) ⊕ Ω1,0(EndE) represent tangent vectors at the point of
M(n, d) represented by the stable Higgs bundle (E,Φ).

In the previous proposition, as in the rest of the text, anytime we mention objects that
require smoothness, like the symplectic form ω, it is to be understood that we are restricting to
the smooth locus of the moduli spaces.

We now explain, in an informal way, how to arrive at the symplectic form ω by working in
the configuration space A∂̄ . Although the calculations are easier since it is an affine space, care
must be taken as it is infinite dimensional, so there are questions of Analysis that arise but will
not be treated here.

Since As
∂̄
is an open set of an affine space over Ω0,1(EndE), its tangent bundle is trivial, i.e.,

TAs
∂̄
∼= As∂̄ × Ω0,1(EndE).

The same holds true for the cotangent bundle

T ∗As
∂̄
∼= As∂̄ × Ω1,0(EndE).

The Liouville 1-form λ of the cotangent bundle is given by

λ(E,Φ)(Ȧ, Φ̇) =
∫
X

tr(ΦȦ),
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where (E,Φ) ∈ T ∗As
∂̄
, (Ȧ, Φ̇) ∈ T(E,Φ)(T ∗As∂̄) ∼= Ω0,1(EndE) ⊕ Ω1,0(EndE). To get the

symplectic form ω = −dλ, we take two vectors (Ȧ, Φ̇), (Ḃ, Ψ̇) ∈ T(E,Φ)(T ∗As∂̄) and note that
they can be extended to constant vector fields Y1 and Y2, respectively, on T ∗As∂̄ (because of its
triviality). We can then calculate dλ as

dλ(E,Φ)((Ȧ, Φ̇), (Ḃ, Ψ̇)) = d(λ(Y2))(E,Φ)(Ȧ, Φ̇)− d(λ(Y1))(E,Φ)(Ḃ, Ψ̇) + λ([Y1, Y2])(E,Φ).

But since the Lie bracket of two constant vector fields is zero, the last term disappears and the
above becomes ∫

X
tr(Φ̇Ḃ)−

∫
X

tr(Ψ̇Ȧ) =
∫
X

tr(Φ̇Ḃ − Ψ̇Ȧ).

So we get a symplectic form ω on T ∗A∂̄ given by

ω(E,Φ)((Ȧ, Φ̇), (Ḃ, Ψ̇)) =
∫
X

tr(Ψ̇Ȧ− Φ̇Ḃ).

Now taking g ∈ Gc, we see that

dg(∂̄E ,Φ)(Ȧ, Φ̇) = d

dt
(g−1∂̄Eg + tg−1Ȧg, g−1Φg + tg−1Φ̇g)

∣∣∣∣
t=0

= (g−1Ȧg, g−1Φ̇g).

It is clear then that g∗ω = ω, meaning we get a well defined 2-form ω on the quotient
T ∗N (n, d), which coincides with the one obtained earlier, and so it is a symplectic form.
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The Hitchin map and its fibers

3.1 The Hitchin map

Our starting point is a basic idea in linear algebra, the study of an endomorphism through
its eigenvalues and eigenspaces.

Let (E,Φ) be a Higgs bundle of rank n over X, and consider a point x ∈ X. The characteristic
polynomial P (λ)x of Φx is det(Φx−λ idEx), a map ∧nEx → ∧nEx⊗Kn

x . This can be written as

P (λ)x =
n∑
i=0

si(x)λn−i

where si(x) = (−1)i tr(∧iΦx) ∈ Ki
x.

The key point here is that the coefficients si are canonically defined and so, letting x vary,
these become well defined sections of the bundles Ki. It then makes sense to define the following
map on the moduli spaceM(n, d), collecting the characteristic coefficients of the Higgs field Φ.

Definition 3.1. The Hitchin map h is defined as

h : M(n, d) −→
n⊕
i=1

H0(X,Ki)

[(E,Φ)] 7−→ (s1, . . . , sn),

with si = (−1)i tr(∧iΦ).

Remark 3.2. Any basis of the algebra of invariant polynomials for the Lie algebra of GL(n,C)
could be used to define a Hitchin map (see [Hit87a, §4]). For example we could take the basis
tr Φi which, by Newton’s relations, are related to the si via

i tr(∧iΦ) =
i∑

j=1
(−1)j+1 tr(Φj) tr(∧i−jΦ).

Proposition 3.3. The space

B :=
n⊕
i=1

H0(X,Ki)

(called the Hitchin base) is a complex vector space with dimension equal to n2(g − 1) + 1.

31
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Proof. Using Riemann-Roch we get that

h0(X,Ki)− h0(X,K1−i) = deg(Ki) + 1− g.

Now, if i = 1, we get h0(X,K) = g, and if i > 1, h0(X,Ki) = (2i− 1)(g − 1). So

dimB =
n∑
i=1

h0(X,Ki) = n2(g − 1) + 1. �

Our goal in what follows will be to understand the fibers h−1(s) for generic s ∈ B, as well as
some of the non-generic s.

Remark 3.4. The Hitchin map h is proper (see [Hit87b, Theorem 8.1] for the case of rank 2 and
[Sim94, Theorem 6.11] for the general case), so we can be sure that the fibers are compact.

3.2 Spectral curves

For any s ∈ B, we can build a spectral cover of X, a curve Xs together with a finite morphism
π : Xs → X, which, roughly speaking, records the eigenvalues of Φ.

We denote by |K| the total space of the canonical bundle K → X, which is a non-compact
complex surface. Let p : |K| → X be its canonical projection. We then consider the pullback ofK
onto its total space, together with its tautological section λ ∈ H0(|K|, p∗K), λ(v) = v ∈ (p∗K)x,
as the diagram shows

p∗K K

|K| X.

p

p

λ

Note that the pullback bundle p∗K is such that its fiber over v ∈ |K| is the fiber of K over p(v),
i.e., (p∗K)v = Kp(v) (see Figure 3.1).

X
x

Kx

v

(p∗K)v ∼= Kx

λ(v)

|K|

Figure 3.1: A fiber of the pullback bundle p∗K on the total space |K|.

Let s = (s1, . . . , sn) ∈ B. Then we define the following section of p∗Kn

Ps(λ) := λn + (p∗s1)λn−1 + (p∗s2)λn−2 + · · ·+ p∗sn ∈ H0(|K|, p∗Kn).
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Definition 3.5. The spectral curve Xs associated to s ∈ B is the zero locus in |K| (or zero
divisor) of the section Ps(λ).

We now let π : Xs → X be the restriction of the projection p to the spectral curve Xs. It is an
n-cover. In fact, consider a point x ∈ X and trivialize K around it. Then si(x) = ai ∈ Ki

x
∼= C,

and π−1(x) is the zero locus of λn + a1λ
n−1 + · · ·+ an in the fiber Kx or, equivalently, the zero

locus of zn + a1z
n−1 + · · ·+ an in C. Since a generic polynomial has n distinct complex roots,

we have an n-cover, ramified whenever Ps(λ) has multiple roots.

Remark 3.6. Since π is a n-cover, it is a proper map and so the spectral curves are all compact.

In general the curve Xs can be complicated, depending on the section Ps. It might be
non-reduced (if Ps = Qms , for some polynomial Qs and m > 1, for example P0 = λn) or reducible
(if Ps = QsRs, for some polynomials Qs and Rs of degree ≥ 1, for example, if n = 2, s = (0, ω2),
for ω ∈ H0(X,K)). However, for generic s ∈ B, we shall see that Xs is smooth, so generically
we can avoid all of these problems. Moreover, the generic singular spectral curves are integral.

Remark 3.7. Note that eachXs is a divisor on the surface |K|. Thus they are all linearly equivalent,
since they are all zeroes of sections of the same bundle, namely p∗Kn. In particular, they all
belong to the linear system of X0 = nX, where nX is the zero locus of P0(λ) = λn ∈ H0(X,Kn)
(i.e., nX is the non-reduced curve with multiplicity n, with X as the underlying reduced curve).

We will now see the total space |K| as a scheme by making use of the relative spectrum
construction (details in Appendix A.1). Indeed,

|K| = Spec(Sym(K−1)),

where we are seeing K as an OX -module. Sym(K−1) is a sheaf of algebras on X defined by
Sym(K−1)(U) = Sym(K−1(U)), for any open set U of X. So if p : |K| → X is the canonical
projection, then p−1(U) = Spec(Sym(K−1)(U)), for every open set U of X.

