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Resumo em Português

O objetivo desta tese é construir anéis que são primitivos em apenas num lado, usando os

artigos [5] e [6] de Ronald S. Irving como fonte principal. Para o skew anel de plolinómios sobre

o anel de polinómios numa variável sobre um corpo algebricamente fechado de caracteŕıstica

0, damos uma descrição completa das condições para a primitividade direita e esquerda. Em

particular, descrevemos todos os anéis deste tipo que são primitivos em apenas um lado e

exibinos alguns exemplos em concreto. Além disso, mostramos que um certo subanel de um

skew anel de polinómios sobre o corpo das funções racionais é primitivo à direita, mas não

primitivo à esquerda. Este exemplo foi constrúıdo por George M. Bergman em [1].



Abstract in English

The aim of this thesis is to construct rings that are primitive on only one side, following the

articles [5] and [6] by Ronald S. Irving as our main source. For the skew polynomial ring over

the polynomial ring in one variable over an algebraically closed field of characteristic 0, we

give a complete description of the conditions for both right and left primitivity. In particular,

we describe all the rings of this type that are primitive on only one side and provide some

concrete examples. Furthermore, we show that a certain subring of the skew polynomial ring

over the field of rational functions is right primitive but not left primitive. This example was

constructed by George M. Bergman in [1].
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Chapter 1

Preliminaries

The following definitions in this chapter, as well as some of the results, are taken from [2],

[3], [7], [8], [9], [11], [12], [13], [14] and [15]. Throughout this thesis, we will denote the

zero-set {0} by 0, and every ring will be unital and associative. We will reserve R and

S for commutative rings and A and B for non-commutative rings. Furthermore, K will

always denote an algebraically closed field of characteristic 0. For every ring homomorphism

ϕ : A → B, we will assume that ϕ(1A) = 1B. When we omit the word left (resp. right) in

front of the word ideal, we mean a two-sided ideal. The opposite ring Aop of a ring A is

the ring defined on the same abelian group structure (A,+) but with multiplication defined

as a · b := ba for all a, b ∈ A.

1.1 Modules and maximal ideals

A (unital) left A-module is an abelian group M written additively together with a map

A×M →M

(a,m) 7→ am

such that for all a, b ∈ A and all m,n ∈M ,

(i) (a+ b)m = am+ bm,

(ii) a(m+ n) = am+ an,

(iii) a(bm) = (ab)m.

(iv) 1m = m
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A right A-module is defined analogously. A subset L of M is called a submodule of M if

L is a subgroup of M and al ∈ L for all a ∈ A and l ∈ L. The following proposition is taken

from [14, p. 102].

Proposition 1.1. Let I be a left ideal of a ring A. Then the map

A×A/I → A/I

(a,m+ I) 7→ am+ I

makes the residue class group A/I into a left A-module.

Let M be an Abelian group and A any ring and denote the ring of group endomorphisms

of M by End(M). Then

(i) if λ : A ×M → M defines a left A-module structure on M , then ϕ : A → End(M)

given by λ(a)(m) = am is a ring homomorphism;

(ii) if ϕ : A→ End(M) is a ring homomorphism, then λ : A×M →M given by λ(a,m) =

ϕ(a)(m) defines a left A-module structure on M .

A ring homomorphism ϕ : A→ End(M) is called a representation of A on M . The kernel of

this representation of A is called the annihilator of M and as a kernel of a ring homomor-

phism, the annihilator is a two-sided ideal. More formally, the annihilator of an A-module

M is the set

annA(M) := {a ∈ A : aM = 0}.

If annA(M) = 0, then M is said to be a faithful module.

Analogously there exists a correspondence between right A-module structures on M and

ring homomorphism ϕ : A→ End(M)op. A K-algebra is a ring A with a ring homomorphism

i : K → Z(A), where Z(A) is the center of A (see [4, p. xi]). The element i(1) = 1A is the

identity of A and A becomes a K-vector space by ka := i(k)a for all k ∈ K and a ∈ A. A

left (resp. right) module M over a K-algebra is a K-vector space and the endomorphisms of

M is the ring of K-linear endomorphisms.

Definition 1.2. A simple ring A is a ring where 0 and A are the only two-sided ideals of

A.

Example 1.3. Mn(K) is simple, where Mn(K) denotes the n×n-matrix ring over a field K.

Just observe that every two-sided ideal of Mn(K) is of the form Mn(I) where I is an ideal
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of K. However, 0 and K are the only ideals in K, so 0 and Mn(K) are the only two-sided

ideals of Mn(K).

For any non-commutative ring A, we say that a left (resp. right) A-module M is simple

if M 6= 0 and its only submodules are 0 and M . A proper left (resp. right) ideal I of a

ring A is said to be maximal if, for J any other left (resp. right) ideal of A, we have that

I ⊆ J ⊆ A implies that J = I or J = A.

Lemma 1.4. Let A be a ring and let M be a left (resp. right) A-module.

(i) M is simple if and only if M = Am (resp. mA) for all nonzero m ∈M .

(ii) If M is simple, then, for any nonzero m ∈M , we have that annA(m) := {a ∈ A :

am = 0} is a left (resp. right) maximal ideal of A.

(iii) Every simple left (resp. right) A-module is isomorphic to A/I for some maximal

left (resp. right) ideal I of A. Conversely, if I is a maximal left (resp. right)

ideal of A, then A/I is a simple left (resp. right) A-module.

(iv) Let M be a maximal left (resp. right) ideal of A. Given any nonzero a ∈ A\M ,

there exists b ∈ A and m ∈M such that

1 = ba+m (resp. 1 = ab+m).

Proof. We will only prove the lemma for left modules and left ideals. The proof for right

modules and right ideals is analogues.

(i) Assume that M is simple and let 0 6= m ∈ M be any nonzero element of M . Since

1 ∈ A, we have that 0 6= m = 1 ·m ∈ Am and hence Am is a nonzero submodule of M .

Since M is simple, we have that Am = M .

Conversely, assume that M = Am for all 0 6= m ∈M . Let N be any nonzero submodule

of M . By assumption, M = An for all 0 6= n ∈ N , so

M = An ⊆ N ⊆M.

This implies that N = M so that M has no nonzero proper submodules. Hence M is

simple.

(ii) By (i), we know that M = Am for any nonzero m ∈ M . Fix one such m and define

ϕ : A → Am by a → am. Since ϕ is surjective and ker(ϕ) = annA(m), we have
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that A/annA(m) ∼= M by the First Isomorphism Theorem. Let I be a left ideal of A

such that annA(m) ⊆ I ⊆ A. Then I/annA(m) is a submodule of A/annA(m). Since

A/annA(m) is simple, it follows that I/annA(m) = 0 or I/annA(m) = A/annA(m).

Hence I = annA(m) or I = A, that is, annA(m) is maximal.

(iii) Let M be a simple left A-module. Then M = Am for any nonzero m ∈ M by (i).

Fix one such m and define the homomorphism ϕ : A → Am by a 7→ am. Observe

that ker(ϕ) = annA(m) so, since ϕ is surjective, A/annA(m) ∼= Am. But annA(m) is

maximal by (ii), so M is isomorphic to A/I for the maximal left ideal I = annA(m).

Conversely, let I be a maximal left ideal of A, and let m ∈ A\I. Then I ⊆ Am+ I ⊆ A

so since I is maximal, we have that Am+ I = A. Thus

A(m+ I)

I
=
Am+ I

I
= A/I.

Hence A/I is simple by (i).

(iv) Define the left ideal L := Aa + M . Since a ∈ L\M , we have that M ( L, but M

is maximal so L = A. Hence 1 ∈ L and there exists b ∈ A and m ∈ M such that

1 = ba+m.

�

Let I, J, I1, . . . , In, where n ≥ 2 be ideals of the commutative ring R. We say that I and

J are comaximal precisely when I+J = R; also, we say that the family {Ii}ni=1 is pairwise

comaximal if and only if Ii + Ij = R whenever 1 ≤ i, j ≤ n and i 6= j. The following

proposition is taken from [14, p. 55].

Proposition 1.5. Let {Ii}ni=1 for n ≥ 2 be a pairwise comaximal family of ideals of

the commutative ring R. Then

I1 ∩ · · · ∩ In = I1 · · · In.

1.2 Prime and primary ideals

Let I, J and P be proper ideals of a non-commutative ring A. If IJ ⊆ P implies that

I ⊆ P or J ⊆ P , we say that P is a prime ideal. Equivalently, P is a prime ideal if for

a, b ∈ A such that aAb ⊆ P implies that a ∈ P or b ∈ P . If the zero ideal of A is prime, we

say that A is a prime ring. The set of all the prime ideals of R is denoted by Spec(R).
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Lemma 1.6. Let A be a ring and let M be simple left (resp. right) A-module. Then

annA(M) is a prime ideal.

Proof. Let a, b ∈ A be such that aAb ∈ annA(M). Since 0 ⊆ AbM ⊆ M and M is simple,

we have that AbM = 0 or AbM = M . If AbM = 0, then Ab ⊆ annA(M) which implies that

1b = b ∈ annA(M). If AbM = M , then aAbM = aM . But aAbM = 0 since aAb ⊆ annA(M),

so aM = 0 and hence a ∈ annA(M). It follows that annA(M) is a prime ideal. �

Lemma 1.7. Let R be a commutative ring and let P be a prime ideal of R. If

X1, . . . , Xn are non-empty subsets of R for some n ≥ 1 and

{x1x2 · · ·xn : xi ∈ Xi for 1 ≤ i ≤ n} ⊆ P,

then there exists 1 ≤ i ≤ n such that Xi ⊆ P .

Proof. We will prove the lemma by induction on n. The case where n = 1 is quite obvious:

X1 = {x1 : x1 ∈ X1} ⊆ P .

For the inductive part, assume that the result holds for n and assume that X1, . . . , Xn+1 are

non-empty subsets of R such that

{x1x2 · · ·xn+1 : xi ∈ Xi for 1 ≤ i ≤ n+ 1} ⊆ P.

Assume now that Xi * P for all 1 ≤ i ≤ n. Then

{x1x2 · · ·xn : xi ∈ Xi for 1 ≤ i ≤ n} * P,

by the induction hypothesis. Hence there exist x′i ∈ Xi for 1 ≤ i ≤ n such that x′1 · · ·x′n /∈ P .

Now, for all xn+1 ∈ Xn+1, we have that x′1 · · ·x′nxn+1 ∈ P . Since P is a prime ideal and since

x′1 · · ·x′n /∈ P , we must have that xn+1 ∈ P for all xn+1 ∈ Xn+1. Hence Xn+1 ⊆ P . �

The radical
√
I of an ideal I over a commutative ring R is defined as

√
I := {r ∈ R : there exists n > 0 for which rn ∈ I} .

We will need the following definition in the next two proofs. Let (X,≤) be a partially ordered

set. A chain of elements of a set X is a subset Y ⊆ X of elements of X such that for all

y1, y2 ∈ Y we have that either y1 ≤ y2 or y2 ≤ y1.
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Lemma 1.8. Let R be a commutative ring and I an ideal. Then

√
I =

⋂
{P : P ∈ Spec(R) and I ⊆ P}.

Proof. Define

P ∗ :=
⋂
{P : P ∈ Spec(R) and I ⊆ P}.

Let a ∈
√
I. By definition there exists n > 0 such that an ∈ I. For any P ∈ Spec(R) with

I ⊆ P , we have an ∈ I ⊆ P and hence a ∈ P . This shows
√
I ⊆ P ∗.

Conversely, let a ∈ P ∗. Consider the set of ideals

Ω := {J ⊆ R : J is an ideal containing I with an 6∈ J for all n > 0}.

Note that Ω 6= ∅ if and only if I ∈ Ω if and only if an 6∈ I for all n > 0. Thus suppose Ω 6= ∅,

that is, there is no n > 0 such that an ∈ I. We will apply Zorn’s Lemma to obtain a maximal

element in Ω. To do so, we equip Ω with the ordinary partial ordering. Let T ⊆ Ω be a chain

of ideals in Ω and set

J∗ :=
⋃
{J | J ∈ T}.

To see that J∗ is an ideal, observe first that J∗ 6= ∅ because 0 ∈ J∗. Let a, b ∈ J∗ and r ∈ R.

Then there exist ideals J1, J2 ∈ T such that a ∈ J1 and b ∈ J2. Since a ∈ J1, we have that

ra ∈ J1 ⊆ J∗. Furthermore, since T is a chain, either J1 ⊆ J2 or J2 ⊆ J1. We assume without

loss of generality that J1 ⊆ J2. Then both a, b ∈ J2. Since J2 is an ideal, a+ b ∈ J2 ⊆ J∗.

If an ∈ J∗ for some n > 0, then there should exist J ∈ T with an ∈ J , which is a

contradiction as J ∈ Ω. Thus J∗ ∈ Ω and by Zorn’s Lemma Ω has a maximal element, say Q.

By definition, Q contains I and we will show that Q is a prime ideal, from which we obtain

a contradiction, since then a ∈ P ∗ ⊆ Q and on the other hand a 6∈ Q. Now take elements

x, y ∈ R with xy ∈ Q. Suppose none of the elements x and y belong to Q. Then the ideals

Q′ = Rx+Q and Q′′ = Ry +Q properly contain Q. By the maximality of Q, we have that

Q′, Q′′ 6∈ Ω. Hence there exist powers an and am such that an ∈ Q′ and am ∈ Q′′. But then

an = r1x+ q1 and am = r2y + q2 for some r1, r2 ∈ R and q1, q2 ∈ Q. Thus

an+m = (r1x+ q1)(r2y + q2) = r1r2xy + r1xq2 + r2yq1 + q1q2 ∈ Q,

contradicting the assumption that Q ∈ Ω. Therefore x ∈ Q or y ∈ Q, i.e. Q is a prime ideal

containing I. But then a ∈ Q, which contradicts a 6∈ Q. Therefore Ω = ∅ and there must

exists n > 0 with an ∈ I, i.e. a ∈
√
I. We conclude that P ∗ ⊆

√
I and thus

√
I = P ∗. �
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Let A be a ring. A left (resp. right) ideal I of A is said to be a nilpotent left (resp.

right) ideal if there exists n ∈ N such that In = 0 and an element a ∈ A is said to be a

nilpotent element if there exists n ∈ N such that an = 0. Note that 0 is nilpotent. An

ideal I of A is called semiprime if A/I has no nonzero nilpotent ideals and we say that A

is reduced if it does not contain any nonzero nilpotent elements.

For a commutative ring R, the zero ideal is semiprime if and only if it is reduced, because

if a is a nilpotent element, then the ideal I = Ra is nilpotent. And if I is a nilpotent ideal,

then any nonzero element of I is nilpotent. It is clear that for any ideal I of R,
√
I/I contains

all nilpotent elements in R/I. Hence an ideal I of R is semiprime if and only if I =
√
I if

and only if I is the intersection of prime ideals, by Lemma 1.8.

A prime ideal P of a ring A is called a minimal prime ideal if the only prime ideal that

it contains is P itself.

Lemma 1.9. Any prime ideal of a ring A contains a minimal prime ideal [4, p. 44].

A ring A satisfies the ascending chain condition for left (resp. right) ideals if for every

chain I1 ⊆ I2 ⊆ . . . Ii ⊆ Ii+1 . . . of left (resp. right) ideals of A, there exists n ∈ N such that

In = In+i for all i ∈ N. A commutative ring R is said to be noetherian if and only if it

satisfies the following equivalent conditions:

(i) R satisfies the ascending chain condition for ideals;

(ii) every nonempty set of ideals of R has a maximal member with respect to inclusion; and

(iii) every ideal of R is finitely generated.

Lemma 1.10. Any commutative noetherian ring has only a finite number of minimal

prime ideals, and a product of some powers of these ideals is zero.

Proof. We will first show that 0 is a product of prime ideals. Let R be a commutative

noetherian ring, and let

Ω := {K ⊆ R : K is an ideal that does not contain a finite product of prime ideals} .

If Ω = ∅, then every ideal of R contains a finite product of prime ideals. In particular, 0 is a

finite product of prime ideals. Our goal is therefore to prove that Ω = ∅, and we will do this

by showing that the assumption that Ω 6= ∅ leads to a contradiction.
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Assume Ω 6= ∅. Since R is noetherian, Ω has a maximal element K with respect to

inclusion. Every nonzero ideal of R/K contains a finite product of prime ideals. As R

contains a maximal ideal, it contains a prime ideal. Therefore R /∈ Ω, so K 6= R and hence

R/K is not a prime ring, that is, 0 is not prime. Thus there exist nonzero ideals I = I/K

and J = J/K of R/K with 0 = IJ but where each I, J contains a finite product of prime

ideals, say P1 · · ·Pn ⊆ I and Q1 · · ·Qm ⊆ J . Observe that

P1 · · ·PnQ1 · · ·Qm ⊆ IJ = 0,

which implies that

P1 · · ·PnQ1 · · ·Qm ⊆ K,

contradicting the fact that K ∈ Ω. Hence Ω = ∅, that is, 0 is a finite product of prime ideals.

We will now prove that a commutative noetherian ring R has only a finite number of

minimal prime ideals. We have just proved that there exists prime ideals P1, . . . , Pn of R

such that 0 = P1 · · ·Pn. Let min(R) denote the set of all minimal prime ideals of R. By

Lemma 1.9, min(R) 6= ∅. Let Q ∈ min(R). Then

P1 · · ·Pn = 0 ⊆ Q,

so by Lemma 1.7 there exists 1 ≤ i ≤ n such that Pi ⊆ Q. Since Q is minimal, we must

have that Pi = Q. Since Q was an arbitrary element of min(R), we conclude that min(R) ⊆

{P1, . . . , Pn}. Hence R has only a finite number of minimal ideals.

It remains to show that 0 is a product of minimal prime ideals. By Lemma 1.9, there

exist minimal prime ideals P ′i ⊆ Pi for each 1 ≤ i ≤ n. Hence

P ′1 · · ·P ′n ⊆ P1 · · ·Pn = 0,

so in fact 0 = P ′1 · · ·P ′n. This proves the lemma. �

Corollary 1.11. Any semiprime ideal I of a commutative noetherian ring R is the

intersection of a finite number of minimal prime ideals over R/I.

Proof. By Lemma 1.8, the zero ideal of R/
√
I is the intersection of prime ideals. Any of

those prime ideals contains a minimal prime ideal by Lemma 1.9. By Lemma 1.10, the set of

minimal prime ideals is finite. Hence the zero ideal of R/
√
I is the intersection of finitely many

minimal prime ideals. Thus
√
I is equal to a finite intersection of minimal prime ideals. �
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Lemma 1.12. Any ideal of a commutative noetherian ring contains a power of its

radical.

Proof. Since R is noetherian,
√
I is generated by a finite number of elements, say a1, . . . , an.

By the definition of the radical, there exists a number mi > 0 such that ami
i ∈ I for each

1 ≤ i ≤ n. Let m = m1 + · · · + mn. Then (r1a1 + . . . + rnan)m ∈ I, for any ri ∈ R.

To see this, just observe that each term in the sum (r1a1 + . . . + rnan)m is of the form

raj11 · · · a
jn
n , for some r ∈ R and where j1 + · · · + jn = m. If ji < mi for all 1 ≤ i ≤ n,

then j1 + · · · + jn < m1 + · · · + mn = m, a contradiction. Hence ji ≥ mi for at least one i

for each of the terms of (r1a1 + . . . + rnan)m. Thus each term is contained in I and hence

(r1a1 + . . .+ rnan)m ∈ I, for any ri ∈ R. Since s ∈
√
I =⇒ s = r1a

k1
1 + . . .+ rna

kn
n for some

ri ∈ R and some ki ∈ N, we conclude that
(√

I
)m
⊆ I. �

Let Q be an ideal of a commutative ring R. We say that Q is a primary ideal of R if

(i) Q is a proper ideal of R, and

(ii) whenever a, b ∈ R with ab ∈ Q but a /∈ Q, then there exits n ∈ N such that bn ∈ Q.

One can show that if Q is a primary ideal of R, then P :=
√
Q is a prime ideal of R [14,

p. 63]. We say that Q is P -primary.

Let I be a proper ideal of the commutative ring R. As in [14, p. 68] we define a primary

decomposition of I to be an expression for I as an intersection of finitely many primary

ideals of R. Such a primary decomposition

I = Q1 ∩ · · · ∩Qn,

with
√
Qi = Pi for 1 ≤ i ≤ n, of I is said to be a minimal primary decomposition of I

precisely when

(i) P1, . . . , Pn are n different prime ideals of R, and

(ii) for all 1 ≤ j ≤ n we have

Qj +
n⋂
i=1
i 6=j

Qi.

We say that I is a decomposable ideal of R precisely when it has a primary decomposition.
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Lemma 1.13. [14, p. 69]. Every decomposable ideal of R has a minimal primary

decomposition. Furthermore, if a primary decomposition of I has n terms, then the

number of terms in a minimal primary decomposition of I has at most n terms.

Let I be a decomposable ideal of the commutative ring R, and let

I = Q1 ∩ · · · ∩Qn with
√
Qi = Pi for i = 1, . . . , n

be a minimal primary decomposition of I. Then the n-element set

{P1, . . . , Pn},

which is independent of the choice of minimal primary decomposition by Lemma 1.13, is

called the set of associated prime ideals of I and is denoted ass(I).

