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Resumo em Portugues

O objetivo desta tese é construir anéis que sdo primitivos em apenas num lado, usando os
artigos [5] e [6] de Ronald S. Irving como fonte principal. Para o skew anel de plolinémios sobre
o anel de polinémios numa variavel sobre um corpo algebricamente fechado de caracteristica
0, damos uma descricao completa das condigoes para a primitividade direita e esquerda. Em
particular, descrevemos todos os anéis deste tipo que sao primitivos em apenas um lado e
exibinos alguns exemplos em concreto. Além disso, mostramos que um certo subanel de um
skew anel de polinémios sobre o corpo das funcoes racionais é primitivo a direita, mas nao

primitivo a esquerda. Este exemplo foi construido por George M. Bergman em [1].



Abstract in English

The aim of this thesis is to construct rings that are primitive on only one side, following the
articles [5] and [6] by Ronald S. Irving as our main source. For the skew polynomial ring over
the polynomial ring in one variable over an algebraically closed field of characteristic 0, we
give a complete description of the conditions for both right and left primitivity. In particular,
we describe all the rings of this type that are primitive on only one side and provide some
concrete examples. Furthermore, we show that a certain subring of the skew polynomial ring
over the field of rational functions is right primitive but not left primitive. This example was

constructed by George M. Bergman in [1].
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4 Examples of rings that are primitive on only one side

4.1 A skew polynomial ring over the field of rational functions



Chapter 1

Preliminaries

The following definitions in this chapter, as well as some of the results, are taken from [2],
3], 7], [8], [9], [11], [12], [13], [14] and [15]. Throughout this thesis, we will denote the
zero-set {0} by 0, and every ring will be unital and associative. We will reserve R and
S for commutative rings and A and B for non-commutative rings. Furthermore, K will
always denote an algebraically closed field of characteristic 0. For every ring homomorphism
¢+ A — B, we will assume that ¢(14) = 1. When we omit the word left (resp. right) in
front of the word ideal, we mean a two-sided ideal. The opposite ring A°P of a ring A is
the ring defined on the same abelian group structure (A, +) but with multiplication defined

as a-b:=ba for all a,b € A.

1.1 Modules and maximal ideals
A (unital) left A-module is an abelian group M written additively together with a map

Ax M —- M

(a,m) — am
such that for all a,b € A and all m,n € M,
(i) (a+b)m = am + bm,
(i) a(m+n)=am+ an,
(iii) a(bm) = (ab)m.

(iv) Im=m



A right A-module is defined analogously. A subset L of M is called a submodule of M if
L is a subgroup of M and al € L for all a € A and [ € L. The following proposition is taken
from [14, p. 102].

Proposition 1.1. Let I be a left ideal of a ring A. Then the map

Ax AJI — AJI

(a,m+1)—am+1

makes the residue class group A/I into a left A-module.

Let M be an Abelian group and A any ring and denote the ring of group endomorphisms
of M by End(M). Then

(i) if A : A x M — M defines a left A-module structure on M, then ¢ : A — End(M)

given by A(a)(m) = am is a ring homomorphism;

(ii) if ¢ : A — End(M) is a ring homomorphism, then A : A x M — M given by A(a,m) =

w(a)(m) defines a left A-module structure on M.

A ring homomorphism ¢ : A — End(M) is called a representation of A on M. The kernel of
this representation of A is called the annihilator of M and as a kernel of a ring homomor-
phism, the annihilator is a two-sided ideal. More formally, the annihilator of an A-module
M is the set

anny (M) :=={a € A:aM = 0}.

If anng (M) = 0, then M is said to be a faithful module.

Analogously there exists a correspondence between right A-module structures on M and
ring homomorphism ¢ : A — End(M)°P. A K-algebra is a ring A with a ring homomorphism
i: K — Z(A), where Z(A) is the center of A (see [4, p. xi]). The element i(1) = 14 is the
identity of A and A becomes a K-vector space by ka := i(k)a for all k € K and a € A. A
left (resp. right) module M over a K-algebra is a K-vector space and the endomorphisms of

M is the ring of K-linear endomorphisms.

Definition 1.2. A simple ring A is a ring where 0 and A are the only two-sided ideals of
A.

Example 1.3. M, (K) is simple, where M,,(K) denotes the n x n-matrix ring over a field K.
Just observe that every two-sided ideal of M, (K) is of the form M, (I) where I is an ideal



of K. However, 0 and K are the only ideals in K, so 0 and M, (K) are the only two-sided
ideals of M, (K).

For any non-commutative ring A, we say that a left (resp. right) A-module M is simple
if M # 0 and its only submodules are 0 and M. A proper left (resp. right) ideal I of a
ring A is said to be maximal if, for J any other left (resp. right) ideal of A, we have that
I C J C A implies that J =1 or J = A.

Lemma 1.4. Let A be a ring and let M be a left (resp. right) A-module.
(i) M is simple if and only if M = Am (resp. mA) for all nonzero m € M.

(ii) If M is simple, then, for any nonzero m € M, we have that anna(m) :={a € A:

am = 0} is a left (resp. right) maximal ideal of A.

(iii) Every simple left (resp. right) A-module is isomorphic to A/I for some maximal
left (resp. right) ideal I of A. Conversely, if I is a maximal left (resp. right)
ideal of A, then A/I is a simple left (resp. right) A-module.

(iv) Let M be a maximal left (resp. right) ideal of A. Given any nonzero a € A\M,

there exists b € A and m € M such that

1=ba+m (resp. 1 =ab+ m).

Proof. We will only prove the lemma for left modules and left ideals. The proof for right

modules and right ideals is analogues.

(i) Assume that M is simple and let 0 # m € M be any nonzero element of M. Since
1 € A, we have that 0 # m = 1-m € Am and hence Am is a nonzero submodule of M.

Since M is simple, we have that Am = M.

Conversely, assume that M = Am for all 0 2 m € M. Let N be any nonzero submodule
of M. By assumption, M = An for all 0 #n € N, so

M=AnC N CM.

This implies that N = M so that M has no nonzero proper submodules. Hence M is

simple.

(ii) By (i), we know that M = Am for any nonzero m € M. Fix one such m and define

¢ : A — Am by a — am. Since ¢ is surjective and ker(¢) = anng(m), we have



(iii)

that A/anng(m) = M by the First Isomorphism Theorem. Let I be a left ideal of A
such that anng(m) C I C A. Then [/anny(m) is a submodule of A/anna(m). Since
Ajanng(m) is simple, it follows that I/anni(m) = 0 or I/anng(m) = A/anny(m).

Hence I = anng(m) or I = A, that is, ann4(m) is maximal.

Let M be a simple left A-module. Then M = Am for any nonzero m € M by (i).
Fix one such m and define the homomorphism ¢ : A — Am by a — am. Observe
that ker(¢) = anng(m) so, since @ is surjective, A/anny(m) = Am. But anng(m) is
maximal by (ii), so M is isomorphic to A/I for the maximal left ideal I = anny(m).

Conversely, let I be a maximal left ideal of A, and let m € A\I. Then I C Am+1 C A

so since I is maximal, we have that Am + I = A. Thus

Am+1) Am+1
I -

A/l
Hence A/I is simple by (i).

Define the left ideal L := Aa + M. Since a € L\M, we have that M C L, but M
is maximal so L = A. Hence 1 € L and there exists b € A and m € M such that

1 =ba+m.

Let I,J, 11,...,1I,, where n > 2 be ideals of the commutative ring R. We say that I and

J are comaximal precisely when I+ .J = R; also, we say that the family {I;}" , is pairwise

comaximal if and only if I; + I; = R whenever 1 < 7,5 < n and ¢ # j. The following

proposition is taken from [14, p. 55].
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Proposition 1.5. Let {I;};" | for n > 2 be a pairwise comaximal family of ideals of

the commutative ring R. Then

LHn---nl,=1---1,.

1.2 Prime and primary ideals

Let I, J and P be proper ideals of a non-commutative ring A. If IJ C P implies that

I C PorJ C P, we say that P is a prime ideal. Equivalently, P is a prime ideal if for

a,b € A such that aAb C P implies that a € P or b € P. If the zero ideal of A is prime, we

say that A is a prime ring. The set of all the prime ideals of R is denoted by Spec(R).



Lemma 1.6. Let A be a ring and let M be simple left (resp. right) A-module. Then

anny (M) is a prime ideal.

Proof. Let a,b € A be such that aAb € anng(M). Since 0 € AbM C M and M is simple,
we have that AbM = 0 or AbM = M. If AbM = 0, then Ab C ann4 (M) which implies that
1b="0¢€ anng(M). If AbM = M, then aAbM = aM. But aAbM = 0 since a Ab C anng (M),

so aM = 0 and hence a € anng(M). It follows that ann4 (M) is a prime ideal. [ |

Lemma 1.7. Let R be a commutative ring and let P be a prime ideal of R. If

X1,...,X, are non-empty subsets of R for some n > 1 and

{z12g-xp ;€ X for 1 <i<n} CP,

then there exists 1 < i < n such that X; C P.

Proof. We will prove the lemma by induction on n. The case where n = 1 is quite obvious:
X1:{ZE12$1€X1}§P.

For the inductive part, assume that the result holds for n and assume that Xi,..., X,,+1 are

non-empty subsets of R such that
{129 py1 1w € X for 1 <i<n+1} CP.
Assume now that X; ¢ P for all 1 <i < n. Then
{mize- xp € X;for 1 <i<n} g P,

by the induction hypothesis. Hence there exist 2} € X; for 1 <14 < n such that a --- 2, ¢ P.
Now, for all z,4+1 € X, 41, we have that 2} - - - ], x,41 € P. Since P is a prime ideal and since

xy---x), ¢ P, we must have that z,41 € P for all 2,11 € X,4+1. Hence X,,11 C P. [ ]
The radical /T of an ideal I over a commutative ring R is defined as
VI :={r € R: there exists n > 0 for which " € I}.

We will need the following definition in the next two proofs. Let (X, <) be a partially ordered
set. A chain of elements of a set X is a subset Y C X of elements of X such that for all

y1,y2 € Y we have that either y; < yo or yo < y1.



Lemma 1.8. Let R be a commutative ring and I an ideal. Then

VI=(){P: P eSpec(R) and I C P}.

Proof. Define
P* = ﬂ{P : P € Spec(R) and I C P}.

Let a € v/I. By definition there exists n > 0 such that a® € I. For any P € Spec(R) with
I C P, we have @™ € I C P and hence a € P. This shows VI C P*.

Conversely, let a € P*. Consider the set of ideals
Q:={J C R:Jis an ideal containing I with a" & J for all n > 0}.

Note that Q # () if and only if I € Q if and only if a”™ ¢ I for all n > 0. Thus suppose 2 # 0,
that is, there is no n > 0 such that a™ € I. We will apply Zorn’s Lemma to obtain a maximal
element in 2. To do so, we equip €2 with the ordinary partial ordering. Let T" C ) be a chain
of ideals in € and set
To= {71 TeT)

To see that J* is an ideal, observe first that J* # () because 0 € J*. Let a,b € J* and r € R.
Then there exist ideals Jy, Jo € T such that a € J; and b € J5. Since a € Jy, we have that
ra € J; C J*. Furthermore, since T is a chain, either J; C J5 or J5 C J;. We assume without
loss of generality that J; C Jo. Then both a,b € Jy. Since Jy is an ideal, a + b € Jo C J*.

If ™ € J* for some n > 0, then there should exist J € T with "™ € J, which is a
contradiction as J € 2. Thus J* € Q and by Zorn’s Lemma €2 has a maximal element, say Q.
By definition, @) contains I and we will show that @) is a prime ideal, from which we obtain
a contradiction, since then ¢ € P* C ) and on the other hand a ¢ Q). Now take elements
x,y € R with zy € Q). Suppose none of the elements x and y belong to ). Then the ideals
Q' = Rz + Q and Q" = Ry + Q properly contain Q. By the maximality of @, we have that
Q', Q" & Q. Hence there exist powers a™ and a™ such that " € Q' and a™ € Q”. But then

a™ =riz+ q and a™ = roy + g9 for some r1,72 € R and q1,q2 € Q). Thus
a"""™ = (rz + q1)(roy + q2) = rirewy + r1zg2 + r2yq + g2 € Q,

contradicting the assumption that @) € 2. Therefore z € Q or y € @, i.e. Q is a prime ideal
containing I. But then a € @, which contradicts a € Q. Therefore Q = () and there must
exists n > 0 with a™ € I, i.e. a € VI. We conclude that P* C VI and thus VI = P*. [ |



Let A be a ring. A left (resp. right) ideal I of A is said to be a nilpotent left (resp.
right) ideal if there exists n € N such that /™ = 0 and an element a € A is said to be a
nilpotent element if there exists n € N such that a™ = 0. Note that 0 is nilpotent. An
ideal I of A is called semiprime if A/I has no nonzero nilpotent ideals and we say that A
is reduced if it does not contain any nonzero nilpotent elements.

For a commutative ring R, the zero ideal is semiprime if and only if it is reduced, because
if a is a nilpotent element, then the ideal I = Ra is nilpotent. And if I is a nilpotent ideal,
then any nonzero element of I is nilpotent. It is clear that for any ideal I of R, v/T /I contains
all nilpotent elements in R/I. Hence an ideal I of R is semiprime if and only if I = VT if
and only if I is the intersection of prime ideals, by Lemma 1.8.

A prime ideal P of a ring A is called a minimal prime ideal if the only prime ideal that

it contains is P itself.

Lemma 1.9. Any prime ideal of a ring A contains a minimal prime ideal [4, p. 44].

A ring A satisfies the ascending chain condition for left (resp. right) ideals if for every
chain I C Iy C ... I; C I;4q ... of left (resp. right) ideals of A, there exists n € N such that
I, = Iy, for all i € N. A commutative ring R is said to be noetherian if and only if it

satisfies the following equivalent conditions:
(i) R satisfies the ascending chain condition for ideals;
(ii) every nonempty set of ideals of R has a maximal member with respect to inclusion; and

(iii) every ideal of R is finitely generated.

Lemma 1.10. Any commutative noetherian ring has only a finite number of minimal

prime ideals, and a product of some powers of these ideals is zero.

Proof. We will first show that 0 is a product of prime ideals. Let R be a commutative

noetherian ring, and let
Q:={K C R: K is an ideal that does not contain a finite product of prime ideals} .

If Q = (), then every ideal of R contains a finite product of prime ideals. In particular, 0 is a
finite product of prime ideals. Our goal is therefore to prove that Q = (), and we will do this

by showing that the assumption that Q # ) leads to a contradiction.



Assume Q # ). Since R is noetherian, Q has a maximal element K with respect to
inclusion. Every nonzero ideal of R/K contains a finite product of prime ideals. As R
contains a maximal ideal, it contains a prime ideal. Therefore R ¢ 2, so K # R and hence
R/K is not a prime ring, that is, 0 is not prime. Thus there exist nonzero ideals I = I/K
and J = J/K of R/K with 0 = I.J but where each T, J contains a finite product of prime
ideals, say P ---P, C I and Q;---Q,, C J. Observe that

ﬁ...anl...mgﬁzﬁ,

which implies that
P PyQi-Qm C K,

contradicting the fact that K € Q. Hence Q = (), that is, 0 is a finite product of prime ideals.

We will now prove that a commutative noetherian ring R has only a finite number of
minimal prime ideals. We have just proved that there exists prime ideals Pi,..., P, of R
such that 0 = P;--- P,. Let min(R) denote the set of all minimal prime ideals of R. By
Lemma 1.9, min(R) # . Let € min(R). Then

PP, =0CQ,

so by Lemma 1.7 there exists 1 < ¢ < n such that P; C ). Since ) is minimal, we must
have that P; = . Since ) was an arbitrary element of min(R), we conclude that min(R) C
{P1,...,P,}. Hence R has only a finite number of minimal ideals.

It remains to show that 0 is a product of minimal prime ideals. By Lemma 1.9, there

exist minimal prime ideals PZ-’ C P; for each 1 < ¢ <n. Hence
p{...prfzgpl...pn:()’

so in fact 0 = Py --- P). This proves the lemma. [ ]

Corollary 1.11. Any semiprime ideal I of a commutative noetherian ring R is the

intersection of a finite number of minimal prime ideals over R/I.

Proof. By Lemma 1.8, the zero ideal of R/+/T is the intersection of prime ideals. Any of
those prime ideals contains a minimal prime ideal by Lemma 1.9. By Lemma 1.10, the set of
minimal prime ideals is finite. Hence the zero ideal of R/ VT is the intersection of finitely many

minimal prime ideals. Thus v/T is equal to a finite intersection of minimal prime ideals. MW



Lemma 1.12. Any ideal of a commutative noetherian ring contains a power of its

radical.

Proof. Since R is noetherian, v/T is generated by a finite number of elements, say a1, . .., ay.
By the definition of the radical, there exists a number m; > 0 such that a]" € I for each
1<i<n Letm=mi+-+my Then (ria1 + ... + rpa,)™ € I, for any r; € R.
To see this, just observe that each term in the sum (ria; + ... + rpa,)™ is of the form
ra{l‘--afl”, for some r € R and where j;1 + -+ j, = m. If j; < m; for all 1 < i < n,
then j1 + -+ 4+ jn < m1 + -+ 4+ my, = m, a contradiction. Hence j; > m; for at least one ¢
for each of the terms of (ria; + ...+ rpa,)™. Thus each term is contained in I and hence

(ria1 +...+rpap)™ € I, for any r; € R. Since s € VI = s= rla’fl + ...+ rpak for some

r; € R and some k; € N, we conclude that (\ﬁ)m CcI. [ ]
Let @ be an ideal of a commutative ring R. We say that () is a primary ideal of R if

(i) @ is a proper ideal of R, and

(ii) whenever a,b € R with ab € @ but a ¢ @, then there exits n € N such that b" € Q.

One can show that if @ is a primary ideal of R, then P := /Q) is a prime ideal of R [14,
p. 63]. We say that @) is P-primary.