Indeed, we can look at this construction as a relative (fiberwise) version of the fact that, for
a vector space E ∼= Cn, we have

E = Spec(Sym(E∗))

and
Sym(E∗) =

⊕
i≥0

Symi(E∗),

where

Sym0(E∗) = C,
Sym1(E∗) = E∗ ∼= SpanC{z1, . . . , zn} (homogeneous polynomials of degree one),
Sym2(E∗) ∼= SpanC{z2

1 , z1z2 . . . , z
2
n} (homogeneous polynomials of degree 2),

and so on.
It follows from this that we have the following direct sum decomposition

Sym(K−1) = OX ⊕K−1 ⊕K−2 + · · · =
∞⊕
i=0

K−i. (3.1)
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Hence the structure sheaf of |K| at an open set of the form p−1(U) ⊂ |K|, consisting of the
regular functions on p−1(U), is

O|K|(p−1(U)) ∼= Sym(K−1)(U) =
∞⊕
i=0

K(U)−i.

This tells us that
p∗
(
O|K|

)
= Sym(K−1).

Now, given s = (s1, . . . , sn) ∈ B, the spectral curve is defined as

Xs = Spec(Sym(K−1)/Js), (3.2)

where Js is the ideal subsheaf of Sym(K−1) generated by the image of the morphism of sheaves

u : K−n −→ OX ⊕K−1 ⊕ · · · ⊕K−n ⊂ SymK−1

α 7−→ α(sn + sn−1 + · · ·+ 1).

Let us check that this is indeed the spectral curve Xs as we first defined it.

Proposition 3.8. The spectral curve Xs as defined in (3.2) agrees with Definition 3.5.

Proof. It is enough to show that both descriptions agree over an open cover of X. In a trivializing
open set U ofK−1, take a non-vanishing section η ∈ H0(U,K−1). At every x ∈ U , η(x) : Kx → C
is a coordinate on the fiber Kx.

The map u above becomes

u(ηn) = ηnsn + ηnsn−1 + · · ·+ ηn.

Now, for every i, we have
ηnsi = ηn−i+isi = ηn−iai,

where ai = ηisi ∈ K−i⊗Ki ∼= OX(U) is the expression of the si in the induced local trivialization
of Ki over U . So

u(ηn) = an + ηan−1 + · · ·+ ηn.

Since K|U = Spec(OX(U)[η]), we have

Xs|U = Spec(OX(U)[η]/〈an + an−1η + · · ·+ ηn〉).

But OX(U)[η]/〈an + an−1η + · · ·+ ηn〉 is precisely the coordinate ring of the spectral curve over
U , as we first defined it. Hence both definitions coincide. �

The canonical projection π : Xs → X is an open map and we have, using the decomposition
of K−1 in (3.1)

OXs(π−1(U)) ∼= (Sym(K−1)/Js)(U)

= OX(U)⊕K−1(U)⊕K−2(U)⊕ · · · ⊕K−(n−1)(U).

As a consequence of this discussion we have the following.
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Corollary 3.9. The pushforward of the structure sheaf of the spectral curve Xs satisfies

π∗OXs
∼= OX ⊕K−1 ⊕ · · · ⊕K−(n−1) ∼= Sym(K−1)/Js.

Proof. Let U ⊆ X be an open set. Then

π∗(OXs)(U) = OXs(π−1(U)) = OX(U)⊕K−1(U)⊕ · · · ⊕K−(n−1)(U). �

The isomorphism

Sym(K−1)/Js −→ OX ⊕K−1 ⊕ · · · ⊕K−(n−1)

can be described as follows. Take a trivializing open set U . Then the map becomes

OX(U)[λ]/〈an + an−1λ+ · · ·+ λn〉 −→ OX(U)⊕OX(U)λ⊕ · · · ⊕ OX(U)λn−1. (3.3)

It sends a class [P (x, λ)] to the remainder obtained when dividing by an + an−1λ + · · · + λn

(considering both as polynomials in the variable λ).
The algebraic description we gave of the spectral curve allows us to prove the following

simple but powerful result, which will be crucial for the calculations that follow (see definitions
in Appendix A.2 and A.3).

Corollary 3.10. The map π : Xs → X is finite, hence affine.

Proof. Let U be an affine open set of X. Then U = Spec(B), where B = OX(U). Choosing U
to be a trivializing open set for K, we get that π−1(U) = Spec(A), with

A ∼= OX(U)⊕OX(U)z ⊕ · · · ⊕ OX(U)zn−1,

where z is the image of λ under the map (3.3). It is then clear that A is a rank n module over
B, and so the map π is finite. �

For some of the results that follow, we will need to work over a compact surface, so we will
now describe how to projectivize the total space |K|. Intuitively, we add a point at infinity to
each fiber of K, turning it into a copy of P1.

We then consider the space
K := P(K ⊕OX) (3.4)

equipped with its canonical projection p : K→ X (for ease of notation, we call it the same as
the projection p : |K| → X).

The projective surface K comes equipped with the invertible sheaf OK(1), constructed by
associating to each fiber p−1(x) ∼= P1 its hyperplane bundle O(1) (recall Example 1.8).

The usefulness of the above construction comes from the fact that it is generally preferable to
have our objects sitting inside some projective variety. For example, knowing that the spectral
curve Xs sits inside K (without intersecting the points at infinity), tells us again that it is
compact (which we already checked in Remark 3.6).



36 3.2. Spectral curves

3.2.1 Properties

In this section, we prove that, as we mentioned earlier, the spectral curve is generically “nice”,
i.e., reduced, irreducible and smooth. We also calculate, in more than one way, the genus of the
curve and how it relates to both the moduli space of Higgs bundlesM(n, d) and the genus of
the base curve X. This will be a useful fact to know later. We finish by giving a description of
the ramification divisor of the smooth spectral curves.

Proposition 3.11. The set of sections s ∈ B such that Xs is reduced and irreducible is Zariski
open and non-empty.

Proof. Suppose that Xs is reducible. Then Xs = Y ∪ Z, where Y and Z are two curves on
|K|. Now by the arguments of Section 4 of [Fra22], any projective curve inside the total space
|K| ⊂ K is a spectral curve. This allows us to write both Y and Z as zero loci of sections Ps′ and
Ps′′ . And so we can write Ps = Ps′Ps′′ , with degPs = n, degPs′ = k, degPs′′ = l, with k+ l = n

and 0 < k, l < n. The dimension of the space of such s equals the sum of the dimensions of the
Hitchin bases for ranks k and l, i.e.,(

l2(g − 1) + 1
)

+
(
k2(g − 1) + 1

)
= (k2 + l2)(g − 1) + 2.

This is less than the dimension of the full Hitchin base for rank n, i.e., less than n2(g − 1) + 1,
if and only if 2kl(g − 1) > 1. Since g ≥ 2, the inequality is true for any k, l in the conditions
mentioned above, and so it is always possible to find an s such that Ps can not be factorized.

Openness of the set is clear since being reducible is a closed condition. �

Proposition 3.12 ([Hit87a, Section 5.1]). For generic elements s ∈ B, the spectral curve Xs is
smooth.

Proof. Consider the linear system
d = {Xs | s ∈ B}

of all spectral curves, in particular, of the curve X0 = nX (recall Remark 3.7), on K. If we can
then prove that d has no base-points (points that belong to all elements of d), Bertini’s theorem
as presented in [Har77, III.10.9, page 274] tells us that its generic element is smooth.

Assume that y ∈ K is a base-point for d. Since every spectral curve Xs stays away from the
points at infinity, we have in fact y ∈ |K|. Being a base-point means, in particular, that y ∈ X0,
i.e., λn(y) = 0, so λ(y) = 0 and y ∈ X. But then, for any s ∈ B,

0 = Ps(λ)(y) = (p∗sn)(y) = sn(y).

We conclude that y is a base-point for the line bundle Kn on X. But K is base-point free
([Mir95, Lemma 1.14, page 200]), so Kn is base-point free as well, and such y cannot exist. �

In the remainder of the text, all of our spectral curves will be integral, but we will allow
them to be singular at times, in order to obtain some more general results.

Proposition 3.13. Let s ∈ B be such that Xs is integral. The arithmetic genus of Xs is
gs = n2(g − 1) + 1.
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Proof. By [Har77, Exercise III.5.3], if Xs is integral then h0(Xs,OXs) = 1 and so its arithmetic
genus gs is equal to h1(Xs,OXs) (recall (1.5)).

We use the fact that π∗ preserves the cohomology dimensions (see Proposition A.5) to write

1− gs = h0(Xs,OXs)− h1(Xs,OXs) = h0(X,π∗OXs)− h1(X,π∗OXs).

By Corollary 3.9, this is equal to
n−1∑
i=0

(h0(X,K−i)− h1(X,K−i)),

which, using Riemann-Roch, becomes
n−1∑
i=0

(degK−i + 1− g) = n2(1− g)

and the result follows. �

Suppose Xs is a smooth and irreducible curve on |K|, the adjunction formula ([GH94, page
471]) then tells us that

KXs = (K|K| +Xs)|Xs ,

where KXs and K|K| denote, respectively, the canonical bundles of the curve Xs and of the
surface |K|.