Theorem 1.14 (The Second Uniqueness Theorem for Primary Decomposition). [14,

p. 75]. Let I be a decomposable ideal of the commutative ring R, and let ass(I) =

{P1, . . . , Pn}. Let

I = Q1 ∩ · · · ∩Qn with
√
Qi = Pi for i = 1, . . . , n

and

I = Q′1 ∩ · · · ∩Q′n with
√
Q′i = Pi for i = 1, . . . , n

be two minimal primary decompositions of I. Then, for each i with 1 ≤ i ≤ n for

which Pi is a minimal prime ideal belonging to I, we have

Qi = Q′i.

1.3 Primitive rings

An ideal P of a ring A is said to be a left (resp. right) primitive ideal if P is the

annihilator of a simple left (resp. right) A-module. Note that, by Lemma 1.6, this implies

that every left (resp. right) primitive ideal is prime. If the zero ideal of a ring A is left (resp.

right) primitive, we say that A is primitive on the left (resp. right). Equivalently, A is

left (resp. right) primitive if it has a faithful simple left (resp. right) A-module M .

Remark 1.15. Every simple ring A is both left and right primitive. To see this, recall that

the only two-sided ideals of A are 0 and A, so in particular annA(M) = 0 for every nonzero
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left (resp. right) A-module M . Hence any left (resp. right) A-module would be faithful.

Now, 1 ∈ A implies that there exists a maximal left (resp. right) ideal I of A, and thus A/I

is a simple left (resp. right) A-module. We conclude that A is left and right primitive.

Lemma 1.16. A commutative ring R is primitive if and only if it is a field.

Proof. Let R be a field. Then 0 and R are the only ideals. Since annR(R) is an ideal of R,

annR(R) = 0 or annR(R) = R. If annR(R) = R, then rR = 0 for all r ∈ R. In particular,

1 ·R = 0, a contradiction. Hence annR(R) = 0. Since R is a simple faithful module of R, we

have that R is primitive.

Conversely, assume that R is a commutative primitive ring. Since R is primitive, it has a

faithful simple R-module M . By Lemma 1.4 (iii), M = R/I for some maximal ideal I of R.

Since R is commutative, I is two-sided and hence

annR (R/I) = {r ∈ R : (r + I) (R/I) = 0} = {r ∈ R : rs ∈ I for all s ∈ R} ⊇ I.

Since I is maximal, and because annR (R/I) 6= R since 1 /∈ annR (R/I), we conclude that

I = annR(R/I). It follows that I = 0 because R/I is faithful. But then M = R/0 = R, so R

itself is simple. Since R is commutative, we conclude that R is a field. �

Let X be a set. A word in X is a concatenation of some elements of X. We denote the

empty word by λ, and we denote the set of all words on X, together with λ, by X∗.

Example 1.17. Let X = {x, y, z}. Then x, yzyzx and y2xyz5x2 are examples of words in

X.

Let A be any ring. The free algebra on X over A is denoted by A 〈X〉 and is defined by

A 〈X〉 =

{ ∑
w∈X∗

aww : aw ∈ A

}
,

where only finitely many aw are nonzero. For any words w, u ∈ X∗, multiplication is defined

as (aww) · (auu) = (awau)wu and addition is defined as aww + a′ww = (aw + a′w)w. Thus

the free algebra on X over F is the free vector space whose basis are the words in X. The

free algebra can also be thought of as non-commutative polynomials since for example x2zx

could be different from x3z.

Let X be a set, A,B rings, A 〈X〉 the free algebra on X over A, Φ : A → B a ring

homomorphism and ϕ a map from X to B. According to [2, p. 138], ϕ and Φ can be

11



extended to a homomorphism ψ from A 〈X〉 to B, such that ψ(a) = Φ(a) for all a ∈ A and

such that the following diagram commutes:

X

B

A 〈X〉x 7→ x

ϕ ψ

This is called the universal property of A 〈X〉.

Example 1.18. The free algebra on X = {x1, . . . , xn} over Z is

Z 〈X〉 =

{
n∑
i=1

awiwi : wi ∈ X∗, awi ∈ Z, n ≥ 1

}
.

A commutative factor is
Z 〈X〉

〈{xixj − xjxi : 1 ≤ i, j ≤ n}〉
.

Let N ⊆ N be a subset of the positive integers N. Let X = {xi : i ∈ N} be a set of

indeterminates and let Z 〈X〉 denote the free algebra on X over the integers Z. Let A be a

ring. An element

f =
∑
σ∈Sn

kσxσ(1) · · ·xσ(n) ∈ Z 〈X〉 , (1.1)

where kσ ∈ Z, is said to be a multi-polynomial identity of A if f(a1, . . . , an) = 0 for all

a1, . . . , an ∈ A. We say that A is a PI-ring if there exists f ∈ Z 〈X〉 as in (1.1) such that

kσ = 1 for at least one σ ∈ Sn and f is a multi-polynomial identity of A.

Theorem 1.19 (Kaplansky). [2, p. 185]. A left (resp. right) primitive PI-ring A is a

simple algebra finite dimensional over its center.

Lemma 1.20. [10, p. 492]. Let R be a commutative subring of a ring A such that A

is a finitely generated left or right R-module. Then A is a PI-ring.

1.4 Dedekind domains

Let K be a field and let F be the field of fractions of an integral domain R. An element

α ∈ K is said to be integral over R if an only if α is a zero of a polynomial in R[y] whose

leading coefficient is 1. We say that an integral domain R is integrally closed if α ∈ F and

α integral over R implies that α ∈ R.

12



Let R be a commutative integral domain. We say that R is a Dedekind domain if and

only if

(i) R is noetherian,

(ii) every nonzero prime ideal of R is maximal, and

(iii) R is integrally closed.

Every principal ideal domain is Dedekind and, in particular, K[y] is Dedekind.

The following Corollary is taken from [3, p. 258] and is important for our study of skew

polynomial rings in Chapter 3.

Corollary 1.21 (Dedekind). Let R be a Dedekind domain. Every nonzero ideal of R

can be written uniquely as the product of prime ideals.

As a consequence of Corollary 1.21 and Lemma 1.7 we have:

Corollary 1.22. Let R be a Dedekind domain, P any prime ideal and I any nonzero

ideal of R. Then I ⊆ P if and only if there exists an ideal I ′ such that I = PI ′.

Proof. Assume that I ⊆ P for a nonzero ideal I and a prime ideal P , and suppose I =

P1 · · ·Pn is a prime decomposition with prime ideals Pi (not necessarily different). Since

P1 · · ·Pn = I ⊆ P , by Lemma 1.7, there exist 1 ≤ i ≤ n such that Pi ⊆ P . However Pi is a

nonzero prime ideal and any nonzero prime ideal of R is maximal. Thus Pi = P and I = PiI
′

where I ′ = P1 · · ·Pi−1Pi+1 · · ·Pn. The converse is clear. �

Let I be an ideal and P a prime ideal in a Dedekind domain R. We say that P divides

I or that P is a prime divisor of I if I ⊆ P . The P -order of I, denoted νP (I), is the

largest m ≥ 0 such that I ⊆ Pm but I 6⊆ Pm+1. This terminology is justified by Corollary

1.22, because if I ⊆ P , then I = PI ′ for some ideal I ′. Furthermore if we write the prime

decomposition of I as I = Pα1
1 · · ·P

αl
k with different primes Pi and numbers αi ≥ 1, then the

P -order of I is αi if P = Pi and 0 if P is different from all prime ideals Pi. The P -order

νP (r) of an element r ∈ R is defined to be νp (〈r〉).

We can generalise Corollary 1.22 as

Corollary 1.23. Let R be a Dedekind domain, I an ideal, P a prime ideal and m ≥ 0.

Then I ⊆ Pm if and only if νP (I) ≥ m.
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Proof. Assume I ⊆ Pm. Since νP (I) is the largest integer such that I ⊆ P νP (I), we conclude

that m ≤ νP (I). Conversely, assume νP (I) ≥ m. Then I ⊆ P νP (I) ⊆ Pm. �

A consequence of Corollary 1.23 is

Corollary 1.24. Let P be a nonzero prime ideal of a Dedekind domain R and m > 0.

If I is an ideal of R, such that Pm+1 ⊆ I ⊆ Pm, then I = Pm or I = Pm+1.

Proof. Since I ⊆ Pm, we have that νP (I) ≥ m by Corollary 1.23. Decompose I = P νP (I)Q

with νP (Q) = 0. Then Pm+1 ⊆ P νP (I) shows that m + 1 ≥ νP (I) ≥ m, which means that

νP (I) = m + 1 or νP (I) = m. In the first case Pm+1 ⊆ I = Pm+1Q ⊆ Pm+1 which implies

that Pm+1 = I. In the latter case one has Pm+1 ⊆ I = PmQ ⊆ Pm. Since νP (Q) = 0, then

Q and P are comaximal, i.e. R = P +Q. Hence Pm = Pm(P +Q) = Pm+1 + I = I. �

Corollary 1.25. Let I and J be nonzero ideals of a Dedekind domain R and let P be

a prime ideal of R. Then

(i) νP (IJ) = νP (I) + νP (J)

(ii) νP (I + J) ≥ min{νP (I), νP (J)}

As a consequence, νP (ab) = νP (a) + νP (b) and νP (ab) ≥ min{νP (a), νP (b)} for any

a, b ∈ R.

Proof. Let νP (I) = m and νP (J) = n. Then I = PmQ1 and J = PnQ2 for some ideals

Q1, Q2 with νP (Q1) = 0 and νP (Q2) = 0.

(i) We have that IJ = Pm+nQ1Q2. Assume that νP (Q1Q2) > 0. Then Q1Q2 ⊆ P .

But then, since P is prime, Q1 ⊆ P or Q2 ⊆ P , contradicting that νP (Q1) = 0 and

νP (Q2) = 0. Hence νP (Q1Q2) = 0 and therefore νP (IJ) = m + n = νP (I) + νP (J),

using the uniqueness of the decomposition of I and J as products of primes.

(ii) Assume n ≤ m; the case where m ≤ n can be proven analogously. As above, I = PmQ1

and J = PnQ2. Then

νP (I + J) = νP (PmQ1 + PnQ2) = νP
(
Pn
(
Pm−nQ1 +Q2

))
≥ n = min{νP (I), νP (J)}

�
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Definition 1.26. The least common multiple of ideals B1, . . . , Bd in a Dedekind domain

R is defined as follows: Write each ideal as Bj = P
α1j

1 · · ·Pαnj
n where P1, . . . , Pn are distinct

prime ideals and αij ≥ 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ d. Then the least common multiple of

the ideals B1, . . . , Bd is defined by

LCM(B1, . . . , Bd) := P
max(α11,...,α1d)
1 · · ·Pmax(αn1,...,αnd)

n .

This means in particular that for any prime ideal P , we have that

νP (LCM(B1, . . . , Bd)) = max(νP (B1), . . . , νP (Bd)).

The Jacobson radical of a ring A is the intersection of all left (resp. right) primitive ideals

of A and is denoted rad(A). That is, if Λ is the set of all left primitive ideals of A and Γ is

the set of all right primitive ideals of A, then

rad(A) =
⋂
I∈Λ

I =
⋂
I∈Γ

I.

Since rad(A) is a two-sided ideal of A, we avoid the term left (resp. right) when referring to

the Jacobson radical. We will not prove that
⋂
I∈Λ I =

⋂
I∈Γ I but instead refer to books like

[2] and [8]. The following lemma about the Jacobson radical is taken from [8, p. 50], and will

be needed in the proof of Theorem 1.42.

Lemma 1.27. Let A be a ring an let b ∈ A. Then the following statements are

equivalent:

(i) b ∈ rad(A);

(ii) 1− ab is left-invertible for any a ∈ A;

(iii) bM = 0 for any simple left A-module M

The equivalent right version is of course also true.
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Lemma 1.28. Let R and S be commutative rings and let ϕ : S → R be a ring

homomorphism. Then for any ideal I of R, the set

ϕ−1(I) = {s ∈ S : ϕ(s) ∈ I}

is an ideal of S. In particular, ϕ induces a map

ϕ∗ : Spec(R)→ Spec(S)

P 7→ ϕ−1(P ).

Proof. Since ϕ(0) = 0 ∈ I, ϕ−1(I) is nonempty. Furthermore, for a, b ∈ ϕ−1(I), we have

that ϕ(a+ b) = ϕ(a) + ϕ(b) ∈ I since ϕ is a homomorphism and since ϕ(a), ϕ(b) ∈ I. Hence

a+b ∈ ϕ−1(I). Finally, let a ∈ ϕ−1(I) and s ∈ S. Then ϕ(as) = ϕ(a)ϕ(s) ∈ I since ϕ(a) ∈ I.

Thus as ∈ ϕ−1(I). This shows that ϕ−1(I) is an ideal of S.

Let now P be a prime ideal. For any s, t ∈ S with st ∈ ϕ−1(P ) one has

ϕ(s)ϕ(t) = ϕ(st) ∈ ϕ(ϕ−1(P )) ⊆ P.

Since P is a prime ideal, ϕ(s) ∈ P or ϕ(t) ∈ P , which means that s ∈ ϕ−1(P ) or t ∈ ϕ−1(P ).

Thus ϕ−1(P ) is a prime ideal of S. �

The following corollary is an immediate consequence of Lemma 1.28.

Corollary 1.29. Let ϕ : R→ R be an endomorphism of a commutative ring R. If P

is a prime ideal in R, then, for all i ≥ 0, ϕ−i(P ) := {r ∈ R : ϕi(r) ∈ P} is prime as

well.

Let ϕ : R→ R be a ring endomorphism of R. The ϕ-orbit of a prime ideal P ∈ Spec(R)

is the set

orbϕ(P ) := {(ϕ∗)i (P ) : i ≥ 0} = {ϕ−i(P ) : i ≥ 0},

where ϕ0 = id. A prime ideal P is called ϕ-periodic if there exists an integer n ≥ 1 such

that ϕ−n(P ) = P . In this case |orbϕ(P )| is finite and the least such n is called the period

of P .

Remark 1.30. If orbϕ(P ) is finite, then orbϕ(P ) must contain a ϕ-periodic prime ideal.

Moreover, if P is ϕ-periodic, then

orbϕ(P ) = orbϕ(ϕ−i(P ))
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for all i ≥ 0.

A ϕ-periodic prime ideal P of period n is called singular if ϕn(P ) ⊆ P 2.

Example 1.31. Let R = C[y]. Since R is a principal ideal domain, any nonzero prime ideal

is maximal and of the form P = 〈y − a〉 for some a ∈ C. Let ϕ : R→ R be the endomorphism

defined by ϕ(y) = f(y) for some f ∈ R (see the last paragraph of section 1.5) and denote

f(f(· · · f(y) · · · )) i times by f i(y). For any i > 0 we have that ϕi(y− f i(a)) = f i(y)− f i(a).

Thus y = a is a root of ϕi(y − f i(a)) and hence ϕi(y − f i(a)) ∈ P which implies that

y − f i(a) ∈ ϕ−i(P ). Since
〈
y − f i(a)

〉
is a maximal ideal contained in ϕ−i(P ), we have

ϕ−i(P ) =
〈
y − f i(a)

〉
. In addition, one can show that

〈
ϕi(P )

〉
=
〈
f i(y)− a

〉
.

For a prime ideal P = 〈y − a〉, we have that ϕ−n(P ) = 〈y − fn(a)〉 = P = 〈y − a〉 if and

only if fn(a) = a, so we conclude that P is ϕ-periodic if and only if fn(a) = a.

Let ϕ(y) = f(y) = y3 and P = 〈y − a〉. Then ϕ−i(P ) =
〈
y − a3i

〉
and

〈
ϕi(P )

〉
=〈

y3i − a
〉

. For a =
√

2
2 +

√
2

2 i, the eighth root of 1, we have that

ϕ−2(P ) =

〈
y −

(√
2

2
+

√
2

2
i

)9〉
=

〈
y −

(√
2

2
+

√
2

2
i

)〉
= P,

so P is ϕ-periodic of period 2. Furthermore, one can show that
〈
ϕ2(P )

〉
=
〈
y9 − a

〉
=〈

y9 − a9
〉

has 9 different factors, so the P -order of
〈
ϕ2(P )

〉
is 1. Hence ϕ2(P ) * P 2, that is,

P is not singular.

Proposition 1.32. Let P be a nonzero ϕ-periodic prime ideal of period n of a

Dedekind domain R with injective ring homomorphism ϕ : R→ R. Then P is singular

or ϕ−n(Pm) = Pm for any m ≥ 1.

Proof. Suppose P is not singular. Then for m = 1 we have ϕ−n(P 1) = P 1 since P is ϕ-

periodic of period n. Suppose m ≥ 1 and it has already been proven that ϕ−n(Pm) =

Pm. Then
〈
ϕn(Pm+1)

〉
⊆
〈
ϕn(P )m+1

〉
⊆ Pm+1 shows that Pm+1 ⊆ ϕ−n(Pm+1). On

the other hand, for any y ∈ ϕ−n(Pm+1) we have that ϕn(y) ∈ Pm+1 ⊆ Pm and hence

y ∈ ϕ−n(Pm) = Pm. It follows that the ideal ϕ−n(Pm+1) lies between Pm+1 and Pm and

therefore, by Corollary 1.24, ϕ−n(Pm+1) = Pm+1 or ϕ−n(Pm+1) = Pm. But the latter case

would imply P to be singular, because if ϕ−n(Pm+1) = Pm holds, then 〈ϕn(Pm)〉 ⊆ Pm+1

and therefore, by Corollary 1.23, we have that m + 1 ≤ νP (〈ϕn(Pm)〉) = mνP (〈ϕn(P )〉).

Hence νP (〈ϕn(P )〉) ≥ 2 or, in other words, ϕn(P ) ⊆ P 2. But we assumed P not to be

singular. By induction we therefore get that ϕ−n(Pm) = Pm, for all m ≥ 0. �
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Note that both cases in the last proposition cannot occur for the same P , because then

both ϕn(P ) ⊆ P 2 and ϕ−n(P 2) = P 2. Hence P ⊆ ϕ−n(P 2) = P 2 ⊆ P which implies that

P = P 2. This is impossible because then 1 = νP (P ) = νP (P 2) = 2.

1.5 Skew polynomial rings

Let A be a ring and X = 〈x〉 a set of one element. Then the free algebra A 〈X〉 over A in

X is called the polynomial ring over A in one variable, and is denoted A[x]. Addition and

multiplication of two elements of A[x] are defined by

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn)xn,

( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=
∞∑
n=0

cnx
n, where cn =

n∑
i=0

aibn−i.

Here all but finitely many of the coefficients ai and bi are 0. Regarding the associativity, we

refer to [10]. In the polynomial ring A[x], we have that xa = ax for all a ∈ A, that is, x and

a commute. If we instead require that xa = ϕ(a)x, where ϕ is a ring endomorphism of A, we

get

(axi)(bxj) = aϕi(b)xi+j (1.2)

for all a, b ∈ A. The set of polynomials
∑n

i=0 aix
i endowed with the usual addition and the

multiplication determined by (1.2) is called a skew polynomial ring [2, p. 20], [10, p. 16].

It is denoted by A[x, ϕ]. For an element

a =
n∑
i=0

aix
i ∈ A[x, ϕ]

with an 6= 0, we call anx
n the leading term of a, an the leading coefficient of a, and n

the degree of a. By definition, A[x, ϕ] is a free left A-module with basis
{
xi : i ≥ 0

}
.

A ring D is called a domain if whenever ab = 0, then a = 0 or b = 0.

Proposition 1.33. Let A = D[x, ϕ] where D is a domain and ϕ : D → D an injective

endomorphism. Then A is a domain.

Proof. Let

a =
n∑
i=0

aix
i and b =

n∑
j=0

bjx
j
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be two elements of A such that ab = 0. We will assume that a 6= 0, so the leading coefficient

an of a is nonzero. Then

0 = ab =

(
n∑
i=0

aix
i

) m∑
j=0

bjx
j

 =

n+m∑
k=0

 ∑
i+j=k

aiϕ
i(bj)

xk

= anϕ
n(bm)xn+m +

n+m−1∑
k=0

 ∑
i+j=k

aiϕ
i(bj)

xk

implies that anϕ
n(bm) = 0. Since an 6= 0 and D is a domain, we must have that ϕn(bm) = 0.

Since ϕ is injective, ϕn is injective as well, and therefore bm = 0. Hence b = 0, that is, there

is no nonzero b such that ab = 0. This proves that A is a domain. �

Remark 1.34. Note that if D is a division ring, then any endomorphism is injective. Since

D is a division ring, it is simple. Hence ker(ϕ) = 0 or ker(ϕ) = D. If ker(ϕ) = D, then

ϕ(d) = 0 for all d ∈ D. This is not possible because D is a division ring and hence unital, so

ϕ(1) = 1 6= 0. Hence ker(ϕ) = 0 and ϕ is injective.

Proposition 1.35. Let A = D[x, ϕ] where D is a division ring and ϕ : D → D an

endomorphism. Then A is a principal left ideal domain.

Proof. Let I be any nonzero left ideal of A and take a nonzero element g =
∑m

i=0 six
i ∈ I of

minimal degree in I, where si ∈ D and sm 6= 0. Let h be any nonzero element in I. Then

h =
∑n

i=0 tix
i for some ti ∈ D and tn 6= 0. Note that n ≥ m. Then

h− tn
(
ϕn−m(sm)

)−1
xn−mg =

n∑
i=0

tix
i − tn

(
ϕn−m(sm)

)−1
m∑
i=0

xn−msix
i

=
n∑
i=0

tix
i − tn

(
ϕn−m(sm)

)−1
m∑
i=0

ϕn−m(si)x
n−mxi

=
n∑
i=0

tix
i − tnxm+n−m − tn

(
ϕn−m(sm)

)−1
m−1∑
i=0

ϕn−m(si)x
n−m+i.