Let I be a proper ideal of the commutative ring R. As in [14, p. 68] we define a primary
decomposition of I to be an expression for I as an intersection of finitely many primary

ideals of R. Such a primary decomposition

I'=@i1N---NQn,

with /Q; = P; for 1 <14 < n, of I is said to be a minimal primary decomposition of I

precisely when
(i) Pi,..., P, are n different prime ideals of R, and

(ii) for all 1 < j <n we have
Q; 2 () Qi
i=1
i#j

We say that I is a decomposable ideal of R precisely when it has a primary decomposition.



Lemma 1.13. [14, p. 69]. Every decomposable ideal of R has a minimal primary
decomposition. Furthermore, if a primary decomposition of I has n terms, then the

number of terms in a minimal primary decomposition of I has at most n terms.

Let I be a decomposable ideal of the commutative ring R, and let
I=Q1N---NQ, With\/@:Piforizl,...,n
be a minimal primary decomposition of I. Then the n-element set
{P1,..., P},

which is independent of the choice of minimal primary decomposition by Lemma 1.13, is

called the set of associated prime ideals of I and is denoted ass(I).
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Theorem 1.14 (The Second Uniqueness Theorem for Primary Decomposition). [14,
p. 75]. Let I be a decomposable ideal of the commutative ring R, and let ass(f) =
{P1,...,P,}. Let

I=0Q:1Nn---NQ, with /@Q; = P, fori=1,....n

and

I=Q'n---NQ, with/Q, =P fori=1,...,n

be two minimal primary decompositions of I. Then, for each i with 1 < i < n for

which P; is a minimal prime ideal belonging to I, we have

1.3 Primitive rings

An ideal P of a ring A is said to be a left (resp. right) primitive ideal if P is the
annihilator of a simple left (resp. right) A-module. Note that, by Lemma 1.6, this implies
that every left (resp. right) primitive ideal is prime. If the zero ideal of a ring A is left (resp.
right) primitive, we say that A is primitive on the left (resp. right). Equivalently, A is
left (resp. right) primitive if it has a faithful simple left (resp. right) A-module M.

Remark 1.15. Every simple ring A is both left and right primitive. To see this, recall that

the only two-sided ideals of A are 0 and A, so in particular anny (M) = 0 for every nonzero

10



left (resp. right) A-module M. Hence any left (resp. right) A-module would be faithful.
Now, 1 € A implies that there exists a maximal left (resp. right) ideal I of A, and thus A/I

is a simple left (resp. right) A-module. We conclude that A is left and right primitive.

Lemma 1.16. A commutative ring R is primitive if and only if it is a field.

Proof. Let R be a field. Then 0 and R are the only ideals. Since anng(R) is an ideal of R,
anng(R) = 0 or anng(R) = R. If anng(R) = R, then 7R = 0 for all » € R. In particular,
1-R =0, a contradiction. Hence anng(R) = 0. Since R is a simple faithful module of R, we
have that R is primitive.

Conversely, assume that R is a commutative primitive ring. Since R is primitive, it has a
faithful simple R-module M. By Lemma 1.4 (iii), M = R/I for some maximal ideal I of R.

Since R is commutative, I is two-sided and hence
anng (R/I)={reR:(r+1)(R/I)=0}={reR:rseclforallse R} DI.

Since I is maximal, and because anng (R/I) # R since 1 ¢ anng (R/I), we conclude that
I = annp(R/I). It follows that I = 0 because R/I is faithful. But then M = R/0 = R, so R

itself is simple. Since R is commutative, we conclude that R is a field. |

Let X be a set. A word in X is a concatenation of some elements of X. We denote the

empty word by A, and we denote the set of all words on X, together with A, by X*.

Example 1.17. Let X = {z,y, z}. Then z, yzyzz and y?zyz°z? are examples of words in

X.

Let A be any ring. The free algebra on X over A is denoted by A (X) and is defined by

A(X)—{Z aww:aweA},

weX*
where only finitely many a,, are nonzero. For any words w,u € X*, multiplication is defined
as (apw) - (ayu) = (aya,)wu and addition is defined as a,w + al,w = (ay + al,)w. Thus
the free algebra on X over F' is the free vector space whose basis are the words in X. The
free algebra can also be thought of as non-commutative polynomials since for example z?zx
could be different from z3z.

Let X be a set, A, B rings, A(X) the free algebra on X over A, ® : A — B a ring

homomorphism and ¢ a map from X to B. According to [2, p. 138], ¢ and ® can be

11



extended to a homomorphism ¢ from A (X) to B, such that i)(a) = ®(a) for all a € A and
such that the following diagram commutes:

X T T y A (X)

® (0

B

This is called the universal property of A (X).

Example 1.18. The free algebra on X = {z1,...,2,} over Z is

n
Z(X) = {Zawiwi:wi € X* ay, € Zyn > 1},

i=1
A commutative factor is
Z(X)
{aizj —xjo; 1 <4,5 <n})

Let N C N be a subset of the positive integers N. Let X = {x; : i € N} be a set of
indeterminates and let Z (X) denote the free algebra on X over the integers Z. Let A be a

ring. An element

f: Z kcfxa(l)"'xa(n) €Z<X>7 (1'1)
O'GSn

where k, € Z, is said to be a multi-polynomial identity of A if f(ai,...,a,) = 0 for all
a,...,an, € A. We say that A is a PI-ring if there exists f € Z (X) as in (1.1) such that

ky, = 1 for at least one o € S,, and f is a multi-polynomial identity of A.

Theorem 1.19 (Kaplansky). [2, p. 185]. A left (resp. right) primitive Pl-ring A is a

simple algebra finite dimensional over its center.

Lemma 1.20. [10, p. 492]. Let R be a commutative subring of a ring A such that A

is a finitely generated left or right R-module. Then A is a Pl-ring.

1.4 Dedekind domains

Let K be a field and let F' be the field of fractions of an integral domain R. An element
a € K is said to be integral over R if an only if « is a zero of a polynomial in R[y] whose
leading coefficient is 1. We say that an integral domain R is integrally closed if o € F' and

« integral over R implies that o € R.

12



Let R be a commutative integral domain. We say that R is a Dedekind domain if and

only if
(i) R is noetherian,
(ii) every nonzero prime ideal of R is maximal, and
(iii) R is integrally closed.

Every principal ideal domain is Dedekind and, in particular, K[y] is Dedekind.
The following Corollary is taken from [3, p. 258] and is important for our study of skew

polynomial rings in Chapter 3.

Corollary 1.21 (Dedekind). Let R be a Dedekind domain. Every nonzero ideal of R

can be written uniquely as the product of prime ideals.

As a consequence of Corollary 1.21 and Lemma 1.7 we have:

Corollary 1.22. Let R be a Dedekind domain, P any prime ideal and I any nonzero
ideal of R. Then I C P if and only if there exists an ideal I’ such that I = PI’.

Proof. Assume that I C P for a nonzero ideal I and a prime ideal P, and suppose I =
Py, --- P, is a prime decomposition with prime ideals P; (not necessarily different). Since
P ---P,=1C P, by Lemma 1.7, there exist 1 < ¢ < n such that P, C P. However F; is a
nonzero prime ideal and any nonzero prime ideal of R is maximal. Thus P, = P and I = P, I’

where I' = Py -+ P;_1P;y1--- P,. The converse is clear. |

Let I be an ideal and P a prime ideal in a Dedekind domain R. We say that P divides
I or that P is a prime divisor of I if I C P. The P-order of I, denoted vp(I), is the
largest m > 0 such that I C P™ but I ¢ P™*1. This terminology is justified by Corollary
1.22, because if I C P, then I = PI' for some ideal I’. Furthermore if we write the prime
decomposition of I as [ = P! - - P,? ! with different primes P; and numbers «; > 1, then the
P-order of I is «; if P = P; and 0 if P is different from all prime ideals P;. The P-order
vp(r) of an element r € R is defined to be v, ((r)).

We can generalise Corollary 1.22 as

Corollary 1.23. Let R be a Dedekind domain, I an ideal, P a prime ideal and m > 0.
Then I C P™ if and only if vp(I) > m.

13



Proof. Assume I C P™. Since vp(I) is the largest integer such that I C P*P (), we conclude

that m < vp(I). Conversely, assume vp(I) > m. Then I C P¥?() C p™, [ |

A consequence of Corollary 1.23 is

Corollary 1.24. Let P be a nonzero prime ideal of a Dedekind domain R and m > 0.
If I is an ideal of R, such that P+ C I C P™, then I = P™ or [ = Pt

Proof. Since I C P™, we have that vp(I) > m by Corollary 1.23. Decompose I = P*P()Q
with vp(Q) = 0. Then P! C P*P() shows that m + 1 > vp(I) > m, which means that
vp(I) = m+ 1 or vp(I) = m. In the first case Pt C I = P"H1Q C P™*! which implies
that P™*! = I. In the latter case one has P! C I = P™Q C P™. Since vp(Q) = 0, then
Q and P are comaximal, i.e. R =P + Q. Hence P" = P"(P+ Q) =P"" + I =1 |

7

Corollary 1.25. Let I and J be nonzero ideals of a Dedekind domain R and let P be

a prime ideal of R. Then
(i) vp(1J) = vp(I) + vp(J)
(ii) vp(I + J) > min{vp(I),vp(J)}

As a consequence, vp(ab) = vp(a) + vp(b) and vp(ab) > min{vp(a),vp(b)} for any

a,b € R.

Proof. Let vp(I) = m and vp(J) = n. Then I = P™@Q; and J = P"Q for some ideals
Q1, Q2 with l/p(Ql) =0 and VP(QQ) = 0.

(i) We have that IJ = P™™"Q1Q2. Assume that vp(Q1Q2) > 0. Then Q1Qy C P.
But then, since P is prime, 1 C P or Q2 C P, contradicting that vp(@Q1) = 0 and
vp(Q2) = 0. Hence vp(Q1Q2) = 0 and therefore vp(IJ) = m +n = vp(l) + vp(J),

using the uniqueness of the decomposition of I and J as products of primes.

(ii) Assume n < m; the case where m < n can be proven analogously. As above, I = P™(Q;

and J = P"Q2. Then
I/P([ + J) =Vp (Ple + PnQQ) = Vp (Pn (Pm_an -+ QQ)) >n= min{yp(I),yp(J)}

14



Definition 1.26. The least common multiple of ideals By, ..., By in a Dedekind domain
R is defined as follows: Write each ideal as Bj = P, --- P;™ where Py, ..., P, are distinct
prime ideals and a;; > 0 for 1 <7 <n and 1 < j < d. Then the least common multiple of
the ideals By, ..., By is defined by

LCM(By,...,By) = anax(an,...,am) . Pr?ax(anl”"’a"d).
This means in particular that for any prime ideal P, we have that
vp(LCM(By,...,By)) = max(vp(B1),...,vp(Bg)).

The Jacobson radical of a ring A is the intersection of all left (resp. right) primitive ideals
of A and is denoted rad(A). That is, if A is the set of all left primitive ideals of A and T is
the set of all right primitive ideals of A, then
rad(A) = (1 I=()1.
IeA Ier

Since rad(A) is a two-sided ideal of A, we avoid the term left (resp. right) when referring to
the Jacobson radical. We will not prove that (;c I = (e I but instead refer to books like
[2] and [8]. The following lemma about the Jacobson radical is taken from [8, p. 50|, and will
be needed in the proof of Theorem 1.42.

7

Lemma 1.27. Let A be a ring an let b € A. Then the following statements are

equivalent:
(i) b e rad(A);
(ii) 1 — ab is left-invertible for any a € A;
(iii) bM = 0 for any simple left A-module M

The equivalent right version is of course also true.
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Lemma 1.28. Let R and S be commutative rings and let ¢ : S — R be a ring

homomorphism. Then for any ideal I of R, the set
p i) ={seS:p(s) e}
is an ideal of S. In particular, ¢ induces a map

©* : Spec(R) — Spec(S)

P o 1(P).

Proof. Since ¢(0) = 0 € I, ¢~ 1(I) is nonempty. Furthermore, for a,b € ¢ ~1(I), we have
that p(a +b) = ¢(a) + ¢(b) € I since ¢ is a homomorphism and since ¢(a), ¢(b) € I. Hence
a+b € ¢~ (I). Finally, let a € ¢~1(I) and s € S. Then ¢(as) = ¢(a)p(s) € I since ¢(a) € I.
Thus as € ¢~ !(I). This shows that ¢ ~1(I) is an ideal of S.

Let now P be a prime ideal. For any s,t € S with st € ¢~!(P) one has

o(s)e(t) = @(st) € p(¢~'(P)) C P.

Since P is a prime ideal, p(s) € P or ¢(t) € P, which means that s € ¢~ 1(P) or t € p~1(P).
Thus ¢~ !(P) is a prime ideal of S. [ |

The following corollary is an immediate consequence of Lemma 1.28.

Corollary 1.29. Let ¢ : R — R be an endomorphism of a commutative ring R. If P
is a prime ideal in R, then, for all i > 0, o~ %(P) := {r € R : ¢’(r) € P} is prime as

well.

Let ¢ : R — R be a ring endomorphism of R. The p-orbit of a prime ideal P € Spec(R)

is the set
orby (P) := {(¢")" (P) i = 0} = {9~ (P) : i > 0},
where ¢ = id. A prime ideal P is called p-periodic if there exists an integer n > 1 such

that ¢~"(P) = P. In this case |orb,(P)| is finite and the least such n is called the period
of P.

Remark 1.30. If orb,(P) is finite, then orb,(P) must contain a ¢-periodic prime ideal.

Moreover, if P is p-periodic, then
orb,(P) = orby, (¢ (P))
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for all ¢ > 0.
A -periodic prime ideal P of period n is called singular if ©"(P) C P2,

Example 1.31. Let R = C[y]. Since R is a principal ideal domain, any nonzero prime ideal
is maximal and of the form P = (y — a) for some a € C. Let ¢ : R — R be the endomorphism
defined by ¢(y) = f(y) for some f € R (see the last paragraph of section 1.5) and denote
F(F(+ F(y)--)) i times by fi(y). For any i > 0 we have that ¢i(y — fi(a)) = f1(y) — f'(a).
Thus y = a is a root of ¢'(y — f(a)) and hence ¢'(y — f(a)) € P which implies that
y — fi(a) € ¢ '(P). Since (y— f%(a)) is a maximal ideal contained in ¢~ *(P), we have
0 H(P) = <y — fi(a > In addition, one can show that < > = <f’ >

For a prime ideal P = (y — a), we have that ¢o~"(P) = (y — f"(a)) = P = (y — a) if and
only if f™(a) = a, so we conclude that P is ¢-periodic if and only if f"(a) = a.

Let o(y) = f(y) = y* and P = (y—a). Then ¢~ *(P) = <y—a3i> and (¢'(P)) =
<y3i — a>. For a = @ + ?i, the eighth root of 1, we have that

(o (85} (5 )

so P is p-periodic of period 2. Furthermore, one can show that <g02(P)> = <y9 — a> =
(y? — a°) has 9 different factors, so the P-order of (©?(P)) is 1. Hence ¢?(P) ¢ P2, that is,

P is not singular.

Proposition 1.32. Let P be a nonzero @-periodic prime ideal of period n of a
Dedekind domain R with injective ring homomorphism ¢ : R — R. Then P is singular

or ¢ "(P™) = P™ for any m > 1.

Proof. Suppose P is not singular. Then for m = 1 we have ¢ "(P!) = P! since P is ¢-
periodic of period n. Suppose m > 1 and it has already been proven that ¢ "(P™) =
P™.  Then (p"(P™)) C (o"(P)™t!) C P™! shows that P™*! C o~ "(P™1). On
the other hand, for any y € ¢ "(P™*!) we have that ©"(y) € P™T! C P™ and hence
y € p "(P™) = P™. It follows that the ideal ¢ ~"(P™*1) lies between P™*! and P™ and
therefore, by Corollary 1.24, o~ "(P™t1) = Pm+l or o=(P™*l) = P™. But the latter case
would imply P to be singular, because if =" (P™*1) = P™ holds, then (p"(P™)) C pm+!
and therefore, by Corollary 1.23, we have that m + 1 < vp ((¢"(P™))) = mvp ((¢"(P))).
Hence vp ((¢™(P))) > 2 or, in other words, ¢"(P) C P2, But we assumed P not to be

singular. By induction we therefore get that ¢~ "(P™) = P™, for all m > 0. |

17



Note that both cases in the last proposition cannot occur for the same P, because then
both ¢"(P) C P? and ¢ "(P?) = P2. Hence P C ¢ "(P?) = P? C P which implies that
P = P2, This is impossible because then 1 = vp(P) = vp(P?) = 2.

1.5 Skew polynomial rings

Let A be a ring and X = (z) a set of one element. Then the free algebra A (X) over A in
X is called the polynomial ring over A in one variable, and is denoted A[z]. Addition and

multiplication of two elements of A[z]| are defined by

o0 o o0
Z anx’ + Z bpz" = Z(an + by)z",
n=0 n=0 n=0

(i anac") (i bnx"> = i cpx", where ¢, = Zn: a;ibp—_;.
n=0 n=0

n=0 =0

Here all but finitely many of the coefficients a; and b; are 0. Regarding the associativity, we
refer to [10]. In the polynomial ring A[z], we have that xa = az for all a € A, that is,  and
a commute. If we instead require that xa = p(a)x, where ¢ is a ring endomorphism of A, we
get

(az?)(ba?) = ap'(b)z™t7 (1.2)

for all a,b € A. The set of polynomials ;" a;xz* endowed with the usual addition and the
multiplication determined by (1.2) is called a skew polynomial ring [2, p. 20], [10, p. 16].
It is denoted by A[z, ¢]. For an element

n
a= Zami € Alx, ¢
i=0
with a,, # 0, we call a,z™ the leading term of a, a, the leading coefficient of a, and n
the degree of a. By definition, Az, ¢] is a free left A-module with basis {x’ D> 0}.

A ring D is called a domain if whenever ab = 0, then a = 0 or b = 0.

Proposition 1.33. Let A = Dlz, ¢] where D is a domain and ¢ : D — D an injective

endomorphism. Then A is a domain.