Now K|K| is trivial (the canonical symplectic form on T ∗|K| is a nowhere vanishing section
of K|K| := ∧2T ∗|K|), and Xs ∼ nX (as divisors), so the formula becomes

KXs = (p∗K)n|Xs = π∗Kn. (3.5)

Using that π is a degree n morphism and so deg(π∗L) = n deg(L) (see [Har77, Propostion II.6.9,
page 138]), we can take the degree of both sides of the equation to obtain

2gs − 2 = n2(2g − 2),

and so we have another way to obtain the genus when the spectral curve is smooth.
Given that the spectral cover we have defined will be ramified, it will be useful to us to know

something about its ramification divisor.

Definition 3.14. If Xs is smooth, the ramification divisor R of Xs is defined to be the zero
locus of the derivative of the map π, dπ : TXs → π∗TX.

Since dπ is a section of the line bundle T ∗Xs ⊗ π∗TX, we have, using (3.5),

O(R) = KXs ⊗ π∗K−1 = π∗Kn−1

and so the degree of the ramification divisor is n(n− 1)(2g − 2).
If Xs is singular, we can use its normalization to bound the number of singularities. We

shall consider here the simplest singular case, when Xs has only simple nodes as singularities.
We then consider the normalization ν : X̃s → Xs, and the map π̃ making the following diagram
commute
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X̃s

Xs.

X

ν

π̃

π

Proposition 3.15. If Xs is nodal with r simple nodes, then r ≤ n(n− 1)(g − 1).

Proof. We can consider the ramification divisor R̃ of the map π̃ (even though it is not a spectral
cover) using the same definition, i.e., as the zeroes of the derivative dπ̃. which is a section of the
bundle K

X̃s
⊗ π̃∗K−1. Looking at sequence (1.4), we see that the genus g̃s of the normalization

is equal to gs − r. Using Proposition 3.13, we then have

deg
(
K
X̃s

)
= 2g̃s − 2 = 2n2(g − 1)− 2r.

Since R̃ is an effective divisor, we have

0 ≤ deg(R̃) = 2n(n− 1)(g − 1)− 2r,

from where the result follows. �

3.2.2 The BNR-correspondence

In this section we will prove the correspondence theorem of BNR, named after the mathe-
maticians Beauville, Narasimhan and Ramanan, who gave a proof of it in [BNR89], following
earlier work by Hitchin in [Hit87a] and [Hit87b]. The result gives us a close link between Higgs
bundles on the base curve X and line bundles on spectral curves Xs. It will allow us to see some
fibers of the Hitchin map (most of them in fact) as isomorphic to Jacobians of the spectral curve.

We first start with a small result which will be useful later.

Lemma 3.16. Let (E,Φ) be a Higgs bundle and F a Φ-invariant subbundle of E, i.e., Φ(F ) ⊆
F ⊗K. Then, the characteristic polynomial of Φ|F divides the characteristic polynomial of Φ.

Proof. Let n = rk(E) and m = rk(F ). Since F is Φ-invariant, we can write

Ps = Ps′ · Ps′′ ,

where s = h(E,Φ) (so Ps is the characteristic polynomial of Φ), s′ = h(F,Φ|F ) (so Ps′ is the
characteristic polynomial of Φ|F ) and s′′ = h(E/F,Φ), with Φ : E/F → E/F ⊗K being the
map induced by Φ on the quotient E/F . �

Theorem 3.17 ([BNR89, Proposition 3.6], [Hit87a, Section 5.1]). Let s ∈ B be such that Xs

is integral. Then there is a 1-1 correspondence, up to their respective notions of equivalence,
between (see Figure 3.2)

• Higgs bundles (E,Φ) on X of rank n and degree d such that the characteristic polynomial
of Φ equals Ps,
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and

• rank 1 torsion-free sheaves L on Xs of degree d+ n(n− 1)(g − 1).

Proof. Let L be a rank 1 torsion free sheaf on Xs (as an OXs-module). Then π∗L is a torsion-free
sheaf on X as a π∗OXs-module (hence torsion free as a OX -module because OX ↪→ π∗OXs , by
Corollary 3.9) and since X is smooth, it is a locally free sheaf (a vector bundle) of rank n (recall
Proposition 1.22).

As a sheaf, π∗L is a π∗OXs-module, which means we have a map

π∗OXs −→ End(π∗L),

and since, again by Corollary 3.9, K−1 ⊂ π∗OXs , we get a map Φ : K−1 −→ End(π∗L) defined
by restriction.

Since π∗OXs
∼= Sym(K−1)/Js, the map Φ vanishes at Js. Putting E := π∗L, we get a map

Φ : E → E ⊗ K such that Ps(Φ) = 0. Since Xs is irreducible, Ps is irreducible and so, by
Cayley-Hamilton, it must be the characteristic polynomial of Φ, since Ps(Φ) = 0.

Conversely, let (E,Φ) be a Higgs bundle such that the characteristic polynomial of Φ is Ps.
Seeing Φ as a map K−1 → End(E), it determines an algebra morphism

Sym(K−1) −→ End(E)

that factors through Js since the Cayley-Hamilton theorem tells us that Ps(Φ) = 0. So E is a
π∗OXs-module of rank 1 since both E and π∗OXs have rank n as OX -modules.

This means that E ∼= π∗L for some rank 1 OXs-module L on Xs since π∗ is an equivalence
of categories between OXs-modules and π∗OXs-modules, by Corollary 3.10 and Proposition A.4.
Suppose that Ltors 6= 0, then, by Remark 1.23, it is a sheaf whose support is a finite number of
points of Xs. But π∗(Ltors) 6= 0, and so we have

∅ 6= supp(π∗(Ltors)) ⊆ π(suppLtors).

This means that π∗(Ltors) is a π∗OXs-module with finite support, hence a OX -module of finite
support, and so π∗(Ltors) ⊂ Etors. But Etors = 0, since E is locally free (in particular it is torsion
free). We then conclude that Ltors = 0 and so L is torsion-free.

The degree of L (as a function of the degree d and rank n of E = π∗L) comes from the
equality of the cohomology dimensions

h0(Xs, L)− h1(Xs, L) = h0(X,π∗L)− h1(X,π∗L),

that is,
deg(L) + 1− gs = d+ n(1− g).

From Proposition 3.13, we conclude that

deg(L) = d+ n(n− 1)(g − 1).

The uniqueness (modulo equivalence) is also a consequence of the equivalence of categories
induced by π∗. �
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Remark 3.18. We can also understand how the map Φ arises in the proof of Theorem 3.17 in the
following manner. Take p ∈ X such that Xs is unramified over it. Thus π−1(p) = {λ1, . . . , λn}
and Li := Lλi

= Cei. Let λ : Kp → C be the tautological section at p. The module structure of
(π∗OXs)p on (π∗L)p can then be written as n∑

j=0
ajλ

j

 · ( n∑
i=0

viei

)
=

n∑
j=0

(
n∑
i=0

ajλ
j
iviei

)
.

Restricting it to K−1
p we get

(a1λ) ·
(

n∑
i=0

viei

)
=

n∑
i=0

a1λiviei,

so the map Φp becomes
Φp : K−1

p −→ End(π∗L)p
λ 7−→ (ei 7→ λiei),

or, equivalently
Φp : (π∗L)p −→ (π∗L)p ⊗Kp

ei 7−→ λiei.

In fact, we are building Φp by imposing its action on the Li to be simply scaling by λi.
Since the condition we imposed on p is generic, the map Φ is then the pushforward of

multiplication by the tautological section λ, as in the following diagram

L L⊗ π∗K

E E ⊗K.

⊗λ

π∗ π∗

Φ

Xs

X

π

(L,⊗λ)

(E,Φ)

π∗

Figure 3.2: A spectral curve in rank 3. We have highlighted its singular (red) and smooth (blue)
ramification points. Away from the ramification locus we have the eigenspaces forming the rank
1 torsion-free sheaf L on Xs that gets pushed forward to give the vector bundle E on X. The
Higgs field comes from the multiplication by λ.
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When Xs is smooth, then, by Proposition 1.22, “rank 1 torsion-free sheaves” may be replaced
by “line bundles”, so we have the following description of the fibers of the Hitchin map.

Corollary 3.19. For s as above such that Xs is integral, we have (Figure 3.3)

h−1(s) ∼= Jac(Xs) if Xs is smooth,
h−1(s) ∼= Jac(Xs) (the compactified Jacobian) if Xs is singular.

Proof. We first check that (E,Φ) as constructed in the proof of the theorem is semistable. This
follows from the fact that E does not have any Φ-invariant subbundles (and so it is, in fact,
stable), since the existence of such a subbundle would tell us, by Lemma 3.16, that Ps is reducible,
contradicting the irreducibility of Xs.

