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Abstract. We present a comprehensive mechanism for the emergence of rotational horseshoes and
strange attractors in a class of two-parameter families of periodically-perturbed differential equations
defining a flow on a three-dimensional manifold. When both parameters are zero, its flow exhibits
an attracting heteroclinic network associated to two periodic solutions. After slightly increasing both
parameters, while keeping a two-dimensional connection unaltered, we focus our attention in the case
where the two-dimensional invariant manifolds of the periodic solutions do not intersect. We prove
a wide range of dynamical behaviour, ranging from an attracting quasi-periodic torus to rotational
horseshoes and Hénon-like strange attractors. We illustrate our results with an explicit example.
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1. Introduction

A strange attractor is an invariant set with at least one positive Lyapunov exponent whose basin
of attraction has non-empty interior. Nowadays, at least for families of dissipative systems, chaotic
dynamics is mostly understood as the persistence of strange attractors — occurring for parameters in a
set of positive Lebesgue measure. Persistence of dynamics is physically relevant because it means that
the phenomenon is observable with positive probability. Proof of the existence of strange attractors
is usually obtained by comparing the dynamics in an invariant set to either the Lorenz or the Hénon
attractors, or through the unfolding of a singularity, for a discussion see [7].

There are few examples of periodically-forced vector fields exhibiting complex dynamics that may
be proven analytically. In this article, we give an explicit mechanism to obtain strange attractors
in a two-parameter family of vector fields unfolding an attracting heteroclinic network. When the
first parameter is different from zero, two normally hyperbolic attracting tori arise near the network.
Fixing this parameter and varying the second, the tori break and suspended horseshoes emerge, via the
torus-breakdown phenomenon [2, 3]. In the meantime, persistent attractors (of Hénon-type) associated
to homoclinic tangencies are created.

Our route to chaos from an attracting network is different from the routes described by [14] and
[5], where the authors use coupled oscillators. Another different itinerary has been described by [9] in
the context of the Langford system. These works are discussed in Section 7.

The theory developed in this paper is explicitly applicable to the analysis of various specific differen-
tial equations and the results obtained are beyond the capacity of the classical Birkhoff-Melnikov-Smale
method associated to heteroclinic tangles [27].
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with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement
PT2020. A.A.P. Rodrigues aknowledges financial support from Program INVESTIGADOR FCT (IF/00107/2015). Part
of this work has been written during AR stay in Nizhny Novgorod University partially supported by the grant RNF
14-41-00044.
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Our purpose in writing this paper is not only to point out the range of phenomena that can occur
when simple non-linear equations are periodically forced, but to bring to the foreground the techniques
that have allowed us to reach these conclusions in a relatively straightforward manner.

We analyse a family of periodic perturbations of an attracting symmetric heteroclinic network
defined on the two-sphere. Instead of looking at the time-T maps as in [18, 25], we extend the phase
space and we explicitly compute return maps induced by the perturbed equations in a neighborhood
of the extended heteroclinic network. The cyclic variable’s speed plays an important role in the
emergence of the horseshoes. Using the techniques explored in [23, 26], we reduce the analysis of the
non-autonomous system to that of a two-dimensional map on a circloid. These techniques are clearly
not limited to the systems considered here. It is our hope that they will find applications in other
dynamical systems, particularly those that arise naturally from mechanics or physics [1, 8, 24, 25, 21].
See also the dynamical description of the periodically-forced van der Pol oscillator in [23, 26], where
the authors used the Afraimovich Annulus Principle to prove the existence of an invariant torus.

The title “Periodic forcing of heteroclinic network” refers to the study of the dynamics associated to
a parametric periodically-forced vector field unfolding an asymptotically stable heteroclinic network.

Structure of the article. This article is organized as follows. In Section 3, we describe the setting of
our problem and state the main results after having revised some conceptual preliminaries in Section
2. Results on general families of vector fields are proved in Section 5, after the derivation in Section 4
of the first return map to a given cross section. An explicit example is treated in Section 6. We finish
this article with a discussion on the way our results fit in literature in Section 7.

2. Preliminaries

In this section, we introduce some terminology for vector fields acting on three-dimensional Rie-
mannian manifolds that we will use in the remaining sections. Consider the two-parameter family of
C3–smooth autonomous differential equations

(2.1) ẋ = F(ν,µ)(x) x ∈ S3 ⊂ R4 ν, µ ∈ R

where S3 denotes the unit sphere, endowed with the usual topology. Denote by ϕ(ν,µ)(t, x), t ∈ R, the

associated flow. The flow is complete (i.e. solutions are defined for all t ∈ R) because S3 is a compact
without boundary.