Proof. Let

n n
a= E a;z" and b = E bja’
i=0 J=0
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be two elements of A such that ab = 0. We will assume that a # 0, so the leading coefficient

ap of a is nonzero. Then

n m n+m
0=ab= (Z aixi> Z bjxj = Z Z aigpi(bj) P
i=0 =0 k=0 \i+j=k

n+m—1

= 4" ()™ Y| Y aip(b) | 2

k=0 \itj=k
implies that a,¢"(b,,) = 0. Since a,, # 0 and D is a domain, we must have that ¢"(b,,) = 0.
Since @ is injective, ¢" is injective as well, and therefore b,, = 0. Hence b = 0, that is, there

is no nonzero b such that ab = 0. This proves that A is a domain. |

Remark 1.34. Note that if D is a division ring, then any endomorphism is injective. Since
D is a division ring, it is simple. Hence ker(y¢) = 0 or ker(¢) = D. If ker(¢) = D, then
©(d) = 0 for all d € D. This is not possible because D is a division ring and hence unital, so

©(1) =1 # 0. Hence ker(p) = 0 and ¢ is injective.

Proposition 1.35. Let A = D[z, ¢| where D is a division ring and ¢ : D — D an

endomorphism. Then A is a principal left ideal domain.

Proof. Let I be any nonzero left ideal of A and take a nonzero element g = > s;xt € I of
minimal degree in I, where s; € D and s, # 0. Let h be any nonzero element in I. Then

h =3 t;x’ for some t; € D and t,, # 0. Note that n > m. Then

n m
h—t, (gpn—m(sm))—l xn—mg — Ztiﬂfi —t, (gpn—m(sm))—l Z$n—m5ixi
=0 =0
_ - el n—m -1 - n—m/,.\,n—m,.i
= thx tn ((p (sm)) Z % (si)x x
=0 =0

m—1

n
_ Ztﬂi - tnmernfm —t, (Sonfm(sm))—l Z Sonfm(si)xnfm+i‘
=0 ;

1=

The leading term is t,z™ — t,z™ "™ = 0. Since h — t, (" ™ (sm)) " " ™g is of lower
degree than h, one can use induction to show that h = qg+r for some ¢ € D and some r € A
of degree strictly less than the degree of g. Since g,h € I, we have that r = h — qg € I.
Since deg(r) < deg(g) and the degree of g is minimal, we have that » = 0. Hence h = qg,
and since h was arbitrary chosen, we conclude that I = Ag, that is, A is a principal left ideal

domain. [ |
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Let R = K|y] for a field K of characteristic 0, and let ¢ : R — R be a K-linear ring
endomorphism. Define the skew polynomial ring A := Rz, 9| = Kly][z,¢|. Because zy =

©(y)z we can write any element in A as

n m ] ]
Do D kg | o

i=0 \ j=0
for some k; ; € K, that is, the set {y‘x? . i, > 0} forms a K-basis for A. Notice also that A
is a free left R-module with basis {#% : i > 0} and that every element in A can be uniquely
written as > gi(y)z?, for some n € N and g; € R.
We will now establish that every K-linear endomorphism ¢ of R is determined by the
element ¢(y). Let ¢ : R — R be an endomorphism and let a = Y 1", a;y’, where a; € K, be

an element in R. Then

p(a) = ¢ (Z aiz/) = ap(y) =D aiely),
=0 =0 1=0

so if ¢1 and @9 are ring endomorphisms such that ¢1(y) = @2(y), then p; = 9. By the
universal property of the free algebra K (y) = KJy|, for any f € K|[y| there exists a unique

ring homomorphism ¢ : K[y] — K[y] such that the following diagram commutes:

w—22Y Ky

Y= ¥

Kyl

Hence, for every polynomial f € R, there exist a unique ring endomorphism ¢ : R — R such
that ¢(y) = f, that is, there exists a bijection between the K-linear ring endomorphisms of

Kly] and the elements of K[y].

1.6 -prime ideals

We will in the following define several special ideals that are important for this thesis. Let
R be a commutative ring with endomorphism ¢. An ideal I of R is called ¢-invariant if

¢~ 1(I) = I. Equivalently, I is p-invariant if
(i) @(I) C I, and
(ii) for all r € R: ¢(r) € I implies that r € I.
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Remark 1.36. ¢ is injective if and only if the zero ideal is p-invariant. To see this, we notice

that
@ is injective <= ker(p) =0 <= ¢ 1(0) =0 <= 0 is g-invariant.

We call a g-invariant ideal I p-prime if, given two ideals J and K such that ¢(J) C J and
JK C I, either J C I or K C I. If the zero ideal is -prime, we say that R is a ¢-prime
ring. An ideal I of R is p-cyclic if I = PN ---N P,, where the P; are distinct prime ideals
of R such that ¢~ '(P1) = P;forall 1 <i <n—1and o~ '(P)) = P,. A ring is called

p-cyclic if the zero ideal is p-cyclic.

Lemma 1.37. Let R be a commutative domain with endomorphism ¢. Then R is a

p-prime ring if and only if ¢ is injective.

Proof. Let J, K be ideals of R such that JK = 0 and assume J # 0. Then there exists a
nonzero element j € J. Since jk = 0 for all £ € K and because R is a domain, we must have
that £ = 0 for all k£ € K, that is, K = 0. This shows that 0 is a prime ideal. Hence R is

w-prime if and only if 0 is -invariant if and only if ¢ is injective.

Lemma 1.38. Let R be a commutative noetherian ring, ¢ an endomorphism and I a
o-prime ideal. Then I = /T is semiprime and there exists a o-periodic prime ideal P

of period n such that

I=Pne Y(P)N---ne"t(P).

Proof. Let a € v/I. Then there exists n > 0 with a” € I. Hence ¢(a)” = p(a™) € o(I) C I
which means that ¢(a) € V1. Hence ¢ (\ﬁ) C V1. By Lemma 1.12, there exists m > 1
such that (ﬁ)m C I. Because [ is a p-prime ideal, we have that VI C I. Hence VI = 1,
that is, I is semiprime.

By Corollary 1.11, I is a finite intersection of minimal prime ideals, say
I=PN---NPF,. (1.3)

The representation (1.3) can be considered a minimal primary decomposition of I, when
grouping equal prime ideals together. More precisely, suppose that Pi,..., P, are all the
different prime ideals in (1.3) and define Q; := (\{P; : P; = P} for 1 <i < m. Then I =
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Q1N -NQ,y, is a minimal primary decomposition by Lemma 1.13. By the Second Uniqueness
Theorem For Primary Decomposition (Theorem 1.14), this decomposition is unique up to the

occurring primes P;. Since [ is ¢-invariant, we get another decomposition
I=¢ ') =¢ (PN N~ (Pa).

For any 1 < i < n, we have o }(P)N---N¢1(P,) = I C P,. Hence there exists an index
1 < o(i) < n with gpfl(PU(Z-)) C P; by Lemma 1.7. As @*1(Pa(i)) is a prime ideal contained
in the minimal prime ideal P; , we must have gp‘l(Pg(i)) = P,;. Because of the uniqueness of
primary decomposition we must have that all prime ideals go_l(Pj) equal one of the prime
ideals P, ..., P,. Hence applying ¢! yields a permutation of the set {P,..., P,}. Let
Orby,(P1) be the @-orbit of P;. We can assume that the primes P; are ordered such that
Orb,(Pr) = {Pi,..., P} with k <n. Suppose k # n. Set

J=PN---NP, and K =P N---NP,.

Since, for each 1 < j < k, we have that ap_l(Pj) = P, for some 1 < i < k, we know that

©(P;) C P;. Thus
e(J) SpP)N--Np(P) CPN---NP=J

Therefore, since p(J) € J, JK C JNK =1 and I is p-prime, we have J C [ or K C [.
Since I C J and I C K, we have equality. In either case I is written as the intersection of
fewer prime ideals as in (1.3), which is a contradiction to our minimality assumption. Hence
n =k and

I=PN---NP,=Pnye Y(P)N---Np "TY(P)

for the ¢-periodic prime P = P;. |

Theorem 1.39. Let R be a commutative ring and ¢ an endomorphism of R. Then

R[z, ] is a prime ring if and only if R is a op-prime ring and ¢ is injective.

Proof. Assume that R is a @-prime ring and that ¢ is injective. Let U and V be ideals of
A = R[z,¢] such that VU = 0. If we can show that U = 0 or V = 0, then we have shown
that A is a prime ring. Hence suppose that U # 0 and let f =" a;x' € U be any nonzero
element with a, # 0. For any element g = > ;" biz! € V and j > 0 we have g2/ f € VU = 0.

Hence

0=galf = zm: Zn: halelaa = zm: Zn: O (a) byt (1.4)

1=0 i=0 1=0 i=0
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whose leading coefficient ™7 (a,,)b,, must be zero. Consider the ideals I = >0 0" (a,)R

and J = b, R of R. Then ¢(I) C I and by (1.4),
1J=> ¢ (an)bmR = 0.
j=0

As ¢ is injective and a,, # 0 we have that ¢ (a,) # 0. Hence I # 0 since ¢ (a,) € I. This
implies that J = 0 since R is a -prime ring. Therefore b,, = 0. However, this means that
the only element in V is the zero element, i.e. V = 0.

Conversely, assume A = R[x; | is a prime ring. Since I = Aker(p)A is an ideal of A
and Iz = Aker(p)r = 0, we must have that I = 0, that is, ¢ is injective. Let I and J
be ideals of R such that ¢(I) € I and IJ = 0. We need to show that I = 0 or J = 0.
Suppose I # 0. Since ¢(I) C I, we have that AT C IA, because for any j > 0, b € R and

f=Y"az' € I C R we have that
bl f = b (f)ad € IA,

since ¢’/ (f) € I and I is an ideal of R. For the ideals U = AIA and V = AJA of A, the
following holds:
VU = AJATA C ATIJA =0.

Since we assumed A to be a prime ring, and since U # 0 as 0 % I C U, we conclude that

V =0 and therefore J = 0. Hence R is a p-prime ring. |

Theorem 1.40. Let R be a commutative ring and ¢ : R — R an endomorphism. If

P is a prime ideal of A = R[z, ¢] not containing x, then PN R is a ¢-prime ideal of R.

Proof. We will in the proof denote PN R by B. The proof has three parts. Parts (i) and (ii)

show that B is ¢-invariant and together with (iii) this shows that B is @-prime.

(i) We will show that ¢(B) C B.

Take b € B. Notice that xb = p(b)z € P. For any f =" a;z" € A, we have that
o(b)fx = ¢(b) Z air'e = Z aip(b)rz’ € P
=0 =0

since ¢(b)x € P. Because f was arbitrary, we have that ¢(b)Azx € P. Now, P is a prime
ideal, so either x € P or ¢(b) € P. The former is false by hypothesis, so ¢(b) € P.
Since b was arbitrary, we conclude that ¢(B) C P. Now, we know that ¢(I) C R for
any ideal I of R, so we have in fact that ¢(B) C PN R = B.
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(ii) We will show that ¢(r) € B = r € B.

Suppose ¢(r) € B for some r € R. Then ¢(r)z = ar € P. Let f € A. Then
f=ao+> " aiz’ and
xfr=x (ao + Z a,-x’) r=zxagr + T Z a;x'r = xrag + x Z ax' ter e P
i=1 i=1 i=1
because zr = p(r)x € P. Since f was arbitrary, we have that zAr € P. But P is prime

and z ¢ P, sor € P. Since r € R we have that r € B.

(iii) We will show that JI C B,o(I)C I = I C Bor JC B.

Let I, J be any two ideals of R such that JI C B and ¢(I) C I. Then 2l = p(I)z C Ix.
By induction, it follows that #*I C Iz® for i > 0. Let f € A. Then
Jﬂ:J(Zhw?I:E:MMUQEZﬂmﬂ:JU.
i=0 i=0 i=0
Hence

JAI C JIACBACPACP.

Since P is prime, either I C P or J C P and hence, because I,J C R, we have that
ICBorJCB.

Theorem 1.41. Let A = R[xz, | for a commutative ¢-prime ring R and suppose

¢ : R — R is not an automorphism of finite order. If P is a prime ideal of A, then

either
(i) P=0,
(ii) z € P, or

(iii) PN R #0.

Proof. Assuming that P # 0 and that © ¢ P, we want to show that PN R # 0. Let
B := PN R. By Theorem 1.40, B is a ¢-prime ideal. Since P # 0, we can choose a nonzero
element f € P of the form > ", a;xz' for m minimal where a; € R and a,, # 0. If m = 0,
then f = ag is nonzero, and f € B since ag € R. Hence B # 0.

Assume now that m > 1. Recall that R is a ¢-prime ring. In particular, 0 is a ¢-invariant

ideal and hence ¢ is injective by Remark 1.36.
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Assume for a moment that for all b € R there exist an i < m such that ¢'(b) = ©™(b).
Then ¢*(b — ¢™ (b)) = 0 which implies that b = ¢™%(b) since ¢ is injective. It follows that
@20 (b) = " H (™ H(b)) = ™ (b) = b. By induction,

m!

P (b) = @i M (b) = b

Hence ¢ has finite order n < m!. Then ¢" = id and ' = "L

That is, ¢ is an
automorphism. But ¢ is not an automorphism of finite order by hypothesis, so our assumption
that for all b € R there exists an i < m such that ¢(b) = ©™(b) must be wrong. We can
therefore conclude that there exist b € R such that ¢?(b) # ¢™(b) for all i < m.

Since f?(b) — ™I (b)f € P, we have that

Fel(b) =™ (b)f = i a;z’ @’ (b) — 2 " (b)aa’
_ i (9 0) — o™ () aca’
= apz™ -0+ mz_ol ("7 (b) — ™ (b)) asa’
- (S (" (b) — @™ (b)) @iz’ € P. (1.5)
i=0

Since the degree of the polynomial in (1.5) is lower than the degree of f, whose degree is
minimal, we must have that (¢ (b) — ™% (b)) a; =0 for all 0 < i < m and all j.

Assume there exists ¢ < m such that a; # 0. We will se that this leads to a contradiction.
L:=a;Rand K := Y, (¢"H/(b) — ™" (b)) R are both left ideals in R. By the last paragraph
we know that LK = 0. Also,

P(K) =Y (¢ (1) — o™ (b)) R C K,
J
so either L = 0 or K = 0 since R is a p-prime ring. But K # 0 since ¢'(b) # ¢™(b) for all
i < m. Hence L = 0, that is, a; = 0 for all ¢ < m, a contradiction. Therefore that f = a,,x™.

Let g = Zf:o b;z’ be any element of A. Then

k k
amgr™ = am;, E bix'z™ = E bjamxxt € P
=0 =0

since apx™ = f € P. Hence a,, Az™ € P. But P is prime and = ¢ P, so we have that

am € P. ap,. We conclude that B= PN R # 0. |
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Theorem 1.42. Let R be a domain and let A = Rz, |, where ¢ is an injective

endomorphism. Then rad(A) = 0.

Proof. Suppose rad(A) # 0. Then there exists a nonzero element s = Zf:o st € rad(A)
with sp # 0. By Lemma 1.27, 1 — sis has a left inverse r = ZT:O rizl € A, where ry, # 0.

Hence

m m k
1=7r(l—sgs) = g rjx! — E rix’ s g sz’
j=0 j=0 =0

If k > 0, the term of degree m + k is zero, that is

m 2, .k

rma™ ezt = rpe™ (sp) 2™ = 0.

Hence 7,¢™ (s%) = 0. Since R is a domain and r,, # 0, we conclude that ¢©™ (s%) = 0. But
as  is injective 8,3 = 0 and therefore s = 0 as R is a domain, contradicting that s; # 0.
Thus &k = 0 and s = 59 € rad(A) N R. Since s was an arbitrary nonzero element of rad(A),

we conclude that rad(A) C R. It follows that
rad(A)r CRNAxz =0

because nonzero elements in Ax have degree at least 1 while nonzero elements in R have

degree 0. We conclude that rad(A4) = 0. [ |
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Chapter 2

Right primitivity of skew

polynomial rings

In this chapter we describe the conditions for A to be right primitive according to the degree
of p(y) € K|y] and in chapter 3 we describe the conditions for A to be left primitive. We

start with the case where p(y) € K.

2.1 Case: ¢(y) € K

In this section we will show that A = K|[y|[z,¢] with ¢(y) € K is neither right nor left
primitive. As it turns out, all we need to do is to prove that ¢ is not injective. We therefore

establish Lemma 2.1.

Lemma 2.1. Let ¢ : K[y] = K|[y| be an endomorphism where K is a field. Then ¢
is injective if and only if deg(p(y)) > 0.

Proof. Assume that ¢(y) = a for some a € K. Thus zy = ¢(y)x = ax = xa, so z(y —a) = 0.
Therefore ¢(y — a) = 0, that is y — a € ker(yp). Hence ¢ is not injective.

Conversely, assume that ¢ is not injective. Then ker(y) = (g) for some nonzero polynomial
g of degree d > 0. If d = 0, then ker(¢) = K|[y| so that ¢ = 0. In particular, (1) =0# 1, a
contradiction. Hence d > 1. Let now g = Z?:o a;y’ with ag # 0. Since g € ker(¢) we have
that

d
0=(g9) =Y ap(y),
=0
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so that 4
—ap = (Z aw(y)“> o (y).
=1

Assume that deg(p(y)) = D > 1. Then the term of highest degree in 27:1 a;p(y)—t is

aqgy@ P and this term is nonzero since ag # 0. Hence 2?21 a;o(y)* ! # 0. Therefore,
deg(p(y)) = D > 1 and it follows that deg(ag) > 1, a contradiction. Therefore D = 0 and
hence p(y) € K. [ ]

We now have the tools we need to analyse the case where p(y) € K.

Corollary 2.2. Let A = K[y][z, ¢] for a field K and an endomorphism ¢ : K[y] —
Ky] such that ¢(y) € K. Then A is neither left nor right primitive.