Note also that from the theorem we get h−1(s) ∼= Jacd+n(n−1)(g−1)(Xs), if Xs is smooth. We
can, however, establish a (non-canonical) isomorphism with Jac(Xs) by tensoring with a fixed
line bundle F of degree −d − n(n − 1)(g − 1). For Xs singular, the same argument works to
establish that Jacd+n(n−1)(g−1)(Xs) ∼= Jac(Xs). �

Jac(Xs) Jac(Xt)

M(n, d)

B

h

ss

tt

Figure 3.3: Fibers of the Hitchin map when Xs is integral. (Picture inspired by [Sch20, Figure
1] and [KR22, Figure 8])

Our goal now will be to prove the existence of an exact sequence which will also enable us to
see, in case Xs is smooth, the line bundle L in Theorem 3.17 as giving us the eigenspaces of the
map Φ (as in Remark 3.18). The result we shall prove requires that we once again consider the
projectified total space K = P(K ⊕OX), introduced in (3.4), along with two special sections on
it.

The first is a section µ of OK(1). At a point (x, [v]) ∈ K, µ(x, [v]) will be the map

Lx,[v] → C, (w, z) 7→ z,
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where Lx,[v] ⊂ Kx ⊕ C is the line spanned by v. Its zero locus, at each fiber, will be the point
[1 : 0], i.e., the point at infinity of the fiber Kx. In particular, µ is a non vanishing section on
|K|, which means the bundle O(1) is trivial when restricted to |K| or any of its subsets (thus
also over the spectral curve Xs).

The other is a section λ of p∗K ⊗O(1) which, as the name implies, will be an extension of
the tautological section λ on |K|. So λx,[v] is the map

Lx,[v] → C, (w, z) 7→ w.

It is then clear that, when restricting λ to lines through (w, 1), and identifying them with the
point w ∈ Kx, we get the tautological section λ of p∗K on |K|, as expected. Notice that the
zero locus at each fiber will now be the point [0 : 1], the point on the base curve X. So while µ
vanishes on the section at infinity, λ vanishes on the zero section of the bundle K.

Another intuitive way to understand the sections µ and λ is by noticing that they induce,
fibrewise, rational maps µ̃, λ̃ : Kx

∼= P1 −− → C, defined by (see Figure 3.4)

µ̃([w : z]) = z/w; λ̃([w : z]) = w/z.

x [0 : 1]

Kx
∼= P1

X

[w : z]

∞ = [1 : 0]

µ̃

λ̃

z/w

w/z

Figure 3.4: A fiber of the projectified total space.

Proposition 3.20 ([Hit87a][BNR89, Remark 3.7]). Let s ∈ B be such that π : Xs → X, its
associated spectral cover, is smooth. Let (E,Φ) ∈ h−1(s) be a Higgs pair on X such that E = π∗L

(under Theorem 3.17). Then the following sequence

0 L(−R) π∗E π∗E ⊗ π∗K L⊗ π∗K 0,π∗Φ−λ

is exact, where R is the ramification divisor of Xs, i.e., O(R) = π∗(K1−n) (recall Definition 3.14).

Proof. We follow the proof given in [Dal17, Proposition 4.1]. There is a short exact sequence on
|K|,

0 p∗(E ⊗K−1) p∗E Q 0,p∗Φ−λ⊗id (3.6)
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where Q is a sheaf supported on Xs ⊂ |K|. We then consider the compactification p : K→ X

and the sections λ and µ described previously. Then µ ⊗ p∗Φ − λ ⊗ id is a global section of
p∗(EndE⊗K)⊗OK(1). Since OK(1) is trivial on |K| ⊂ K, the sequence above is the restriction
to |K| of the exact sequence

0 p∗(E ⊗K−1)⊗OK(−1) p∗E Q 0µ⊗p∗Φ−λ⊗id (3.7)

on K.
We now determine p∗Q by pushing this last sequence down to X. Using the long exact

sequence of the higher direct images R•π∗ (see Definition A.8) and the projection formula (in
Proposition A.10), we get the long exact sequence (see Theorem A.6)

0 (E ⊗K−1)⊗ p∗OK(−1) E ⊗ p∗OK p∗Q

(E ⊗K−1)⊗R1p∗OK(−1) · · · .

(3.8)

We know, from [Har77, Propostion II.7.11, page 162], that p∗OK(−1) = 0 and p∗OK ∼= OX .
Moreover, Proposition A.9 tells us that R1p∗OK(−1) = 0, since H1(P1,OP1(−1)) = 0. So we get
the exact sequence

0 E p∗Q 0,

which means that E ∼= p∗Q.
Now, restricting sequence (3.7) to Xs ⊂ |K| ⊂ K yields

0 K π∗(E ⊗K−1) π∗E L 0, (3.9)

with L := Q|Xs satisfying π∗L = p∗Q and K being the kernel gained by restricting the map.
It is easy to see that, given an exact sequence of bundles

0→ A→ B → C → D → 0

after splitting and taking determinants, we get

detA⊗ detC = detB ⊗ detD.

So, knowing that K and L are line bundles (rkL = 1 since it gives us the generic 1 dimensional
eigenspaces of Φ and rkK = rkL since rk π∗(E ⊗K−1) = rk π∗E), we get

K = det(π∗E ⊗ π∗K−1)⊗ L⊗ (detπ∗E)−1 = L⊗ π∗K−n.

Tensoring sequence (3.9) by π∗K (tensoring by a vector bundle is an exact operation), we
obtain the desired sequence. �

To end this subsection, we record a result on the relation between the pushforward of L and
of its dual L−1, which will be useful later. It is nothing more than an instance of relative duality
(see [Kle80]) but it can also be derived using more elementary means, as in [Hit16, Section 4],
whose proof we follow here.
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Lemma 3.21. Let s ∈ B be such that its associated spectral cover Xs is smooth, and let L be a
line bundle on Xs. Then we have the following isomorphism of bundles

(π∗L)∗ ∼= π∗(L−1(R)),

where R is the ramification divisor on Xs.

Proof. We will show that there is a non-degenerate pairing between π∗L and π∗(L−1(R)). We
start by defining the pairing away from the ramified points so let p ∈ X be a regular value of
π. Since Xs is smooth, R = div(dπ), and OXs(R) ∼= π∗Kn−1. So the following is a well defined
pairing

(π∗L)p × (π∗(L−1(R)))p −→ C

(v, ξ) 7−→ 〈v, ξ〉 :=
∑

π(u)=p

ξ(v)u
dπu

.

More explicitly, let π−1(p) = {u1, . . . , un} and choose a basis (ei)i of (π∗L)p such that Lui = Cei,
with dual basis (e∗i )i, then v =

∑
i viei, ξ =

∑
i ξie

∗
i ⊗ ηiζ and dπui = πiζ, where O(R) = Cζ.

The pairing then becomes
〈v, ξ〉 =

∑
i

viξiηi
πi

and its non-degeneracy becomes clear.
Now for the ramification points, we will take the limit of the pairing above and check that it

remains non-degenerate. Locally we can write π(z) = zk, with zero being our ramification point
where k branches of the spectral curve meet (see Figure 3.5). On a small enough open set U
around 0 such that both L and L−1(R) become trivial, i.e., isomorphic to OXs , we have

π∗OXs(U) = OXs(π−1(U)) ∼= C[z, w]/(w − zk).

We can then write local sections of both bundles as

F (w) =
k−1∑
i=0

k−1∑
j=0

(ωiz)jbj(w)


︸ ︷︷ ︸

f(ωiz)

∈ H0(U, π∗L),

and

G(w) =
k−1∑
i=0

(
k−1∑
l=0

(ωiz)lcl(w)
)

︸ ︷︷ ︸
g(ωiz)

∈ H0(U, π∗(L−1(R))),

where z is a branch of the k-th root of w and ω is a primitive k-th root of unity.
For w 6= 0, we are at a regular value, and so the pairing we defined becomes

〈F (w), G(w)〉 =
∑
i

f(ωiz)g(ωiz)
kωizk−i

=
k−1∑
i,j,l=0

1
k
ωi(j+l+1)zj+l−(k−1)bjcl

=
∑
j,l

1
k
zj+l−(k−1)

(
k−1∑
i=0

(ωj+l+1)i
)
bjcl.
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Now note that, if j + l < k − 1, ωj+l+1 is a k-th root of unity different than one, which means
that the sum

∑k−1
i=0 (ωj+l+1)i is zero. Moreover, if j + l = k − 1, ωj+l+1 = ωk = 1, which means

the same sum is equal to k. Finally, if j + l > k − 1, zj+l−(k−1) goes to zero as w approaches
zero. In conclusion, taking the limit we get

lim
w→0
〈F (w), G(w)〉 =

∑
j+l=k−1

bjcl,

and so the pairing remains non-degenerate. �

ωk−2z

ωz

ωk−1z

z

ωk−3z

ω2z

0

0 w X

Xs

Figure 3.5: Taking the limit to the branch point via regular values.