The leading term is tnx
n − tnxm+n−m = 0. Since h − tn (ϕn−m(sm))

−1
xn−mg is of lower

degree than h, one can use induction to show that h = qg+ r for some q ∈ D and some r ∈ A

of degree strictly less than the degree of g. Since g, h ∈ I, we have that r = h − qg ∈ I.

Since deg(r) < deg(g) and the degree of g is minimal, we have that r = 0. Hence h = qg,

and since h was arbitrary chosen, we conclude that I = Ag, that is, A is a principal left ideal

domain. �
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Let R = K[y] for a field K of characteristic 0, and let ϕ : R → R be a K-linear ring

endomorphism. Define the skew polynomial ring A := R[x, ϕ] = K[y][x, ϕ]. Because xy =

ϕ(y)x we can write any element in A as

n∑
i=0

 m∑
j=0

ki,jy
j

xi

for some ki,j ∈ K, that is, the set {yixj : i, j ≥ 0} forms a K-basis for A. Notice also that A

is a free left R-module with basis {xi : i ≥ 0} and that every element in A can be uniquely

written as
∑n

i=0 gi(y)xi, for some n ∈ N and gi ∈ R.

We will now establish that every K-linear endomorphism ϕ of R is determined by the

element ϕ(y). Let ϕ : R→ R be an endomorphism and let a =
∑n

i=0 aiy
i, where ai ∈ K, be

an element in R. Then

ϕ(a) = ϕ

(
n∑
i=0

aiy
i

)
=

n∑
i=0

aiϕ
(
yi
)

=
n∑
i=0

aiϕ(y)i,

so if ϕ1 and ϕ2 are ring endomorphisms such that ϕ1(y) = ϕ2(y), then ϕ1 = ϕ2. By the

universal property of the free algebra K 〈y〉 = K[y], for any f ∈ K[y] there exists a unique

ring homomorphism ϕ : K[y]→ K[y] such that the following diagram commutes:

{y}

K[y]

K[y]
y 7→ y

y 7→ f ϕ

Hence, for every polynomial f ∈ R, there exist a unique ring endomorphism ϕ : R→ R such

that ϕ(y) = f , that is, there exists a bijection between the K-linear ring endomorphisms of

K[y] and the elements of K[y].

1.6 ϕ-prime ideals

We will in the following define several special ideals that are important for this thesis. Let

R be a commutative ring with endomorphism ϕ. An ideal I of R is called ϕ-invariant if

ϕ−1(I) = I. Equivalently, I is ϕ-invariant if

(i) ϕ(I) ⊆ I, and

(ii) for all r ∈ R: ϕ(r) ∈ I implies that r ∈ I.
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Remark 1.36. ϕ is injective if and only if the zero ideal is ϕ-invariant. To see this, we notice

that

ϕ is injective ⇐⇒ ker(ϕ) = 0 ⇐⇒ ϕ−1(0) = 0 ⇐⇒ 0 is ϕ-invariant.

We call a ϕ-invariant ideal I ϕ-prime if, given two ideals J and K such that ϕ(J) ⊆ J and

JK ⊆ I, either J ⊆ I or K ⊆ I. If the zero ideal is ϕ-prime, we say that R is a ϕ-prime

ring. An ideal I of R is ϕ-cyclic if I = P1 ∩ · · · ∩ Pn, where the Pi are distinct prime ideals

of R such that ϕ−1(Pi+1) = Pi for all 1 ≤ i ≤ n − 1 and ϕ−1(P1) = Pn. A ring is called

ϕ-cyclic if the zero ideal is ϕ-cyclic.

Lemma 1.37. Let R be a commutative domain with endomorphism ϕ. Then R is a

ϕ-prime ring if and only if ϕ is injective.

Proof. Let J,K be ideals of R such that JK = 0 and assume J 6= 0. Then there exists a

nonzero element j ∈ J . Since jk = 0 for all k ∈ K and because R is a domain, we must have

that k = 0 for all k ∈ K, that is, K = 0. This shows that 0 is a prime ideal. Hence R is

ϕ-prime if and only if 0 is ϕ-invariant if and only if ϕ is injective.

�

Lemma 1.38. Let R be a commutative noetherian ring, ϕ an endomorphism and I a

ϕ-prime ideal. Then I =
√
I is semiprime and there exists a ϕ-periodic prime ideal P

of period n such that

I = P ∩ ϕ−1(P ) ∩ · · · ∩ ϕ−n+1(P ).

Proof. Let a ∈
√
I. Then there exists n > 0 with an ∈ I. Hence ϕ(a)n = ϕ(an) ∈ ϕ(I) ⊆ I

which means that ϕ(a) ∈
√
I. Hence ϕ

(√
I
)
⊆
√
I. By Lemma 1.12, there exists m ≥ 1

such that
(√

I
)m
⊆ I. Because I is a ϕ-prime ideal, we have that

√
I ⊆ I. Hence

√
I = I,

that is, I is semiprime.

By Corollary 1.11, I is a finite intersection of minimal prime ideals, say

I = P1 ∩ · · · ∩ Pn. (1.3)

The representation (1.3) can be considered a minimal primary decomposition of I, when

grouping equal prime ideals together. More precisely, suppose that P1, . . . , Pm are all the

different prime ideals in (1.3) and define Qi :=
⋂
{Pj : Pj = Pi} for 1 ≤ i ≤ m. Then I =
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Q1∩· · ·∩Qm is a minimal primary decomposition by Lemma 1.13. By the Second Uniqueness

Theorem For Primary Decomposition (Theorem 1.14), this decomposition is unique up to the

occurring primes Pi. Since I is ϕ-invariant, we get another decomposition

I = ϕ−1(I) = ϕ−1(P1) ∩ · · · ∩ ϕ−1(Pn).

For any 1 ≤ i ≤ n, we have ϕ−1(P1) ∩ · · · ∩ ϕ−1(Pn) = I ⊆ Pi. Hence there exists an index

1 ≤ σ(i) ≤ n with ϕ−1(Pσ(i)) ⊆ Pi by Lemma 1.7. As ϕ−1(Pσ(i)) is a prime ideal contained

in the minimal prime ideal Pi , we must have ϕ−1(Pσ(i)) = Pi. Because of the uniqueness of

primary decomposition we must have that all prime ideals ϕ−1(Pj) equal one of the prime

ideals P1, . . . , Pn. Hence applying ϕ−1 yields a permutation of the set {P1, . . . , Pn}. Let

Orbϕ(P1) be the ϕ-orbit of P1. We can assume that the primes Pi are ordered such that

Orbϕ(P1) = {P1, . . . , Pk} with k ≤ n. Suppose k 6= n. Set

J = P1 ∩ · · · ∩ Pk and K = Pk+1 ∩ · · · ∩ Pn.

Since, for each 1 ≤ j ≤ k, we have that ϕ−1(Pj) = Pi for some 1 ≤ i ≤ k, we know that

ϕ(Pi) ⊆ Pj . Thus

ϕ(J) ⊆ ϕ(P1) ∩ · · · ∩ ϕ(Pk) ⊆ P1 ∩ · · · ∩ Pk = J.

Therefore, since ϕ(J) ⊆ J , JK ⊆ J ∩ K = I and I is ϕ-prime, we have J ⊆ I or K ⊆ I.

Since I ⊆ J and I ⊆ K, we have equality. In either case I is written as the intersection of

fewer prime ideals as in (1.3), which is a contradiction to our minimality assumption. Hence

n = k and

I = P1 ∩ · · · ∩ Pn = P ∩ ϕ−1(P ) ∩ · · · ∩ ϕ−n+1(P )

for the ϕ-periodic prime P = P1. �

Theorem 1.39. Let R be a commutative ring and ϕ an endomorphism of R. Then

R[x, ϕ] is a prime ring if and only if R is a ϕ-prime ring and ϕ is injective.

Proof. Assume that R is a ϕ-prime ring and that ϕ is injective. Let U and V be ideals of

A = R[x, ϕ] such that V U = 0. If we can show that U = 0 or V = 0, then we have shown

that A is a prime ring. Hence suppose that U 6= 0 and let f =
∑n

i=0 aix
i ∈ U be any nonzero

element with an 6= 0. For any element g =
∑m

l=0 blx
l ∈ V and j ≥ 0 we have gxjf ∈ V U = 0.

Hence

0 = gxjf =
m∑
l=0

n∑
i=0

blx
lxjaix

i =
m∑
l=0

n∑
i=0

ϕl+j(ai)blx
l+i+j , (1.4)
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whose leading coefficient ϕm+j(an)bm must be zero. Consider the ideals I =
∑∞

j=0 ϕ
m+j(an)R

and J = bmR of R. Then ϕ(I) ⊆ I and by (1.4),

IJ =

∞∑
j=0

ϕm+j(an)bmR = 0.

As ϕ is injective and an 6= 0 we have that ϕm(an) 6= 0. Hence I 6= 0 since ϕm(an) ∈ I. This

implies that J = 0 since R is a ϕ-prime ring. Therefore bm = 0. However, this means that

the only element in V is the zero element, i.e. V = 0.

Conversely, assume A = R[x;ϕ] is a prime ring. Since I = A ker(ϕ)A is an ideal of A

and Ix = A ker(ϕ)x = 0, we must have that I = 0, that is, ϕ is injective. Let I and J

be ideals of R such that ϕ(I) ⊆ I and IJ = 0. We need to show that I = 0 or J = 0.

Suppose I 6= 0. Since ϕ(I) ⊆ I, we have that AI ⊆ IA, because for any j ≥ 0, b ∈ R and

f =
∑n

i=0 aix
i ∈ I ⊆ R we have that

bxjf = bϕj(f)xj ∈ IA,

since ϕj(f) ∈ I and I is an ideal of R. For the ideals U = AIA and V = AJA of A, the

following holds:

V U = AJAIA ⊆ AIJA = 0.

Since we assumed A to be a prime ring, and since U 6= 0 as 0 6= I ⊆ U , we conclude that

V = 0 and therefore J = 0. Hence R is a ϕ-prime ring. �

Theorem 1.40. Let R be a commutative ring and ϕ : R → R an endomorphism. If

P is a prime ideal of A = R[x, ϕ] not containing x, then P ∩R is a ϕ-prime ideal of R.

Proof. We will in the proof denote P ∩R by B. The proof has three parts. Parts (i) and (ii)

show that B is ϕ-invariant and together with (iii) this shows that B is ϕ-prime.

(i) We will show that ϕ(B) ⊆ B.

Take b ∈ B. Notice that xb = ϕ(b)x ∈ P . For any f =
∑m

i=0 aix
i ∈ A, we have that

ϕ(b)fx = ϕ(b)

m∑
i=0

aix
ix =

m∑
i=0

aiϕ(b)xxi ∈ P

since ϕ(b)x ∈ P . Because f was arbitrary, we have that ϕ(b)Ax ∈ P . Now, P is a prime

ideal, so either x ∈ P or ϕ(b) ∈ P . The former is false by hypothesis, so ϕ(b) ∈ P .

Since b was arbitrary, we conclude that ϕ(B) ⊆ P . Now, we know that ϕ(I) ⊆ R for

any ideal I of R, so we have in fact that ϕ(B) ⊆ P ∩R = B.
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(ii) We will show that ϕ(r) ∈ B =⇒ r ∈ B.

Suppose ϕ(r) ∈ B for some r ∈ R. Then ϕ(r)x = xr ∈ P . Let f ∈ A. Then

f = a0 +
∑m

i=1 aix
i and

xfr = x

(
a0 +

m∑
i=1

aix
i

)
r = xa0r + x

m∑
i=1

aix
ir = xra0 + x

m∑
i=1

aix
i−1xr ∈ P

because xr = ϕ(r)x ∈ P . Since f was arbitrary, we have that xAr ∈ P . But P is prime

and x /∈ P , so r ∈ P . Since r ∈ R we have that r ∈ B.

(iii) We will show that JI ⊆ B,ϕ(I) ⊆ I =⇒ I ⊆ B or J ⊆ B.

Let I, J be any two ideals of R such that JI ⊆ B and ϕ(I) ⊆ I. Then xI = ϕ(I)x ⊆ Ix.

By induction, it follows that xiI ⊆ Ixi for i ≥ 0. Let f ∈ A. Then

JfI = J

(
m∑
i=0

aix
i

)
I =

m∑
i=0

Jaix
iI ⊆

m∑
i=0

JIaix
i = JIf.

Hence

JAI ⊆ JIA ⊆ BA ⊆ PA ⊆ P.

Since P is prime, either I ⊆ P or J ⊆ P and hence, because I, J ⊆ R, we have that

I ⊆ B or J ⊆ B.

�

Theorem 1.41. Let A = R[x, ϕ] for a commutative ϕ-prime ring R and suppose

ϕ : R→ R is not an automorphism of finite order. If P is a prime ideal of A, then

either

(i) P = 0,

(ii) x ∈ P , or

(iii) P ∩R 6= 0.

Proof. Assuming that P 6= 0 and that x /∈ P , we want to show that P ∩ R 6= 0. Let

B := P ∩R. By Theorem 1.40, B is a ϕ-prime ideal. Since P 6= 0, we can choose a nonzero

element f ∈ P of the form
∑m

i=0 aix
i for m minimal where ai ∈ R and am 6= 0. If m = 0,

then f = a0 is nonzero, and f ∈ B since a0 ∈ R. Hence B 6= 0.

Assume now that m ≥ 1. Recall that R is a ϕ-prime ring. In particular, 0 is a ϕ-invariant

ideal and hence ϕ is injective by Remark 1.36.
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Assume for a moment that for all b ∈ R there exist an i < m such that ϕi(b) = ϕm(b).

Then ϕi(b−ϕm−i(b)) = 0 which implies that b = ϕm−i(b) since ϕ is injective. It follows that

ϕ2(m−i)(b) = ϕm−i(ϕm−i(b)) = ϕm−i(b) = b. By induction,

ϕm!(b) = ϕ
m!

m−i
(m−i)(b) = b.

Hence ϕ has finite order n ≤ m!. Then ϕn = id and ϕ−1 = ϕn−1. That is, ϕ is an

automorphism. But ϕ is not an automorphism of finite order by hypothesis, so our assumption

that for all b ∈ R there exists an i < m such that ϕi(b) = ϕm(b) must be wrong. We can

therefore conclude that there exist b ∈ R such that ϕi(b) 6= ϕm(b) for all i < m.

Since fϕj(b)− ϕm+j(b)f ∈ P , we have that

fϕj(b)− ϕm+j(b)f =
m∑
i=0

aix
iϕj(b)−

m∑
i=0

ϕm+j(b)aix
i

=
m∑
i=0

(
ϕi+j(b)− ϕm+j(b)

)
aix

i

= amx
m · 0 +

m−1∑
i=0

(
ϕi+j(b)− ϕm+j(b)

)
aix

i

=

m−1∑
i=0

(
ϕi+j(b)− ϕm+j(b)

)
aix

i ∈ P. (1.5)

Since the degree of the polynomial in (1.5) is lower than the degree of f , whose degree is

minimal, we must have that
(
ϕi+j(b)− ϕm+j(b)

)
ai = 0 for all 0 ≤ i ≤ m and all j.

Assume there exists i < m such that ai 6= 0. We will se that this leads to a contradiction.

L := aiR and K :=
∑

j

(
ϕi+j(b)− ϕm+j(b)

)
R are both left ideals in R. By the last paragraph

we know that LK = 0. Also,

ϕ(K) =
∑
j

(
ϕi+j+1(b)− ϕm+j+1(b)

)
R ⊆ K,

so either L = 0 or K = 0 since R is a ϕ-prime ring. But K 6= 0 since ϕi(b) 6= ϕm(b) for all

i < m. Hence L = 0, that is, ai = 0 for all i < m, a contradiction. Therefore that f = amx
m.

Let g =
∑k

i=0 bix
i be any element of A. Then

amgx
m = am

k∑
i=0

bix
ixm =

k∑
i=0

biamx
mxi ∈ P

since amx
m = f ∈ P . Hence amAx

m ∈ P . But P is prime and x /∈ P , so we have that

am ∈ P . am. We conclude that B = P ∩R 6= 0. �
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Theorem 1.42. Let R be a domain and let A = R[x, ϕ], where ϕ is an injective

endomorphism. Then rad(A) = 0.

Proof. Suppose rad(A) 6= 0. Then there exists a nonzero element s =
∑k

i=0 six
i ∈ rad(A)

with sk 6= 0. By Lemma 1.27, 1 − sks has a left inverse r =
∑m

j=0 rjx
j ∈ A, where rm 6= 0.

Hence

1 = r(1− sks) =
m∑
j=0

rjx
j −

m∑
j=0

rjx
jsk

k∑
i=0

six
i.

If k > 0, the term of degree m+ k is zero, that is

rmx
ms2

kx
k = rmϕ

m
(
s2
k

)
xm+k = 0.

Hence rmϕ
m
(
s2
k

)
= 0. Since R is a domain and rm 6= 0, we conclude that ϕm

(
s2
k

)
= 0. But

as ϕ is injective s2
k = 0 and therefore sk = 0 as R is a domain, contradicting that sk 6= 0.

Thus k = 0 and s = s0 ∈ rad(A) ∩ R. Since s was an arbitrary nonzero element of rad(A),

we conclude that rad(A) ⊆ R. It follows that

rad(A)x ⊆ R ∩Ax = 0

because nonzero elements in Ax have degree at least 1 while nonzero elements in R have

degree 0. We conclude that rad(A) = 0. �
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Chapter 2

Right primitivity of skew

polynomial rings

In this chapter we describe the conditions for A to be right primitive according to the degree

of ϕ(y) ∈ K[y] and in chapter 3 we describe the conditions for A to be left primitive. We

start with the case where ϕ(y) ∈ K.

2.1 Case: ϕ(y) ∈ K

In this section we will show that A = K[y][x, ϕ] with ϕ(y) ∈ K is neither right nor left

primitive. As it turns out, all we need to do is to prove that ϕ is not injective. We therefore

establish Lemma 2.1.

Lemma 2.1. Let ϕ : K[y] → K[y] be an endomorphism where K is a field. Then ϕ

is injective if and only if deg(ϕ(y)) > 0.

Proof. Assume that ϕ(y) = a for some a ∈ K. Thus xy = ϕ(y)x = ax = xa, so x(y− a) = 0.

Therefore ϕ(y − a) = 0, that is y − a ∈ ker(ϕ). Hence ϕ is not injective.

Conversely, assume that ϕ is not injective. Then ker(ϕ) = 〈g〉 for some nonzero polynomial

g of degree d ≥ 0. If d = 0, then ker(ϕ) = K[y] so that ϕ ≡ 0. In particular, ϕ(1) = 0 6= 1, a

contradiction. Hence d ≥ 1. Let now g =
∑d

i=0 aiy
i with ad 6= 0. Since g ∈ ker(ϕ) we have

that

0 = ϕ(g) =

d∑
i=0

aiϕ(y)i,
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so that

−a0 =

(
d∑
i=1

aiϕ(y)i−1

)
ϕ(y).

Assume that deg(ϕ(y)) = D ≥ 1. Then the term of highest degree in
∑d

i=1 aiϕ(y)i−1 is

ady
(d−1)D, and this term is nonzero since ad 6= 0. Hence

∑d
i=1 aiϕ(y)i−1 6= 0. Therefore,

deg(ϕ(y)) = D ≥ 1 and it follows that deg(a0) ≥ 1, a contradiction. Therefore D = 0 and

hence ϕ(y) ∈ K. �

We now have the tools we need to analyse the case where ϕ(y) ∈ K.

Corollary 2.2. Let A = K[y][x, ϕ] for a field K and an endomorphism ϕ : K[y] →

K[y] such that ϕ(y) ∈ K. Then A is neither left nor right primitive.

Proof. By Lemma 2.1, ϕ is not injective. Thus, by Theorem 1.39, A is not a prime ring, that

is, the zero-ideal of A is not prime. Since primitive ideals are prime, the zero-ideal of A is

not primitive either. Hence A is neither right nor left primitive. �

2.2 Case: ϕ(y) = ay + b

We will now consider the case when deg(ϕ(y)) = 1, that is, ϕ(y) = ay + b for some a, b ∈ K

with a nonzero. We divide our problem into four cases:

2.2.1: a is not a root of unity,

2.2.2: a is a root of unity but a 6= 1,

2.2.3: ϕ = id is the identity, and

2.2.4: a = 1 and b 6= 0.

Before we can continue, we need the following lemma:

Lemma 2.3. Let ŷ = dy + c for some c ∈ K and some 0 6= d ∈ K. Then K[ŷ] = K[y]

and the powers of ŷ are algebraically independent.

Proof. Assume

a0 + a1ŷ + a2ŷ
2 + · · ·+ anŷ

n = 0
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for some ai ∈ K. Then

a0 + a1(dy + c) + a2(dy + c)2 + · · ·+ an(dy + c)n = 0 (2.1)

for some c, d ∈ K with d nonzero. The highest degree term in y of the left side of (2.1) must

be 0, that is, and
n = 0. Since d 6= 0 we must have that an = 0, so that (2.1) is reduced to

a0 + a1(dy + c) + a2(dy + c)2 + · · ·+ an−1(dy + c)n−1 = 0.