Proof. By Lemma 2.1, ¢ is not injective. Thus, by Theorem 1.39, A is not a prime ring, that
is, the zero-ideal of A is not prime. Since primitive ideals are prime, the zero-ideal of A is

not primitive either. Hence A is neither right nor left primitive. [ |

2.2 Case: ¢(y)=ay+b

We will now consider the case when deg(y(y)) = 1, that is, ¢(y) = ay + b for some a,b € K

with a nonzero. We divide our problem into four cases:
2.2.1: a is not a root of unity,
2.2.2: a is a root of unity but a # 1,
2.2.3: ¢ =id is the identity, and
224: a=1and b#0.

Before we can continue, we need the following lemma:

Lemma 2.3. Let y = dy + ¢ for some ¢ € K and some 0 # d € K. Then K[y] = K|y]

and the powers of § are algebraically independent.

Proof. Assume

ap + a1y + a4+ -+ +ang" =0
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for some a; € K. Then
ap+ a1 (dy + ¢) + az(dy + ) + - + an(dy +¢)" =0 (2.1)

for some ¢,d € K with d nonzero. The highest degree term in y of the left side of (2.1) must

be 0, that is, a,d™ = 0. Since d # 0 we must have that a,, = 0, so that (2.1) is reduced to
ap+ a1 (dy + ¢) + az(dy + ) + - + an_1(dy + ¢)" 1 = 0.

By repeating the same argument, we see that a,—1 = 0, and by continuing in the same
manner we conclude that a; = 0 for all 0 < ¢ < n. This shows that the powers of § are
algebraically independent.

Clearly K [y] C K[y]. Let Y. ja;y" € K[y]. We want to find b; for 0 < i < n such that

Z?:o b; (17)2 = Z?:o a;y’. Since
n n n n

S-S50 () -5 (50

7=0 i=j3 1=0 \ j=1

we need to find b; for 0 < ¢ < n such that

n

ai=Y (Z) b~ d (2.2)

j=i
for all 0 < ¢ < n. The solution is b, = d~"a, and, if for some ¢ > 1 we have that b,,...,by—;1+1

has been defined, then

n

bnfi = di_nanfi — Z <n']_ Z> bjcj_n+i.

j=n—i+1
We will prove this by induction. Since we need
n .
J j—n n n n—mn jn m
ap = 7 = —
n Z <n> b <n>bnc d" = b,d",
j=n
we see that b, = d "a,. Furthermore, we need to show that
n .
_ g—ntitl J i—n4itl
bnfifl—d ot anil_,z‘<n—i—1>bjcj o
j=n—i
Using that the conditions in (2.2) must be satisfied, we have that

. — - -7 J—n+i1+1 jn—i—1
an—i—1 = Z <Tl i 1) b]C] d

j=n—i—1

n—i—1 ) . , n j , ' A
= b n—z—l—n+z+1dn—z—1 b'cj_n—H—Hdn_z_l
(n—i—1>nzw +j_Zn:Z, n—i—1)"

— . n—i—1 - j Jj—n4+i+1l n—i—1
= bp—i—1d + 4Z'<n_i_l>b]c7 an

j=n—1i
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Hence

n .
bp_i—1=d n+2+1an—i—1 - E <n i 1) bjcj ntitl

j=n—1
This proves the inductive part and we therefore have that K[y] C K[y]. We conclude that
Kyl = Kyl- u

In the first two cases (2.2.1 and 2.2.2), we have that a # 1. Hence, by Lemma 2.3, we can
substitute y with ¥ where 7 := y — %. Then

b b
/\: o — b_
) @(y 1a> ay+b—1—

- 1-a Wi "\VT14) "W

Since K[y] = K[y] by Lemma 2.3, we conclude that we can assume that b = 0 in cases 2.2.1
and 2.2.2.

In sections 2.2.1, 2.2.2 and 2.3, we will prove the right primitivity of A by constructing
certain right A-modules. We will therefore in the following describe the conditions for a
vector space V' to be a right A-module.

As seen in the preliminaries, a K-vector space V can be made into a left A-module for
any ring homomorphism from A to Endg (V). Analogously any ring homomorphism from A
to the opposite ring End g (V)°P defines a right A-module structure on V. Let f,g € Endg (v)
and let z — f and y — g be actions of the set {x,y} on elements in V. Then, by the universal
property of K (x,y), there exist a ring homomorphism 1 : K (z,y) — Endg (V) such that

the following diagram commutes:

inclusion
{z,y} » K (z,y)
o f w
Y=g
End K (V)Op
Hence, by the first isomorphism theorem, there exists a ring homomorphism ) from %

to Endg (V)°P such that the following diagram commutes if and only if ¢ (zy — ¢(y)x) = 0:
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inclusion

{z,y} » K (z,y)
vt b w = w+ (zy — p(y)z)
K (z,y)

Endg (V)P ¢ @ (xy — o(y)z)

To prove Lemma 2.4, it remains to show that

K (z,y
Ko gl = ot
We will shortly explain why the last isomorphism holds: Suppose ¢ is an endomorphism of
K[y| and let K (a,b) denote the free algebra in a and b. We can identify K[y] and Kb]
so that it makes sense to write ¢(b). Let T = % and set @ = a + (ab — ¢(b)a) and
b=b+ (ab— p(b)a) € T. By the universal property of the free algebra K (a,b) there exists
a unique ring homomorphism ® : T — K[y][z, ] with ®(a) = z and ®(b) = y. One the
other hand, we can define a K-linear map O : K[y|[x,¢] — T defined on the basis elements
by O(yla?) = Biaj, which can be shown to be a ring homomorphism as ©(zy — p(y)z) =
ab— @(b)a = 0. Then © and ® are mutual inverses, showing that T' ~ K[y][z,¢]. We have

proved Lemma 2.4.

7

Lemma 2.4. A K-vector space V is a right A-module if and only if there exist f,g €
Endg (V)°P where f(v) :== v -z and g(v) := v - y such that

(v-z) y—(v-py) =0

forallve V.

2.2.1 Case: a is not a root of unity

We now consider the case where ¢(y) = ay + b and a is not a root of unity. In particular,
a # 1, so we can assume that b = 0 as explained in the introduction to section 2.2. Thus
zy = ¢(y)x = ayx. In this case, A = K[y|[z, ¢] is called the ”quantum-plane” [7, p. 72].

We will show that A is right primitive by introducing a faithful simple right A-module
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V. Let V be a K-vector space with basis {v; : i € Z} and define the following map:

€T +— [Ui —> vi+1]

Y — [Ui — aivi_l] .
Since

+1 i+1

stz =da ™y, —aT o =0,

(vi-z)-y— (vi-ay) -z =wvi11-y—a

we see that (v-x)-y = (v-¢(y)) -z for all v € V. By the universal property of K (x,y) and
the above, we conclude that V is a right A-module by Lemma 2.4.

Before we can prove that V is simple, we need the following lemma.

Lemma 2.5. Let V be the right A-module just defined. Then, for all n > 1 there

exist ¢, € N such that v_,, = a®voy”.

Proof. We will give a proof by induction. The base case is easy. Since voy = v_1 = a®v_; we

have that v_; = a®vgy, that is, ¢; = 0 € N. Assume now that n > 1 and that there exists ¢,

such that v_,, = a®*voy™. Then voy™ = a~“*v_,, and hence

n+1

n —c —cn—n
VoY =vYyy=a "v_py=a "

V_n—-1-

Cn—n n

Thus v_,—1 =a~ VoY 1 and hence Cn+1 = ¢p + n € N. This completes the proof. [ |

We will now show that V' is simple. By Lemma 1.4 (i), it suffices to show that wA =V
for all nonzero w € V. Furthermore, it is enough to show that vy € wA because we claim
that wA =V <= vy € Aw. To prove the claim, assume that wA = V. Then vg € V = wA.
Conversely, assume vy € wA. Then v; = voz' € wA for all i > 0 and, by Lemma 2.5,
V_; = adivoyi € wA for some d; € N and all 7 > 1. It follows that V C wA, but wA C V so
in fact wA = V. This proves the claim.

We now want to prove that for any nonzero w € V there exist f € A such that w- f = vy,
because then vg € wA and hence V' is simple. Since w = ) ., v;k; with only a finite number

of the k;’s being nonzero, we know that

n
w = E ’Ul'k‘i
=m
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for some m,n € Z with m < n, k,, # 0 and k, # 0. Either m < 0 or m > 0. In the case

m < 0, observe that

n n n+|m|
w - .%"m‘ = Z Uik)i . 1‘|m| = E 'Ui+|m|ki = Z 'Uiki—|m|-
i=m i=m =0
In the case m > 0, observe that
n n n—m
E di _ ditm
i=m i=m =0

for some d; € N depending on i for m < ¢ < n. It follows that the set

1
Q:={l € N: there exists Zvibi € wA with b; € K,by # 0 and b; # 0}
i=0

is nonempty.

Since €2 C N is a well ordered nonempty set, there exists an element

!
U= Zﬂibi € Aw
i=0

with [ minimal, and where k; € K, by # 0 and b; # 0. However,

=0 =0 i=0
l l l
:<Zbl(1—az)vz)y:Zbi(l—a’)vZ y—Zbl(l—a)avl,l
i=0 i=1 i=1
-1
_ bist (1 - ai—H) iy,
=0

so since [ is minimal, we have that b; (1 — ai) a’ =0 for all 1 <4 < [. Since the degree of
¢(y) is 1 we know that a’ # 0. Also, a’ # 1 since a is not a root of unity. Hence b; = 0 for
1 < ¢ < [. In particular, b = 0 if [ > 1. This is a contradiction, so we conclude that [ = 0.
Therefore u = vgbg so that vy = uby l'e wA. We conclude that V is simple.

It remains to show that V' is faithful. Let P := anna(V) ={a € A :v;-a =0 for all i}.
Since V is simple, P is primitive and hence P is a prime ideal. Also, R is a ¢-prime ring
by Lemma 1.37. We can therefore use Theorem 1.41 to show that P = 0. Because v; - x =

vi+1 # 0, we have that x ¢ P. Let now g = > b;y* € PN K[y]. Then

m m
Vi g = ij?)i . y] = ijadfvi_j =0
7=0 7=0

for some d; € N depending on j for 0 < j < m and where we have used the fact that g € P.

d

But all the v;’s are linearly independent, so bjadj =0 for all 0 < j < m. Now, a% is nonzero,
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so b; must be 0 for all j. Hence g = 0. Since g was arbitrary, it follows that P N K[y] = 0.
We conclude by Theorem 1.41 that P = 0, that is, V is a faithful module. We have proved
Theorem 2.6:

Theorem 2.6. Let A = KJy|[z, ¢] for an endomorphism ¢ : K[y] — K]Jy] such that
©(y) = ay + b for some a,b € K where a is not a root of unity. Then A is right

primitive.

2.2.2 Case: a is a root of unity but a # 1

The main result in this section is Theorem 2.9 that says that if A = R[z, ] where R is a
commutative domain and ¢ is an automorphism of finite order, then A is not right nor left
primitive. As we will see in Corollary 2.10, this applies to the case where ¢(y) = ay + b for

some root of unity a where a # 1. First, we need the following two results.

Proposition 2.7. Let K be a field and ¢ : K — K be an automorphism. Let
F={z€ K :¢(z) =z}. Then F is a subfield of K.

Proof. Since ¢(1) = 1, we have that 1 € F. Let a,b € F. Then a — b € F because
e(la —b) = ¢p(a) — p(b) = a+b and ab € F because p(ab) = p(a)p(b) = ab. Now, observe
that ¢(a)™! = ¢ (a~') because

Therefore, ¢ (a_l) = p(a)~! = a~! which implies that a=! € F. We conclude that F is a
subfield of K. [

The field in Proposition 2.7 is called the fixed field of ¢ and is sometimes denoted K¢

for G = (¢), the subgroup generated by . The following theorem is taken from [13, p. 78].

Theorem 2.8. If G is a subgroup of Aut(K) for a field K, then

(K : K¢ =|G|.

Theorem 2.9. Let A = R[z, | where R is a commutative domain and ¢ is an auto-

morphism of finite order. Then A is not right nor left primitive.

34



Proof. Let H = {ab™! : a,b € R,b # 0} be the fraction field of R. The endomorphism ¢
extends to H be defining p(ab™!) := ¢(a)p(b)~!. This is well defined since ¢ is injective and
hence b # 0 = ©(b) # 0. The subset F' := {z € H : p(z) = 2z} is a subfield of H by
Proposition 2.7. Since ¢ is of finite order, there exists a least n > 1 such that ¢™ = id. This
implies that ¢! = "~ 1. Let G = {id, p, ¢?,..., " }. Since G has order n, it follows from

Theorem 2.8 that the dimension of H over F' is
[H:F|=[H:H% =|G|=n.

Hence, there exists a basis {z1, 22, ...,2,} of H as an F-vector space.

Observe that

for all z € H, that is, 2" commutes with every element of H. Furthermore, if a € F, then
za = ¢(a)r = az, so x commutes with all elements of F. It follows that F[z"] is central
in Hlz, |, and since F is a subring of H, we have that F[z"] is a subring of the center of
Hlz, ).

H{z, p] is generated as a F[z"]-module by {z27 : 1 <i<n, 0<j<n—1}. To see this,
observe that, for all z € H, there exists by, bo, ...,b, € F such that z = byz1+bozo+- - -+b,2p.

Furthermore, for all m > 0, m = gn + k where 0 < k <n — 1, we have

n
22™ = 2R = (2™ 22k = Z bi (z™)? zia®.
i=1

Since b; (z™)? € F[z"], it follows that zz™ € Y7~ > iy Fla"]z;z’. But since z and m were

arbitrary, we have that
n—1 n

Hir,g) = 3 3 Fla"lza,

i=0 j=1

that is, H[x, ] is a finitely generated module over the central subring F[z"]. We conclude
that H[z, ] is a Pl-ring by Lemma 1.20. In particular, the subring A = Rz, ¢] is a Pl-ring
as well.

We will now show that A is not simple because Ax" A = z™ A is a nonzero proper ideal of
A. The ideal 2™ A is nonzero because 0 # z" € 2™ A. To see that 2" A is a proper submodule
of A, assume otherwise. Then there would exist a € A such that z"a = 1. Hence 2", and
thus z, is invertible in A. This is impossible because the invertible elements have degree 0.

We have shown that A is a non-simple Pl-ring and a finite dimensional algebra over it

center. We therefore conclude that A is neither right nor left primitive by Theorem 1.19. H
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Corollary 2.10. Let A = KJy|[z, ¢] where ¢(y) = ay + b for some a,b € K and a is
a root of unity but a # 1. Then A is neither right nor left primitive.

Proof. We proved in the introduction to section 2.2 that we can assume that b = 0. Hence
©(y) = ay. Since a is a root of unity, there exists N € N such that a®¥ = 1. Thus ¢V (y) =
aNy =y, that is, ¢V = id and we conclude that ¢ is of finite order. We can therefore apply
Theorem 2.9. |

2.2.3 Case: ¢ =id is the identity

If o(y) = y then xy = yx, so the skew polynomial ring A = K|[y|[x, ] is the same as the
commutative polynomial ring K[z, y]. Now, since (x) is a proper nonzero ideal of A = K[z, y],
A is not a field and hence, by Lemma 1.16, A is neither left nor right primitive. We have
proved Theorem 2.11:

[ Theorem 2.11. Let A = K[y|[z] = K[z, y]. Then A is neither right nor left primitive.

2.2.4 Case: a=1land b#0

Theorem 2.12. Let A = K|[y|[z, ¢] where ¢ is determined by ¢(y) = y + b for some
0+# b€ K and K is a field of characteristic 0. Then A is right primitive.

Proof. With ¢(y) = y + b, we have that xy = ¢(y)zr = (y + b)xz. We will make a shift of
variable by defining y = %y. Then

b b b
where ¢(y) = y + 1. Since, by Lemma 2.3, K[y] = K [%y] for all 0 # b € K, we can assume

1 1 1 ~ PP

that b = 1.

With ¢(y) = y + 1, we have the relation xy = (y + 1)z, or equivalently, yz = z(y — 1).
We want to find a simple, faithful A-module on the vector space V' with basis {v, : n > 0}.
The action of V', and the proof of it’s simplicity, is taken from [11, pp. 9-10]. The action is
defined as

Up * Y = Upyq for all n > 0; and

U= i(—n"—’f (Z) Uk

k=0
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By Lemma 2.4, V is a right A-module if we can prove that v, - (yz —z(y — 1)) = 0 for all

n > 0. We will give a proof by induction on n. The base case n = 0 is easy:
vo - (yr —x(y—1))=vi-z—vo-(y —1) = —vo+v1 —v1+ vy =0.

Assume that n > 1 and vy, - (yz — z(y — 1)) = 0 for all m < n. Recall that v,41 = v, -y and
that yx = z(y — 1). Hence

Ung1 - (Y —a(y — 1)) = v -y (yz —a(y — 1)) = v - (¥°x —ya(y — 1))
=vn-(yz(y—1) —yz(y -y —1)) =vn - (yz —yz(y — 1)) (y — 1)
=0(y—1)=0

This proves that v, - (yz —x(y — 1)) = 0 for all n > 0 which implies that V is a right
A-module.
To show that V' is simple, we first show by induction that v, - (1 — z)"™ = nlyy for all

0 — Uol = O!’UQ.

n > 0. The base case n = 0 is trivial: vy - (1 — x)
Let n > 0 and assume vy, - (1 — )™ = mlyy for all m < n. Then, for [ > n > m, we have
that

U - (=) =mlg- (1 —z)"™ =0 (2.3)

because vy - (1 — z) = vg — vp = 0. Hence

Vst (1= 2)"" = (vp41 —vpgr - @) - (L —2)"
n+1 o n+1 .
= <vn+1 kzzo(l) o k( i >Uk:> (1-2)
n—1
_ (Un—i—l — Upi1 — (_1)n+17n (n;li‘ 1)’Un _ kzo(_l)n+1k (n‘]: 1> ’Uk) ) (1 . x)n
_ (n+1)! n s, na1—p(m+1 "
= D Lt (e = (e a0
= (nnflll)!n!vo by (2.3)
= (n+ 1)l

This proves that vy, - (1 — )™ = nlyg for all n > 0. Now, let 0 # w = > ; kv; € V be any

nonzero element of V' with &, # 0. Then

w-(l—x)" = kai (1= 2)" = kpnlvg,
i=0
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by (2.3). Hence
1

~ k,n!