3.3 Complete integrability of the moduli space

Using the Hitchin map, we shall see how to define dimM(n,d)
2 Poisson-commuting functions

on M(n, d), giving the moduli space of Higgs bundles a structure of a completely integrable
system.

In [Hit87b], the case of rank 2 and traceless Higgs bundles is treated, where the Hitchin map
is simply the determinant det :M(2, d)→ H0(X,K2).
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Attempting a direct generalization of the methods used there to general Higgs bundles will
not work so easily. What we shall do instead is use the fact that any basis for the invariant
polynomials can be used to define a Hitchin map (recall Remark 3.2). As such, the one most
suitable for generalization will be the basis composed of tr Φi. So we consider the following
version of the Hitchin map

h̃ : M(n, d) −→
n⊕
i=1

H0(X,Ki)

(E,Φ) 7−→ (tr Φ, tr Φ2, . . . , tr Φn).

Proposition 3.22. There are n2(g − 1) + 1 Poisson-commuting functions f li :M(n, d)→ C.

Proof. Let l be any of the numbers 1, . . . , n. Consider a basis (αli)i of H1(X,K1−l). Since
H1(X,K1−l) ∼= H0,1(X,K1−l), each αli is represented by an element βli ∈ Ω0,1(X,K1−l). Via
Serre duality, since H0(X,K l)∗ ∼= H1(X,K1−l), we consider the functions

f li (E,Φ) =
∫
X
βli tr(Φl).

Now to calculate the corresponding Hamiltonian vector fields X l
i , we first calculate the

derivative of f li at a direction represented by (Ḃ, Ψ̇) ∈ Ω0,1(EndE)⊕Ω1,0(EndE). This is given
by

df li (Ḃ, Ψ̇) = d

dt

∫
X
βli tr(Φ + tΨ̇)l

∣∣∣∣
t=0

=
∫
X
βli tr

(
l−1∑
m=0

ΦmΨ̇Φl−1−m
)

=
∫
X
βlil tr(Φl−1Ψ̇).

By comparing with the symplectic form in Proposition 2.16, we find that a possible choice for
the Hamiltonian vector field is X l

i = [(lβliΦl−1, 0)]. So we can now check that

df li (Xk
j ) = 0, ∀i, j, k, l.

There is, however, one more thing to check before we can safely say the functions Poisson-
commute. We got our Hamiltonian vector fields by getting representatives in Ω0,1(EndE) ⊕
Ω1,0(EndE) (note that, since βli ∈ Ω0,1(X,K1−l) and Φl−1 ∈ Ω0(X,EndE ⊗K l−1), lβliΦl−1 ∈
Ω0,1(EndE)). However, in order for a pair (Ȧ, Φ̇) to represent an element in the tangent space
ofM(n, d), from Proposition 2.14 it must satisfy [Φ, Ȧ] = ∂̄EΦ̇. But since

[Φ, lβliΦl−1] = lΦβliΦl−1 − lβliΦl = 0 = ∂̄E0,

our pair satisfies the equation, as needed.
The number of functions we obtained is equal to the dimension of the Hitchin base, which,

by Proposition 3.3, is n2(g − 1) + 1. �

Note that the number of functions is precisely half of the dimension ofM(n, d), by Corol-
lary 2.15.

Remark 3.23. Although we have used the Hitchin map defined by the coefficients of the charac-
teristic polynomial to define the spectral curve, it is easy to see that there is no issue in choosing
any other basis of the invariant polynomials in order to study the fibers of the map.
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In fact, let T be a change of coordinates of B (such as the one in Remark 3.2) such that, if
b = (bi)i ∈ B is expressed using any basis for the invariant polynomials (with Hitchin map h̃),
then T (b) gives us its coordinates in the basis of characteristic coefficients (with Hitchin map h),
according to the diagram

M(n, d)

B B.

h h̃

T−1

T

Then

h−1(T (b)) = {(E,Φ) | char(Φ) = T (b)} = h̃−1(b).

Essentially, switching the basis of the invariant polynomials just swaps the fibers of the corre-
sponding Hitchin maps, and so we can choose the one that works best for our purposes.

One should note, however, that we needed to use the Hitchin map h when building the
spectral curve and proving the BNR correspondence, since the Cayley-Hamilton theorem played
a crucial role there.

In the remainder of this text, we will be focusing on the map h̃ since this is one we used to
find the Poisson-commuting functions on the moduli space. To ease notation, we will refer to
this map as simply h.

3.3.1 The tangent space to a smooth fiber

Our goal will now be to prove that the Hitchin map h is a submersion at the points of its
smooth fibers, in order to see that the functions f li are independent. Along the way we will get
a description of the tangent space at a point of a generic fiber as a subspace of H1(C•), for the
corresponding complex C•.

Let s ∈ B be such that the spectral curve Xs is smooth, i.e., the fiber h−1(s) ∼= Jac(Xs)
is smooth. If p = (E,Φ) ∈ h−1(s) we want to see that dhp is a surjective linear map, or,
equivalently, that ker dhp = Tph

−1(s). Recall that, by Corollary 3.19, (E,Φ) is stable since Xs

is smooth.
Given that the definition of the Hitchin map does not explicitly depend on the vector bundle

E, it would seem natural to assume that the tangent vectors at a point of the fiber would be
the ones that can be represented by elements (Ȧ, 0) ∈ Ω0,1(EndE) ⊕ Ω1,0(EndE), since they
represent a zero infinitesimal deformation on the side of the Higgs field. In order to work further
on this idea, we define the following subspace of TpM(n, d),

Tp := {[(Ȧ, 0)] | Ȧ ∈ Ω0,1(EndE), [Φ, Ȧ] = 0}.

We will then establish the equality ker dhp = Tph
−1(s) by proving that each of the spaces is

isomorphic to Tp, as in the following diagram
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ker dhp Tph
−1(s).

Tp

(1) (2)
(3.10)

To establish (1), we first record the derivative of h at p, calculated along a tangent vector
represented by (Ȧ, Φ̇)

dhp : TpM(n, d) −→ B
[(Ȧ, Φ̇)] 7−→ (tr Φ̇, 2 tr(ΦΦ̇), . . . , n tr(Φn−1Φ̇)).

(3.11)

Now it is clear that Tp ⊆ ker dhp, since, if we take [(Ȧ, 0)] ∈ Tp, the above formula gives us
dhp(Ȧ, 0) = (0, . . . , 0). To see the reciprocal inclusion, we first prove the following characterization
of Tp.

Lemma 3.24. We have the following equality

Tp = {[(Ȧ, Φ̇)] ∈ H1(C•) | Φ̇ ∈ Im[Φ,−]}.

Proof. We need to check that a tangent vector represented by (Ȧ, Φ̇), with Φ̇ ∈ Im[Φ,−], can be
represented by a pair of the form (Ḃ, 0).

If Φ̇ = [Φ, s], for s ∈ Ω0(EndE) the, by the definition of H1(C•),

[(Ȧ, Φ̇)] = [(Ȧ− ∂̄Es, Φ̇− [Φ, s])] = [(Ȧ− ∂̄Es, 0)]. �

The remaining inclusion then translates into the following result.

Proposition 3.25. Let (Ȧ, Φ̇) represent a tangent vector in TpM(n, d). Then, if Φ̇ /∈ Im[Φ,−],
there is a number k ∈ {1, . . . , n} such that tr(Φk−1Φ̇) 6= 0. In other words, if [(Ȧ, Φ̇)] /∈ Tp, then
[(Ȧ, Φ̇)] /∈ ker dhp.

Proof. Since Xs is smooth, there is a point x ∈ X such that Φx = A dz, where A ∈ gl(n,C)
is such that its eigenvalues λ1, . . . , λn are all distinct (in fact, the generic points in X have
this property). Now let Φ̇x be represented by an element B ∈ gl(n,C) as well. The hypothesis
Φ̇ /∈ Im[Φ,−] means that x can also be chosen such that B /∈ Im[A,−].

The endomorphism [A,−] : gl(n,C)→ gl(n,C) induces the following direct sum decomposi-
tion

gl(n,C) = ker[A,−]⊕ Im[A,−]

(to see that ker[A,−] ∩ Im[A,−] = 0, take Y such that [A, Y ] = 0 and Y = [A,X]. Since the
eigenvalues of A are all distinct, and Y commutes with A, it is also diagonalizable with the same
eigenvectors as A and so, working with a basis of eigenvectors for both endomorphisms, we get

Y = [A,X] ⇐⇒


α1

. . .
αn

 =



λ1

. . .
λn

 , X
 =


0 ∗

. . .
∗ 0


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=⇒ α1 = · · · = αn = 0 =⇒ Y = 0).

It follows that we can write B = B′ +B′′, with B′ ∈ ker[A,−], B′′ ∈ Im[A,−], and B′ 6= 0.
We have that A and B′ commute and therefore, since the eigenvalues of A are all distinct, B′ is
also diagonalizable, with the same eigenvectors as A.