2.1. Heteroclinic structures and symmetry. Suppose that A and B are two hyperbolic saddles
of (2.1). There is a heteroclinic cycle associated to A and B if

W u(A) ∩W s(B) 6= ∅ and W u(B) ∩W s(A) 6= ∅.
The non-empty intersection of W u(A) with W s(B) is called a heteroclinic connection between A

and B, and will be denoted by [A → B]. Although the existence of heteroclinic cycles may be a
non-generic feature within differential equations, they may be structurally stable within families of
systems which are equivariant under the action of a compact Lie group G ⊂ O(4), due to the existence
of flow-invariant subspaces (see [10]).

Given a group G of endomorphisms of S3 ⊂ R4, we will consider two-parameter families of vector
fields

(
F(ν,µ)

)
under the equivariance assumption

F(ν,µ)(γx) = γF(ν,µ)(x)

for all x ∈ S3, γ ∈ G and (ν, µ) ∈ R2. For an isotropy subgroup G̃ < G, we will write Fix(G̃) for the

vector subspace of points that are fixed by the elements of G̃. For G−equivariant differential equations,

the subspace Fix(G̃) is flow-invariant.
If Ω ⊂ S3 is a flow-invariant set of (2.1), its basin of attraction, B(Ω), is the set of points in S3

whose orbits have ω−limit in Ω. We say that Ω is asymptotically stable if B(Ω) contains all the
half-trajectories in positive time starting in an open neighbourhood of Ω.
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2.2. Rotational horseshoes. Let H stand for the infinite annulus H = S1 ×R endowed with the
usual inner product from R2. We denote by Homeo+(H) the set of homeomorphisms of the annulus
which preserve orientation. Given a homeomorphism f : X → X and a partition of m ≥ 2 elements
R1, ..., Rm of X ⊂ H, the itinerary function ξ : X → {1, ...,m}Z = Σm is defined by

ξ(x)(j) = k ⇔ f j(x) ∈ Rk, for every j ∈ Z.

Following [20], we say that a compact invariant set Λ ⊂ H of f ∈ Homeo+(H) is a rotational horseshoe
if it admits a finite partition P = {R1, ..., Rm} by sets Ri with non empty interior in Λ so that

• the itinerary ξ defines a semi-conjugacy between f |Λ and the full-shift σ : Σm → Σm, that is
ξ ◦ f = σ ◦ ξ with ξ continuous and onto;
• for any lift G : R2 → R2 of f , there exist k > 0 and m vectors v1, ..., vm ∈ Z× {0} so that∥∥∥∥∥(Gn(x̂)− x̂)−

n∑
i=0

vξ(x)(i)

∥∥∥∥∥ < k for every x̂ ∈ π−1(Λ), n ∈ N,

where ‖ ? ‖ denotes the usual norm of R2, π : R2 → H denotes the usual projection map and
x̂ ∈ π−1(Λ) is the lift of x; more details in the proof of Lemma 3.1 of [20]. The existence of a
rotational horseshoe for a map implies positive topological entropy at least logm.

2.3. Strange attractors. Strange attractors contribute to the richness and complexity of a dynamical
system. We introduce the following notion, adapted from [19], to the situation under consideration.
A (Hénon-type) strange attractor of a two-dimensional dissipative diffeomorphism f defined in a
Riemannian manifold, is a compact invariant set Λ with the following properties:

• Λ equals the closure of the unstable manifold of a hyperbolic periodic point;
• the basin of attraction of Λ contains an open set (and thus has positive Lebesgue measure);
• there is a dense orbit in Λ with a positive Lyapounov exponent (exponential growth of the

derivative along the orbit).

A vector field possesses a strange attractor if the first return map to a cross section does.

3. Setting and main results

Our object of study is the dynamics around an attracting heteroclinic network for which we give a
rigorous description here.

3.1. The object of study. Consider the family of C3–autonomous differential equations on a two
dimensional manifold M2 diffeomorphic to the two-sphere S2 ⊂ R3 and parametrised by ν ∈ R

(3.2) ẋ = Fν(x), x ∈ R3.

Suppose that, for ν = 0, the flow of (3.2) has an attracting heteroclinic cycle associated to two
equilibria and that for ν 6= 0 one of the heteroclinic connections is broken, yielding an attracting
periodic solution, as illustrated in Figure 1. More precisely we are assuming that (3.2) satisfies:

(A1) there is a flow-invariant manifold M2 diffeomorphic to S2 that is attracting in the sense that
every nearby trajectory is asymptotic to it in forward time;

(A2) there are two equilibria of saddle type v and w;
(A3) there are two heteroclinic connections from w to v, forming a Jordan curve ϑ on M2.