Vo w-(1—2x)" € wA,

that is, vg is an element in wA, where we have have used that we can divide by n! because
K is of characteristic 0. It follows that v,, € wA for all m > 0 because v,, = vy - y™ € wA.
We conclude that V' = wA and hence V is a simple right A-module by Lemma 1.4.

It remains to show that V' is faithful. Let P := anni(V) ={a € A: v, -a =0 for all n}.
Since V is simple, P is primitive and hence a prime ideal. We can therefore use Theorem 1.41
to show that P = 0. Because vy - x = vg # 0, we have that x ¢ P. Let now g = Z?ig ayt €
PN KJ[y]. Then

m m
O=wv0-g9= Z:az‘UO'yZ = Zam
i=0 i=0
since g € P. But all the v;’s are linearly independent, so a; = 0 for all 0 < i < m. Hence

g = 0. Since g was arbitrary, it follows that PN K[y] = 0. We conclude by Theorem 1.41 that
P =0, that is, V is a faithful right A-module. We have shown that A is right primitive. H

2.3 Case: deg(p(y)) > 1

Theorem 2.13. Let A = K|yl[z, ¢] for a field K and a K-linear endomorphism ¢ be
such that ¢(y) = f(y) € K[y] has degree d > 1. Then A is right primitive.

Proof. Let V be a K-vector space with basis {v; : ¢ > 1}. Define
Vit Y = Vit1
for all 4 > 1. Furthermore, define

Up- -z =0 if n<d

V4T = U1

where d is the degree of f = p(y) € K[y|]. By Lemma 2.4, V is a right A-module if we
can find an action vy, - x for n > d such that (v; - x) -y = (v; - f(y)) - = for all ¢ > 1. Let
o(y) = Z?:o a;yt. Since v1 - = 0 we have that (v; - ) -y = 0. On the other hand

d

d
(vp-z)-y=(v1-fly) z= (v1 . (Z aiyi>> L= Zawiﬂ ‘T = agUgs1 - T+ Ag_101.
i=0

=0

38



aq—1

Hence vg11 -2 = — v1. Assume now that v; -  has been defined for all 7 < n+ d for some

aq
n > 1. Then
d d d—1
(p - )y = Zaivn Yyt x = Zaivnﬂ- ST = advn+d-x+2awn+i - T.
=0 1=0 =0

We therefore define i
. _
Uptd T = w ((vn ‘x) -y — ZaivnH . x) . (2.4)
i=0

It follows that if n = qd + r for 0 < ¢ and 0 < r < d, then
Up * T = CpUq + Wy (2.5)

for some nonzero scalar ¢,, and w,, € span{v; : i < ¢}. We can prove this by induction in the

following way. Assume that (2.5) holds for all vy with k <n+d — 1. Then

d—1
1
Untd &= — ((vn'x)-y— E aivm_i-x)
d :
1=0

d—r—1 d—1
1
= ((Cnvq +wn) Y — @i (Cotivy + Wpti) = Y ai(Cativgrs + wn—H’))
d i=0 i=d—r
1 d—r—1 d—1
= | Vet + Wp41 — Z i (CntiVq + Wngi) — a; (CntiVqr1 + Wnai)
d i=0 P
= Cn+dV¥q+1 + Wntd
forO;éanrd:Z—ZEKand
1 d—r—i d—1
Wntd = — | Wnt1 = Z a; (CptiVq + Wnyi) — Z a; (Cn+1Vg+1 + Wnti) | € span{v; 1 i <n+d}.
d ; .
=0 i=d—r

Let n = dt for some t > 0. Then

Vgt + T = CqtUgt—1 + Wgt,

Vgt cx? = CgtCat—1Vgt—2 + Wyt * T,

vg - xt = <H Cdi) vy, (2.6)

i=1
by (2.5), where [['_, cgi # 0.
To show that V is simple, we will show that any nonzero submodule of V' equals V. Any

nonzero submodule of V' contains some nonzero v € V, and there exists m € N such that
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v = 2111 Aiv; with A, £ 0. Since d > 1, there exist ¢ € N such that dt=' < m < d'. Thus
m
t
voydom = Z AiVisgt—m = Amvgt + (lower indexed vectors).
=1

Using (2.5), we se that

t_ .
v - yd ™. x = Amcgrvg— + (lower intexed vectors).

Hence, using (2.6), we have that

t_
(U'yd m) cat = evy

for some nonzero scalar c. It follows, for all » > 1, that we can write v, in the following way:

1 1 1
Vp = —cvp = —cvp -y L=~ ((v . ydt_m) -xt> Sy
c c c

Thus vA =V and hence V is simple.

It remains to show that V is faithful. Let P :=anny(V) ={a € A: v, -a =0 for all n}.
Since V is simple, P is primitive and hence a prime ideal. Also, R is a ¢-prime ring by Lemma
1.37. We can therefore use Theorem 1.41 to show that P = 0. Because vg-x = v1 # 0, we

have that ¢ P. Let now g = > A\;y" € PN K|y]. Then

m m
O=vi-g=>» Xvi-y' =) Avips
i=0 i=0

since g € P. But all the v;’s are linearly independent, so \; = 0 for all 0 < i < m. Hence
g = 0. Since g was arbitrary, it follows that P N K[y] = 0. We conclude by Theorem 1.41
that P = 0, that is, V is a faithful module. We have shown that A is a right primitive ring.

[ |

Example 2.14. Let A = K[y][z, ] with ¢(y) = f(y) where f(y) = y?. Since the degree d of
©(y) is 2 > 1, A is right primitive by Theorem 2.13. Let V = span{v; : i > 1}, v; - y = viy1,

v1-x =0 and vy -z = v1. By (2.4), we have that

1
1
Unt2 T = — (vn'x)-y—g AjVpti- T |,
2 ,
=0

but since f(y) = y?, we have that ag = a; = 0 and as = 1, and therefore
Upt2 - = (V- 2) Y.

It follows by induction that

Vopt1 - =0
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because vy - £ = 0 and if ve, 41 - = 0 has been shown, then vo, 13-z = (vap41 - x) -y =0. It
also follows that

Von * T = Up

because vo-z = vy and if vy, -z = v, has been shown, then vo, 1o-x = (Vo - )Yy = Vp Y = Upt1-

2.4 Summary right primitivity

We sum up the results of this chapter in Theorem 2.15:

Theorem 2.15. Let A = K[y|[z, o] for an endomorphism ¢ : K[y] — K[y]. Then A

is right primitive if and only if ¢ is injective but not an automorphism of finite order.

Proof. This follows from Corollary 2.2 and theorems 2.6, 2.9, 2.11, 2.12 and 2.13. |
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Chapter 3

Left primitivity of skew polynomial

rings

We will now search for the conditions for A = K[y][z,¢] to be left primitive. As seen in
section 2.1, A is not left primitive when ¢(y) € K, or equivalently, ¢ is not injective by
Lemma 2.1. Furthermore, in section 2.2.2 we proved that A is not left primitive when ¢ is
of finite order. Therefore, we will in this chapter only consider skew polynomial rings where

 is injective and of infinite order. Our study is divided into three sections:

3.1 Case: There exists only finitely many @-periodic primes;

3.2 Case: There are infinitely many ¢-periodic primes and at least one of them is

singular;
3.3 Case: There are infinitely many (p-periodic primes and none of them are singular.

We are primarily interested in the case where the coefficient ring R of our skew polynomial
ring A = R[z,¢] is K[y|, but we will also consider more general coefficient rings. This
is because this thesis is largely based on Irving [5] and [6] where he works on Dedekind
domains. In particular, this will affect some of our proofs. It will be helpful to keep in mind
that the polynomial ring K[y] is a principal ideal domain, every principal ideal domain is

Dedekind and that every Dedekind domain is commutative and noetherian.

3.1 Case: There exists only finitely many ¢-periodic primes

Let A = R[z, ] for a commutative noetherian domain R and an injective endomorphism ¢

of infinite order such that there are only finitely many @-periodic primes in R. We will in
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this section prove that A is left primitive. Before we can prove this, we need the following

lemma.

Lemma 3.1. Let R be a domain and let I; for 0 < 7 < n be a finite set of nonzero

ideals in R. Then (., I; # 0.

Proof. Assume (N I; = 0. Since [[" I; € (i yli, then [ jI; = 0 as well. It follows
that, given any nonzero a; € I; for 0 < ¢ < n, we have that a1 ---a, = 0. But in a domain,

this implies that a; = 0 for some 4, a contradiction. Hence (), I; # 0. |

Proposition 3.2. Let A = R[z, ¢| for a commutative noetherian domain R and an
injective endomorphism ¢ of infinite order. Suppose that there are only finitely many

p-periodic primes in R. Then A is left primitive.

Proof. Let Py, Pa, ..., P; be all the nonzero y-periodic primes of R, let
B=PNhkPN---N~k,

and let I be any nonzero left primitive ideal of A. In particular, I is prime. Assume for a
moment that z ¢ I. Then I N R is ¢-prime by Theorem 1.40. Since R is a ¢-prime ring
by Lemma 1.37, I N R is nonzero by Theorem 1.41 and hence, by Lemma 1.38 there exists
a @-periodic prime ideal P of R such that IN R = PN 1(P)N---Np "(P), where n
is the period of P. Since I N R # 0, we have that ¢~ *(P) # 0 for every 0 < i < n — 1.
Furthermore, every ¢ *(P) is ¢-periodic, because ¢ (¢™*(P)) = ¢~ (¢ "(P)) = ¢ *(P).
Thus ¢~ ¢(P) € {P,..., P} for all 0 <4 < n. We conclude that either v € I or BC INR
for any nonzero left primitive ideal I of A.

Assume now that 0 is not a left primitive ideal of A, and let {I : A € A} be the set of left
primitive ideals of A for some set A. Furthermore, let a € Bx be a nonzero element in Bz.
Such an element exists since B # 0 by Proposition 3.1. Then there exists b € B such that
a = bx. Hence a € I for all I, containing z, and a € I, for all I) containing B. Since either
x € I or B C [ for every nonzero primitive left ideal I, we have that a € I for all A € A.
We conclude that

Bx C ﬂ I, =rad(A).
AEA
But, by Theorem 1.42, rad(A) = 0, a contradiction since 0 # Bz. Hence 0 is a left primitive

ideal of A and thus A is a left primitive ring. |
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Example 3.3. Let A = K[y|[z, ] where p(y) = f(y) = y — 1. We will show that A
is left primitive. Note that ¢ is injective because ¢(y) ¢ K. Furthermore, observe that
©"(y) = y — n, so there is no n > 1 such that ¢™ = id since the characteristic of K is 0.
Hence ¢ is of infinite order. Every nonzero prime ideal P € K[y is of the form P = (y — a)
for a € K, and P is p-periodic if and only if there exists n > 1 and a € K such that f"(a) = a.

However f"(a) = a —n # a, so there is no nonzero y-periodic prime ideals in K[y]; the only

p-periodic prime ideal is the 0-ideal. We conclude by Proposition 3.2 that A is left primitive.

3.2 Case: There are infinitely many ¢-periodic primes and at

least one of them is singular

Let R be a Dedekind domain and let ¢ be an injective endomorphism of R. Assume for some
¢-periodic prime ideal P of R that ¢"(P) C P for some n and some ¢ > 1. The aim of this
chapter is to prove that A = R|x; ] is left primitive in this case. We need Lemma 3.4 before

we can prove this result. Recall the P-order vp([) from page 13.

7

Lemma 3.4. Let R be a Dedekind domain and let ¢ be an injective endomorphism of
R. Let P be a ¢-periodic prime of R with period n and suppose vp (¢"(P)) =t > 1.
Then for any 7 € P such that vp (¢™(r)) = ¢, we have for any i > 0 that vp (¢"(r)) =
t.

Proof. We will prove the lemma by induction on i. By hypothesis vp (¢"(r)) = t, so the
base case i = 1 is clear. For the inductive step, assume vp(¢™(r)) = t* and write ™ (r)R =

PU'U; - Uy, for primes U; # P. Then
SR = o (o (r)R) B = " (P)' ¢ (U1) - (U R
because
Up# P = U; S "(P) = ¢"(U;) S P = vp(e"(U;)) = 0.
Moreover, by hypothesis ¢"(P)R = P'Q1Q2 - - - Q5 for some prime ideals Q; # P. Thus
S"(P) R=P"TQ1 - Qf
has P-order t'*!. It follows that
PR =P Q" (U) -+ o"(UR)R,
and hence vp (U (r)R) = #i+1, [ ]
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Let P be a periodic singular prime of the ring K[y, and let n be its period. If
r € Pp=1(P)--- o "FY(P), then the ideal I := Ap + A(1 — r2™) is a proper ideal. Before we

prove this in its generality, we will look at a couple of examples.

Example 3.5 (A p-periodic singular prime of period 1). Let R = K[y|] and ¢ the K-
linear algebra homomorphism determined by ¢(y) = y?. Consider the skew polynomial ring

A = R[z; | subject to the relation

Let P = (y). Then ¢~ }(P) = P, because ¢(y) = y*> € P. Thus P C ¢ (P) and as P is
maximal, P = ¢~ 1(P).

We will now show that [ = Ay + A(1 — yx) is a proper left ideal of A. Suppose that I is
not proper, that is, suppose I = A. We will show that this leads to a contradiction. Since
I = A, there exist a,b € A such that a = Y7 jaa’ and b = Y7 bjz! with a;,b; € Kly]
and a,, # 0 # by, such that

l=ay+b(l+yx)= Z aipt (y)z' + Z bzl — Z bi? (y)ad (3.1)
i=0 =0 =0

Since the left hand side has degree 0 in x, all coefficients of powers of  must be zero on the

right hand side. In particular n = m + 1 as b,, # 0 and a,, # 0. We rewrite (3.1) as

n—1

L=agy+bo+ Y (aip (y) + bi — bis1e' ' (1) 2" + (an®™(y) — bu-19™ () 2"
=1

leading to the system of equations:

bo = 1- apy
bi = bi_19" W y) —aipi(y), foralll<i<n-—1 (3.2)
bn19" " (y) = an®" () (3.3)

Now, from ¢(y) = y? one deduces ©?(y) = y*, 3 (y) = 3® and more generally ¢'(y) = y>'.

We claim that for all 1 <7 <n — 1, we have that
bi =32 11 — ) (3.4)
for some ¢;. For ¢ = 1 we have

b1 = boe’(y) — a1’ (y) = (1 — aoy)y — a1y® = y(1 — (ao + a1)y)
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Suppose (3.4) for some ¢;. Then by (3.2)

% i+1

i i+1_
) =y M1 - e)y® —aimy® =y T = (¢ +ai)y).

bit1 = big' (y) — aip19
This proves the claim. However, (3.3) leads to a contradiction:

2%1( 2”*171(

n—1 _ n
Yy l—ch1y) =y 1- Cn—ly)yz = bp-1¢" 1(y) = any2
because the right hand side is divisible by y?", while the left hand side is only divisible by

y?"~1. Therefore I is a proper left ideal.

Example 3.6 (A p-periodic singular prime of period 2). As before let R = K[y| where K is
a field of characteristic 0. Let ¢ be defined by ¢(y) = y? — 1. Consider the skew polynomial
ring A = Rlz; | subject to the relation

wy =py)r= (v~ 1)
Let P = (y). Then ¢~ 1(P) = (y+1), because p(y+1) =y*—1+1=y? € P. Thus (y+1) C
¢ 1(P) and as (y + 1) is maximal, (y + 1) = ¢~ !(P). Furthermore, since p(y) = y?> — 1 =
(y—1)(y+1) € (y+ 1), we have that y € ="' ((y + 1)) and hence P = (y) € ¢~ ((y + 1)),
but as (y) is maximal, we have that P = ¢~ !({y + 1)). So P is a ¢-periodic prime ideal of

period 2 and
P=(y), ¢ '(P)=(y+1) and ¢ *(P)=P

P =) =¢?—1) =@ -1 —1=y" -2 +1-1=4?(4* - 2) C (4*) C P*,
we have that P is singular.

By Lemma 3.4, for all i > 0, we have that ¢%(y) is divisible by 32, but not by y*!
Furthermore, ©%(y + 1) is not divisible by ¥, as otherwise y +1 € ¢ 2(P) = P = (y),
which is absurd, and ©?*!(y 4 1) is not divisible by y + 1 analogously. Then I = Ay +

A (1 —yly + 1)x2) is a proper left ideal of A because if we suppose I = A, then there exist
a=3"ax'b= >0 bjzl € A, with a;,b; € K[y] and a,, # 0 # by, such that

l=ay+b(1+yly+1az Zalcp +be—2b<p (y(y 4 1))z7 T2,

Since the left hand side has degree 0 in z, all coeﬂiments of x must be zero on the right hand

side. In particular n = m + 2 as b, # 0 and a,, # 0. Rewriting the last equation as
n—2

1= agy +bo + (a1p(y) + b1) x+ Y _ (@ip'(y) + bi — bi2¢' > (y(y + 1)) «*
=2

+ (19" (Y) — bz P (y(y + 1)) 2"+ (an®”™(y) — bu2¢" 2 (y(y + 1)) 2"
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leads to the system of equations:

bo=1—agpy

b = —arp(y) = ~a1(y* — 1)

bi = bi o0 2(1)" 2y + 1) — aip'(y), foralll<i<mn-—2
ba-3¢" > (y(y + 1)) = an-19""'(y) (3.5)

b2 (y(y + 1)) = ane"(y) (3.6)
We claim that
Claim: by; is nonzero and divisible by yQi*1 but not by y2i for 20 <mn — 2.