By repeating the same argument, we see that an−1 = 0, and by continuing in the same

manner we conclude that ai = 0 for all 0 ≤ i ≤ n. This shows that the powers of ŷ are

algebraically independent.

Clearly K [ŷ] ⊆ K[y]. Let
∑n

i=0 aiy
i ∈ K[y]. We want to find bi for 0 ≤ i ≤ n such that∑n

i=0 bi (ŷ)i =
∑n

i=0 aiy
i. Since

n∑
i=0

bi (ŷ)i =
n∑
j=0

n∑
i=j

bi

(
i

j

)
ci−jdjyj =

n∑
i=0

 n∑
j=i

(
j

i

)
bjc

j−idi

 yj ,

we need to find bi for 0 ≤ i ≤ n such that

ai =

n∑
j=i

(
j

i

)
bjc

j−idi (2.2)

for all 0 ≤ i ≤ n. The solution is bn = d−nan and, if for some i ≥ 1 we have that bn, . . . , bn−i+1

has been defined, then

bn−i = di−nan−i −
n∑

j=n−i+1

(
j

n− i

)
bjc

j−n+i.

We will prove this by induction. Since we need

an =
n∑
j=n

(
j

n

)
bjc

j−ndn =

(
n

n

)
bnc

n−ndn = bnd
n,

we see that bn = d−nan. Furthermore, we need to show that

bn−i−1 = d−n+i+1an−i−1 −
n∑

j=n−i

(
j

n− i− 1

)
bjc

j−n+i+1.

Using that the conditions in (2.2) must be satisfied, we have that

an−i−1 =

n∑
j=n−i−1

(
j

n− i− 1

)
bjc

j−n+i+1dn−i−1

=

(
n− i− 1

n− i− 1

)
bn−i−1c

n−i−1−n+i+1dn−i−1 +
n∑

j=n−i

(
j

n− i− 1

)
bjc

j−n+i+1dn−i−1

= bn−i−1d
n−i−1 +

n∑
j=n−i

(
j

n− i− 1

)
bjc

j−n+i+1dn−i−1.
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Hence

bn−i−1 = d−n+i+1an−i−1 −
n∑

j=n−i

(
j

n− i− 1

)
bjc

j−n+i+1.

This proves the inductive part and we therefore have that K[y] ⊆ K[ŷ]. We conclude that

K[ŷ] = K[y]. �

In the first two cases (2.2.1 and 2.2.2), we have that a 6= 1. Hence, by Lemma 2.3, we can

substitute y with ŷ where ŷ := y − b
1−a . Then

ϕ(ŷ) = ϕ

(
y − b

1− a

)
= ay + b− b

1− a

= ay +
b− ba− b

1− a
= ay − a b

1− a
= a

(
y − b

1− a

)
= aŷ.

Since K[ŷ] = K[y] by Lemma 2.3, we conclude that we can assume that b = 0 in cases 2.2.1

and 2.2.2.

In sections 2.2.1, 2.2.2 and 2.3, we will prove the right primitivity of A by constructing

certain right A-modules. We will therefore in the following describe the conditions for a

vector space V to be a right A-module.

As seen in the preliminaries, a K-vector space V can be made into a left A-module for

any ring homomorphism from A to EndK(V ). Analogously any ring homomorphism from A

to the opposite ring EndK(V )op defines a right A-module structure on V . Let f, g ∈ EndK(v)

and let x 7→ f and y 7→ g be actions of the set {x, y} on elements in V . Then, by the universal

property of K 〈x, y〉, there exist a ring homomorphism ψ : K 〈x, y〉 → EndK(V )op such that

the following diagram commutes:

{x, y}

EndK(V )op

K 〈x, y〉inclusion

x 7→f
y 7→g

ψ

Hence, by the first isomorphism theorem, there exists a ring homomorphism ψ from K〈x,y〉
〈xy−ϕ(y)x〉

to EndK(V )op such that the following diagram commutes if and only if ψ (xy − ϕ(y)x) = 0:
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{x, y} K 〈x, y〉

EndK(V )op K 〈x, y〉
〈xy − ϕ(y)x〉

inclusion

x 7→f
y 7→g ψ

ψ

w 7→ w + 〈xy − ϕ(y)x〉

To prove Lemma 2.4, it remains to show that

K[y][x, ϕ] ' K 〈x, y〉
〈xy − ϕ(y)x〉

.

We will shortly explain why the last isomorphism holds: Suppose ϕ is an endomorphism of

K[y] and let K 〈a, b〉 denote the free algebra in a and b. We can identify K[y] and K[b]

so that it makes sense to write ϕ(b). Let T = K〈a,b〉
〈ab−ϕ(b)a〉 and set a = a + 〈ab− ϕ(b)a〉 and

b = b + 〈ab− ϕ(b)a〉 ∈ T . By the universal property of the free algebra K 〈a, b〉 there exists

a unique ring homomorphism Φ : T → K[y][x, ϕ] with Φ(a) = x and Φ(b) = y. One the

other hand, we can define a K-linear map Θ : K[y][x, ϕ] → T defined on the basis elements

by Θ(yixj) = b
i
aj , which can be shown to be a ring homomorphism as Θ(xy − ϕ(y)x) =

ab− ϕ(b)a = 0. Then Θ and Φ are mutual inverses, showing that T ' K[y][x, ϕ]. We have

proved Lemma 2.4.

Lemma 2.4. A K-vector space V is a right A-module if and only if there exist f, g ∈

EndK(V )op where f(v) := v · x and g(v) := v · y such that

(v · x) · y − (v · ϕ(y)) · x = 0

for all v ∈ V .

2.2.1 Case: a is not a root of unity

We now consider the case where ϕ(y) = ay + b and a is not a root of unity. In particular,

a 6= 1, so we can assume that b = 0 as explained in the introduction to section 2.2. Thus

xy = ϕ(y)x = ayx. In this case, A = K[y][x, ϕ] is called the ”quantum-plane” [7, p. 72].

We will show that A is right primitive by introducing a faithful simple right A-module
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V . Let V be a K-vector space with basis {vi : i ∈ Z} and define the following map:

{x, y} → EndK(V )

x 7→ [vi 7→ vi+1]

y 7→
[
vi 7→ aivi−1

]
.

Since

(vi · x) · y − (vi · ay) · x = vi+1 · y − ai+1vi−1 · x = ai+1vi − ai+1vi = 0,

we see that (v · x) · y = (v · ϕ(y)) · x for all v ∈ V . By the universal property of K 〈x, y〉 and

the above, we conclude that V is a right A-module by Lemma 2.4.

Before we can prove that V is simple, we need the following lemma.

Lemma 2.5. Let V be the right A-module just defined. Then, for all n ≥ 1 there

exist cn ∈ N such that v−n = acnv0y
n.

Proof. We will give a proof by induction. The base case is easy. Since v0y = v−1 = a0v−1 we

have that v−1 = a0v0y, that is, c1 = 0 ∈ N. Assume now that n ≥ 1 and that there exists cn

such that v−n = acnv0y
n. Then v0y

n = a−cnv−n and hence

v0y
n+1 = v0y

ny = a−cnv−ny = a−cn−nv−n−1.

Thus v−n−1 = a−cn−nv0y
n+1 and hence cn+1 = cn + n ∈ N. This completes the proof. �

We will now show that V is simple. By Lemma 1.4 (i), it suffices to show that wA = V

for all nonzero w ∈ V . Furthermore, it is enough to show that v0 ∈ wA because we claim

that wA = V ⇐⇒ v0 ∈ Aw. To prove the claim, assume that wA = V . Then v0 ∈ V = wA.

Conversely, assume v0 ∈ wA. Then vi = v0x
i ∈ wA for all i ≥ 0 and, by Lemma 2.5,

v−i = adiv0y
i ∈ wA for some di ∈ N and all i ≥ 1. It follows that V ⊆ wA, but wA ⊆ V so

in fact wA = V . This proves the claim.

We now want to prove that for any nonzero w ∈ V there exist f ∈ A such that w · f = v0,

because then v0 ∈ wA and hence V is simple. Since w =
∑

i∈Z viki with only a finite number

of the ki’s being nonzero, we know that

w =
n∑

i=m

viki
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for some m,n ∈ Z with m ≤ n, km 6= 0 and kn 6= 0. Either m ≤ 0 or m > 0. In the case

m ≤ 0, observe that

w · x|m| =
n∑

i=m

viki · x|m| =
n∑

i=m

vi+|m|ki =

n+|m|∑
i=0

viki−|m|.

In the case m > 0, observe that

w · ym =
n∑

i=m

viki · ym =
n∑

i=m

vi−mkia
di =

n−m∑
i=0

viki+ma
di+m ,

for some di ∈ N depending on i for m ≤ i ≤ n. It follows that the set

Ω := {l ∈ N : there exists
l∑

i=0

vibi ∈ wA with bi ∈ K, b0 6= 0 and bl 6= 0}

is nonempty.

Since Ω ⊆ N is a well ordered nonempty set, there exists an element

u =

l∑
i=0

vibi ∈ Aw

with l minimal, and where ki ∈ K, b0 6= 0 and bl 6= 0. However,

u · (1− yx)y =

(
u−

l∑
i=0

bivi · yx

)
y =

(
u−

l∑
i=0

bia
ivi−1 · x

)
y =

(
u−

l∑
i=0

bia
ivi

)
y

=

(
l∑

i=0

bi
(
1− ai

)
vi

)
y =

l∑
i=1

bi
(
1− ai

)
vi · y =

l∑
i=1

bi
(
1− ai

)
aivi−1

=
l−1∑
i=0

bi+1

(
1− ai+1

)
ai+1vi,

so since l is minimal, we have that bi
(
1− ai

)
ai = 0 for all 1 ≤ i ≤ l. Since the degree of

ϕ(y) is 1 we know that ai 6= 0. Also, ai 6= 1 since a is not a root of unity. Hence bi = 0 for

1 ≤ i ≤ l. In particular, bl = 0 if l ≥ 1. This is a contradiction, so we conclude that l = 0.

Therefore u = v0b0 so that v0 = ub−1
0 ∈ wA. We conclude that V is simple.

It remains to show that V is faithful. Let P := annA(V ) = {a ∈ A : vi · a = 0 for all i}.

Since V is simple, P is primitive and hence P is a prime ideal. Also, R is a ϕ-prime ring

by Lemma 1.37. We can therefore use Theorem 1.41 to show that P = 0. Because vi · x =

vi+1 6= 0, we have that x /∈ P . Let now g =
∑m

i=0 biy
i ∈ P ∩K[y]. Then

vi · g =

m∑
j=0

bjvi · yj =

m∑
j=0

bja
djvi−j = 0

for some dj ∈ N depending on j for 0 ≤ j ≤ m and where we have used the fact that g ∈ P .

But all the vi’s are linearly independent, so bja
dj = 0 for all 0 ≤ j ≤ m. Now, adj is nonzero,

33



so bj must be 0 for all j. Hence g = 0. Since g was arbitrary, it follows that P ∩K[y] = 0.

We conclude by Theorem 1.41 that P = 0, that is, V is a faithful module. We have proved

Theorem 2.6:

Theorem 2.6. Let A = K[y][x, ϕ] for an endomorphism ϕ : K[y] → K[y] such that

ϕ(y) = ay + b for some a, b ∈ K where a is not a root of unity. Then A is right

primitive.

2.2.2 Case: a is a root of unity but a 6= 1

The main result in this section is Theorem 2.9 that says that if A = R[x, ϕ] where R is a

commutative domain and ϕ is an automorphism of finite order, then A is not right nor left

primitive. As we will see in Corollary 2.10, this applies to the case where ϕ(y) = ay + b for

some root of unity a where a 6= 1. First, we need the following two results.

Proposition 2.7. Let K be a field and ϕ : K → K be an automorphism. Let

F = {z ∈ K : ϕ(z) = z}. Then F is a subfield of K.

Proof. Since ϕ(1) = 1, we have that 1 ∈ F . Let a, b ∈ F . Then a − b ∈ F because

ϕ(a − b) = ϕ(a) − ϕ(b) = a + b and ab ∈ F because ϕ(ab) = ϕ(a)ϕ(b) = ab. Now, observe

that ϕ(a)−1 = ϕ
(
a−1
)

because

1 = ϕ(1) = ϕ
(
aa−1

)
= ϕ(a)ϕ

(
a−1
)
.

Therefore, ϕ
(
a−1
)

= ϕ(a)−1 = a−1 which implies that a−1 ∈ F . We conclude that F is a

subfield of K. �

The field in Proposition 2.7 is called the fixed field of ϕ and is sometimes denoted KG

for G = 〈ϕ〉, the subgroup generated by ϕ. The following theorem is taken from [13, p. 78].

Theorem 2.8. If G is a subgroup of Aut(K) for a field K, then

[
K : KG

]
= |G|.

Theorem 2.9. Let A = R[x, ϕ] where R is a commutative domain and ϕ is an auto-

morphism of finite order. Then A is not right nor left primitive.
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Proof. Let H = {ab−1 : a, b ∈ R, b 6= 0} be the fraction field of R. The endomorphism ϕ

extends to H be defining ϕ(ab−1) := ϕ(a)ϕ(b)−1. This is well defined since ϕ is injective and

hence b 6= 0 =⇒ ϕ(b) 6= 0. The subset F := {z ∈ H : ϕ(z) = z} is a subfield of H by

Proposition 2.7. Since ϕ is of finite order, there exists a least n ≥ 1 such that ϕn = id. This

implies that ϕ−1 = ϕn−1. Let G = {id, ϕ, ϕ2, . . . , ϕn−1}. Since G has order n, it follows from

Theorem 2.8 that the dimension of H over F is

[H : F ] =
[
H : HG

]
= |G| = n.

Hence, there exists a basis {z1, z2, . . . , zn} of H as an F -vector space.

Observe that

xnz = xn−1ϕ(z)x = xn−2ϕ2(z)x2 = · · · = ϕn(z)xn = zxn

for all z ∈ H, that is, xn commutes with every element of H. Furthermore, if a ∈ F , then

xa = ϕ(a)x = ax, so x commutes with all elements of F . It follows that F [xn] is central

in H[x, ϕ], and since F is a subring of H, we have that F [xn] is a subring of the center of

H[x, ϕ].

H[x, ϕ] is generated as a F [xn]-module by {zixj : 1 ≤ i ≤ n, 0 ≤ j ≤ n−1}. To see this,

observe that, for all z ∈ H, there exists b1, b2, . . . , bn ∈ F such that z = b1z1+b2z2+· · ·+bnzn.

Furthermore, for all m ≥ 0, m = qn+ k where 0 ≤ k ≤ n− 1, we have

zxm = zxqn+k = (xn)q zxk =
n∑
i=1

bi (xn)q zix
k.

Since bj (xn)q ∈ F [xn], it follows that zxm ∈
∑n−1

i=0

∑n
j=1 F [xn]zjx

i. But since z and m were

arbitrary, we have that

H[x, ϕ] =
n−1∑
i=0

n∑
j=1

F [xn]zjx
i,

that is, H[x, ϕ] is a finitely generated module over the central subring F [xn]. We conclude

that H[x, ϕ] is a PI-ring by Lemma 1.20. In particular, the subring A = R[x, ϕ] is a PI-ring

as well.

We will now show that A is not simple because AxnA = xnA is a nonzero proper ideal of

A. The ideal xnA is nonzero because 0 6= xn ∈ xnA. To see that xnA is a proper submodule

of A, assume otherwise. Then there would exist a ∈ A such that xna = 1. Hence xn, and

thus x, is invertible in A. This is impossible because the invertible elements have degree 0.

We have shown that A is a non-simple PI-ring and a finite dimensional algebra over it

center. We therefore conclude that A is neither right nor left primitive by Theorem 1.19. �
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Corollary 2.10. Let A = K[y][x, ϕ] where ϕ(y) = ay + b for some a, b ∈ K and a is

a root of unity but a 6= 1. Then A is neither right nor left primitive.

Proof. We proved in the introduction to section 2.2 that we can assume that b = 0. Hence

ϕ(y) = ay. Since a is a root of unity, there exists N ∈ N such that aN = 1. Thus ϕN (y) =

aNy = y, that is, ϕN = id and we conclude that ϕ is of finite order. We can therefore apply

Theorem 2.9. �

2.2.3 Case: ϕ = id is the identity

If ϕ(y) = y then xy = yx, so the skew polynomial ring A = K[y][x, ϕ] is the same as the

commutative polynomial ring K[x, y]. Now, since 〈x〉 is a proper nonzero ideal of A = K[x, y],

A is not a field and hence, by Lemma 1.16, A is neither left nor right primitive. We have

proved Theorem 2.11:

Theorem 2.11. Let A = K[y][x] = K[x, y]. Then A is neither right nor left primitive.

2.2.4 Case: a = 1 and b 6= 0

Theorem 2.12. Let A = K[y][x, ϕ] where ϕ is determined by ϕ(y) = y + b for some

0 6= b ∈ K and K is a field of characteristic 0. Then A is right primitive.

Proof. With ϕ(y) = y + b, we have that xy = ϕ(y)x = (y + b)x. We will make a shift of

variable by defining ŷ = 1
by. Then

xŷ =
1

b
xy =

1

b
(y + b)x =

(
1

b
y + 1

)
x = (ŷ + 1)x = ϕ̂(ŷ)x,

where ϕ̂(ŷ) = ŷ + 1. Since, by Lemma 2.3, K[y] = K
[

1
by
]

for all 0 6= b ∈ K, we can assume

that b = 1.

With ϕ(y) = y + 1, we have the relation xy = (y + 1)x, or equivalently, yx = x(y − 1).

We want to find a simple, faithful A-module on the vector space V with basis {vn : n ≥ 0}.

The action of V , and the proof of it’s simplicity, is taken from [11, pp. 9-10]. The action is

defined as

vn · y = vn+1 for all n ≥ 0; and

vn · x =

n∑
k=0

(−1)n−k
(
n

k

)
vk.
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By Lemma 2.4, V is a right A-module if we can prove that vn · (yx− x(y − 1)) = 0 for all

n ≥ 0. We will give a proof by induction on n. The base case n = 0 is easy:

v0 · (yx− x(y − 1)) = v1 · x− v0 · (y − 1) = −v0 + v1 − v1 + v0 = 0.

Assume that n ≥ 1 and vm · (yx− x(y − 1)) = 0 for all m ≤ n. Recall that vn+1 = vn · y and

that yx = x(y − 1). Hence

vn+1 · (yx− x(y − 1)) = vn · y (yx− x(y − 1)) = vn ·
(
y2x− yx(y − 1)

)
= vn · (yx(y − 1)− yx(y − 1)(y − 1)) = vn · (yx− yx(y − 1)) (y − 1)

= 0(y − 1) = 0

This proves that vn · (yx− x(y − 1)) = 0 for all n ≥ 0 which implies that V is a right

A-module.

To show that V is simple, we first show by induction that vn · (1 − x)n = n!v0 for all

n ≥ 0. The base case n = 0 is trivial: v0 · (1− x)0 = v01 = 0!v0.

Let n ≥ 0 and assume vm · (1− x)m = m!v0 for all m ≤ n. Then, for l > n ≥ m, we have

that

vm · (1− x)l = m!v0 · (1− x)l−m = 0 (2.3)

because v0 · (1− x) = v0 − v0 = 0. Hence

vn+1 · (1− x)n+1 = (vn+1 − vn+1 · x) · (1− x)n

=

(
vn+1 −

n+1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
vk

)
· (1− x)n

=

(
vn+1 − vn+1 − (−1)n+1−n

(
n+ 1

n

)
vn −

n−1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
vk

)
· (1− x)n

= −(−1)1 (n+ 1)!

n!(n+ 1− n)!
vn · (1− x)n −

n−1∑
k=0

(−1)n+1−k
(
n+ 1

k

)
vk · (1− x)n

=
(n+ 1)!

n!1!
n!v0 by (2.3)

= (n+ 1)!v0

This proves that vn · (1 − x)n = n!v0 for all n ≥ 0. Now, let 0 6= w =
∑n

i=0 kivi ∈ V be any

nonzero element of V with kn 6= 0. Then

w · (1− x)n =
n∑
i=0

kivi · (1− x)n = knn!v0,
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by (2.3). Hence

v0 =
1

knn!
w · (1− x)n ∈ wA,

that is, v0 is an element in wA, where we have have used that we can divide by n! because

K is of characteristic 0. It follows that vm ∈ wA for all m ≥ 0 because vm = v0 · ym ∈ wA.

We conclude that V = wA and hence V is a simple right A-module by Lemma 1.4.

It remains to show that V is faithful. Let P := annA(V ) = {a ∈ A : vn · a = 0 for all n}.

Since V is simple, P is primitive and hence a prime ideal. We can therefore use Theorem 1.41

to show that P = 0. Because v0 · x = v0 6= 0, we have that x /∈ P . Let now g =
∑m

i=0 aiy
i ∈

P ∩K[y]. Then

0 = v0 · g =
m∑
i=0

aiv0 · yi =
m∑
i=0

aivi

since g ∈ P . But all the vi’s are linearly independent, so ai = 0 for all 0 ≤ i ≤ m. Hence

g = 0. Since g was arbitrary, it follows that P ∩K[y] = 0. We conclude by Theorem 1.41 that

P = 0, that is, V is a faithful right A-module. We have shown that A is right primitive. �

2.3 Case: deg(ϕ(y)) > 1

Theorem 2.13. Let A = K[y][x, ϕ] for a field K and a K-linear endomorphism ϕ be

such that ϕ(y) = f(y) ∈ K[y] has degree d > 1. Then A is right primitive.