Moreover, the restriction of the flow of (3.2) to M2 satisfies:

(A4) for ν = 0 there are two heteroclinic connections from v to w;
(A5) for ν = 0 the heteroclinic network formed by the connections between v and w is attracting;
(A6) for ν = 0 the only periodic solutions are the equilibria;
(A7) for ν 6= 0 the heteroclinic connections from v to w are broken and there are two attracting

hyperbolic periodic solutions, each one in one connected component of M2\ϑ.
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v w v w

(A) (B)

Figure 1. Partial phase portrait associated to the one-parameter family (3.2), a periodic
solution appears when a heteroclinic connection is broken. (A): ν = 0; (B): ν 6= 0.

The period of the solutions of (A7) tends to infinity when ν tends to zero, as they accumulate on the
heteroclinic cycles containing v and w. From (A6), these are the only non-constant periodic solutions.
Property (A7) is the generic unfolding of a heteroclinic network like the one in (A5). In contrast,
Property (A3) is not generic but occurs generically in systems with a flow-invariant two-dimensional
manifold, for instance in the presence of symmetry — see the example in §3.3 below.

We subject the autonomous differential equation (3.2) to a family of non-constant time-periodic
perturbations φµ(t, x) of period π/ω ∈ R+, where the parameter µ ≥ 0 controls the amplitude of the
perturbation. The perturbed equation

ẋ = Fν(x) + φµ(t, x), x ∈ S2, t ∈ R

may be converted into an autonomous equation

(ẋ, θ̇) = F(ν,µ)(x, θ)

in M2 × S1 by rewriting it as

(3.3)

{
ẋ = Fν(x) + φµ(θ, x)

θ̇ = 2ω (mod 2π).
φ0(θ, x) ≡ 0.

For µ = 0 the last equation of (3.3) is not coupled to the first. Hence, the dynamics of (3.3) may be
obtained from conditions (A1)–(A7), as follows.

Proposition A. If (A1)–(A7) hold for Fν then the flow of (3.3) for µ = 0 and small ν ≥ 0 satisfies:

(1) there is an invariant flow-invariant manifold M3 diffeomorphic to S2 × S1 that is globally
attracting, in the sense that it attracts all trajectories in its neighbourhood.

Furthermore, the restriction of the flow to M3 satisfies:

(2) there are two periodic solutions in Pv = {v} × S1 and Pw = {w} × S1 of saddle type;
(3) for ν = 0 the invariant manifolds of Pv and Pw inM3 coincide, forming a heteroclinic network

Γ with the geometry of a singular two-dimensional torus of genus 2;
(4) for ν > 0 the manifolds W u(Pw) and W s(Pv) in M3 coincide;
(5) for ν > 0 we have W u(Pv) ∩W s(Pw) = ∅;
(6) for ν > 0 there are two attracting invariant two-dimensional tori T ±(ν);
(7) when ν → 0, the tori T ±(ν) accumulate on Γ.

The proof of Proposition A follows by combining the dynamics of (3.2) with the existence of a cyclic
variable (see Chapter 4 of [23]).

3.2. The periodically forced system. For ν = µ = 0, let Σ be a cross section of the heteroclinic
cycle Γ inM3. Then Σ is also a cross section of (3.3) for small ν, µ ≥ 0. Let R(ν,µ) be the first return
map to Σ, with respect to the flow defined by F(ν,µ). Define also

Ω(ν,µ) =
{
X ∈ Σ : Rn(ν,µ)(X) ∈ Σ, ∀n ∈ N

}
and Λ(ν,µ) =

⋂
n∈N
Rn(ν,µ)

(
Ω(ν,µ)

)
.
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In this article, we present a comprehensive analysis on the dynamics of R(ν,µ) on the non-wandering
set Λ(ν,µ). When there is no risk of misunderstanding, we omit the subscripts (ν, µ).

When (ν, µ) 6= (0, 0) one expects that, generically, W u(Pv) t W s(Pw). The case when W u(Pv) ∩
W s(Pw) 6= ∅ has been discussed in [17, 27], here we are mostly concerned with the case W u(Pv) ∩
W s(Pw) = ∅. We also suppose property (A3) (extended to equation (3.3)) still holds for the forced
system, hence our assumptions are:

(A8) W u(Pw) = W s(Pv);
(A9) W u(Pv) ∩W s(Pw) = ∅.