Proof of claim. For i = 0 we have by = 1 — agy is not divisible by y = yzo, but by 1 = ¢° =
y2"~1. For i = 1 we had already noted that ¢2(y) = y%(y? — 2). Hence

by = boy(y + 1) — az*(y) = (1 — aoy)y(y + 1) — agy® (v* — 2)

—y(y(l—ao(y+1)—a2(y*—2)) +1)

is divisible by y = y21_1 but not by y? = y21. Suppose by; is divisible by yQi_l but not by
v

bagir1) = b2i™ (1)¢” (y + 1) — ags1y@® T ().
Since % (y) is divisible by yzi but not by y2i+1, and since bo; is divisible by yQi_l but not by
y2i by induction hypothesis, we have that bs;?(y) is divisible by y2i+1_1 but not by y2i+1.
Therefore by(;; 1) is divisible by y2i+1*1 but not by y2i+1. This proves the claim.

If n = 24 is even, then (3.6) leads to

bn—2¢" ()" 2 (y + 1) = ane™(y)

where the left hand side is nonzero and divisible by 42" “+2" "> = 42", but not divisible by
y?" while the right hand side is divisible by %2". This is a contradiction.

Otherwise, if n = 2i + 1 is odd, then n — 1 = 2i is even and we can use equation (3.5)

bn—3@" 2 (Y)e" Py + 1) = an—19"" ()

where the left hand side is nonzero and divisible by 42" " +2"~° = 42", but not divisible by
yzn_l while the right hand side is divisible by yzn_l. In either case we get a contradiction, so

our assumption that I = A must be false. Hence [ is a proper left ideal of A.
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This completes our second example, and also in this case, as we will see, we can conclude
that A is left primitive. Before we can prove this in general, we will generalise the two

examples in Theorem 3.7 (i) and (ii).

Theorem 3.7. Let A = R|x,¢] for some injective endomorphism ¢ : R — R of
infinite order and R a principal left ideal domain. Let P be a ¢-periodic prime of
period n and assume there exists ¢ > 2 such that vp (¢"(P)) = t. Since R is a
principal left ideal domain, there exist irreducible elements p,pi,...,pn—1 € R such

that P = (p), o *(P) = (p1),...,0 "H(P) = (pp_1). Let 7 :== pp1---pr_1. Then
(i) p!' is the largest power of p that divides ¢"(r) and " (p) for any i > 0.
(ii) The ideal B := Ap + A(1 — ra™) is a proper left ideal of A.

(iii) Let M be a maximal left ideal containing B, who’s existence is assured by (ii).

Then A/M is a faithful simple left A-module.

Proof. (i) Since vp (¢"(P)) = t, we have in particular that vp (¢"(p)) = t since (p) = P.
If there exists 1 < ¢ < n — 1 such that vp (¢"(pi)) > 0, then (" (p;)) = (p) = P,
a contradiction. Hence vp (¢"(p;)) = 0 for all 1 < ¢ < n — 1, so we also have that

vp (¢™(r)) = t. The result now follows from Lemma 3.4.

(ii) We will assume that B = A and show that this leads to a contradiction. Since B = A,
there exists a = )" a;x’ b = Zizo bzt € A with a,, # 0, b; # 0 and a;,b; € R such
that

1=ap+b(1l—rz"). (3.7)

Since the left hand side has degree 0 in z, all coefficients of x must be zero on the right

hand side. In particular [ = m —n as b,, # 0 and a,, # 0. We rewrite (3.7) as
1= Z a;r'p + Z bzt — Z bix'ra™
m l . ‘
= Z aip'(p)zt + Z bzt Z by (r)z' "
=0 i=0

= Z aip'(p)z’ + Z bizt — Z bi_n' " (r)z!
=0 =0 i=n
n—1 m—n m

= (ai(pi(p) + bi) x4 Z (az(P (p) +b; — b n‘P n(r)) a’ + Z (aigoi(p) - bi—n‘Pi_n(r)) !
=0 i=n i=m—n+1
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leading to this system of equations:

1 =aop + bo (3.8)
0=a;p'(p)+b;, foralll<i<n-—1
b; = bi_ncpi*"(r) — aigoi(p), foralln<i<m-—n (3.9)

biin@ (r) = a;p'(p), forallm—n+1<i<m (3.10)

Since m > n, there exists j > 1 and 0 < s < n such that m =nj + s.
ti—1
Claim : For all 0 <7 < j, the largest power of p that divides b,; is p 1.
To prove the claim, consider first the case where i = 0. From (3.8), we see that p cannot
divide by because otherwise p would have been invertible and hence P = R. Therefore,

t9—1

the largest power of p that divides by is 1 =p =p&1 .

th—1
For the inductive step, suppose p -1 is the largest power of p that divides b,; for some

0 < i <j. Then, by (3.9) and part (i) of this lemma, we have that

ti—1

bn(i+1) = bni‘Pni(T)_an(i+1)SDn(i+l)(p) =ptt uptlv—an(iﬂ)pt

i+

1 GARES| pitl
w=p =l U—apirnp W,

for some u, v, w € R not divisible by p. Since

ti-i—l -1

VT il gt
t—1 — ’

ptl_q il _q
we see that by(;41) is divisible by p 7=1". Suppose by;41) is divisible by p =7 1
titl—1
i—1

< t#1, we have that ©771 +1 < 1. Then ¢"(1(p), and hence
ti+17 . ti+171
. But by ™ (r) = p =T wv with uv

Then, as

bni™ (1) as well, are both divisible by p =1 S+l

not divisible by p, so we have a contradiction. We conclude that b,,(;1 1) is not divisible

g 1

by p -1 . This proves the inductive step, and hence the claim.

Notice that m —n+1 <nj <m — s < m, so by (3.10) we have that

bu(j-1y" D (r) = anje™ (p).
i1 g

By the claim, p =1 is the largest power of p that divides b,(;_1), and by part (i),

i1

4 ti—1

P ' is the largest power of p that divides (p"(jfl)(p). Hence p™ 1 ptji1 = pt-1 is the
largest power that divides bn(j_l)gon(j “D(r) = anj®™ (p). This is a contradiction since
p? divides ¢ (p) by (i). We conclude that our assumption that B = A is false, that
is, B is a proper ideal of A.
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(iii) Let I :=anna(A/M). By Lemma 1.6, I is a prime ideal. Hence, either ] =0, z € I or
I N R is a nonzero @-prime ideal of R by Theorem 1.41. We want to rule out the last

two possibilities in order to show that I = 0.

Ifx € I C M, then M contains rz” since M is a left ideal. Now, from the definition of B,
we know that 1 —rz"™ € B C M. Since rz"™ € M we have that 1 = (1 —rz")+r2" € M.

Thus M = A, a contradiction since M is proper. Hence x ¢ I.

Assume now that 1N R is a nonzero p-prime ideal. Consider the ideal P4+INR. Clearly
PCP+INRCR.

Since P is prime, P is maximal because R is a principal ideal domain. Hence P+1NR =
PorP+INR=R IfP+INR=R,then AP+ A(INR)=AR=A,but APC M
and A(INR) C I C M, and hence M = A, a contradiction. If P = P + I N R, then
INRC P. Now, by Lemma 1.38,

INR=Qne Q)N Ny ™ Q),

for some @-periodic prime ideal @) with period m. However, since () is prime and
nonzero, ¢~ *(Q)) is prime and nonzero as well by Lemma 1.28, and thus maximal.
Assume there exists 0 < 4,7 < m — 1 with i # j such that ¢ =(Q) € ¢ 7(Q). Then
0 Q) = ¢7(Q) since they are maximal, but then the ¢-period of Q would be at most
m — 1, a contradiction. Hence ¢~4(Q) € ¢~7(Q) for all 0 < i,j < m—1 with i # j, and
thus o= 4(Q) + ¢ 7(Q) = R for all 0 < 4,5 < m — 1 with i # j by the maximality. We
conclude that {ap_i(Q)};r:Ol is a pairwise comaximal family of ideals of R. It follows

by Proposition 1.5 that

INR=Qe Q)¢ ™ Q).

Therefore,
Qe Q)¢ ™ Q) C P.

Since P is a prime ideal, we have that ¢~*(Q) C P for some i by Lemma 1.7. Since

©~HQ) is maximal and P is proper we have that ¢~/(Q) = P. Then

e Q) =P=¢p"(P)=9"(Q),

so n > m. On the other hand,



so m > n. We conclude that m = n and that {Q, ¢ 1(Q), ..., ™ (Q)} is a permu-
tation of {P, o~ (P),...,o " (P)}. Thus

INR=Qp Q)¢ "HQ) =P ' (P)--- ¢ ""(P),

so we have that r € INR C I C M and hence rz™ € M. As we have seen, this leads to
the contradiction that M = A. Hence our assumption that I N R is a nonzero y-prime

ideal is false. We conclude that I = 0 by Theorem 1.41, that is, A/M is faithful.

An immediate consequence of Theorem 3.7 (iii) is Corollary 3.8:

Corollary 3.8. Let A = R|xz,¢| for some injective endomorphism ¢ : R — R of
infinite order and a principal left ideal domain R. Let P be a ¢-periodic prime of
period n and assume there exists ¢ > 2 such that vp (¢"(P)) =t. Then A = Rz, ¢] is

left primitive.

Corollary 3.8 applies to both of the examples just before Theorem 3.7 so that A is left

primitive in these examples.

3.3 Case: There are infinitely many ¢-periodic primes and

none of them are singular.

Let A = Kly|[x,¢] be the skew polynomial ring where ¢ : K[y] — Kly] is an injective
endomorphism, and suppose that there are infinitely many p-periodic primes in K[y]. The
aim of this section is to show that, in this case, A is left primitive if and only if there is a
singular p-periodic prime ideal in K[y].

So, define f(y) := ¢(y) € Kly] and let P be a nonzero prime ideal of K[y], that is,

P = (y — a) for some a € K. If a is ¢-periodic, there exists n > 1 such that the set of primes

{P, o' (P), e %(P),...,o " (P)}

is closed under taking ¢ ~!. Define

n—1 n—1
Q:=[]e '@ =]]W-r)=a,
i=0 i=0

where ¢ = (y—a) (y — f(a)) -+ (y — f"'(a)). We will show that ¢(Q) € Q. Note that
oy — fi(a)) = fly) — fi(a). Ifi > 1, then fi1(a) is a root of f(y) — f'(a) and hence
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y — f=1(a) divides p(y — fi(a)). Otherwise, in the case i = 0, we observe that f"~!(a) is a
root of f(y) —a = f(y) — f*(a) and hence y — f*~!(a) divides ¢(y — a). Thus ¢(q) € Q and
hence ¢(Q) C Q. It follows that

zQ C o(Q)z C Q. (3.11)

Let K(y) := {gh™!: g,h € K[y],h # 0} denote the field of fractions of K[y]. ¢ extends
to a ring homomorphism of K (y) by defining p(gh™!) := p(g)¢(h)~!. Note that p(h) # 0
because h # 0 and ¢ is injective. Define B := K (y)[z, ¢|. Furthermore, note that, since K is
algebraically closed, given any n > 0, the polynomial f(y) — y has n roots. That is, there

exists ay, a,...,a, € K such that f"(a;) = a; for all 0 < i < n.

Lemma 3.9. Let R = K]ly|] with the injective endomorphism ¢ : R — R, and let
A = R|xz, ¢| such that there are infinitely many @-periodic primes. Assume there exists

a simple faithful left A-module E' = Av. Then anny(v) N R # 0.

Proof. Define M := anny(v). By Lemma 1.4 (ii), M is a maximal left ideal of A, and by
Proposition 1.35, the ideal BM of B := K(y)[x, ] is generated by some element g € B.
However, observe that any element of B is of the form

n n
S s E riz' |,

=0

&
SCIJ

—_

Hs
Il

where 7;,8;,8 € A and s is a common denominator of the fractions hisi_l. It follows that we

can assume that BM = Bg for some g € A. Write

k+1 +

g =ro+rpa® + T+l T s ™,

where r; € R and k is the smallest integer strictly greater than 0 such that r; # 0.

If BM = B, then 1 € BM, that is, 1 = > ;s 'a; for a; € M and 0 # s € R. Hence
0#s=>1,a,€MNR and thus M N R # 0. We will therefore in the following assume
that BM is a proper ideal of B.

We will assume that M N R = 0 and see that this leads to a contradiction. Note that
m > 0 because BM is proper. We claim that there exists a ¢-periodic prime P = (y — a) of
period u such that for all 0 < j < m with r; # 0 and all 0 < i < u, we have that r; ¢ p~'(P).

To justify the claim, note first that
rj € ¢ Y(P) <= y— f'(a) divides r; <= f%(a) is a root of r;.
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Since there are only finitely many nonzero polynomials r;, there are only finitely many roots
of the r;’s, but by assumption there are infinitely many ¢-periodic elements a € K. Hence
there exists a g-periodic element a such that fi(a) is not a root of rj for all 0 < ¢ < w and
all nonzero ;. This proves the claim, in fact, it shows that there are infinitely many such
primes.

Let now P = (y — a) be such a prime ideal and let u + 1 be the period of a, that is,
¢ " 1(a) = a. Define

Q=[] (P) =]~ F(a) =),
=0 =0

where ¢ = (y —a) (y — f(a)) - (y — f*(a)). From (3.11) we know that 2@ C Qz. It follows
that the two-sided ideal AQA of A is contained in QA. In particular, every element of AQA
can be written in the form > tiz® for t; € Q. Since M is a left ideal that does not contain
any two-sided ideal, we know in particular that AQA ¢ M. It follows that M is properly
contained in M + AQA. But M is a maximal ideal of A, se we conclude that M + AQA = A.
It therefore exist m € M and t; € () with t; # 0 such that m—Z?ZO tidz® = 1, or equivalently,

d
1+Ztixi:m€M.
i=0

Since M C BM = By, there exists 0 # s € R and Z?:o sjz) € A such that

d n n m n m
1+ E tixt = s 1 E sjz? | g = 51 E g sjxlrizt = 51 E E s’ (rs)z* 7.
i=0 §=0 §=0 i=0 §=0 i=0

Multiplying the above with s yields

d n m

s—i—sZtixi = ZZSjQOj(Ti)iL‘i-H. (3.12)

i=0 j=0 i=0
Let N be the greatest integer such that s € PN but s ¢ PNt Note that d = n + m is
the degree of both sides of (3.12), and consider the coefficient of the highest degree term of
(3.12):

Stman = Sp@" (Tm)-

Since t+n € Q C P, we have that st ., € PN*1 and therefore Sn@"(rm) € PN*L as well.
However, because r,, ¢ ¢~ (P) for all i, we have in particular that r,, ¢ ¢ "~ for all 4, that
is, " (1) ¢ ' (P) for all i. Therefore, ©"(r,,) ¢ Q C P, and we conclude that s, € PN*1,

By considering the second highest term of (3.12),
Stimin—1 = $n®" (rm-1) + sn10""" (rm),
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and using the last discovery that s, € PVT1, we can argue in the same manner that s, €
PN+l We can continue in the same way until we consider the coefficient of the term with

degree k:

sty = skp"(ro) + s09° (rk) = k" (r0) + sors- (3.13)
Since t;, € P and s € PV we have that st, € PNt The right hand side of (3.13) must
therefore also be an element in PV*!. Now, neither ¢*(rg) nor ¢%(ry) are in P, but s; €
PN*1 hence we have that sg € PNt!l. We finally consider the coefficient of the term of
degree 0:

s+ stg = sgro.

We have that stg € PVt and sorg € PVt It follows that s € PNt a contradiction. We

conclude that our assumption that M N R = 0 is false. This completes the proof. |

e a

Lemma 3.10. Let R = K]Jy|] with injective endomorphism ¢ : R — R and let
A = R|xz, | such that there are infinitely many ¢-periodic prime ideals. Assume there
exists a simple faithful left A module £ = Av. Then I = anng(v) N R has a nonzero

p-periodic prime divisor.

Proof. Let M := anng(v). By Lemma 3.9, I # 0. Therefore, I has a unique prime ideal
decomposition:

I=PP,---P,

for some n > 1. Let J := Az A. Since za = p(a)z for all a € R, we have that xA C Ax. But
then AxA C Ax C Az A, so in fact, J = Az A = Ax.

If Jv =0, then J C anng(v) and hence J C anng(E) = 0, but J is nonzero because
x € J. Since Jv is a submodule of the simple module E, it follows that Jv = F = Av. In

particular, v € Jv, and therefore
t+1

v = E izt
i=1

t+1 '
(1 — Zrmﬁ’) v =0,
i=1

for some t > 0 and r; € R. Thus

that is,

t+1
<1 - Zm> eM (3.14)



Furthermore, for all
t+1

se [[#D),
i=1
we have that s = ¢(c1)@?(ca) - '™ (ci11) for ¢; € I. Therefore, for all 0 < i < t+ 1, we
must have that
se' = p(er)?(ca) - (cpn)a’ = [ ¢/ ()@ (i)’ = [[ ¢/ (¢j)a’ci € AT = A(MNR) C M.
J# J#
Since sz € M, we have, using (3.14), that
1 t+1 '
s=s (1 —Zriwl> —i—Zrisx’ e M.
i=1 i=1
We conclude that
1
[[#¥FcMnR=I=P---P,CP
i=1
for1 <j<n.

We will now show that, given any P € {P,..., P,}, there exists 1 < ¢ < ¢+ 1 such that
¢~ '(P) is a p-periodic prime divisor of I, and thus prove the lemma. Let P := P;, for some
1 < j1 < n. Since P is prime, there exists by Lemma 1.7 some 1 < 43 < ¢ 4 1 such that
¢"(I) C P. Therefore, I C ¢~ (P). By Corollary 1.29, this means that ¢ =% (P) is a prime
divisor of I, in fact, ¢~ (P) is one of the primes Py, ..., P,. Since ¢~ (P) = P;, for some
1 < j2 < n, we can apply the same argument again, but this time on P;,. The result is

another prime divisor of I:
@2 (gofil(P)) =p 7 2(Py e {P,...,P,}.
If we continue in this way, we obtain a series of prime ideals
Pp™(P),p " T2 (P), " 1T RTE(P), L,

all contained in the finite set {Py,..., P,}. This implies that there exists ix,4; such that
" (@7 (P)) = ¢~ *(P). Hence ¢~ (P) is a p-periodic prime divisor of I. [ |

As we will see in the next lemma, I does not only have one p-periodic prime divisor, but

every divisor of [ is a p-periodic prime.