Assume, by contradiction, that

tr(Ak−1B) = 0, ∀k = 1, . . . , n.

Noting that, since B′′ = [A,C], for some C ∈ gl(n,C),

tr(Ak−1B) = tr(Ak−1B′) + tr(Ak−1[A,C]) = tr(Ak−1B′),

we then have
tr(Ak−1B′) = 0, k = 1, . . . , n.

This translates into
n∑
i=1

λk−1
i βi = 0, k = 1, . . . , n,

where the β1, . . . , βn are the eigenvalues of B′. So the βi are solutions to a system of linear
equations whose matrix is 

1 · · · · · · 1
λ1 · · · · · · λn
... · · · · · ·

...
λn−1

1 · · · · · · λn−1
n

 .

This is a Vandermonde matrix, with determinant equal to
∏
i<j(λi−λj), which is non-zero, since

all the λi are distinct. But this is impossible, since then the βi would all be zero and B′ = 0,
which is absurd. �

We now establish (2) in diagram 3.10 via the following result, which is derived from the
exact sequence in Proposition 3.20.

Proposition 3.26 ([Mar94, Lemma 8.1]). Consider s ∈ B such that Xs is smooth and let
(E,Φ) ∈ h−1(s). We have the following exact sequence on X

0 π∗OXs End(E) End(E)⊗K π∗OXs ⊗Kn 0.[Φ,−]

Proof. Let E = π∗L. From Proposition 3.20 we have

0 L⊗ π∗(K1−n)︸ ︷︷ ︸
L(−R)

π∗E π∗E ⊗ π∗K L⊗ π∗K 0.π∗Φ−λ

Twisting it by L−1(R) = L−1 ⊗ π∗Kn−1 yields

0 OXs π∗E ⊗ L−1(R) π∗E ⊗ L−1(R)⊗ π∗K π∗Kn 0.π∗Φ−λ

Next, we apply the pushforward functor π∗ to obtain the sequence

0 π∗OXs E ⊗ π∗L−1(R) E ⊗ π∗L−1(R)⊗K π∗OXs ⊗Kn 0.f
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on X (since π is a finite map, the pushforward is exact, by [Har77, Exercise III.8.2, page 252]).
From Lemma 3.21, we know that π∗(L−1(R)) ∼= E∗ and so it remains to see that the map f

is equal to [Φ,−]. To that purpose, consider the following diagram

π∗E ⊗ L−1(R) π∗E ⊗ π∗K ⊗ L−1(R)

E ⊗ E∗ E ⊗K ⊗ E∗

End(E) End(E)⊗K.

π∗

π∗Φ⊗id− id⊗λ

∼=

f

f

Now fix p ∈ X such that Φp has distinct eigenvalues λ1, . . . , λn (such p is generic) and
consider A ∈ End(E)p ∼= gl(n,C). If (ei)i is a basis of Ep of eigenvectors for Φp with dual basis
(e∗i )i, then A =

∑
i,j aijei ⊗ e∗j (see Figure 3.6).

e1

e1

e2

e2

π

p

λ1

λ2

Kp

Lλ2
= Ce2

Lλ1
= Ce1

Ep := (π∗L)p = Lλ1
⊕ Lλ2

(π∗E)λ1
∼= Ep

(π∗E)λ2
∼= Ep

X

Xs

Xs

Figure 3.6: The pushforward of the line bundle L under the map π : Xs → X at an unramified
point p ∈ X in rank 2.

Rewriting A as

A =
∑
j

(∑
i

aijei

)
⊗ e∗j ,

we see it comes from pushing forward the elements(∑
i

aijei

)
⊗ e∗j ∈ (π∗E ⊗ L−1(R))λj

.
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Applying the map π∗Φ⊗ id− id⊗λ we get

(π∗Φ⊗ id− id⊗λ)λj

((∑
i

aijei

)
⊗ e∗j

)
=
(∑

i

aijΦp(ei)
)
⊗ e∗j −

(∑
i

aijei

)
⊗ e∗j ⊗ λj

=
(∑

i

(λi − λj)aijei

)
⊗ e∗j .

Pushing forward again, we get

fp(A) =
∑
j

(∑
i

(λi − λj)aijei

)
⊗ e∗j .

But since

[Φp, A](ej) = Φp(A(ej))−A(Φp(ej)) =
∑
i

aijΦp(ei)− λjA(ej) =
∑
i

(λi − λj)aijei,

we conclude that fp = [Φp,−]. Since the condition imposed on p is generic, the equality f = [Φ,−]
holds. �

Corollary 3.27. The space Tp is isomorphic to Tph−1(s).

Proof. The map [(Ȧ, 0)] 7→ Ȧ establishes an isomorphism between Tp and H1(X, ker[Φ,−]).
By Lemma 3.26, ker[Φ,−] = π∗OXs , so Tp ∼= H1(X,π∗OXs) ∼= H1(Xs,OXs). By the BNR
correspondence (Corollary 3.19), h−1(s) ∼= Jac(Xs), and Proposition 2.7 tells us that any of its
tangent spaces is isomorphic to H1(Xs,OXs). �

We have finally shown the result we were looking for in this section, since the arrows in
diagram (3.10) are all isomorphisms.

Theorem 3.28. Let s ∈ B be such that h−1(s) is smooth. Then h is a submersion at every
point p ∈ h−1(s) (i.e., dhp is a surjective linear map).

As we mentioned, in the course of proving the surjectivity of the derivative of the Hitchin
map, we found the following characterization of the tangent space at the smooth fibers.

Theorem 3.29. Let s ∈ B be as above. Then, for p = [(E,Φ)] ∈ h−1(s), we have

Tph
−1(s) ∼= {[(Ȧ, 0)] | Ȧ ∈ Ω0,1(EndE), [Φ, Ȧ] = 0} ⊆ H1(C•).

From Lemma 3.26 we can also obtain the following exact sequence, which can be shown to
include the derivative of the Hitchin map (see [Hit19, Proposition 1] for the rank 2 case), and so
it could be another way to show its surjectivity.

Corollary 3.30 ([Mar94, Proposition 8.2],[LM10, Lemma 3.13]). Consider s ∈ B such that Xs

is smooth and (E,Φ) ∈ h−1(s). Then the short exact sequence

0 H1(X,π∗OXs) H1(C•) H0(X,π∗OXs ⊗Kn) 0

holds.
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Proof. We use the sequence in Lemma 3.26 to obtain the following short exact sequence of
complexes

C•1 C• C•2

0 π∗OXs EndE Im[Φ,−] 0

0 0 EndE ⊗K EndE ⊗K 0.

[Φ,−]

[Φ,−]

=

From its long exact sequence in hypercohomology we get

H0(C•2 ) H1(C•1 ) H1(C•) H1(C•2 ) H2(C•1 ).

It is straightforward to see that H2(C•1 ) = 0 and H1(C•1 ) = H1(X,π∗OXs). For the remaining
spaces, consider this other short exact sequence of complexes

C•3 C•2 C•4

0 Im[Φ,−] Im[Φ,−] 0 0

0 Im[Φ,−] EndE ⊗K π∗OXs ⊗Kn 0.

=

=

Since H∗(C•3) = 0, we have H∗(C•2) = H∗(C•4). In particular, H0(C•2) = H0(C•4) = 0 and
H1(C•2 ) = H1(C•4 ) = H0(X,π∗OXs ⊗Kn). �

3.3.2 Final conclusions

The previous subsection allows us to quickly prove the remaining condition required to obtain
a completely integrable system.

Corollary 3.31. The functions f li defined in Proposition 3.22 are functionally independent.

Proof. For simplicity of notation we order the functions αli and f li lexicographically on the pairs
(l, i) and shall refer to them as simply αi and fi, 1 ≤ i ≤ N = dimB.

Let p ∈M(n, d) such that Xh(p) is smooth. Then, by virtue of the αi forming a basis of B∗,
we have

(dα1 ∧ . . . ∧ dαN )h(p) 6= 0.

This means that there exist v1, . . . , vN ∈ Th(p)B such that

(dα1 ∧ . . . ∧ dαN )h(p)(v1, . . . , vN ) 6= 0.

By Theorem 3.28, dhp is surjective, so there exist u1, . . . , uN ∈ TpM(n, d) such that

h∗(dα1 ∧ . . . ∧ dαN )p(u1, . . . , uN ) 6= 0.

Finally, note that h∗(dαi) = dfi, and so

(df1 ∧ . . . ∧ dfN )p 6= 0.
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Since the set U of s ∈ B such that Xs is smooth is open and the moduli space M(n, d)
is irreducible (by [Sim94, Theorem 11.1]), the set h−1(U) of p satisfying the above condition
is open and dense in M(n, d) and so the fi are functionally independent (recall part 1 of
Definition 1.32). �

We can finally write the main result of this text.