Proof. Let V be a K-vector space with basis {vi : i ≥ 1}. Define

vi · y = vi+1

for all i ≥ 1. Furthermore, define

vn · x = 0 if n < d

vd · x = v1

where d is the degree of f = ϕ(y) ∈ K[y]. By Lemma 2.4, V is a right A-module if we

can find an action vn · x for n > d such that (vi · x) · y = (vi · f(y)) · x for all i ≥ 1. Let

ϕ(y) =
∑d

i=0 aiy
i. Since v1 · x = 0 we have that (v1 · x) · y = 0. On the other hand

(v1 · x) · y = (v1 · f(y)) · x =

(
v1 ·

(
d∑
i=0

aiy
i

))
· x =

d∑
i=0

aivi+1 · x = advd+1 · x+ ad−1v1.
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Hence vd+1 ·x = −ad−1

ad
v1. Assume now that vi ·x has been defined for all i < n+ d for some

n ≥ 1. Then

(vn · x) · y =

(
d∑
i=0

aivn · yi
)
· x =

d∑
i=0

aivn+i · x = advn+d · x+
d−1∑
i=0

aivn+i · x.

We therefore define

vn+d · x =
1

ad

(
(vn · x) · y −

d−1∑
i=0

aivn+i · x

)
. (2.4)

It follows that if n = qd+ r for 0 < q and 0 ≤ r < d, then

vn · x = cnvq + wn (2.5)

for some nonzero scalar cn and wn ∈ span{vi : i < q}. We can prove this by induction in the

following way. Assume that (2.5) holds for all vk with k ≤ n+ d− 1. Then

vn+d · x =
1

ad

(
(vn · x) · y −

d−1∑
i=0

aivn+i · x

)

=
1

ad

(
(cnvq + wn) · y −

d−r−1∑
i=0

ai (cn+ivq + wn+i)−
d−1∑
i=d−r

ai (cn+ivq+1 + wn+i)

)

=
1

ad

(
cnvq+1 + wn+1 −

d−r−1∑
i=0

ai (cn+ivq + wn+i)−
d−1∑
i=d−r

ai (cn+ivq+1 + wn+i)

)

= cn+dvq+1 + wn+d

for 0 6= cn+d = cn
ad
∈ K and

wn+d =
1

ad

(
wn+1 −

d−r−i∑
i=0

ai (cn+ivq + wn+i)−
d−1∑
i=d−r

ai (cn+1vq+1 + wn+i)

)
∈ span {vi : i < n+ d} .

Let n = dt for some t > 0. Then

vdt · x = cdtvdt−1 + wdt ,

vdt · x2 = cdtcdt−1vdt−2 + wdt · x,
...

vdt · xt =

(
t∏
i=1

cdi

)
v1, (2.6)

by (2.5), where
∏t
i=1 cdi 6= 0.

To show that V is simple, we will show that any nonzero submodule of V equals V . Any

nonzero submodule of V contains some nonzero v ∈ V , and there exists m ∈ N such that
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v =
∑m

i=1 λivi with λm 6= 0. Since d > 1, there exist t ∈ N such that dt−1 ≤ m < dt. Thus

v · ydt−m =

m∑
i=1

λivi+dt−m = λmvdt + (lower indexed vectors).

Using (2.5), we se that

v · ydt−m · x = λmcdtvdt−1 + (lower intexed vectors).

Hence, using (2.6), we have that (
v · ydt−m

)
· xt = cv1

for some nonzero scalar c. It follows, for all r ≥ 1, that we can write vr in the following way:

vr =
1

c
cvr =

1

c
cv1 · yr−1 =

1

c

((
v · ydt−m

)
· xt
)
· yr−1.

Thus vA = V and hence V is simple.

It remains to show that V is faithful. Let P := annA(V ) = {a ∈ A : vn · a = 0 for all n}.

Since V is simple, P is primitive and hence a prime ideal. Also, R is a ϕ-prime ring by Lemma

1.37. We can therefore use Theorem 1.41 to show that P = 0. Because vd · x = v1 6= 0, we

have that x /∈ P . Let now g =
∑m

i=0 λiy
i ∈ P ∩K[y]. Then

0 = v1 · g =

m∑
i=0

λiv1 · yi =

m∑
i=0

λivi+1

since g ∈ P . But all the vi’s are linearly independent, so λi = 0 for all 0 ≤ i ≤ m. Hence

g = 0. Since g was arbitrary, it follows that P ∩ K[y] = 0. We conclude by Theorem 1.41

that P = 0, that is, V is a faithful module. We have shown that A is a right primitive ring.

�

Example 2.14. Let A = K[y][x, ϕ] with ϕ(y) = f(y) where f(y) = y2. Since the degree d of

ϕ(y) is 2 > 1, A is right primitive by Theorem 2.13. Let V = span {vi : i ≥ 1}, vi · y = vi+1,

v1 · x = 0 and v2 · x = v1. By (2.4), we have that

vn+2 · x =
1

a2

(
(vn · x) · y −

1∑
i=0

aivn+i · x

)
,

but since f(y) = y2, we have that a0 = a1 = 0 and a2 = 1, and therefore

vn+2 · x = (vn · x) · y.

It follows by induction that

v2n+1 · x = 0
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because v1 · x = 0 and if v2n+1 · x = 0 has been shown, then v2n+3 · x = (v2n+1 · x) · y = 0. It

also follows that

v2n · x = vn

because v2·x = v1 and if v2n·x = vn has been shown, then v2n+2·x = (v2n · x)·y = vn·y = vn+1.

2.4 Summary right primitivity

We sum up the results of this chapter in Theorem 2.15:

Theorem 2.15. Let A = K[y][x, ϕ] for an endomorphism ϕ : K[y] → K[y]. Then A

is right primitive if and only if ϕ is injective but not an automorphism of finite order.

Proof. This follows from Corollary 2.2 and theorems 2.6, 2.9, 2.11, 2.12 and 2.13. �
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Chapter 3

Left primitivity of skew polynomial

rings

We will now search for the conditions for A = K[y][x, ϕ] to be left primitive. As seen in

section 2.1, A is not left primitive when ϕ(y) ∈ K, or equivalently, ϕ is not injective by

Lemma 2.1. Furthermore, in section 2.2.2 we proved that A is not left primitive when ϕ is

of finite order. Therefore, we will in this chapter only consider skew polynomial rings where

ϕ is injective and of infinite order. Our study is divided into three sections:

3.1 Case: There exists only finitely many ϕ-periodic primes;

3.2 Case: There are infinitely many ϕ-periodic primes and at least one of them is

singular;

3.3 Case: There are infinitely many ϕ-periodic primes and none of them are singular.

We are primarily interested in the case where the coefficient ring R of our skew polynomial

ring A = R[x, ϕ] is K[y], but we will also consider more general coefficient rings. This

is because this thesis is largely based on Irving [5] and [6] where he works on Dedekind

domains. In particular, this will affect some of our proofs. It will be helpful to keep in mind

that the polynomial ring K[y] is a principal ideal domain, every principal ideal domain is

Dedekind and that every Dedekind domain is commutative and noetherian.

3.1 Case: There exists only finitely many ϕ-periodic primes

Let A = R[x, ϕ] for a commutative noetherian domain R and an injective endomorphism ϕ

of infinite order such that there are only finitely many ϕ-periodic primes in R. We will in
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this section prove that A is left primitive. Before we can prove this, we need the following

lemma.

Lemma 3.1. Let R be a domain and let Ii for 0 ≤ i ≤ n be a finite set of nonzero

ideals in R. Then
⋂n
i=0 Ii 6= 0.

Proof. Assume
⋂n
i=0 Ii = 0. Since

∏n
i=0 Ii ⊆

⋂n
i=0 Ii, then

∏n
i=0 Ii = 0 as well. It follows

that, given any nonzero ai ∈ Ii for 0 ≤ i ≤ n, we have that a1 · · · an = 0. But in a domain,

this implies that ai = 0 for some i, a contradiction. Hence
⋂n
i=0 Ii 6= 0. �

Proposition 3.2. Let A = R[x, ϕ] for a commutative noetherian domain R and an

injective endomorphism ϕ of infinite order. Suppose that there are only finitely many

ϕ-periodic primes in R. Then A is left primitive.

Proof. Let P1, P2, . . . , Pt be all the nonzero ϕ-periodic primes of R, let

B = P1 ∩ P2 ∩ · · · ∩ Pt,

and let I be any nonzero left primitive ideal of A. In particular, I is prime. Assume for a

moment that x /∈ I. Then I ∩ R is ϕ-prime by Theorem 1.40. Since R is a ϕ-prime ring

by Lemma 1.37, I ∩ R is nonzero by Theorem 1.41 and hence, by Lemma 1.38 there exists

a ϕ-periodic prime ideal P of R such that I ∩ R = P ∩ ϕ−1(P ) ∩ · · · ∩ ϕ−n+1(P ), where n

is the period of P . Since I ∩ R 6= 0, we have that ϕ−i(P ) 6= 0 for every 0 ≤ i ≤ n − 1.

Furthermore, every ϕ−i(P ) is ϕ-periodic, because ϕ−n
(
ϕ−i(P )

)
= ϕ−i (ϕ−n(P )) = ϕ−i(P ).

Thus ϕ−i(P ) ∈ {P1, . . . , Pt} for all 0 ≤ i ≤ n. We conclude that either x ∈ I or B ⊆ I ∩ R

for any nonzero left primitive ideal I of A.

Assume now that 0 is not a left primitive ideal of A, and let {Iλ : λ ∈ Λ} be the set of left

primitive ideals of A for some set Λ. Furthermore, let a ∈ Bx be a nonzero element in Bx.

Such an element exists since B 6= 0 by Proposition 3.1. Then there exists b ∈ B such that

a = bx. Hence a ∈ Iλ for all Iλ containing x, and a ∈ Iλ for all Iλ containing B. Since either

x ∈ I or B ⊆ I for every nonzero primitive left ideal I, we have that a ∈ Iλ for all λ ∈ Λ.

We conclude that

Bx ⊆
⋂
λ∈Λ

Iλ = rad(A).

But, by Theorem 1.42, rad(A) = 0, a contradiction since 0 6= Bx. Hence 0 is a left primitive

ideal of A and thus A is a left primitive ring. �
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Example 3.3. Let A = K[y][x, ϕ] where ϕ(y) = f(y) = y − 1. We will show that A

is left primitive. Note that ϕ is injective because ϕ(y) /∈ K. Furthermore, observe that

ϕn(y) = y − n, so there is no n ≥ 1 such that ϕn = id since the characteristic of K is 0.

Hence ϕ is of infinite order. Every nonzero prime ideal P ∈ K[y] is of the form P = 〈y − a〉

for a ∈ K, and P is ϕ-periodic if and only if there exists n ≥ 1 and a ∈ K such that fn(a) = a.

However fn(a) = a− n 6= a, so there is no nonzero ϕ-periodic prime ideals in K[y]; the only

ϕ-periodic prime ideal is the 0-ideal. We conclude by Proposition 3.2 that A is left primitive.

3.2 Case: There are infinitely many ϕ-periodic primes and at

least one of them is singular

Let R be a Dedekind domain and let ϕ be an injective endomorphism of R. Assume for some

ϕ-periodic prime ideal P of R that ϕn(P ) ⊆ P t for some n and some t > 1. The aim of this

chapter is to prove that A = R[x;ϕ] is left primitive in this case. We need Lemma 3.4 before

we can prove this result. Recall the P -order νP (I) from page 13.

Lemma 3.4. Let R be a Dedekind domain and let ϕ be an injective endomorphism of

R. Let P be a ϕ-periodic prime of R with period n and suppose νP (ϕn(P )) = t > 1.

Then for any r ∈ P such that νP (ϕn(r)) = t, we have for any i > 0 that νP
(
ϕin(r)

)
=

ti.

Proof. We will prove the lemma by induction on i. By hypothesis νP (ϕn(r)) = t, so the

base case i = 1 is clear. For the inductive step, assume νP (ϕin(r)) = ti and write ϕin(r)R =

P t
i
U1 · · ·Uk for primes Uj 6= P . Then

ϕ(i+1)n(r)R = ϕn
(
ϕin(r)R

)
R = ϕn(P )t

i
ϕn (U1) · · ·ϕn(Uk)R

because

Uj 6= P =⇒ Uj ( ϕ−n(P ) =⇒ ϕn(Uj) ( P =⇒ νP (ϕn(Uj)) = 0.

Moreover, by hypothesis ϕn(P )R = P tQ1Q2 · · ·Qs for some prime ideals Qj 6= P . Thus

ϕn(P )t
i
R = P t

i+1
Qt

i

1 · · ·Qt
i

l

has P -order ti+1. It follows that

ϕ(i+1)n(r)R = P t
i+1
Qt

i

1 · · ·Qt
i

l ϕ
n(U1) · · ·ϕn(Uk)R,

and hence νP
(
ϕ(i+1)n(r)R

)
= ti+1. �
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Let P be a periodic singular prime of the ring K[y], and let n be its period. If

r ∈ Pϕ−1(P ) · · ·ϕ−n+1(P ), then the ideal I := Ap+A(1− rxn) is a proper ideal. Before we

prove this in its generality, we will look at a couple of examples.

Example 3.5 (A ϕ-periodic singular prime of period 1). Let R = K[y] and ϕ the K-

linear algebra homomorphism determined by ϕ(y) = y2. Consider the skew polynomial ring

A = R[x;ϕ] subject to the relation

xy = ϕ(y)x = y2x.

Let P = 〈y〉. Then ϕ−1(P ) = P , because ϕ(y) = y2 ∈ P . Thus P ⊆ ϕ−1(P ) and as P is

maximal, P = ϕ−1(P ).

We will now show that I = Ay +A(1− yx) is a proper left ideal of A. Suppose that I is

not proper, that is, suppose I = A. We will show that this leads to a contradiction. Since

I = A, there exist a, b ∈ A such that a =
∑n

i=0 aix
i and b =

∑m
j=0 bjx

j with ai, bj ∈ K[y]

and an 6= 0 6= bm such that

1 = ay + b(1 + yx) =

n∑
i=0

aiϕ
i(y)xi +

m∑
j=0

bjx
j −

m∑
j=0

bjϕ
j(y)xj+1 (3.1)

Since the left hand side has degree 0 in x, all coefficients of powers of x must be zero on the

right hand side. In particular n = m+ 1 as bm 6= 0 and an 6= 0. We rewrite (3.1) as

1 = a0y + b0 +
n−1∑
i=1

(
aiϕ

i(y) + bi − bi−1ϕ
i−1(y)

)
xi +

(
anϕ

n(y)− bn−1ϕ
n−1(y)

)
xn

leading to the system of equations:

b0 = 1− a0y

bi = bi−1ϕ
i−1(y)− aiϕi(y), for all 1 ≤ i ≤ n− 1 (3.2)

bn−1ϕ
n−1(y) = anϕ

n(y) (3.3)

Now, from ϕ(y) = y2 one deduces ϕ2(y) = y4, ϕ3(y) = y8 and more generally ϕi(y) = y2i .

We claim that for all 1 ≤ i ≤ n− 1, we have that

bi = y2i−1(1− ciy) (3.4)

for some ci. For i = 1 we have

b1 = b0ϕ
0(y)− a1ϕ

1(y) = (1− a0y)y − a1y
2 = y(1− (a0 + a1)y)
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Suppose (3.4) for some ci. Then by (3.2)

bi+1 = biϕ
i(y)− ai+1ϕ

i+1(y) = y2i−1(1− ciy)y2i − ai+1y
2i+1

= y2i+1−1 (1− (ci + ai+1)y) .

This proves the claim. However, (3.3) leads to a contradiction:

y2n−1(1− cn−1y) = y2n−1−1(1− cn−1y)y2n−1
= bn−1ϕ

n−1(y) = any
2n ,

because the right hand side is divisible by y2n , while the left hand side is only divisible by

y2n−1. Therefore I is a proper left ideal.

Example 3.6 (A ϕ-periodic singular prime of period 2). As before let R = K[y] where K is

a field of characteristic 0. Let ϕ be defined by ϕ(y) = y2 − 1. Consider the skew polynomial

ring A = R[x;ϕ] subject to the relation

xy = ϕ(y)x =
(
y2 − 1

)
x.

Let P = 〈y〉. Then ϕ−1(P ) = 〈y+1〉, because ϕ(y+1) = y2−1+1 = y2 ∈ P . Thus 〈y+1〉 ⊆

ϕ−1(P ) and as 〈y + 1〉 is maximal, 〈y + 1〉 = ϕ−1(P ). Furthermore, since ϕ(y) = y2 − 1 =

(y − 1)(y + 1) ∈ 〈y + 1〉, we have that y ∈ ϕ−1 (〈y + 1〉) and hence P = 〈y〉 ⊆ ϕ−1 (〈y + 1〉),

but as 〈y〉 is maximal, we have that P = ϕ−1(〈y + 1〉). So P is a ϕ-periodic prime ideal of

period 2 and

P = 〈y〉, ϕ−1(P ) = 〈y + 1〉 and ϕ−2(P ) = P.

Since

ϕ2(y) = ϕ(ϕ(y)) = ϕ
(
y2 − 1

)
=
(
y2 − 1

)2 − 1 = y4 − 2y2 + 1− 1 = y2
(
y2 − 2

)
⊆
〈
y2
〉
⊆ P 2,

we have that P is singular.

By Lemma 3.4, for all i ≥ 0, we have that ϕ2i(y) is divisible by y2i , but not by y2i+1.

Furthermore, ϕ2i(y + 1) is not divisible by y, as otherwise y + 1 ∈ ϕ−2i(P ) = P = 〈y〉,

which is absurd, and ϕ2i+1(y + 1) is not divisible by y + 1 analogously. Then I = Ay +

A
(
1− y(y + 1)x2

)
is a proper left ideal of A because if we suppose I = A, then there exist

a =
∑n

i=0 aix
i, b =

∑m
j=0 bjx

j ∈ A, with ai, bj ∈ K[y] and an 6= 0 6= bm such that

1 = ay + b
(
1 + y(y + 1)x2

)
=

n∑
i=0

aiϕ
i(y)xi +

m∑
j=0

bjx
j −

m∑
j=0

bjϕ
j(y(y + 1))xj+2.

Since the left hand side has degree 0 in x, all coefficients of x must be zero on the right hand

side. In particular n = m+ 2 as bm 6= 0 and an 6= 0. Rewriting the last equation as

1 = a0y + b0 + (a1ϕ(y) + b1)x+

n−2∑
i=2

(
aiϕ

i(y) + bi − bi−2ϕ
i−2(y(y + 1))

)
xi

+
(
an−1ϕ

n−1(y)− bn−3ϕ
n−3(y(y + 1))

)
xn−1 +

(
anϕ

n(y)− bn−2ϕ
n−2(y(y + 1))

)
xn
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leads to the system of equations:

b0 = 1− a0y

b1 = −a1ϕ(y) = −a1(y2 − 1)

bi = bi−2ϕ
i−2(y)ϕi−2(y + 1)− aiϕi(y), for all 1 ≤ i ≤ n− 2

bn−3ϕ
n−3(y(y + 1)) = an−1ϕ

n−1(y) (3.5)

bn−2ϕ
n−2(y(y + 1)) = anϕ

n(y) (3.6)

We claim that

Claim: b2i is nonzero and divisible by y2i−1 but not by y2i for 2i ≤ n− 2.

Proof of claim. For i = 0 we have b0 = 1− a0y is not divisible by y = y20 , but by 1 = y0 =

y20−1. For i = 1 we had already noted that ϕ2(y) = y2(y2 − 2). Hence

b2 = b0y(y + 1)− a2ϕ
2(y) = (1− a0y)y(y + 1)− a2y

2
(
y2 − 2

)
= y

(
y
(
1− a0 (y + 1)− a2

(
y2 − 2

))
+ 1
)

is divisible by y = y21−1 but not by y2 = y21 . Suppose b2i is divisible by y2i−1 but not by

y2i .

b2(i+1) = b2iϕ
2i(y)ϕ2i(y + 1)− a2(i+1)ϕ

2(i+1)(y).

Since ϕ2i(y) is divisible by y2i but not by y2i+1, and since b2i is divisible by y2i−1 but not by

y2i by induction hypothesis, we have that b2iϕ
2i(y) is divisible by y2i+1−1 but not by y2i+1

.

Therefore b2(i+1) is divisible by y2i+1−1 but not by y2i+1
. This proves the claim.

If n = 2i is even, then (3.6) leads to

bn−2ϕ
n−2(y)ϕn−2(y + 1) = anϕ

n(y)

where the left hand side is nonzero and divisible by y2n−2+2n−2
= y2n−1

, but not divisible by

y2n while the right hand side is divisible by y2n . This is a contradiction.