Lemma 3.11. Let R = K]Jy] with the injective endomorphism ¢ : R — R and let
A = RJz, ¢] be such that there are infinitely many ¢-periodic prime ideals. Assume
there exists a simple faithful left A-module £ = Av. Then I = anng(v) N R is a

product of nonzero (p-periodic primes.
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Proof. We will give a proof by induction on the number of different primes dividing I, where
in the base case we have that I = P;--- P, = P", that is, P = P, for all 1 < ¢ < n. By
Lemma 3.10, we have that P is -periodic. Hence I is a product of o-periodic primes.

For the inductive part, assume that for every simple faithful left A-module £ = Av, and
whenever I = anny(v) N R can be written as a product of less than or equal to m > 1 different
primes, we have that I is a product of ¢-periodic primes. Let E = Av be a simple faithful
left A-module such that I has m + 1 different prime divisors. By Lemma 3.10, I has at least
one @-periodic prime divisor. Let n < m + 1 be the number of different ¢-periodic prime
divisors of I. That is,

I=P - -P,Pyi1- P,

where none of the primes Py, --- P41 are p-periodic. We want to prove that n =m + 1.

Assume first that sv =0 for all s € P, --- P,,. Then
s€anny(v)NR=I=P, - - PyPyy1-- Ppyi,

so we have that

PPy C P PyPryy s P

But then, since P;--- Py Pyt1--- Pny1 € Pi---P,, we have that n = m + 1, using the
uniqueness of the product into prime ideals.

Assume now that there exists s € P - - - P, such that sv # 0 and define I := ann4(sv)NR.
Since R is a Dedekind domain, we know that Iy = Q1 - - - Q, for some u > 1 and where Q; are
prime ideals. Since sv # 0, we see that Asv = Av = F, and since F is a simple faithful left A-
module, we know by Lemma 3.10 that there exist 1 < i < u such that Q; is a ¢-periodic prime
ideal. Because P41+ Ppy1sv € Py Ppy1v = v = 0, we have that Pyqq - Pny1 C I
and hence P41 Ppy1 € Q;. By Lemma 1.7, there exist n + 1 < 5 < m + 1 such that
P; C @Q;. Since every nonzero prime ideal in R is maximal, we have in fact that P; = @);.

But Q; is ¢-periodic so P; is p-periodic. This is a contradiction unless n = m + 1. |

Lemma 3.12. Let R = K[y], ¢ an injective endomorphism of R and A = R[z, ¢] such
that there are infinitely many (-periodic prime ideals. Suppose that M is a maximal
left ideal of A that does not contain any nonzero two-sided ideals. Then M N R has a

singular @-periodic prime divisor.
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Proof. By Lemma 3.11, all the prime divisors of I := M N R are @-periodic. Take any prime

divisor, say P, of I and consider its p-orbit

orb,(P) = {P, ¢ H(P),...,¢ “(P)},

where u + 1 is the period of P. Suppose that P is the prime yielding the largest P-order
vp(I) = m > 1 among all elements ¢~/ (P) € orb,(P). We can make this assumption without
loss of generality because, if ¢~/ (P) is not a prime divisor of I, then Ve-ipy(I) =0 <wvp(I)
and if v,—;py(I) > vp(I), then we can replace P by ¢~ (P), which is a prime divisor of I
and is also (-periodic.

Now, if P is singular we are done. We will therefore in the remaining assume that P is

not singular. Let @) be the product of all the ideals in orb,(P), i.e.

Q =Py H(P)--- o "(P).

As o (p " (P)) C o "*H(P) for all i < n and ¢(P) C ¢ “(P), because ¢"“*'(P) C P,
we conclude that ¢(Q) C Q. Hence AQA C QA. Since @ # 0, we have that AQA is
a nonzero two-sided ideal and hence not included in the maximal left ideal M. Therefore
M C M+ AQA, but M is maximal, so M + AQA = A. Thus M contains an element of the

form
d

1+ ' e M, t,...,ta€Q. (3.15)
=0

For any 0 < i < d consider the ideal generated by the image ('(I), which we denote by
Li, ie. Ly = (¢'(I)) = Re'(I). Let A; = {j : Ly € ¢ (P)}. Since j € A; if and only if
Vo—i(p)(Li) # 0, we have that C; = [[ ¢y, ©~J(P) is a divisor of L; and hence, using the fact
that R is a Dedekind domain, there exist an ideal B; with L; = B;C;. Then

C;Biz" = Rp'(Ia' = Rx'I C AT = A(MNR) C M.

Take the least common multiple N = LCM (By, ..., Bg) of the ideals B; as in Definition 1.26.

Then since ) C C; we also have for all 0 < ¢ < d:

In particular n Z(ij:O tiz' € M, for any n € N and any t; € Q from equation (3.15). It follows
that for any n € V:

d d
n=n (1+Ztixi> —nZtixi e M.
i=0

=0
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Hence N C I.
Using that N = LCM(By,...,Bq) € I C P™, where m = vp(I), we have by Corollary
1.23 that
m < vp(N) = max (vp(By),vp(B1),...,vp(By)) .

Hence there exist 0 < i < d such that m < vp(B;) and therefore B; C P™, again by Corollary
1.23. Fix this 7. Then <g02(I)> = 0;B; C P™ C P = ¢ %P). Therefore 0 € A; and hence
C; C P. Thus

(¢'(I)) = C;B; C PP™ = P!
or equivalently

vp ((¢'(1))) > m+1. (3.16)

In general, we do not know whether ¢ is less than u 4+ 1, but we can reduce it modulo v + 1.
There are non-negative integers ¢ and r such that i = g(u + 1) + 7 with 0 < r < u. Since we

suppose that P is not singular, o~ (+1(pmtl) = pm+l by Proposition 1.32. In particular
Spfi(Perl) _ 8077" (Spfq(u+1)(Pm+l)> _ SO*T(Perl).
Together with equation (3.16) we conclude that
<(Pi(I)> C Pm—H = T C (p—z‘ (Pm—I—l)) —_ QD_T(Pm—H) = <(PT(I)> C Pm—‘rl'

Therefore we can replace ¢ by r = i(modu + 1) and we will assume that ¢ < u + 1.

Let s = v —i(p) (I) which is less than m + 1 as m was chosen to be the maximal P-order
of prime divisors of I. Then I = Jp~#(P)* for some ideal .J with vy—i(py(J) = 0. Applying
@' yields:

(P'(D) = (&' () (¢ (¢7(P)*))
Since v,—i(py(J) = 0, we have J £ ¢~ '(P). By definition ¢'(J) Z P and hence also (¢*(J)) €
P. But this means again that vp (<g0"(J)>) = 0. Together with Corollary 1.25 and equation
(3.16) we conclude:

ve (¢ (¢71(P)7))) = v ((&'(1))) +ve ({¢" (¢7'(P))))

I
<
T

58



Therefore ¢! (gp_i(P)s) C P™*1 and hence, again by Corollary 1.25, we have that

s<m+1<vp (¢ (¢ (P))) =svp (¢ (¢7'(P))).

This shows that vp (¢' (p~4(P))) > 2, that is,

but then, using that i < u + 1 and * 1 ={(P) C ¢~ (p*"1(P)), we obtain that

"THP) = ¢ (¢"TTH(P)) C o' (7" (¢"TH(P))) C ¢ (¢7(P)) C P

We conclude that P is singular, which is a contradiction. Hence our assumption that P was

not singular is false, so we conclude that P is in fact singular. |

Theorem 3.13. Let A = K|y|[z, ¢] where ¢ : K[y] — KJy] is an injective endomor-
phism. Suppose that there are infinitely many ¢-periodic primes in K[y]. Then A is

left primitive if and only if there is a singular ¢-periodic prime ideal in Ky].

Proof. Assume there is a singular ¢-periodic prime ideal P in K[y] of period n. Then ¢"(P) C
P2, so by taking t = 2 in Theorem 3.7, we conclude that A is left primitive by Corollary 3.8.

Conversely, assume A is left primitive. Then there exists a simple faithful left A-module
E. Since E is simple, E = Av for some v € E by Lemma 1.4 (i). Let I = anna(v) N K[y].

Since I is maximal, K[y| has a singular ¢-periodic prime ideal by Lemma 3.12. |

3.4 Summary left primitivity

We sum up our results for left primitivity in Theorem 3.14:

Theorem 3.14. Let A = KJy][z, ¢] for an endomorphism ¢ : K[y] — KJy]. Then A

is left primitive if and only if ¢ is injective and of infinite order and
(i) there are only finitely many @-periodic primes of K[y], or

(ii) K[y| has a singular y-periodic prime ideal.

Proof. If ¢ is of finite order, then A is not left primitive by Theorem 2.9, so assume that
the order of ¢ is infinite. Then A is left primitive if K[y| has only finitely many ¢-periodic

primes by Proposition 3.2. Otherwise, if there are infinitely many @-periodic prime ideals,
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then A is left primitive if and only if K[y] has a singular ¢-periodic prime ideal by Theorem
3.13. -
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Chapter 4

Examples of rings that are

primitive on only one side

We will need Proposition 4.1 in the following discussion.

Proposition 4.1. Let K be an algebraically closed field and let ¢ : K[y] — KJy] be
an endomorphism such that deg(¢(y)) > 1. Then there are infinitely many ¢-periodic

prime ideals in K[y].

Proof. We know that ¢(y) = f(y) for some polynomial f € KJy]. Define
Q) :={a € K : there exists a prime number p and a is a root of fP(y) — y}.

For every a € €, the prime ideal P := (y —a) of K][y| is gp-periodic because ¢~ P(P) =
(y — fP(a)) = (y — a) = P. Note that if a,b €  is such that a # b, then (y —a) # (y — b).
Thus the number of p-periodic primes is at least the cardinality of 2. Since K is algebraically
closed, there exists at least one root a € K of fP(y) — y for every prime number p. Hence
|| is greater than or equal to the number of prime numbers. We conclude that there are

infinitely many ¢-periodic prime ideals in K[y]. |

Let A = Kly|[z, ¢] for some endomorphism ¢ of K[y]. We will now search for conditions
on ¢ such that A is primitive only on one side. By Remark 1.15 and Theorem 1.19, we
can exclude simple rings and primitive rings that are PI-rings. We can also exclude skew
polynomial rings where p(y) € K or ¢ is of finite order by Corollary 2.2 and Theorem 2.9.

Assume there are only finitely many ¢-periodic primes of K [y]. Then A is left primitive by

Proposition 3.2. By Proposition 4.1, we have that deg(¢(y)) < 1. Hence ¢(y) = f(y) = ay+b
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for some a,b € K. In this case ¢*(y) = a’y +ab+b=a y+(

a”—1
"(y) = a” b.
©"(y) ay+<a_1)

) b. In general,

Let P = (y — ¢), where ¢ € K, be a p-periodic prime of K[y]. Then there exists n € N

such that f"(c) = c¢. Hence P is gp-periodic if and only if a"c + <“ _1> b = c, that is, if and
b

only if ¢ = 17, assuming a" # 1. Hence there is only one ¢-periodic prime ideal, namely
< 1L> where a # 1.

If a is a root of unity, then either A is not primitive by Corollary 2.10 and Theorem 2.11,
or right (and left) primitive by Theorem 2.12. There are therefore no skew polynomial rings
A = K|y|[z, ] that are primitive on only one side under the assumption that there are only
finitely many ¢-periodic primes of K[y]. As shown in the previous paragraph, if there are
infinitely many ¢-periodic prime ideals of K[y|, the degree of ¢(y) cannot be 1 and hence we
can exclude this case as well from our search for rings primitive on only one side.

If deg(p(y)) > 1, then A is right primitive by Theorem 2.13, so we will look for conditions
for A not to be left primitive. Since there are infinitely many y-periodic primes by Proposition
4.1, we need to look for endomorphisms ¢ such that K[y] has no singular @-periodic prime
ideals by Theorem 3.14. This leads to Corollary 4.3 below. Before we can prove Corollary

4.3, we need the general formula for the chain rule in derivation, which we state and prove

here:

Proposition 4.2. Let f(y) be a function. Then

dfn Hf (Fity (4.1)

for all n > 1.

Proof. We will prove the formula by induction. The base case n = 1 is trivial:

1 1-1
T L) = £°w) = 1),
=0

For the inductive step, assume that (4.1) has been proven for n. Then

n+l n n—1 ' n '
T =y = e I 0 = T1r 0o,
=0 i=0
where we have used the chain rule %}5‘”))) =1 (9(y))g (y). -
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Corollary 4.3. Let A = K[y|[z, ¢] for an algebraically closed field K of characteristic
0 and an injective endomorphism ¢ such that deg(p(y)) > 1. Then A is right primitive,
and A is left primitive if and only if there exists a € K such that P := (y —a) is ¢-
periodic and f’(a) = 0, where f(y) := p(y).

Proof. A is right primitive by Theorem 2.13. Since deg(y(y)) > 1, there are infinitely many
@-periodic primes in K[y]. Thus, by Theorem 3.14, A is left primitive if and only if K[y] has

a singular @-periodic prime ideal. We claim that

Claim: K{[y| has a singular ¢-periodic prime ideal if and only if there exists a € K
such that P = (y — a) is p-periodic and f’(a) = 0.

To prove the claim, assume K[y] has a singular p-periodic prime ideal Q. Then @ = (y — b)
for some b € K such that f(b) = b where n is the p-period of Q. Since @ is singular, we

have that
PR S Q= (=17 =((y—b)).

On the other hand, (¢™(Q)) = (¢" (y — b)) = (¢"(y) — " (b)) = (¢"(y) — b). Hence (y — b)”
divides ¢™(y) — b, that is, b is a root of ¢"(y) — b of multiplicity at least 2. Thus y — b
divides W and therefore f’(f*(b)) = 0 for some i by the general chain rule (4.1).

Let a = f%b). Then a is a root of f/(y), and the prime (y —a) is -periodic because
" (ly—a)) = (y— f"T(0) = (y— f (b)) = (y — a).

Conversely, assume a € K is such that P = (y — a) is g-periodic of period n and that
f'(a) = 0. Then f™(a) = a and

A(f"(@) =a) _TT pe iy
it | SACAC)

by (4.1). Since f’(a) = 0, we have that %Z)fa) =0, that is, y — a divides W. Hence

a is a root of f™(y) — a of multiplicity at least 2. Thus
#"(P) = ("(y) —a) € ((y — a)”) = P2
We conclude that P is singular. This prove the claim, and the corollary. |

Example 4.4. Let A = C[y][x, ¢] with ¢ an endomorphism of Cly] such that ¢(y) = f(y) =
y? + 1. Then deg(p(y)) > 1. By Lemma 2.1 ¢ is injective. Hence A is right primitive by
Corollary 4.3.
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Since f'(y) = 2y, 0 is the only element of C such that f’(0) = 0. However, f*(0) € R
and f"(0) > 0 for all n > 0. We will prove this using induction on n. First f(0) =1 > 0.
Assume now that f%(0) € R and f¥(0) > 0 for some k > 1. Then f*™1(0) = f (f*(0)) =
( f’“(O))z +1>0%4+1>0and f*1(0) € R. This shows that f*(0) € R and f*(0) > 0 for all
n > 0. In particular, there exists no n > 0 such that f™(0) = 0, so we conclude that P := (y)

is not y-periodic. Hence A is not left primitive by Corollary 4.3.

Example 4.5. Let A = C[y][z, ¢] with ¢ an endomorphism of K[y| such that ¢(y) = f(y) =
y? — 2y + 1. As in Example 4.4, A is right primitive. Since f’(y) = 2y — 2, the only zero of
the derivative of f is y = 1. However, f(1) = 0 and f2(1) =1, so P = (y — 1) is ¢-periodic

with period 2. Hence A is left primitive as well by Corollary 4.3.

4.1 A skew polynomial ring over the field of rational functions

We will here present the first known example of a ring primitive on only one side, constructed
by George Bergman in 1964 [1].

Let ¢ : Q(y) — Q(y) be the same homomorphism as in Example 3.5, that is, ¢ (r(y)) =
© (r (yg)) Then Qly][z, ¢] is both right and left primitive by Theorem 2.13 and Corollary
3.8. In this section we will se that if we instead of the coefficient ring Q[y] go to the field of
rational functions Q(y), we can find a subring B of A := Q(y)[z, ¢] that is right primitive but
not left primitive. Since every field is also an integral domain, and since ¢ is injective, A is
without zero divisors by Proposition 1.33 and every left ideal of A is principal by Proposition

1.35.

Lemma 4.6. For any r € Q(y) there is a unique 7* € Q(y) such that

r) +r(=y) _ .0
— 5 =T (v°) . (4.2)
Proof. To see this, let r(y) = g((z)) where f,g € Qly], and write f(y) = fo(y) + yf1(y) such

that fo is the sum of all the terms of f with even power in y and yf; is the sum of all the

terms of f with odd powers in y. Similarly, write g(y) = go(y) + yg1(y). Since (—y)" = y"
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for even n, we have that

r) +r(—y) _ 38ty _ fWy(=y) + f(=y)g(v)
>

2 B 29(y)g(—y)
(fow) +yf1 () (9o(y) —yg1(y)) + (foly) — yf1(y)) (90(y) + yg1(y))
2(g90(y) +v91(v)) (90(y) — yg1(y))
_ 2fo@)9o() =20° i) y) _ fo@)oow) =’ h(waiy) _ . ()
290(y)? — 242 g1(y)? 90W)? —v?ny)?

Lemma 4.7. For every r,s € Q(y), define r-s := rs and -z := r*, with r* as defined

n (4.2). With this structure, Q(y) is a right A-module.

Proof. Regarding (i), (ii) and (iv) in the definition of a module on page 1, there is nothing
to prove. To prove (iii), it suffice to verify that for any r, s € Q(y) we have that (r-x)-s =

(r-¢(s)) - x or equivalently that r*s = (re(s))*. Observe that

This proves that r*s = (rp(s))* and therefore Q(y) is a right A-module. [ |

Lemma 4.8. Let n,m > 0. Then

yz7  if n is divisible by 2,

0 otherwise.