Theorem 3.32. The moduli spaceM(n, d), together with the functions f li of Proposition 3.22,
is a completely integrable system, called the Hitchin system.

So now that we have a completely integrable system, the following is immediate from
Proposition 1.33.

Corollary 3.33. The smooth fibers of the Hitchin map h are Lagrangian subvarieties of the
moduli spaceM(n, d).

It should be noted, however, that this corollary could also be deduced directly from the BNR
correspondence, since it tells us that h−1(s) ∼= Jac(Xs), an abelian variety of dimension equal to
the genus of Xs, already calculated to be

1 + n2(g − 1) = 1
2 dimM(n, d),

together with Theorem 3.29, since it is obvious, from the description of the tangent space of a
smooth fiber as the space Tp, that the symplectic form ω of Proposition 2.16 vanishes on any
two tangent vectors. We also checked directly one of the consequences of the Arnold-Liouville
theorem ([Sil08, Theorem 18.12]), which tells us that, since h is a proper map (recall Remark 3.4),
the generic fiber will be a torus, and we have seen that they are precisely Jacobians of spectral
curves.
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Appendix A

Definitions and results from
Algebraic Geometry

A.1 Schemes and morphisms

In Section 3.2, we built the spectral curve using the notion of a relative spectrum. Essentially,
we described the curve by saying what its structure sheaf should look like. The precise definition
is as follows.

Definition A.1 ([Har77, page 128, Exercise 5.17]). Let Y be a scheme and A a quasi-coherent
sheaf of OY -algebras. There is a unique scheme X, and a morphism f : X → Y , such that
for every open affine V ⊆ Y , f−1(V ) ∼= SpecA(V ), and for every inclusion U ↪→ V of open
affine sets of Y , the morphism f−1(U) ↪→ f−1(V ) corresponds to the restriction homomorphism
A(V )→ A(U). This scheme X is called SpecA.

The algebraic point of view tells us that the map π : Xs → X, behaves quite well. In fact, in
Proposition 3.10, we show it is finite (hence affine), in the sense of the following definitions.

Definition A.2. A morphism f : X → Y of schemes is said to be affine if there is an open
affine cover {Vi} of Y such that f−1(Vi) is affine for each i.

Definition A.3. A morphism f : X → Y of schemes is said to be finite if there is an open
affine cover {Vi} of Y such that Vi = SpecBi and each f−1(Vi) is affine, equal to SpecAi, where
Ai is a Bi-algebra which is a finitely generated Bi-module.

This property of π allows us to use the following two results, which are essential for the
calculations we perform in the text.

Proposition A.4 ([Har77, page 128, Exercise 5.17]). Let f : X → Y be an affine morphism of
schemes. Then f∗ induces an equivalence of categories

{ quasi-coherent
OX-modules

}
←→

{
quasi-coherent
f∗OY -modules

}
.
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Proposition A.5 ([Har77, page 222, Exercise 4.1]). Let f : X → Y be an affine morphism
of noetherian separated schemes. For any quasi-coherent sheaf F on X, there are natural
isomorphisms for all i ≥ 0

H i(X,F) ∼= H i(Y, f∗F).

In particular, this means that hi(X,F) = hi(Y, f∗F).

A.2 Derived functors

Throughout the text we are constantly referencing cohomology spaces associated to sheaves.
There are many ways of defining cohomology of sheaves, we give here a brief description using the
concept of a derived functor, following [Har77, Section III.1], which requires some acquaintance
with the language of category theory. However it should be noted that it is not the best way
to work with cohomology if we actually want to calculate what the spaces are, Dolbeault or
Čech cohomology would be more appropriate in that case. For example, from Theorem 1.17, we
know that Hp,q(X,E) ∼= Hq(X,E ⊗Kp), so we can determine the cohomology of E ⊗Kp via a
Dolbeault resolution.

Let A be an abelian category. An object I of A is injective if the functor Hom(·, I) is exact.
An injective resolution of an object A of A is a complex I•, defined in degrees i ≥ 0, together
with a morphism ε : A→ I0, such that Ii is injective object of A for each i ≥ 0, and such that
the sequence

0→ A→ I0 → I1 → · · ·

is exact.
If every object of A is isomorphic to a subobject of an injective object of A, we say that

A has enough injectives. If U is an abelian category with enough injectives and F : A→ B a
covariant left exact functor, we construct the right derived functors of F , denoted by RiF , i ≥ 0
as follows. For each object A of A, choose once and for all an injective resolution I• of A, then
define RiF (A) = hi(F (I•)) (the cohomology objects of the complex F (I•)).

The following property is key to many calculations performed with derived functors.

Theorem A.6. Let A be an abelian category with enough injectives, and let F : A → B be a
covariant left exact functor to another abelian category B. Then, for each short exact sequence

0→ A′ → A→ A′′ → 0

and for each i ≥ 0, there is a natural morphism δi : RF i(A′′)→ RF i+1(A′), such that we obtain
a long exact sequence

· · · → RiF (A′)→ RiF (A)→ RiF (A′′)→ Ri+1F (A′)→ Ri+1F (A)→ · · · .

A.2.1 The cohomology and the direct image (pushforward) functors

Ab(X) will denote the (abelian) category of sheaves of abelian groups on a topological space
X. Following [Har77, Section III.2], we finally arrive at sheaf cohomology.
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Definition A.7. Let Γ(X, ·) be the global sections functor from Ab(X) to Ab. We define the
cohomology functors H i(X, ·) to be the right derived functors of Γ(X, ·).

There is also another series of derived functors, appearing in the proof of Proposition 3.20,
the higher direct image functors.

Definition A.8 ([Har77, Section III.8]). Let f : X → Y be a continuous map of topological
spaces. Then we define the higher direct image functors Rif∗ : Ab(X)→ Ab(Y ) to be the right
derived functors of the direct image functor f∗ (this makes sense since f∗ is left exact and Ab(X)
has enough injectives).

The higher direct images are closely related to sheaf cohomology via the following result.

Proposition A.9. For each i ≥ 0 and each F ∈ Ab(X), Rif∗(F) is the sheaf associated to the
presheaf

V 7→ H i
(
f−1(V ),F|f−1(V )

)
.

Finally, we mention a result that is also used throughout the text (mostly the i = 0 case) for
calculations.

Proposition A.10 ([Har77, Exercise III.8.3, page 253]). Let f : X → Y be a morphism of
ringed spaces. Let F be an OX-module, and let E be a locally free OY -module of finite rank. The
following projection formula is valid

Rif∗(F ⊗ f∗E) ∼= Rif∗F ⊗ E .



58 A.2. Derived functors



Bibliography

[Aud96] M. Audin. Spinning Tops A Course on Integrable Systems. Cambridge studies in
advanced mathematics 51. Cambridge University Press, 1996.

[Bis94] I. Biswas. “A remark on a deformation theory of Green and Lazarsfeld.” In: Journal
für die reine und angewandte Mathematik 449 (1994), pp. 103–124. url: http:

//eudml.org/doc/153607.

[BNR89] A. Beauville, M. S. Narasimhan, and S. Ramanan. “Spectral curves and the generalised
theta divisor.” In: Journal für die reine und angewandte Mathematik 1989.398 (1989),
pp. 169–179. doi: 10.1515/crll.1989.398.169.

[BR94] I. Biswas and S. Ramanan. “An Infinitesimal Study of the Moduli of Hitchin Pairs”.
In: Journal of the London Mathematical Society 49.2 (1994), pp. 219–231. doi:
10.1112/jlms/49.2.219.

[Dal17] P. Dalakov. “Lectures on Higgs moduli and abelianisation”. In: Journal of Geometry
and Physics 118 (2017), pp. 94–125. doi: 10.1016/j.geomphys.2017.01.001.

[DK90] S. K. Donaldson and P. B. Kronheimer. The Geometry of Four-Manifolds. Oxford
Mathematical Monographs. Oxford: Clarendon Press, 1990.

[Don11] S. K. Donaldson. Riemann Surfaces. Oxford Graduate Texts in Mathematics 22.
Oxford University Press, 2011.

[Fra22] E. Franco. O’Grady spaces and symplectic resolution of moduli spaces of Higgs bundles.
2022. doi: 10.48550/ARXIV.2210.04823.

[GH94] P. Griffiths and J. Harris. Principles of Algebraic Geometry. John Wiley & Sons, Ltd,
1994.

[GO12] P. B. Gothen and A. G. Oliveira. “The Singular Fiber of the Hitchin Map”. In:
International Mathematics Research Notices 2013.5 (Feb. 2012), pp. 1079–1121. doi:
10.1093/imrn/rns020.

[Har77] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52. Springer
New York, NY, 1977.