Otherwise, if n = 2i+ 1 is odd, then n− 1 = 2i is even and we can use equation (3.5)

bn−3ϕ
n−3(y)ϕn−3(y + 1) = an−1ϕ

n−1(y)

where the left hand side is nonzero and divisible by y2n−3+2n−3
= y2n−2

, but not divisible by

y2n−1
while the right hand side is divisible by y2n−1

. In either case we get a contradiction, so

our assumption that I = A must be false. Hence I is a proper left ideal of A.
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This completes our second example, and also in this case, as we will see, we can conclude

that A is left primitive. Before we can prove this in general, we will generalise the two

examples in Theorem 3.7 (i) and (ii).

Theorem 3.7. Let A = R[x, ϕ] for some injective endomorphism ϕ : R → R of

infinite order and R a principal left ideal domain. Let P be a ϕ-periodic prime of

period n and assume there exists t ≥ 2 such that νP (ϕn(P )) = t. Since R is a

principal left ideal domain, there exist irreducible elements p, p1, . . . , pn−1 ∈ R such

that P = 〈p〉 , ϕ−1(P ) = 〈p1〉 , . . . , ϕ−n+1(P ) = 〈pn−1〉. Let r := pp1 · · · pn−1. Then

(i) pt
i

is the largest power of p that divides ϕni(r) and ϕni(p) for any i ≥ 0.

(ii) The ideal B := Ap+A(1− rxn) is a proper left ideal of A.

(iii) Let M be a maximal left ideal containing B, who’s existence is assured by (ii).

Then A/M is a faithful simple left A-module.

Proof. (i) Since νP (ϕn(P )) = t, we have in particular that νP (ϕn(p)) = t since 〈p〉 = P .

If there exists 1 ≤ i ≤ n − 1 such that νP (ϕn(pi)) > 0, then 〈ϕn(pi)〉 = 〈p〉 = P ,

a contradiction. Hence νP (ϕn(pi)) = 0 for all 1 ≤ i ≤ n − 1, so we also have that

νP (ϕn(r)) = t. The result now follows from Lemma 3.4.

(ii) We will assume that B = A and show that this leads to a contradiction. Since B = A,

there exists a =
∑m

i=0 aix
i, b =

∑l
i=0 bix

i ∈ A with am 6= 0, bl 6= 0 and ai, bi ∈ R such

that

1 = ap+ b(1− rxn). (3.7)

Since the left hand side has degree 0 in x, all coefficients of x must be zero on the right

hand side. In particular l = m− n as bm 6= 0 and an 6= 0. We rewrite (3.7) as

1 =

m∑
i=0

aix
ip+

l∑
i=0

bix
i −

l∑
i=0

bix
irxn

=
m∑
i=0

aiϕ
i(p)xi +

l∑
i=0

bix
i −

l∑
i=0

biϕ
i(r)xi+n

=
m∑
i=0

aiϕ
i(p)xi +

m−n∑
i=0

bix
i −

m∑
i=n

bi−nϕ
i−n(r)xi

=

n−1∑
i=0

(
aiϕ

i(p) + bi
)
xi +

m−n∑
i=n

(
aiϕ

i(p) + bi − bi−nϕi−n(r)
)
xi +

m∑
i=m−n+1

(
aiϕ

i(p)− bi−nϕi−n(r)
)
xi
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leading to this system of equations:

1 = a0p+ b0 (3.8)

0 = aiϕ
i(p) + bi, for all 1 ≤ i ≤ n− 1

bi = bi−nϕ
i−n(r)− aiϕi(p), for all n ≤ i ≤ m− n (3.9)

bi−nϕ
i−n(r) = aiϕ

i(p), for all m− n+ 1 ≤ i ≤ m (3.10)

Since m ≥ n, there exists j ≥ 1 and 0 ≤ s < n such that m = nj + s.

Claim : For all 0 ≤ i ≤ j, the largest power of p that divides bnj is p
ti−1
t−1 .

To prove the claim, consider first the case where i = 0. From (3.8), we see that p cannot

divide b0 because otherwise p would have been invertible and hence P = R. Therefore,

the largest power of p that divides b0 is 1 = p0 = p
t0−1
t−1 .

For the inductive step, suppose p
ti−1
t−1 is the largest power of p that divides bni for some

0 ≤ i ≤ j. Then, by (3.9) and part (i) of this lemma, we have that

bn(i+1) = bniϕ
ni(r)−an(i+1)ϕ

n(i+1)(p) = p
ti−1
t−1 upt

i
v−an(i+1)p

ti+1
w = p

ti+1−1
t−1 uv−an(i+1)p

ti+1
w,

for some u, v, w ∈ R not divisible by p. Since

ti+1 − 1

t− 1
≤ ti+1 − 1 < ti+1,

we see that bn(i+1) is divisible by p
ti+1−1

t−1 . Suppose bn(i+1) is divisible by p
ti+1−1

t−1
+1.

Then, as ti+1−1
t−1 < ti+1, we have that ti+1−1

t−1 + 1 ≤ ti+1. Then ϕn(i+1)(p), and hence

bniϕ
ni(r) as well, are both divisible by p

ti+1−1
t−1

+1. But bniϕ
ni(r) = p

ti+1−1
t−1 uv with uv

not divisible by p, so we have a contradiction. We conclude that bn(i+1) is not divisible

by p
ti+1−1

t−1
+1. This proves the inductive step, and hence the claim.

Notice that m− n+ 1 ≤ nj ≤ m− s ≤ m, so by (3.10) we have that

bn(j−1)ϕ
n(j−1)(r) = anjϕ

nj(p).

By the claim, p
tj−1−1

t−1 is the largest power of p that divides bn(j−1), and by part (i),

pt
j−1

is the largest power of p that divides ϕn(j−1)(p). Hence p
tj−1−1

t−1 pt
j−1

= p
tj−1
t−1 is the

largest power that divides bn(j−1)ϕ
n(j−1)(r) = anjϕ

nj(p). This is a contradiction since

pt
j

divides ϕnj(p) by (i). We conclude that our assumption that B = A is false, that

is, B is a proper ideal of A.
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(iii) Let I := annA(A/M). By Lemma 1.6, I is a prime ideal. Hence, either I = 0, x ∈ I or

I ∩ R is a nonzero ϕ-prime ideal of R by Theorem 1.41. We want to rule out the last

two possibilities in order to show that I = 0.

If x ∈ I ⊆M , then M contains rxn sinceM is a left ideal. Now, from the definition of B,

we know that 1−rxn ∈ B ⊆M . Since rxn ∈M we have that 1 = (1−rxn)+rxn ∈M .

Thus M = A, a contradiction since M is proper. Hence x /∈ I.

Assume now that I∩R is a nonzero ϕ-prime ideal. Consider the ideal P+I∩R. Clearly

P ⊆ P + I ∩R ⊆ R.

Since P is prime, P is maximal because R is a principal ideal domain. Hence P+I∩R =

P or P + I ∩R = R. If P + I ∩R = R, then AP +A(I ∩R) = AR = A, but AP ⊆M

and A(I ∩ R) ⊆ I ⊆ M , and hence M = A, a contradiction. If P = P + I ∩ R, then

I ∩R ⊆ P . Now, by Lemma 1.38,

I ∩R = Q ∩ ϕ−1(Q) ∩ · · · ∩ ϕ−m+1(Q),

for some ϕ-periodic prime ideal Q with period m. However, since Q is prime and

nonzero, ϕ−i(Q) is prime and nonzero as well by Lemma 1.28, and thus maximal.

Assume there exists 0 ≤ i, j ≤ m − 1 with i 6= j such that ϕ−i(Q) ⊆ ϕ−j(Q). Then

ϕ−i(Q) = ϕ−j(Q) since they are maximal, but then the ϕ-period of Q would be at most

m−1, a contradiction. Hence ϕ−i(Q) * ϕ−j(Q) for all 0 ≤ i, j ≤ m−1 with i 6= j, and

thus ϕ−i(Q) + ϕ−j(Q) = R for all 0 ≤ i, j ≤ m− 1 with i 6= j by the maximality. We

conclude that
{
ϕ−i(Q)

}m−1

i=0
is a pairwise comaximal family of ideals of R. It follows

by Proposition 1.5 that

I ∩R = Qϕ−1(Q) · · ·ϕ−m+1(Q).

Therefore,

Qϕ−1(Q) · · ·ϕ−m+1(Q) ⊆ P.

Since P is a prime ideal, we have that ϕ−i(Q) ⊆ P for some i by Lemma 1.7. Since

ϕ−i(Q) is maximal and P is proper we have that ϕ−i(Q) = P . Then

ϕ−i(Q) = P = ϕ−n(P ) = ϕ−n−i(Q),

so n ≥ m. On the other hand,

ϕ−m(P ) = ϕ−m−i(Q) = ϕ−i(Q) = P,
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so m ≥ n. We conclude that m = n and that {Q,ϕ−1(Q), . . . , ϕ−m+1(Q)} is a permu-

tation of
{
P,ϕ−1(P ), . . . , ϕ−n+1(P )

}
. Thus

I ∩R = Qϕ−1(Q) · · ·ϕ−m+1(Q) = Pϕ−1(P ) · · ·ϕ−n+1(P ),

so we have that r ∈ I ∩R ⊆ I ⊆M and hence rxn ∈M . As we have seen, this leads to

the contradiction that M = A. Hence our assumption that I ∩R is a nonzero ϕ-prime

ideal is false. We conclude that I = 0 by Theorem 1.41, that is, A/M is faithful.

�

An immediate consequence of Theorem 3.7 (iii) is Corollary 3.8:

Corollary 3.8. Let A = R[x, ϕ] for some injective endomorphism ϕ : R → R of

infinite order and a principal left ideal domain R. Let P be a ϕ-periodic prime of

period n and assume there exists t ≥ 2 such that νP (ϕn(P )) = t. Then A = R[x, ϕ] is

left primitive.

Corollary 3.8 applies to both of the examples just before Theorem 3.7 so that A is left

primitive in these examples.

3.3 Case: There are infinitely many ϕ-periodic primes and

none of them are singular.

Let A = K[y][x, ϕ] be the skew polynomial ring where ϕ : K[y] → K[y] is an injective

endomorphism, and suppose that there are infinitely many ϕ-periodic primes in K[y]. The

aim of this section is to show that, in this case, A is left primitive if and only if there is a

singular ϕ-periodic prime ideal in K[y].

So, define f(y) := ϕ(y) ∈ K[y] and let P be a nonzero prime ideal of K[y], that is,

P = 〈y − a〉 for some a ∈ K. If a is ϕ-periodic, there exists n ≥ 1 such that the set of primes

{P,ϕ−1(P ), ϕ−2(P ), . . . , ϕ−n+1(P )}

is closed under taking ϕ−1. Define

Q :=

n−1∏
i=0

ϕ−1(P ) =
n−1∏
i=0

〈
y − f i(a)

〉
= 〈q〉 ,

where q = (y − a) (y − f(a)) · · ·
(
y − fn−1(a)

)
. We will show that ϕ(Q) ⊆ Q. Note that

ϕ(y − f i(a)) = f(y) − f i(a). If i ≥ 1, then f i−1(a) is a root of f(y) − f i(a) and hence
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y − f i−1(a) divides ϕ(y − f i(a)). Otherwise, in the case i = 0, we observe that fn−1(a) is a

root of f(y)− a = f(y)− fn(a) and hence y − fn−1(a) divides ϕ(y − a). Thus ϕ(q) ∈ Q and

hence ϕ(Q) ⊆ Q. It follows that

xQ ⊆ ϕ(Q)x ⊆ Qx. (3.11)

Let K(y) := {gh−1 : g, h ∈ K[y], h 6= 0} denote the field of fractions of K[y]. ϕ extends

to a ring homomorphism of K(y) by defining ϕ(gh−1) := ϕ(g)ϕ(h)−1. Note that ϕ(h) 6= 0

because h 6= 0 and ϕ is injective. Define B := K(y)[x, ϕ]. Furthermore, note that, since K is

algebraically closed, given any n ≥ 0, the polynomial fn(y) − y has n roots. That is, there

exists a1, a2, . . . , an ∈ K such that fn(ai) = ai for all 0 ≤ i ≤ n.

Lemma 3.9. Let R = K[y] with the injective endomorphism ϕ : R → R, and let

A = R[x, ϕ] such that there are infinitely many ϕ-periodic primes. Assume there exists

a simple faithful left A-module E = Av. Then annA(v) ∩R 6= 0.

Proof. Define M := annA(v). By Lemma 1.4 (ii), M is a maximal left ideal of A, and by

Proposition 1.35, the ideal BM of B := K(y)[x, ϕ] is generated by some element g ∈ B.

However, observe that any element of B is of the form

n∑
i=0

his
−1
i xi = s−1

(
n∑
i=0

rix
i

)
,

where ri, si, s ∈ A and s is a common denominator of the fractions his
−1
i . It follows that we

can assume that BM = Bg for some g ∈ A. Write

g = r0 + rkx
k + rk+1x

k+1 + · · ·+ rmx
m,

where ri ∈ R and k is the smallest integer strictly greater than 0 such that rk 6= 0.

If BM = B, then 1 ∈ BM , that is, 1 =
∑n

i=0 s
−1ai for ai ∈ M and 0 6= s ∈ R. Hence

0 6= s =
∑n

i=0 ai ∈ M ∩ R and thus M ∩ R 6= 0. We will therefore in the following assume

that BM is a proper ideal of B.

We will assume that M ∩ R = 0 and see that this leads to a contradiction. Note that

m > 0 because BM is proper. We claim that there exists a ϕ-periodic prime P = 〈y − a〉 of

period u such that for all 0 ≤ j ≤ m with rj 6= 0 and all 0 ≤ i < u, we have that rj /∈ ϕ−i(P ).

To justify the claim, note first that

rj ∈ ϕ−i(P ) ⇐⇒ y − f i(a) divides rj ⇐⇒ f i(a) is a root of rj .
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Since there are only finitely many nonzero polynomials rj , there are only finitely many roots

of the rj ’s, but by assumption there are infinitely many ϕ-periodic elements a ∈ K. Hence

there exists a ϕ-periodic element a such that f i(a) is not a root of rj for all 0 ≤ i < u and

all nonzero rj . This proves the claim, in fact, it shows that there are infinitely many such

primes.

Let now P = 〈y − a〉 be such a prime ideal and let u + 1 be the period of a, that is,

ϕ−u−1(a) = a. Define

Q :=
u∏
i=0

ϕ−i(P ) =
u∏
i=0

〈
y − f i(a)

〉
= 〈q〉 ,

where q = (y − a) (y − f(a)) · · · (y − fu(a)). From (3.11) we know that xQ ⊆ Qx. It follows

that the two-sided ideal AQA of A is contained in QA. In particular, every element of AQA

can be written in the form
∑n

i=0 tix
i for ti ∈ Q. Since M is a left ideal that does not contain

any two-sided ideal, we know in particular that AQA * M . It follows that M is properly

contained in M +AQA. But M is a maximal ideal of A, se we conclude that M +AQA = A.

It therefore exist m ∈M and ti ∈ Q with td 6= 0 such that m−
∑d

i=0 tidx
i = 1, or equivalently,

1 +
d∑
i=0

tix
i = m ∈M.

Since M ⊆ BM = Bg, there exists 0 6= s ∈ R and
∑n

j=0 sjx
j ∈ A such that

1 +
d∑
i=0

tix
i = s−1

 n∑
j=0

sjx
j

 g = s−1
n∑
j=0

m∑
i=0

sjx
jrix

i = s−1
n∑
j=0

m∑
i=0

sjϕ
j(ri)x

i+j .

Multiplying the above with s yields

s+ s
d∑
i=0

tix
i =

n∑
j=0

m∑
i=0

sjϕ
j(ri)x

i+j . (3.12)

Let N be the greatest integer such that s ∈ PN but s /∈ PN+1. Note that d = n + m is

the degree of both sides of (3.12), and consider the coefficient of the highest degree term of

(3.12):

stm+n = snϕ
n(rm).

Since tm+n ∈ Q ⊆ P , we have that stn+m ∈ PN+1 and therefore snϕ
n(rm) ∈ PN+1 as well.

However, because rm /∈ ϕ−i(P ) for all i, we have in particular that rm /∈ ϕ−n−i for all i, that

is, ϕn(rm) /∈ ϕ−i(P ) for all i. Therefore, ϕn(rm) /∈ Q ⊆ P , and we conclude that sn ∈ PN+1.

By considering the second highest term of (3.12),

stm+n−1 = snϕ
n(rm−1) + sn−1ϕ

n−1(rm),
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and using the last discovery that sn ∈ PN+1, we can argue in the same manner that sn−1 ∈

PN+1. We can continue in the same way until we consider the coefficient of the term with

degree k:

stk = skϕ
k(r0) + s0ϕ

0(rk) = skϕ
k(r0) + s0rk. (3.13)

Since tk ∈ P and s ∈ PN , we have that stk ∈ PN+1. The right hand side of (3.13) must

therefore also be an element in PN+1. Now, neither ϕk(r0) nor ϕ0(rk) are in P , but sk ∈

PN+1, hence we have that s0 ∈ PN+1. We finally consider the coefficient of the term of

degree 0:

s+ st0 = s0r0.

We have that st0 ∈ PN+1 and s0r0 ∈ PN+1. It follows that s ∈ PN+1, a contradiction. We

conclude that our assumption that M ∩R = 0 is false. This completes the proof. �

Lemma 3.10. Let R = K[y] with injective endomorphism ϕ : R → R and let

A = R[x, ϕ] such that there are infinitely many ϕ-periodic prime ideals. Assume there

exists a simple faithful left A module E = Av. Then I = annA(v) ∩ R has a nonzero

ϕ-periodic prime divisor.

Proof. Let M := annA(v). By Lemma 3.9, I 6= 0. Therefore, I has a unique prime ideal

decomposition:

I = P1P2 · · ·Pn

for some n ≥ 1. Let J := AxA. Since xa = ϕ(a)x for all a ∈ R, we have that xA ⊆ Ax. But

then AxA ⊆ Ax ⊆ AxA, so in fact, J = AxA = Ax.

If Jv = 0, then J ⊆ annA(v) and hence J ⊆ annA(E) = 0, but J is nonzero because

x ∈ J . Since Jv is a submodule of the simple module E, it follows that Jv = E = Av. In

particular, v ∈ Jv, and therefore

v =

t+1∑
i=1

rix
iv

for some t ≥ 0 and ri ∈ R. Thus (
1−

t+1∑
i=1

rix
i

)
v = 0,

that is, (
1−

t+1∑
i=1

rix
i

)
∈M (3.14)
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Furthermore, for all

s ∈
t+1∏
i=1

ϕi(I),

we have that s = ϕ(c1)ϕ2(c2) · · ·ϕt+1(ct+1) for ci ∈ I. Therefore, for all 0 ≤ i ≤ t + 1, we

must have that

sxi = ϕ(c1)ϕ2(c2) · · ·ϕt+1(ct+1)xi =
∏
j 6=i

ϕj(cj)ϕ
i(ci)x

i =
∏
j 6=i

ϕj(cj)x
ici ∈ AI = A (M ∩R) ⊆M.

Since sxi ∈M , we have, using (3.14), that

s = s

(
1−

t+1∑
i=1

rix
i

)
+

t+1∑
i=1

risx
i ∈M.

We conclude that
t+1∏
i=1

ϕi(I) ⊆M ∩R = I = P1 · · ·Pn ⊆ Pj

for 1 ≤ j ≤ n.

We will now show that, given any P ∈ {P1, . . . , Pn}, there exists 1 ≤ i ≤ t+ 1 such that

ϕ−i(P ) is a ϕ-periodic prime divisor of I, and thus prove the lemma. Let P := Pj1 for some

1 ≤ j1 ≤ n. Since P is prime, there exists by Lemma 1.7 some 1 ≤ i1 ≤ t + 1 such that

ϕi1(I) ⊆ P . Therefore, I ⊆ ϕ−i1(P ). By Corollary 1.29, this means that ϕ−i1(P ) is a prime

divisor of I, in fact, ϕ−i1(P ) is one of the primes P1, . . . , Pn. Since ϕ−i1(P ) = Pj2 for some

1 ≤ j2 ≤ n, we can apply the same argument again, but this time on Pj2 . The result is

another prime divisor of I:

ϕ−i2
(
ϕ−i1(P )

)
= ϕ−i1−i2(P ) ∈ {P1, . . . , Pn}.

If we continue in this way, we obtain a series of prime ideals

P,ϕ−i1(P ), ϕ−i1−i2(P ), ϕ−i1−i2−i3(P ), . . . ,

all contained in the finite set {P1, . . . , Pn}. This implies that there exists ik, il such that

ϕ−il
(
ϕ−ik(P )

)
= ϕ−ik(P ). Hence ϕ−ik(P ) is a ϕ-periodic prime divisor of I. �

As we will see in the next lemma, I does not only have one ϕ-periodic prime divisor, but

every divisor of I is a ϕ-periodic prime.

Lemma 3.11. Let R = K[y] with the injective endomorphism ϕ : R → R and let

A = R[x, ϕ] be such that there are infinitely many ϕ-periodic prime ideals. Assume

there exists a simple faithful left A-module E = Av. Then I = annA(v) ∩ R is a

product of nonzero ϕ-periodic primes.
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Proof. We will give a proof by induction on the number of different primes dividing I, where

in the base case we have that I = P1 · · ·Pn = Pn, that is, P = Pi for all 1 ≤ i ≤ n. By

Lemma 3.10, we have that P is ϕ-periodic. Hence I is a product of ϕ-periodic primes.