Proof. We will give a proof by induction on m. The case m = 0 is trivial: y" - 20 = y" as

it should since 2° = 1 divides n for any n > 0. We will divide the inductive step into three
cases. In all three cases, we will assume the inductive hypothesis

y7-T if n is divisible by 21,

0 otherwise

for m > 1.
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(i) In the case n is not divisible by 2™~1, we have that y" 2™ = (y

(ii) In the case n is divisible by 2! but not by 2™, observe that

yream = (Yt e =y e = @ﬁ) (4.3)

because r-x = r* for all € Q(y). Since 5= is an odd integer we have that (—y) T —

—y2mn—1 and therefore

(yzm%l>* (yQ) _ y2m7—1 _i_;_y) om—1 _ yg'rYL—l ;ygm—l _0.

Since y" - 2" = (y g )* by (4.3), we conclude that y" - 2™ = 0.

(iii) In the case where n is divisible by 2, we have that 571 is an even integer so that

(—y)WL—1 = yz=T . Thus

n * yz”m%l _.I_ (_y) 2m7171 yzmnfl + y2,mn71 n
om—1 2 = = = om—1 .
(y ) (") 2 2 Y
Hence, by (4.3), we have that
n * n 1/2 n
y"ex™ = <y2m7—1> = (yzm—1> =27,
This completes the proof. |

Theorem 4.9. Let A = Q(y)[z, ¢] where ¢ : Q(y) — Q(y) takes r(y) to r (y*) for

every r € Q(y). Then any subring B C A containing x and y is right primitive.

Proof. Let M = Q(y) with the right A-module structure defined in Lemma 4.7. By restricting
the scalars, M is also a right B-module. We will prove that B is right primitive by showing
that M is simple and faithful.

In order to prove that M is simple, we will prove that M # 0 and that the only submodules
of M are 0 and M. Since M generated by y, we have that y € M and hence M # 0.
Let 0 # g € M be a nonzero element in M, where p,q € Q[y]. Choose a € N such that
2% > deg(p). Let ¢ := the leading coefficient of p. Then

p a_ P oa_
2 gyt deslp) — £,2%—deg(p)
cq c
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The element on the right is a polynomial with leading term y?* and constant term zero.
Hence

P 20 —deg(p)

cxf = (yQa + lower terms) -x®
c

= y* . 2% + (lower terms) - z°

= ygfa +0 by Lemma 4.8

:y_

This shows that given any nonzero m € M we can find a € A such that ma = y. But y
generates M, so 0 and M are the only submodules of M. Hence M is simple.

We will now prove that M is faithful. Let 0 # b= Y_7;(y)z* € B be a nonzero element of
the subring B, where 7;(y) € Q(y). Choose a polynomial p € Q[y] such that r; := pr; € Q[y]
for all 4. If r; = %, then p = [, g; would work. Since b is arbitrary, in order to show that M
is faithful it is sufficient to find one element a € M such that a - b # 0. To achieve this, we
will look for an element m € M such that mp-b=m> r;-x" # 0. Let j be the least integer
such that r; # 0 and let

d = max(degr; — degr;),

where we use the convention that the degree of the 0-polynomial is —oco. Choose n > j so

that 2" > deg R; and 2n=i=1 > d. Let m = y?"~9€" and consider

an—deg T . Z r; (y)l,l

Using Lemma 4.8, we see that the exponent of 4 in the highest-power term of y2" ~4¢875 .y,
is
2" —degr; + degr;
9i

(4.4)

or zero if (4.4) is not an integer. The denominator 2¢ is a result of the action of *. For i = j,

(4.4) is just 27" = 2"~J. For i > j,

2" —degrj +degr; 2" + (degr; — degr;) <2n+d7 ni , d
2 2i ST T2 Oty

< on=(+D) 4 g < gn—i—1 4 on—j—1 _ gn—j

So only the jth term r; contributes to the coefficient of y2n7j. Because r; # 0 we conclude
that y2" 9875 . r;(y)2zd # 0 and hence y2 9877 . Y r;(y)a® # 0. This proves that M is

faithful and we conclude that B is right primitive. |
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Having proved that B is right primitive, we will search for restrictions on B such that B
is not left primitive. For a prime number p, the polynomial

_yrot

y T =Y Tty e Qly

@y (y)

is called the p'" cyclotomic polynomial and is irreducible according to [13, p. 42]. If

w € C\{1} is a root of ®,(y) and i < p, then

o, (w') = ol =0 (4.5)

because
wP —1

=0 <<= W -1=0 < w’=1.
w—1

Q,(w) =0 <=

Let 1 < i < p— 1. Then there exists j such that ¢j = 1 mod p. If w € C\{1} is a root of
®,(y), then (wi)j = w. Therefore, if g € Q[y]|, we have that

g(w') =0 < @,(y) divides g (') <> ¢ ((w’)J) =0 < g(w)=0. (4.6)

Let P = (q) be the prime ideal generated by an irreducible polynomial ¢ € KJy]. Just
as on page 13, we define the P-order of a polynomial f € Q[y], denoted vp(f), to be the
largest m > 0 such that (f) € P™ and (f) € P™*'. Equivalently, vp(f) = m if ¢™ is the
largest power of ¢ that divides f. Clearly, if ¢" divides f, then f € (¢") = (¢)" = P™. If
(g™ ') would divide f, then f would belong to P™*!. On the other hand, if (f) C P™, then
f € P™ = (¢"™) and hence f is a multiple of ¢".
For r € Q(y), we define
vp(r) ==vp(f) —vpr(g),

where r = 5 for some f, g € Q[y|. To simplify notation, define v, := v(g,(y), that is, v}, is the

(®,(y))-order where (®,(y)) is the prime ideal generated by the p'' cyclotomic polynomial.

Example 4.10. Let p = 3. Then the cyclotomic polynomial is ®3(y) = y? + y + 1, and if

WPy ) B -y +2)  f
"= 3y3 + 3y? + 3y Ty € QW)

then v3(r) = vs (5) =uv3(f) —v3(9) =4—1=3.

Lemma 4.11. Let the endomorphism ¢ : Q[y] — Q[y] be defined by ¢(y) = ¢ (y*)
and let 7 € Q(y). Then vy, (r (y?)) = vp(r(y)) for any prime number p > 2.
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Proof. Since p > 2, we have, for any root w € C\{1} of ®,(y), that ®, (w?) = 0 by (4.5). It
follows that w is a root of ¢ (®,(y)) and therefore ®,(y) divides ®, (y?), that is,

®y (%) = Pp(y)(y)
for some ® € Q[y]. If fact, ®(y) = % because

YA B R
@, () = (?fy}_ o= e - n Wi,

Note that since p is odd, —1 is not a root of ®,(y) because ®,(—1) (—;)_P1—1 ==2=1+#0.
Thus any root w € C\{1} of ®,(y) is different from —1 and

- Pyq
<I>(w):w i =0 <<= wW+1=0 <= w!=-1,
w+1
but ®,(w) =0 = w? =1 = 1= —1, a contradiction. Thus the roots of ®(y) are all

different from the roots of ®,(y). Hence ®,(y) does not divide ®(y) and therefore

0 (9 (1)) = vy (B, (47)) = v (2, (1) () ) = 1. (4.7)

For any f € Q[y] with n = v, (f) there exists a nonzero g € Q[y] such that f(y) = ®,(y)"9(v)
and ®,(y) does not divide g(y). Assume ®,(y) divides g(y?) and let w € C\{1} be a root of
¢, (y). Then g(w) = 0 by (4.6) and hence ®,(y) divides g(y). This is a contradiction, so we
conclude that ®,(y) does not divide g (y*) = ¢(g(y)). It follows that

up (@ (f(y)) = vp (@ (2p()" ¢ (9(y))) = nvp (0 (Pp(y))) + vp (0 (9(¥))) =1 = v, (f(y))

where we used (4.7). Hence

Let now r = % € Q(y) be any element in Q(y) such that f,g € Q[y]. Then

wp(r) =1 (L) =) = yle) = 1)~ i) = 0 (221) =1, (L)) = utiotrn
[ ]
For a field K, the function v : K — RU {co} is called a valuation if it satisfies
(i) v(a) = oo if and only if a = 0;
(i) v(ab) = v(a) + v(b); and

(iii) v(a +b) > min{v(a),v(b)} with equality if v(a) = v(b).
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for all a,b € K.

[ Proposition 4.12. Let v be a valuation on a field K. Then v(1) = v(—1) = 0.

Proof. v(1) = v(1-1) = v(1) + v(1). Subtracting v(1) from both sides yields 0 = v(1).

Furthermore,

so v(—1) =0. [

Just as in Corollary 1.25, we can show that, for a prime number p, the ®,(y)-order v,
induced by the cyclotomic polynomial ®,(y) is a valuation on Q(y). Given any such valuation
v and a nonzero element a = Y. a;z° € A = Q(y)[z, ¢], we say that a is of relativized v-

degree j, denoted d,(a) = j, if
(i) v(a;) = min; (v (a;)), and

(ii) for all 0 <4 < n we have that v(a;) = v(a;) implies that i < j.

Proposition 4.13. Let v be a valuation on Q(y) that satisfies v(¢(r)) = v(r) for
all 7 € Q(y). Then v is extended to a valuation on A = Q(y)[z, ¢] by the definition
v (3 a;z’) = min; v (a;). Furthermore, 6,(fg) = 6,(f) + du(g) for all f,g € A.

Proof. To show that the valuation can be extended to A, we show that the three items in

the definition of a valuation are satisfied:
(i) v (X;aiz") =00 <= min;v(a;) =00 < a; =0 foralli < Y a;y" = 0.

(ii) Let f,g € Awhere f=3" a;x' and g = Z}n:o bj:z:j and suppose v(f) = k1, v(g) = ko,
du(f) = 11 and 6,(g) = 2. Then v (a;,) = k1 < v(a;) for all i # i1 and v(a;) > v (ai)
for all ¢ > 4;. Similarly, v (b;,) = k2 < v(b;) for all i # ia and v(b;) > v (b;,) for all
i > i9. Since

n m n m m+n l
fg9= (Z aﬂ’) Dbl | =37 Caipt (by) e =y (Z ai‘Pi(bl—i)) 2!
i=0 §=0 i=0 j=0 1=0 \i=0

the coefficient of z't+%2 in fg is 221:'512 ai@" (biy1iy—i). For all 0 < i < i1, we have that

i1 + i3 — 7 > i and hence

0 (0" (bi4in—i)) = v (biy4in—i) > v(biy),
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where we have used that v(p(r)) = v(r) for all r € Q(y). Also, v(a;) > v(a;, ). Therefore
v (@i (biyin—i)) = v(ai) + v (¢ (biy1iy—i)) > v (ai,) + v (biy) .-
If ¢ > i1, then v(a;) > v(a;, ) and v (cpi (bil—i-ig—i)) > v(bi,), so
v (ai@’ (biy4in—i)) > v (as;) + v (by)
in this case too. However, in the case ¢ = i1, we have that
v (aip" (biin—i)) = v (ai, 0" (biy)) = v (ai,) + v (by) -

We conclude that -
i1+12

v <Z ai‘PZ (bi1+i2—i)> =v (ail) +v (bi2)
i=0

since we know that v is a valuation on Q[y]. Now, since v(a;) > v (a;,) and v(b;) >

v (bi,), we have that
v (aigoi (bl—i)) > min{v(a;) +v(b—_;)} > v(aiy) + v (by,)
for any 0 < i <[ <m 4+ n, and hence

v(fg) = v(f) +v(g)- (4.8)

However, the valuation of the coefficient of z*17%2 is v(f) + v(g), so we have in fact

equality in (4.8).

(iii) Let f,g € A where f =" ja;2" and g = Z;n:() bjx’ such that m < n. Let b; = 0 for
allm+1<4¢<n. Then

n

v(f+g)=v Z a;zt + Z bzl | =v (Z(ai + bz)x’) = miin v(a; + b;)
i=0 5=0

=0

> miin (min {v(a;),v(b;)}) = min {miin v(a;), miin v(bi)} =min{v(f),v(g)}.

It remains to show that d,(fg) = 0,(f) + du(g). Recall that 6,(f) + d,(g) = i1 + i2. For
[ > iy + io, the coefficient of z! in the product fg is Zé:o a; o' (b_;). If i < iy, then

[ —1i>11 4+ iy — 1> 1o and hence

and if ¢ > 47, then



Hence

l
v <Z aip’ (bl_i)> > min{v(a;) +v(b—i)} > v(f) +v(g).
=0
We conclude that 6,(fg) = d,(f) + du(g). [ |

Let V be the set of all valuations induced by the cyclotomic polynomial ®,, with p prime and
p > 2. Then

(i) V is a infinite set because there are infinitely many prime numbers p > 2;
(ii) v(r(y)) = v(r(y?)) for all v € V by Lemma 4.11;

(iii) Given r € Q(y), we have that v(r) = 0 for all but a finite number of valuations
v € V. This is because r has finite degree in y and hence there are also a finitely many

cyclotomic polynomials in its factorisation;

(iv) Given v € V, there exists a nonzero r, € Q(y) such that v(r,) > 0 and w(r,) > 0 for

all w € V. This is because v = v, for some prime number p > 2, so just let r, = ®,(y).

B3 (y)*(3y>—4y+2)

Example 4.14. Let r be as in Example 4.10. Since r = 355 (1)

, we have that

v3(r) = 3 while vy,(r) = 0 for all other prime numbers p > 5.

Example 4.15. Let v = v5 € V. Then r, := ®5(y) = y* + 3> + ¥ + y + 1 has valuation

v(ry) = 1 > 0 while w(r,) = 0 for all other valuations w € V.

Proposition 4.16. Let V be the set of all valuations induced by some cyclotomic
polynomial and for each v € V, define 4, := {a € A : v(a) > 0}. Then A, is a subring
of A.

Proof. Since v(1) = 0 by Proposition 4.12, we have that 1 € A,. Let a,b € A,. Thenv(a) >0
and v(b) > 0 and hence v(a 4+ b) = min{v(a),v(b)} > 0. Thus a + b € A,. Furthermore,

v(—a) =v(-1-a) =v(—-1)4+v(a) >0,

where we used that v,(—1) = 0 by Proposition 4.12, so we have that —a € A,. Moreover,

v(ab) = v(a) +v(b) > 0 and hence ab € A,. We conclude that A, is a subring of A. [ |

Define

B = ﬂ Ay,

veV
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that is, B consists of those elements on which all the valuations are non-negative. Since each

A, are subrings of A, it is clear that B is a subring of A as well.

Theorem 4.17. Let A = Q(y)[z, ¢] where ¢ : Q(y) — Q(y) takes r(y) to r (y?) for
every r € Q(y), and let V' be the set of all valuations induced by some cyclotomic

polynomial. For each v € V, define A, = {a € A : v(a) > 0}. Then B = ¢y Ay is

right primitive but not left primitive.

Proof. Since no cyclotomic polynomials divides y, we have v(y) = 0. Also, v(z) = v(lz) =
v(1) = 0 by Propositions 4.13 and 4.12 for all valuations v. It follows that B contains = and
1y, s0 by Theorem 4.9, B is right primitive.

Let I be any nonzero left ideal of B. Since B is left primitive if and only if B has a simple
faithful left B-module, B not being primitive is equivalent to either I not being maximal or
B/I not being faithful by Lemma 1.4 (iii). Since A is a principal ideal domain by Proposition
1.35, there exists 0 # g € I such that Al = Ag. We can assume without loss of generality
that the leading coefficient of g is 1. We will divide our analyses of the left primitivity of B
into two cases; the case where the z-degree of g is strictly positive, and the case where the
x-degree of g is 0.

Case 1: g has x-degree d > 0.

Choose w € V such that w(g) = 0. Because the leading coefficient of g is 1, we have that

0w(g) = d. Any nonzero element in Al can be written as ag for some a € A, and
dw(ag) = dw(a) + duw(g) = duw(g) =d >0, (4.9)

by Proposition 4.13. By hypothesis, we can choose r,, € Q(y) such that w(r,) > 0. Then
rw ¢ I because otherwise, there exists a € A such that r,, = ag and w(r,,) = w(a)w(g) =
w(a) -0 = 0 for some a € A, a contradiction. Hence, if I were maximal, we could write
bry + e = 1, for some b € B and some e € I, by Lemma 1.4 (iv). But then we would
have e = 1 — bry,, which has relativized v-degree d,,(1 — bry) = 0 because w(1) = 0. This
contradicts (4.9), so we conclude that I is not maximal.
Case 2: g has x-degree d = 0.
In this case g € Q(y), and we may assume without loss of generality that ¢ = 1. For any

valuation v € V, any nonzero r € Q(y) and any b € B, we have that

v(rtor) =v <i) +o(b) +v(r) =v(1) —v(r) +vd) +v(r) =0+ v(b) = v(b).
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Since v(b) > 0 for all v € V, we have that v(r~'br) > 0. Hence r~'br € B and br € rB for
all b€ B. Thus Br C rB and we can show Br D rB in the same manner. We conclude that
rB = Br for all r € Q(y). Since g = 1, we have that Al = Ag = A and therefore there exists
a; € A and e; € I such that 1 = a;e;. Each element a; € A is a skew polynomial in z with
coefficients in Q(y). Let r be the common denominator of all appearing coefficients. Then
r € Qly] and ra; € Q[y]. Multiplying 1 = > a;e; by r from the left yields r = > (ra;)e; € I.
Note that by the definition of the v,-orders by the cyclotomic polynomial, each polynomial
in Q[y] has non-negative valuation and hence Q[y] is a subring of B. Therefore r = > (ra;)e;
has an element r € Q[y] C B on the left side and an element (ra;)e; € Q[y]I C I on the right
side. This means that the two-sided ideal rB = Br which is an ideal in B, is contained in
the left ideal I and in particular 7B = Br C anng(B/I). Since r, as a common multiple of
nonzero elements, is nonzero, Br is nonzero. Therefore B/I is not faithful. We conclude that

B is not left primitive. n
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