Our first main result is about the existence of an invariant set whose dynamics is conjugate to a
full shift over a finite number of symbols. In addition, we also prove the existence of observable chaos.

Theorem B. If (A1)–(A9) hold for (3.3) then

(1) for every small ν, µ > 0 there exists ω0 > 0 such that if ω > ω0, then Λ(ν,µ) contains an
invariant set whose dynamics is conjugate to a full shift in two symbols;

(2) for (ν, µ) in a set U ⊂ R2 of positive Lebesgue measure, the return map R(ν,µ) exhibits a
strange attractor.

The dynamics of Λ(ν,µ) is mainly governed by the geometric configuration of the global invariant
manifold W u(Pv). The proof of this result is done is Section 5. Horseshoes of Theorem B have
a different nature from those associated to the heteroclinic tangle in which the manifolds have a
transverse intersection [17, 27]. This will be discussed in Section 7.

For a fixed ν > 0, if the ratio of ω and the period of the hyperbolic periodic solution of (A7)
is irrational, then trajectories on the torus T ±(ν) are unlocked, in the sense that they never close.
These solution on the torus are called quasiperiodic [11, 23]. If the frequencies have a rational ratio,
trajectories are locked.

In a resonant torus, where all solutions are locked, the frequency locking ratio p/q means that while
the x component of a solution turns p its θ component winds q times. This ratio is related to the
rotation number associated to the periodic orbit [11] and will be used in the proof of the second part
of Theorem B.

3.3. The example. An explicit two-parameter family Fν(x) + φµ(t, x) of vector fields in S2 ⊂ R3

such that Fν(x) satisfies (A1)–(A7) is given by

(3.4)


ẋ1 = x1(1− r2)− αx1x3 + βx1x

2
3 + (1− x1) (µ [f(θ)− 1] + ν)

ẋ2 = x2(1− r2) + αx2x3 + βx2x
2
3

ẋ3 = x3(1− r2)− α(x2
2 − x2

1)− βx3(x2
1 + x2

2)

θ̇ = 2ω (mod 2π)

where

ν, ω ∈ R+ µ ∈ R r2 = x2
1 + x2

2 + x2
3, β < 0 < α, |β| < α,

and f is a non constant 2π-periodic map of class C3.
For µ = ν = 0, the equation ẋ = F0(x), x ∈ R3, is one of the examples constructed and analysed

in [4] and also studied in [18]. The perturbing term (1− x1) [µ(f(2ωt)− 1) + ν] appears only in the
first coordinate for two reasons. First, it simplifies the computations. Secondly, it allows comparison
with previous work by other authors [1, 8, 21, 25].

Proposition C. The vector field Fν associated to (3.4) at µ = 0 is equivariant under the action of
κ(x, y, z) = (x,−y, z) and therefore the plane Fix(Z2(κ)) = (x, 0, z) is flow-invariant. If |ν| > 0 is

small, the flow of ζ̇ = Fν(ζ) satisfies conditions (A1)–(A7). In particular, the flow-invariant curve
M2 ∩ Fix(Z2(κ)) consists of two equilibria of saddle-type v and w and two heteroclinic connections
from w to v. There are also four equilibria inM2 that are repelling foci and these are all the equilibria
in M2.
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Figure 2. Top: isolating block near the periodic solution Pa, a ∈ {v,w}. Bottom: coordi-
nates at the In and Out components of the boundary. Double bars mean that the sides are
identified.

The proof of this result is the content of Section 6.
From (6) in Proposition A it follows that there are two invariant tori for the flow of the equa-

tion (ẋ, θ̇) = F(ν,µ)(x, θ) associated to (3.4). Existence of invariant tori is usually shown using
the Afraimovich Annulus Principle [2], here we show it directly by reducing the problem to a two-
dimensional manifold and applying the Poincaré-Bendixson theorem.

From Theorem B and Proposition C it follows immediately

Corollary D. For small µ > 0, ν > 0 and for ω > 0 large enough, the flow of (3.4) exhibits
a hyperbolic rotational horseshoe and for a set of positive Lebesgue measure of parameters it also
contains strange attractors.

4. Local coordinates and first return map

In this section we will analyse the dynamics near the heteroclinic attractor Γ through local maps,
after selecting appropriate coordinates near the saddles Pv = {v} × S1 and Pw = {w} × S1.

4.1. Geometry near Pv and Pw. Let Ua be pairwise disjoint compact neighbourhoods in M3 of
the nodes Pa, a ∈ {v,w}, such that each boundary ∂Ua is a finite union of smooth surfaces delimited
by curves, each surface transverse to the vector field everywhere, except at its boundary. Each Ua is
called an isolating block for Pa and, topologically, it consists of a hollow cylinder.