For the inductive part, assume that for every simple faithful left A-module E = Av, and

whenever I = annA(v)∩R can be written as a product of less than or equal to m ≥ 1 different

primes, we have that I is a product of ϕ-periodic primes. Let E = Av be a simple faithful

left A-module such that I has m+ 1 different prime divisors. By Lemma 3.10, I has at least

one ϕ-periodic prime divisor. Let n ≤ m + 1 be the number of different ϕ-periodic prime

divisors of I. That is,

I = P1 · · ·PnPn+1 · · ·Pm+1,

where none of the primes Pn+1 · · ·Pm+1 are ϕ-periodic. We want to prove that n = m+ 1.

Assume first that sv = 0 for all s ∈ P1 · · ·Pn. Then

s ∈ annA(v) ∩R = I = P1 · · ·PnPn+1 · · ·Pm+1,

so we have that

P1 · · ·Pn ⊆ P1 · · ·PnPn+1 · · ·Pm+1.

But then, since P1 · · ·PnPn+1 · · ·Pm+1 ⊆ P1 · · ·Pn, we have that n = m + 1, using the

uniqueness of the product into prime ideals.

Assume now that there exists s ∈ P1 · · ·Pn such that sv 6= 0 and define Is := annA(sv)∩R.

Since R is a Dedekind domain, we know that Is = Q1 · · ·Qu for some u ≥ 1 and where Qi are

prime ideals. Since sv 6= 0, we see that Asv = Av = E, and since E is a simple faithful left A-

module, we know by Lemma 3.10 that there exist 1 ≤ i ≤ u such that Qi is a ϕ-periodic prime

ideal. Because Pn+1 · · ·Pm+1sv ⊆ P1 · · ·Pm+1v = Iv = 0, we have that Pn+1 · · ·Pm+1 ⊆ Is

and hence Pn+1 · · ·Pm+1 ⊆ Qi. By Lemma 1.7, there exist n + 1 ≤ j ≤ m + 1 such that

Pj ⊆ Qi. Since every nonzero prime ideal in R is maximal, we have in fact that Pj = Qi.

But Qi is ϕ-periodic so Pj is ϕ-periodic. This is a contradiction unless n = m+ 1. �

Lemma 3.12. Let R = K[y], ϕ an injective endomorphism of R and A = R[x, ϕ] such

that there are infinitely many ϕ-periodic prime ideals. Suppose that M is a maximal

left ideal of A that does not contain any nonzero two-sided ideals. Then M ∩R has a

singular ϕ-periodic prime divisor.
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Proof. By Lemma 3.11, all the prime divisors of I := M ∩R are ϕ-periodic. Take any prime

divisor, say P , of I and consider its ϕ-orbit

orbϕ(P ) = {P,ϕ−1(P ), . . . , ϕ−u(P )},

where u + 1 is the period of P . Suppose that P is the prime yielding the largest P -order

νP (I) = m ≥ 1 among all elements ϕ−j(P ) ∈ orbϕ(P ). We can make this assumption without

loss of generality because, if ϕ−j(P ) is not a prime divisor of I, then νϕ−j(P )(I) = 0 < νP (I)

and if νϕ−j(P )(I) > νP (I), then we can replace P by ϕ−j(P ), which is a prime divisor of I

and is also ϕ-periodic.

Now, if P is singular we are done. We will therefore in the remaining assume that P is

not singular. Let Q be the product of all the ideals in orbϕ(P ), i.e.

Q = Pϕ−1(P ) · · ·ϕ−u(P ).

As ϕ
(
ϕ−i (P )

)
⊆ ϕ−i+1(P ) for all i < n and ϕ(P ) ⊆ ϕ−u(P ), because ϕu+1 (P ) ⊆ P ,

we conclude that ϕ(Q) ⊆ Q. Hence AQA ⊆ QA. Since Q 6= 0, we have that AQA is

a nonzero two-sided ideal and hence not included in the maximal left ideal M . Therefore

M ⊂M +AQA, but M is maximal, so M +AQA = A. Thus M contains an element of the

form

1 +

d∑
i=0

tix
i ∈M, t0, . . . , td ∈ Q. (3.15)

For any 0 ≤ i ≤ d consider the ideal generated by the image ϕi(I), which we denote by

Li, i.e. Li =
〈
ϕi(I)

〉
= Rϕi(I). Let Λi = {j : Li ⊆ ϕ−j(P )}. Since j ∈ Λi if and only if

νϕ−j(P )(Li) 6= 0, we have that Ci =
∏
j∈Λi

ϕ−j(P ) is a divisor of Li and hence, using the fact

that R is a Dedekind domain, there exist an ideal Bi with Li = BiCi. Then

CiBix
i = Rϕi(I)xi = RxiI ⊆ AI = A(M ∩R) ⊆M.

Take the least common multiple N = LCM(B0, . . . , Bd) of the ideals Bi as in Definition 1.26.

Then since Q ⊆ Ci we also have for all 0 ≤ i ≤ d:

NQxi ⊆ CiBixi ⊆M.

In particular n
∑d

i=0 tix
i ∈M , for any n ∈ N and any ti ∈ Q from equation (3.15). It follows

that for any n ∈ N :

n = n

(
1 +

d∑
i=0

tix
i

)
− n

d∑
i=0

tix
i ∈M.
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Hence N ⊆ I.

Using that N = LCM(B0, . . . , Bd) ⊆ I ⊆ Pm, where m = νP (I), we have by Corollary

1.23 that

m ≤ νP (N) = max (νP (B0), νP (B1), . . . , νP (Bd)) .

Hence there exist 0 ≤ i ≤ d such that m ≤ νP (Bi) and therefore Bi ⊆ Pm, again by Corollary

1.23. Fix this i. Then
〈
ϕi(I)

〉
= CiBi ⊆ Pm ⊆ P = ϕ−0(P ). Therefore 0 ∈ Λi and hence

Ci ⊆ P . Thus 〈
ϕi(I)

〉
= CiBi ⊆ PPm = Pm+1

or equivalently

νP
(〈
ϕi(I)

〉)
≥ m+ 1. (3.16)

In general, we do not know whether i is less than u+ 1, but we can reduce it modulo u+ 1.

There are non-negative integers q and r such that i = q(u+ 1) + r with 0 ≤ r ≤ u. Since we

suppose that P is not singular, ϕ−(u+1)(Pm+1) = Pm+1 by Proposition 1.32. In particular

ϕ−i(Pm+1) = ϕ−r
(
ϕ−q(u+1)(Pm+1)

)
= ϕ−r(Pm+1).

Together with equation (3.16) we conclude that

〈
ϕi(I)

〉
⊆ Pm+1 ⇒ I ⊆ ϕ−i

(
Pm+1

)
) = ϕ−r(Pm+1)⇒ 〈ϕr(I)〉 ⊆ Pm+1.

Therefore we can replace i by r = i(modu+ 1) and we will assume that i < u+ 1.

Let s = νϕ−i(P )(I) which is less than m+ 1 as m was chosen to be the maximal P -order

of prime divisors of I. Then I = Jϕ−i(P )s for some ideal J with νϕ−i(P )(J) = 0. Applying

ϕi yields: 〈
ϕi(I)

〉
=
〈
ϕi(J)

〉 〈
ϕi
(
ϕ−i(P )s

)〉
Since νϕ−i(P )(J) = 0, we have J 6⊆ ϕ−i(P ). By definition ϕi(J) 6⊆ P and hence also

〈
ϕi(J)

〉
6⊆

P . But this means again that νP
(〈
ϕi(J)

〉)
= 0. Together with Corollary 1.25 and equation

(3.16) we conclude:

νP
(〈
ϕi
(
ϕ−i(P )s

)〉)
= νP

(〈
ϕi(J)

〉)
+ νP

(〈
ϕi
(
ϕ−i(P )s

)〉)
= νP

(〈
ϕi(J)

〉 〈
ϕi
(
ϕ−i(P )s

)〉)
= νP

(〈
ϕi (I)

〉)
≥ m+ 1.
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Therefore ϕi
(
ϕ−i(P )s

)
⊆ Pm+1 and hence, again by Corollary 1.25, we have that

s < m+ 1 ≤ νP
(
ϕi
(
ϕ−i(P )s

))
= sνP

(
ϕi
(
ϕ−i(P )

))
.

This shows that νP
(
ϕi
(
ϕ−i(P )

))
≥ 2, that is,

ϕi
(
ϕ−i(P )

)
⊆ P 2,

but then, using that i < u+ 1 and ϕu+1−i(P ) ⊆ ϕ−i(ϕu+1(P )), we obtain that

ϕu+1(P ) = ϕi
(
ϕu+1−i(P )

)
⊆ ϕi

(
ϕ−i

(
ϕu+1(P )

))
⊆ ϕi

(
ϕ−i(P )

)
⊆ P 2.

We conclude that P is singular, which is a contradiction. Hence our assumption that P was

not singular is false, so we conclude that P is in fact singular. �

Theorem 3.13. Let A = K[y][x, ϕ] where ϕ : K[y] → K[y] is an injective endomor-

phism. Suppose that there are infinitely many ϕ-periodic primes in K[y]. Then A is

left primitive if and only if there is a singular ϕ-periodic prime ideal in K[y].

Proof. Assume there is a singular ϕ-periodic prime ideal P in K[y] of period n. Then ϕn(P ) ⊆

P 2, so by taking t = 2 in Theorem 3.7, we conclude that A is left primitive by Corollary 3.8.

Conversely, assume A is left primitive. Then there exists a simple faithful left A-module

E. Since E is simple, E = Av for some v ∈ E by Lemma 1.4 (i). Let I = annA(v) ∩K[y].

Since I is maximal, K[y] has a singular ϕ-periodic prime ideal by Lemma 3.12. �

3.4 Summary left primitivity

We sum up our results for left primitivity in Theorem 3.14:

Theorem 3.14. Let A = K[y][x, ϕ] for an endomorphism ϕ : K[y] → K[y]. Then A

is left primitive if and only if ϕ is injective and of infinite order and

(i) there are only finitely many ϕ-periodic primes of K[y], or

(ii) K[y] has a singular ϕ-periodic prime ideal.

Proof. If ϕ is of finite order, then A is not left primitive by Theorem 2.9, so assume that

the order of ϕ is infinite. Then A is left primitive if K[y] has only finitely many ϕ-periodic

primes by Proposition 3.2. Otherwise, if there are infinitely many ϕ-periodic prime ideals,
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then A is left primitive if and only if K[y] has a singular ϕ-periodic prime ideal by Theorem

3.13. �
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Chapter 4

Examples of rings that are

primitive on only one side

We will need Proposition 4.1 in the following discussion.

Proposition 4.1. Let K be an algebraically closed field and let ϕ : K[y] → K[y] be

an endomorphism such that deg(ϕ(y)) > 1. Then there are infinitely many ϕ-periodic

prime ideals in K[y].

Proof. We know that ϕ(y) = f(y) for some polynomial f ∈ K[y]. Define

Ω := {a ∈ K : there exists a prime number p and a is a root of fp(y)− y} .

For every a ∈ Ω, the prime ideal P := 〈y − a〉 of K[y] is ϕ-periodic because ϕ−p(P ) =

〈y − fp(a)〉 = 〈y − a〉 = P . Note that if a, b ∈ Ω is such that a 6= b, then 〈y − a〉 6= 〈y − b〉.

Thus the number of ϕ-periodic primes is at least the cardinality of Ω. Since K is algebraically

closed, there exists at least one root a ∈ K of fp(y) − y for every prime number p. Hence

|Ω| is greater than or equal to the number of prime numbers. We conclude that there are

infinitely many ϕ-periodic prime ideals in K[y]. �

Let A = K[y][x, ϕ] for some endomorphism ϕ of K[y]. We will now search for conditions

on ϕ such that A is primitive only on one side. By Remark 1.15 and Theorem 1.19, we

can exclude simple rings and primitive rings that are PI-rings. We can also exclude skew

polynomial rings where ϕ(y) ∈ K or ϕ is of finite order by Corollary 2.2 and Theorem 2.9.

Assume there are only finitely many ϕ-periodic primes of K[y]. Then A is left primitive by

Proposition 3.2. By Proposition 4.1, we have that deg(ϕ(y)) ≤ 1. Hence ϕ(y) = f(y) = ay+b
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for some a, b ∈ K. In this case ϕ2(y) = a2y + ab+ b = a2y +
(
a2−1
a−1

)
b. In general,

ϕn(y) = any +

(
an − 1

a− 1

)
b.

Let P = 〈y − c〉, where c ∈ K, be a ϕ-periodic prime of K[y]. Then there exists n ∈ N

such that fn(c) = c. Hence P is ϕ-periodic if and only if anc+
(
an−1
a−1

)
b = c, that is, if and

only if c = b
1−a , assuming an 6= 1. Hence there is only one ϕ-periodic prime ideal, namely

P =
〈
y − b

1−a

〉
, where a 6= 1.

If a is a root of unity, then either A is not primitive by Corollary 2.10 and Theorem 2.11,

or right (and left) primitive by Theorem 2.12. There are therefore no skew polynomial rings

A = K[y][x, ϕ] that are primitive on only one side under the assumption that there are only

finitely many ϕ-periodic primes of K[y]. As shown in the previous paragraph, if there are

infinitely many ϕ-periodic prime ideals of K[y], the degree of ϕ(y) cannot be 1 and hence we

can exclude this case as well from our search for rings primitive on only one side.

If deg(ϕ(y)) > 1, then A is right primitive by Theorem 2.13, so we will look for conditions

for A not to be left primitive. Since there are infinitely many ϕ-periodic primes by Proposition

4.1, we need to look for endomorphisms ϕ such that K[y] has no singular ϕ-periodic prime

ideals by Theorem 3.14. This leads to Corollary 4.3 below. Before we can prove Corollary

4.3, we need the general formula for the chain rule in derivation, which we state and prove

here:

Proposition 4.2. Let f(y) be a function. Then

dfn(y)

dy
=

n−1∏
i=0

f ′(f i(y)). (4.1)

for all n ≥ 1.

Proof. We will prove the formula by induction. The base case n = 1 is trivial:

df1(y)

dy
=

1−1∏
i=0

f ′(f i(y)) = f ′(f0(y)) = f ′(y).

For the inductive step, assume that (4.1) has been proven for n. Then

dfn+1(y)

dy
= f ′(fn(y))

dfn(y)

dy
= f ′(fn(y))

n−1∏
i=0

f ′(f i(y)) =
n∏
i=0

f ′(f i(y)),

where we have used the chain rule d(h(g(y)))
dy = h′(g(y))g′(y). �
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Corollary 4.3. Let A = K[y][x, ϕ] for an algebraically closed field K of characteristic

0 and an injective endomorphism ϕ such that deg(ϕ(y)) > 1. Then A is right primitive,

and A is left primitive if and only if there exists a ∈ K such that P := 〈y − a〉 is ϕ-

periodic and f ′(a) = 0, where f(y) := ϕ(y).

Proof. A is right primitive by Theorem 2.13. Since deg(ϕ(y)) > 1, there are infinitely many

ϕ-periodic primes in K[y]. Thus, by Theorem 3.14, A is left primitive if and only if K[y] has

a singular ϕ-periodic prime ideal. We claim that

Claim: K[y] has a singular ϕ-periodic prime ideal if and only if there exists a ∈ K

such that P = 〈y − a〉 is ϕ-periodic and f ′(a) = 0.

To prove the claim, assume K[y] has a singular ϕ-periodic prime ideal Q. Then Q = 〈y − b〉

for some b ∈ K such that fn(b) = b where n is the ϕ-period of Q. Since Q is singular, we

have that

ϕn(Q) ⊆ Q2 = 〈y − b〉2 =
〈

(y − b)2
〉
.

On the other hand, 〈ϕn(Q)〉 = 〈ϕn (y − b)〉 = 〈ϕn(y)− ϕn(b)〉 = 〈ϕn(y)− b〉. Hence (y − b)2

divides ϕn(y) − b, that is, b is a root of ϕn(y) − b of multiplicity at least 2. Thus y − b

divides d(ϕn(y)−b)
dy and therefore f ′

(
f i(b)

)
= 0 for some i by the general chain rule (4.1).

Let a = f i(b). Then a is a root of f ′(y), and the prime 〈y − a〉 is ϕ-periodic because

ϕ−n (〈y − a〉) =
〈
y − fn+i(b)

〉
=
〈
y − f i(b)

〉
= 〈y − a〉.

Conversely, assume a ∈ K is such that P = 〈y − a〉 is ϕ-periodic of period n and that

f ′(a) = 0. Then fn(a) = a and

d (fn(a)− a)

dy
=

n−1∏
i=0

f ′(f i(a))

by (4.1). Since f ′(a) = 0, we have that d(fn(a)−a)
dy = 0, that is, y−a divides d(fn(a)−a)

dy . Hence

a is a root of fn(y)− a of multiplicity at least 2. Thus

ϕn(P ) = 〈fn(y)− a〉 ⊆
〈

(y − a)2
〉

= P 2.

We conclude that P is singular. This prove the claim, and the corollary. �

Example 4.4. Let A = C[y][x, ϕ] with ϕ an endomorphism of C[y] such that ϕ(y) = f(y) =

y2 + 1. Then deg(ϕ(y)) > 1. By Lemma 2.1 ϕ is injective. Hence A is right primitive by

Corollary 4.3.
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Since f ′(y) = 2y, 0 is the only element of C such that f ′(0) = 0. However, fn(0) ∈ R

and fn(0) > 0 for all n > 0. We will prove this using induction on n. First f(0) = 1 > 0.

Assume now that fk(0) ∈ R and fk(0) > 0 for some k ≥ 1. Then fk+1(0) = f
(
fk(0)

)
=(

fk(0)
)2

+ 1 > 02 + 1 > 0 and fk+1(0) ∈ R. This shows that fn(0) ∈ R and fn(0) > 0 for all

n > 0. In particular, there exists no n > 0 such that fn(0) = 0, so we conclude that P := 〈y〉

is not ϕ-periodic. Hence A is not left primitive by Corollary 4.3.

Example 4.5. Let A = C[y][x, ϕ] with ϕ an endomorphism of K[y] such that ϕ(y) = f(y) =

y2 − 2y + 1. As in Example 4.4, A is right primitive. Since f ′(y) = 2y − 2, the only zero of

the derivative of f is y = 1. However, f(1) = 0 and f2(1) = 1, so P = 〈y − 1〉 is ϕ-periodic

with period 2. Hence A is left primitive as well by Corollary 4.3.

4.1 A skew polynomial ring over the field of rational functions

We will here present the first known example of a ring primitive on only one side, constructed

by George Bergman in 1964 [1].

Let ϕ : Q(y) → Q(y) be the same homomorphism as in Example 3.5, that is, ϕ (r(y)) =

ϕ
(
r
(
y2
))

. Then Q[y][x, ϕ] is both right and left primitive by Theorem 2.13 and Corollary

3.8. In this section we will se that if we instead of the coefficient ring Q[y] go to the field of

rational functions Q(y), we can find a subring B of A := Q(y)[x, ϕ] that is right primitive but

not left primitive. Since every field is also an integral domain, and since ϕ is injective, A is

without zero divisors by Proposition 1.33 and every left ideal of A is principal by Proposition

1.35.

Lemma 4.6. For any r ∈ Q(y) there is a unique r∗ ∈ Q(y) such that

r(y) + r(−y)

2
= r∗

(
y2
)
. (4.2)

Proof. To see this, let r(y) =
f(y)

g(y)
where f, g ∈ Q[y], and write f(y) = f0(y) + yf1(y) such

that f0 is the sum of all the terms of f with even power in y and yf1 is the sum of all the

terms of f with odd powers in y. Similarly, write g(y) = g0(y) + yg1(y). Since (−y)n = yn

64



for even n, we have that

r(y) + r(−y)

2
=

f(y)
g(y) + f(−y)

g(−y)

2
=
f(y)g(−y) + f(−y)g(y)

2g(y)g(−y)

=
(f0(y) + yf1(y)) (g0(y)− yg1(y)) + (f0(y)− yf1(y)) (g0(y) + yg1(y))

2 (g0(y) + yg1(y)) (g0(y)− yg1(y))

=
2f0(y)g0(y)− 2y2f1(y)g1(y)

2g0(y)2 − 2y2g1(y)2
=
f0(y)g0(y)− y2f1(y)g1(y)

g0(y)2 − y2g1(y)2
:= r∗

(
y2
)

�

Lemma 4.7. For every r, s ∈ Q(y), define r · s := rs and r ·x := r∗, with r∗ as defined

in (4.2). With this structure, Q(y) is a right A-module.

Proof. Regarding (i), (ii) and (iv) in the definition of a module on page 1, there is nothing

to prove. To prove (iii), it suffice to verify that for any r, s ∈ Q(y) we have that (r · x) · s =

(r · ϕ(s)) · x or equivalently that r∗s = (rϕ(s))∗. Observe that

ϕ(s)(y) = s
(
y2
)

= s
(
(−y)2

)
= ϕ(s)(−y).

Hence

(r∗s)
(
y2
)

= r∗
(
y2
)
s
(
y2
)

=
r(y) + r(−y)

2
s
(
y2
)

=
r(y)ϕ(s)(y) + r(−y)ϕ(s)(−y)

2
= (rϕ(s))∗

(
y2
)
,

This proves that r∗s = (rϕ(s))∗ and therefore Q(y) is a right A-module. �

Lemma 4.8. Let n,m ≥ 0. Then

yn · xm =


y

n
2m if n is divisible by 2m,

0 otherwise.