[Hit16] N. J. Hitchin. “Higgs Bundles and Characteristic Classes”. In: Arbeitstagung Bonn
2013: In Memory of Friedrich Hirzebruch. Ed. by W. Ballmann, C. Blohmann, G.
Faltings, P. Teichner, and D. Zagier. Cham: Springer International Publishing, 2016,
pp. 247–264. doi: 10.1007/978-3-319-43648-7_8.

59

http://eudml.org/doc/153607
http://eudml.org/doc/153607
http://dx.doi.org/10.1515/crll.1989.398.169
http://dx.doi.org/10.1112/jlms/49.2.219
http://dx.doi.org/10.1016/j.geomphys.2017.01.001
http://dx.doi.org/10.48550/ARXIV.2210.04823
http://dx.doi.org/10.1093/imrn/rns020
http://dx.doi.org/10.1007/978-3-319-43648-7_8


60 BIBLIOGRAPHY

[Hit19] N. J. Hitchin. “Critical Loci for Higgs Bundles”. In: Communications in Mathematical
Physics 366.2 (2019), pp. 841–864. doi: 10.1007/s00220-019-03336-4.

[Hit87a] N. J. Hitchin. “Stable bundles and integrable systems”. In: Duke Mathematical
Journal 54.1 (1987), pp. 91–114. doi: 10.1215/S0012-7094-87-05408-1.

[Hit87b] N. J. Hitchin. “The self-duality equations on a Riemann surface”. In: Proceedings of
the London Mathematical Society S3-55.1 (July 1987), pp. 59–126. doi: 10.1112/

plms/s3-55.1.59.

[Hit89] N. J. Hitchin. “Gauge theory on Riemann surfaces”. In: Lectures on Riemann Surfaces.
Ed. by M. Cornalba, X. Gómez-Mont, and A. Verjovsky. World Scientific, 1989, pp. 99–
118. doi: 10.1142/9789814503365_0003.

[HSW99] N. J. Hitchin, G. B. Segal, and R. S. Ward. Integrable Systems Twistors, Loop Groups,
and Riemann Surfaces. Oxford University Press, 1999.

[Huy05] D. Huybrechts. Complex Geometry An Introduction. Universitext. Springer Berlin,
2005.

[Kas13] J. L. Kass. “Singular curves and their compactified Jacobians”. In: A Celebration of
Algebraic Geometry. Ed. by B. Hassett, J. McKernan, J. Starr, and R. Vakil. Clay
Mathematics Proceedings 18. Providence, RI: American Mathematical Society, 2013,
pp. 391–427.

[Kle80] S. L. Kleiman. “Relative duality for quasi-coherent sheaves”. In: Compositio Mathe-
matica 41.1 (1980), pp. 39–60. url: http://www.numdam.org/item/CM_1980__41_

1_39_0/.

[KR22] E. Kienzle and S. Rayan. “Hyperbolic band theory through Higgs bundles”. In:
Advances in Mathematics 409 (Nov. 2022), p. 108664. doi: 10.1016/j.aim.2022.

108664.

[Liu02] Q. Liu. Algebraic Geometry and Arithmetic Curves. Trans. by R. Erné. Oxford
Graduate Texts in Mathematics 6. Oxford University Press, 2002.

[LM10] M. Logares and J. Martens. “Moduli of parabolic Higgs bundles and Atiyah alge-
broids”. In: Journal für die reine und angewandte Mathematik (Crelles Journal)
2010.649 (Jan. 2010). doi: 10.1515/crelle.2010.090.

[Mar94] E. Markman. “Spectral curves and integrable systems”. In: Compositio Mathematica
93.3 (1994), pp. 255–290. url: http://www.numdam.org/item/CM_1994__93_3_

255_0/.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory. Third Enlarged
Edition. Ergebnisse der Mathematik und ihrer Grenzgebiete 34. Springer-Verlag,
1994.

[Mir95] R. Miranda. Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathe-
matics 5. American Mathematical Society, 1995.

http://dx.doi.org/10.1007/s00220-019-03336-4
http://dx.doi.org/10.1215/S0012-7094-87-05408-1
http://dx.doi.org/10.1112/plms/s3-55.1.59
http://dx.doi.org/10.1112/plms/s3-55.1.59
http://dx.doi.org/10.1142/9789814503365_0003
http://www.numdam.org/item/CM_1980__41_1_39_0/
http://www.numdam.org/item/CM_1980__41_1_39_0/
http://dx.doi.org/10.1016/j.aim.2022.108664
http://dx.doi.org/10.1016/j.aim.2022.108664
http://dx.doi.org/10.1515/crelle.2010.090
http://www.numdam.org/item/CM_1994__93_3_255_0/
http://www.numdam.org/item/CM_1994__93_3_255_0/


BIBLIOGRAPHY 61

[MT97] I. H. Madsen and J. Tornehave. From Calculus to Cohomology De Rham Cohomology
and Characteristic Classes. Cambridge University Press, Mar. 1997.

[New78] P. E. Newstead. Introduction to Moduli Problems and Orbit Spaces. Tata Institute of
Fundamental Research Lectures on Mathematics and Physics 51. Springer-Verlag,
1978.

[Nit91] N. Nitsure. “Moduli Space of Semistable Pairs on a Curve”. In: Proceedings of the
London Mathematical Society s3-62.2 (1991), pp. 275–300. doi: 10.1112/plms/s3-

62.2.275.

[NR69] M. S. Narasimhan and S. Ramanan. “Moduli of Vector Bundles on a Compact
Riemann Surface”. In: Annals of Mathematics 89.1 (1969), pp. 14–51. url: http:

//www.jstor.org/stable/1970807.

[Pot97] J. L. Potier. Lectures on Vector Bundles. Trans. by A. Maciocia. Cambridge studies
in advanced mathematics 54. Cambridge University Press, 1997.

[Reg80] C. J. Rego. “The compactified Jacobian”. In: Annales scientifiques de l’École Normale
Supérieure. 4th ser. 13.2 (1980), pp. 211–223. doi: 10.24033/asens.1380.

[Sch20] L. P. Schaposnik. “Higgs Bundles — Recent Applications”. In: Notices of the American
Mathematical Society 67.05 (May 2020), pp. 625–634. doi: 10.1090/noti2074.

[Sil08] A. C. da Silva. Lectures on Symplectic Geometry. Lecture Notes in Mathematics 1764.
Berlin Heidelberg: Springer-Verlag, 2008.

[Sim94] C. T. Simpson. “Moduli of representations of the fundamental group of a smooth
projective variety II”. In: Publications Mathématiques de l’IHÉS 80 (1994), pp. 5–79.
url: http://www.numdam.org/item/PMIHES_1994__80__5_0/.

[Tha96] M. Thaddeus. “An Introduction to the Topology of the Moduli Space of Stable
Bundles on a Riemann Surface”. In: Geometry and Physics. Ed. by J. E. Andersen, J.
Dupont, H. Pedersen, and A. Swann. Lecture notes in pure and applied mathematics
184. Boca Raton: CRC Press, 1996, pp. 71–99.

[Wel08] R. O. Wells Jr. Differential Analysis on Complex Manifolds. 3rd ed. Graduate Texts
in Mathematics 65. New appendix by Oscar García-Prada. Springer New York, 2008.

[Wen16] R. A. Wentworth. “Higgs Bundles and Local Systems on Riemann Surfaces”. In:
Geometry and Quantization of Moduli Spaces. Ed. by L. A. Consul, J. E. Andersen,
and I. M. i Riera. Advanced Courses in Mathematics - CRM Barcelona. Switzerland:
Birkhäuser Cham, 2016. Chap. 4, pp. 165–219.

http://dx.doi.org/10.1112/plms/s3-62.2.275
http://dx.doi.org/10.1112/plms/s3-62.2.275
http://www.jstor.org/stable/1970807
http://www.jstor.org/stable/1970807
http://dx.doi.org/10.24033/asens.1380
http://dx.doi.org/10.1090/noti2074
http://www.numdam.org/item/PMIHES_1994__80__5_0/

	Table of Contents
	List of Figures
	Introduction
	Preliminaries
	Riemann surfaces
	Vector bundles
	The tangent and cotangent bundles of a Riemann surface
	Types of forms and operations on them

	Sheaves, divisors and the degree of a vector bundle
	Holomorphic vector bundles and Dolbeault operators
	Cohomology and hypercohomology
	Algebraic curves and the compactified Jacobian
	Integrable systems

	Higgs bundles and their moduli space
	The moduli space of vector bundles
	Tangent space

	The moduli space of Higgs bundles
	Tangent space

	Symplectic geometry of the moduli space

	The Hitchin map and its fibers
	The Hitchin map
	Spectral curves
	Properties
	The BNR-correspondence

	Complete integrability of the moduli space
	The tangent space to a smooth fiber
	Final conclusions


	Definitions and results from Algebraic Geometry
	Schemes and morphisms
	Derived functors
	The cohomology and the direct image (pushforward) functors


	Bibliography