Proof. We will give a proof by induction on m. The case m = 0 is trivial: yn · x0 = yn as

it should since 20 = 1 divides n for any n ≥ 0. We will divide the inductive step into three

cases. In all three cases, we will assume the inductive hypothesis

yn · xm−1 =


y

n
2m−1 if n is divisible by 2m−1,

0 otherwise

for m ≥ 1.
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(i) In the case n is not divisible by 2m−1, we have that yn ·xm =
(
yn · xm−1

)
·x = 0 ·x = 0.

(ii) In the case n is divisible by 2m−1 but not by 2m, observe that

yn · xm =
(
yn · xm−1

)
· x = y

n
2m−1 · x =

(
y

n
2m−1

)∗
(4.3)

because r·x = r∗ for all r ∈ Q(y). Since n
2m−1 is an odd integer we have that (−y)

n
2m−1 =

−y
n

2m−1 and therefore

(
y

n
2m−1

)∗ (
y2
)

=
y

n
2m−1 + (−y)

n
2m−1

2
=
y

n
2m−1 − y

n
2m−1

2
= 0.

Since yn · xm =
(
y

n
2m−1

)∗
by (4.3), we conclude that yn · xm = 0.

(iii) In the case where n is divisible by 2m, we have that n
2m−1 is an even integer so that

(−y)
n

2m−1 = y
n

2m−1 . Thus

(
y

n
2m−1

)∗ (
y2
)

=
y

n
2m−1 + (−y)

n
2m−1

2
=
y

n
2m−1 + y

n
2m−1

2
= y

n
2m−1 .

Hence, by (4.3), we have that

yn · xm =
(
y

n
2m−1

)∗
=
(
y

n
2m−1

)1/2
= y

n
2m .

This completes the proof. �

Theorem 4.9. Let A = Q(y)[x, ϕ] where ϕ : Q(y) → Q(y) takes r(y) to r
(
y2
)

for

every r ∈ Q(y). Then any subring B ⊆ A containing x and y is right primitive.

Proof. Let M = Q(y) with the right A-module structure defined in Lemma 4.7. By restricting

the scalars, M is also a right B-module. We will prove that B is right primitive by showing

that M is simple and faithful.

In order to prove that M is simple, we will prove that M 6= 0 and that the only submodules

of M are 0 and M . Since M generated by y, we have that y ∈ M and hence M 6= 0.

Let 0 6= p
q ∈M be a nonzero element in M , where p, q ∈ Q[y]. Choose a ∈ N such that

2a > deg(p). Let c := the leading coefficient of p. Then

p

cq
· qy2a−deg(p) =

p

c
y2a−deg(p).
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The element on the right is a polynomial with leading term y2a and constant term zero.

Hence

p

c
y2a−deg(p) · xa =

(
y2a + lower terms

)
· xa

= y2a · xa + (lower terms) · xa

= y
2a

2a + 0 by Lemma 4.8

= y.

This shows that given any nonzero m ∈ M we can find a ∈ A such that ma = y. But y

generates M , so 0 and M are the only submodules of M . Hence M is simple.

We will now prove that M is faithful. Let 0 6= b =
∑
ri(y)xi ∈ B be a nonzero element of

the subring B, where ri(y) ∈ Q(y). Choose a polynomial p ∈ Q[y] such that ri := pri ∈ Q[y]

for all i. If ri = fi
gi

, then p =
∏
i gi would work. Since b is arbitrary, in order to show that M

is faithful it is sufficient to find one element a ∈ M such that a · b 6= 0. To achieve this, we

will look for an element m ∈M such that mp · b = m
∑
ri · xi 6= 0. Let j be the least integer

such that rj 6= 0 and let

d = max
i

(deg ri − deg rj),

where we use the convention that the degree of the 0-polynomial is −∞. Choose n > j so

that 2n ≥ degRj and 2n−j−1 ≥ d. Let m = y2n−deg rj and consider

y2n−deg rj ·
∑

ri(y)xi.

Using Lemma 4.8, we see that the exponent of y in the highest-power term of y2n−deg rj · rixi

is
2n − deg rj + deg ri

2i
(4.4)

or zero if (4.4) is not an integer. The denominator 2i is a result of the action of xi. For i = j,

(4.4) is just 2n−i = 2n−j . For i > j,

2n − deg rj + deg ri
2i

=
2n + (deg ri − deg rj)

2i
≤ 2n + d

2i
= 2n−i +

d

2i

< 2n−(j+1) + d ≤ 2n−j−1 + 2n−j−1 = 2n−j

So only the jth term rj contributes to the coefficient of y2n−j
. Because rj 6= 0 we conclude

that y2n−deg rj · rj(y)xj 6= 0 and hence y2n−deg rj ·
∑
ri(y)xi 6= 0. This proves that M is

faithful and we conclude that B is right primitive. �
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Having proved that B is right primitive, we will search for restrictions on B such that B

is not left primitive. For a prime number p, the polynomial

Φp(y) =
yp − 1

y − 1
= yp−1 + yp−2 + · · ·+ y2 + y + 1 ∈ Q[y]

is called the pth cyclotomic polynomial and is irreducible according to [13, p. 42]. If

w ∈ C\{1} is a root of Φp(y) and i < p, then

Φp

(
wi
)

=

(
wi
)p − 1

wi − 1
=

(wp)i − 1

wi − 1
= 0 (4.5)

because

Φp(w) = 0 ⇐⇒ wp − 1

w − 1
= 0 ⇐⇒ wp − 1 = 0 ⇐⇒ wp = 1.

Let 1 ≤ i ≤ p − 1. Then there exists j such that ij ≡ 1 mod p. If w ∈ C\{1} is a root of

Φp(y), then
(
wi
)j

= w. Therefore, if g ∈ Q[y], we have that

g
(
wi
)

= 0 ⇐⇒ Φp(y) divides g
(
yi
)
⇐⇒ g

((
wi
)j)

= 0 ⇐⇒ g(w) = 0. (4.6)

Let P = 〈q〉 be the prime ideal generated by an irreducible polynomial q ∈ K[y]. Just

as on page 13, we define the P -order of a polynomial f ∈ Q[y], denoted νP (f), to be the

largest m ≥ 0 such that 〈f〉 ⊆ Pm and 〈f〉 6⊆ Pm+1. Equivalently, νP (f) = m if qm is the

largest power of q that divides f . Clearly, if qm divides f , then f ∈ 〈qm〉 = 〈q〉m = Pm. If〈
qm+1

〉
would divide f , then f would belong to Pm+1. On the other hand, if 〈f〉 ⊆ Pm, then

f ∈ Pm = 〈qm〉 and hence f is a multiple of qm.

For r ∈ Q(y), we define

νP (r) := νP (f)− νP (g),

where r = f
g for some f, g ∈ Q[y]. To simplify notation, define vp := ν〈Φp(y)〉, that is, vp is the

〈Φp(y)〉-order where 〈Φp(y)〉 is the prime ideal generated by the pth cyclotomic polynomial.

Example 4.10. Let p = 3. Then the cyclotomic polynomial is Φ3(y) = y2 + y + 1, and if

r =

(
y2 + y + 1

)4 (
3y3 − 4y + 2

)
3y3 + 3y2 + 3y

=
f

g
∈ Q(y),

then v3(r) = v3

(
f
g

)
= v3(f)− v3(g) = 4− 1 = 3.

Lemma 4.11. Let the endomorphism ϕ : Q[y] → Q[y] be defined by ϕ(y) = ϕ
(
y2
)

and let r ∈ Q(y). Then vp
(
r
(
y2
))

= vp(r(y)) for any prime number p > 2.

68



Proof. Since p > 2, we have, for any root w ∈ C\{1} of Φp(y), that Φp

(
w2
)

= 0 by (4.5). It

follows that w is a root of ϕ (Φp(y)) and therefore Φp(y) divides Φp

(
y2
)
, that is,

Φp

(
y2
)

= Φp(y)Φ̃(y)

for some Φ̃ ∈ Q[y]. If fact, Φ̃(y) = yp+1
y+1 because

Φp

(
y2
)

=

(
y2
)p − 1

y2 − 1
=

(yp − 1) (yp + 1)

(y − 1) (y + 1)
= Φp(y)Φ̃(y).

Note that since p is odd, −1 is not a root of Φp(y) because Φp(−1) = (−1)p−1
y−1 = −2

−2 = 1 6= 0.

Thus any root w ∈ C\{1} of Φp(y) is different from −1 and

Φ̃(w) =
wp + 1

w + 1
= 0 ⇐⇒ wp + 1 = 0 ⇐⇒ wp = −1,

but Φp(w) = 0 =⇒ wp = 1 =⇒ 1 = −1, a contradiction. Thus the roots of Φ̃(y) are all

different from the roots of Φp(y). Hence Φp(y) does not divide Φ̃(y) and therefore

vp (ϕ (Φp(y))) = vp
(
Φp

(
y2
))

= vp

(
Φp(y)Φ̃(y)

)
= 1. (4.7)

For any f ∈ Q[y] with n = vp (f) there exists a nonzero g ∈ Q[y] such that f(y) = Φp(y)ng(y)

and Φp(y) does not divide g(y). Assume Φp(y) divides g(y2) and let w ∈ C\{1} be a root of

Φp(y). Then g(w) = 0 by (4.6) and hence Φp(y) divides g(y). This is a contradiction, so we

conclude that Φp(y) does not divide g
(
y2
)

= ϕ(g(y)). It follows that

vp (ϕ (f(y))) = vp (ϕ (Φp(y))n ϕ (g(y))) = nvp (ϕ (Φp(y))) + vp (ϕ (g(y))) = n = vp(f(y))

where we used (4.7). Hence

vp(f(y)) = vp (ϕ (f(y))) .

Let now r = f
g ∈ Q(y) be any element in Q(y) such that f, g ∈ Q[y]. Then

vp(r) = vp

(
f

g

)
= vp(f)− vp(g) = vp(ϕ(f))− vp(ϕ(g)) = vp

(
ϕ(f)

ϕ(g)

)
= vp

(
ϕ

(
f

g

))
= vp(ϕ(r)).

�

For a field K, the function v : K → R ∪ {∞} is called a valuation if it satisfies

(i) v(a) =∞ if and only if a = 0;

(ii) v(ab) = v(a) + v(b); and

(iii) v(a+ b) ≥ min{v(a), v(b)} with equality if v(a) = v(b).
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for all a, b ∈ K.

Proposition 4.12. Let v be a valuation on a field K. Then v(1) = v(−1) = 0.

Proof. v(1) = v(1 · 1) = v(1) + v(1). Subtracting v(1) from both sides yields 0 = v(1).

Furthermore,

0 = v(1) = v((−1)(−1)) = v(−1) + v(−1) = 2v(−1),

so v(−1) = 0. �

Just as in Corollary 1.25, we can show that, for a prime number p, the Φp(y)-order vp

induced by the cyclotomic polynomial Φp(y) is a valuation on Q(y). Given any such valuation

v and a nonzero element a =
∑
aix

i ∈ A = Q(y)[x, ϕ], we say that a is of relativized v-

degree j, denoted δv(a) = j, if

(i) v(aj) = mini (v (ai)), and

(ii) for all 0 ≤ i ≤ n we have that v(ai) = v(aj) implies that i ≤ j.

Proposition 4.13. Let v be a valuation on Q(y) that satisfies v(ϕ(r)) = v(r) for

all r ∈ Q(y). Then v is extended to a valuation on A = Q(y)[x, ϕ] by the definition

v
(∑

aix
i
)

= mini v (ai). Furthermore, δv(fg) = δv(f) + δv(g) for all f, g ∈ A.

Proof. To show that the valuation can be extended to A, we show that the three items in

the definition of a valuation are satisfied:

(i) v
(∑

i aix
i
)

=∞ ⇐⇒ mini v(ai) =∞ ⇐⇒ ai = 0 for all i ⇐⇒
∑

i aiy
i = 0.

(ii) Let f, g ∈ A where f =
∑n

i=0 aix
i and g =

∑m
j=0 bjx

j and suppose v(f) = k1, v(g) = k2,

δv(f) = i1 and δv(g) = i2. Then v (ai1) = k1 ≤ v(ai) for all i 6= i1 and v(ai) > v (ai1)

for all i > i1. Similarly, v (bi2) = k2 ≤ v(bi) for all i 6= i2 and v(bi) > v (bi2) for all

i > i2. Since

fg =

(
n∑
i=0

aix
i

) m∑
j=0

bjx
j

 =

n∑
i=0

m∑
j=0

aiϕ
i (bj)x

i+j =

m+n∑
l=0

(
l∑

i=0

aiϕ
i(bl−i)

)
xl,

the coefficient of xi1+i2 in fg is
∑i1+i2

i=0 aiϕ
i (bi1+i2−i). For all 0 ≤ i < i1, we have that

i1 + i2 − i > i2 and hence

v
(
ϕi (bi1+i2−i)

)
= v (bi1+i2−i) > v(bi2),
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where we have used that v(ϕ(r)) = v(r) for all r ∈ Q(y). Also, v(ai) ≥ v(ai1). Therefore

v
(
aiϕ

i (bi1+i2−i)
)

= v(ai) + v
(
ϕi (bi1+i2−i)

)
> v (ai1) + v (bi2) .

If i > i1, then v(ai) > v(ai1) and v
(
ϕi (bi1+i2−i)

)
≥ v(bi2), so

v
(
aiϕ

i (bi1+i2−i)
)
> v (ai1) + v (bi2)

in this case too. However, in the case i = i1, we have that

v
(
aiϕ

i (bi1+i2−i)
)

= v
(
ai1ϕ

i (bi2)
)

= v (ai1) + v (bi2) .

We conclude that

v

(
i1+i2∑
i=0

aiϕ
i (bi1+i2−i)

)
= v (ai1) + v (bi2)

since we know that v is a valuation on Q[y]. Now, since v(ai) ≥ v (ai1) and v(bi) ≥

v (bi2), we have that

v
(
aiϕ

i (bl−i)
)
≥ min {v(ai) + v(bl−i)} ≥ v (ai1) + v (bi2)

for any 0 ≤ i ≤ l ≤ m+ n, and hence

v(fg) ≥ v(f) + v(g). (4.8)

However, the valuation of the coefficient of xi1+i2 is v(f) + v(g), so we have in fact

equality in (4.8).

(iii) Let f, g ∈ A where f =
∑n

i=0 aix
i and g =

∑m
j=0 bjx

j such that m ≤ n. Let bi = 0 for

all m+ 1 ≤ i ≤ n. Then

v(f + g) = v

 n∑
i=0

aix
i +

n∑
j=0

bjx
j

 = v

(
n∑
i=0

(ai + bi)x
i

)
= min

i
v(ai + bi)

≥ min
i

(min {v(ai), v(bi)}) = min

{
min
i
v(ai),min

i
v(bi)

}
= min {v(f), v(g)} .

It remains to show that δv(fg) = δv(f) + δv(g). Recall that δv(f) + δv(g) = i1 + i2. For

l > i1 + i2, the coefficient of xl in the product fg is
∑l

i=0 aiϕ
i (bl−i). If i ≤ i1, then

l − i > i1 + i2 − i ≥ i2 and hence

v
(
ϕi (bl−i)

)
> v (bi2) = v(g),

and if i > i1, then

v(ai) > v (ai1) = v(f).
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Hence

v

(
l∑

i=0

aiϕ
i (bl−i)

)
≥ min {v(ai) + v(bl−i)} > v(f) + v(g).

We conclude that δv(fg) = δv(f) + δv(g). �

Let V be the set of all valuations induced by the cyclotomic polynomial Φp with p prime and

p > 2. Then

(i) V is a infinite set because there are infinitely many prime numbers p > 2;

(ii) v(r(y)) = v(r(y2)) for all v ∈ V by Lemma 4.11;

(iii) Given r ∈ Q(y), we have that v(r) = 0 for all but a finite number of valuations

v ∈ V . This is because r has finite degree in y and hence there are also a finitely many

cyclotomic polynomials in its factorisation;

(iv) Given v ∈ V , there exists a nonzero rv ∈ Q(y) such that v(rv) > 0 and w(rv) ≥ 0 for

all w ∈ V . This is because v = vp for some prime number p > 2, so just let rv = Φp(y).

Example 4.14. Let r be as in Example 4.10. Since r = Φ3(y)4(3y3−4y+2)
3Φ3(y) , we have that

v3(r) = 3 while vp(r) = 0 for all other prime numbers p ≥ 5.

Example 4.15. Let v = v5 ∈ V . Then rv := Φ5(y) = y4 + y3 + y2 + y + 1 has valuation

v(rv) = 1 > 0 while w(rv) = 0 for all other valuations w ∈ V .

Proposition 4.16. Let V be the set of all valuations induced by some cyclotomic

polynomial and for each v ∈ V , define Av := {a ∈ A : v(a) ≥ 0}. Then Av is a subring

of A.

Proof. Since v(1) = 0 by Proposition 4.12, we have that 1 ∈ Av. Let a, b ∈ Av. Then v(a) ≥ 0

and v(b) ≥ 0 and hence v(a+ b) = min{v(a), v(b)} ≥ 0. Thus a+ b ∈ Av. Furthermore,

v(−a) = v(−1 · a) = v(−1) + v(a) ≥ 0,

where we used that vp(−1) = 0 by Proposition 4.12, so we have that −a ∈ Av. Moreover,

v(ab) = v(a) + v(b) ≥ 0 and hence ab ∈ Av. We conclude that Av is a subring of A. �

Define

B :=
⋂
v∈V

Av,

72



that is, B consists of those elements on which all the valuations are non-negative. Since each

Av are subrings of A, it is clear that B is a subring of A as well.

Theorem 4.17. Let A = Q(y)[x, ϕ] where ϕ : Q(y) → Q(y) takes r(y) to r
(
y2
)

for

every r ∈ Q(y), and let V be the set of all valuations induced by some cyclotomic

polynomial. For each v ∈ V , define Av = {a ∈ A : v(a) ≥ 0}. Then B =
⋂
v∈V Av is

right primitive but not left primitive.

Proof. Since no cyclotomic polynomials divides y, we have v(y) = 0. Also, v(x) = v(1x) =

v(1) = 0 by Propositions 4.13 and 4.12 for all valuations v. It follows that B contains x and

y, so by Theorem 4.9, B is right primitive.

Let I be any nonzero left ideal of B. Since B is left primitive if and only if B has a simple

faithful left B-module, B not being primitive is equivalent to either I not being maximal or

B/I not being faithful by Lemma 1.4 (iii). Since A is a principal ideal domain by Proposition

1.35, there exists 0 6= g ∈ I such that AI = Ag. We can assume without loss of generality

that the leading coefficient of g is 1. We will divide our analyses of the left primitivity of B

into two cases; the case where the x-degree of g is strictly positive, and the case where the

x-degree of g is 0.

Case 1: g has x-degree d > 0.

Choose w ∈ V such that w(g) = 0. Because the leading coefficient of g is 1, we have that

δw(g) = d. Any nonzero element in AI can be written as ag for some a ∈ A, and

δw(ag) = δw(a) + δw(g) ≥ δw(g) = d > 0, (4.9)

by Proposition 4.13. By hypothesis, we can choose rw ∈ Q(y) such that w(rw) > 0. Then

rw /∈ I because otherwise, there exists a ∈ A such that rw = ag and w(rm) = w(a)w(g) =

w(a) · 0 = 0 for some a ∈ A, a contradiction. Hence, if I were maximal, we could write

brw + e = 1, for some b ∈ B and some e ∈ I, by Lemma 1.4 (iv). But then we would

have e = 1 − brw, which has relativized v-degree δw(1 − brw) = 0 because w(1) = 0. This

contradicts (4.9), so we conclude that I is not maximal.

Case 2: g has x-degree d = 0.

In this case g ∈ Q(y), and we may assume without loss of generality that g = 1. For any

valuation v ∈ V , any nonzero r ∈ Q(y) and any b ∈ B, we have that

v
(
r−1br

)
= v

(
1

r

)
+ v(b) + v(r) = v(1)− v(r) + v(b) + v(r) = 0 + v(b) = v(b).

73



Since v(b) ≥ 0 for all v ∈ V , we have that v(r−1br) ≥ 0. Hence r−1br ∈ B and br ∈ rB for

all b ∈ B. Thus Br ⊆ rB and we can show Br ⊇ rB in the same manner. We conclude that

rB = Br for all r ∈ Q(y). Since g = 1, we have that AI = Ag = A and therefore there exists

ai ∈ A and ei ∈ I such that 1 =
∑
aiei. Each element ai ∈ A is a skew polynomial in x with

coefficients in Q(y). Let r be the common denominator of all appearing coefficients. Then

r ∈ Q[y] and rai ∈ Q[y]. Multiplying 1 =
∑
aiei by r from the left yields r =

∑
(rai)ei ∈ I.

Note that by the definition of the vp-orders by the cyclotomic polynomial, each polynomial

in Q[y] has non-negative valuation and hence Q[y] is a subring of B. Therefore r =
∑

(rai)ei

has an element r ∈ Q[y] ⊆ B on the left side and an element (rai)ei ∈ Q[y]I ⊆ I on the right

side. This means that the two-sided ideal rB = Br which is an ideal in B, is contained in

the left ideal I and in particular rB = Br ⊆ annB(B/I). Since r, as a common multiple of

nonzero elements, is nonzero, Br is nonzero. Therefore B/I is not faithful. We conclude that

B is not left primitive. �
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