For a ∈ {v,w}, let Σa be a cross section to the flow at pa ∈ Pa. Since Pa is hyperbolic, there is a
neighbourhood U∗a of pa in Σa where the first return map to Σa is C1 conjugate to its linear part. Let
e−ca and eea , with ca, ea > 0, be the eigenvalues of the derivative DF(ν,µ)(a). Then, for each k ≥ 2

there is an open and dense subset of R2 such that, if (−ca, ea) lies in this set, then the conjugacy is
of class Ck (details may be checked in Appendix A of [17]).
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Suspending the linear map gives rise, in cylindrical coordinates (ρ, θ, z) around Pa, to the equations

(4.5)


ρ̇ = −ca(ρ− 1)

θ̇ = 2ω
ż = eaz

whose flow is C2-conjugate to the original flow near Pa. In these coordinates, the periodic trajectory
Pa is the circle defined by ρ = 1 and z = 0. For the moment, let W s

loc(Pa) and W u
loc(Pa) be the

connected components of W s(Pa) and W u(Pa), respectively, contained in the suspension of U∗a and
containing Pa in their closure. In these coordinates, W s

loc(Pa), is the plane z = 0 and W u
loc(Pa) is the

surface ρ = 1.
As illustrated in Figure 2, we consider a hollow three-dimensional cylinder Va(εa) of Pa contained

in the suspension of U∗a (with small εa > 0 to be determined later) given by

Va(εa) = {(ρ, θ, z) : 1 ≤ ρ < 1 + εa, 0 ≤ z < εa and θ ∈ R (mod 2π)} .
When there is no ambiguity, we write Va instead of Va(εa). Its boundary contains the trajectory Pa
and is a union

∂Va = In(Pa) ∪Out(Pa) ∪W(Pa)
where

• W(Pa) = Pa ∪ (W s
loc(Pa) ∩ Va) ∪ (W u

loc(Pa) ∩ Va).
• W s

loc(Pa) ∩ Va is the lower boundary of the hollow cylinder, given by z = 0, 1 < ρ ≤ 1 + εa.
• W u

loc(Pa) ∩ Va is the inner boundary of the hollow cylinder, given by ρ = 1, 0 < z ≤ εa.
• In(Pa) is the outer wall of the cylinder, defined by ρ = 1 + εa, 0 ≤ z ≤ εa.

Trajectories starting at In(Pa) go inside Va in small positive time.
• Out(Pa) is the top of the cylinder, the annulus defined by z = εa, 1 ≤ ρ ≤ 1 + εa.

Trajectories starting at Out(Pa) go inside Va in small negative time.
• The vector field is transverse to In(Pa) ∪Out(Pa) except at the circle In(Pa) ∩Out(Pa).

The cylinder wall In(Pa) is parametrised by the covering map

(ϕ, r) 7→ (1 + εa, ϕ, r) = (ρ, θ, z),

where ϕ ∈ R and 0 ≤ r ≤ εa. The annulus Out(Pa) is parametrised by the covering

(ϕ, r) 7→ (r, ϕ, εa) = (ρ, θ, z),

for 1 ≤ r ≤ 1 + εa and ϕ ∈ R.
For ν 6= 0, µ = 0 we have from (5) of Proposition A that W u(Pv) ∩W s(Pw) = ∅ and the same

assumption is made for µ 6= 0 in Theorem B. Since for ν = µ = 0 these invariant manifolds coincide,
then for small µ, ν 6= 0 the manifold W u(Pv) must come close to Pw. Without loss of generality we
may assume that it meets In(Pv), we are concerned with the parameter values for which this holds.

From now on the portion of the unstable manifold of Pv that goes from Pv to In(Pw) without
intersecting Vw will be denoted W u

loc(Pv). Similarly, W s
loc(Pw) will denote the portion of the stable

manifold of Pw that is outside Vw and goes directly from Out(Pw) to Pv in negative time.

4.2. Local and global maps. For each a ∈ {v,w}, we may solve (4.5) explicitly, then we compute
the flight time from In(Pa) to Out(Pa) by solving the equation z(t) = εa for the trajectory whose
initial condition is (ρ, θ, z) = (1 + εa, ϕ, r) ∈ In(Pa)\W s(Pa), with z > 0, as in [17]. Replacing this
time in the other coordinates of the solution, yields the local map

Φa : In(Pa)\W s(Pa) −→ Out(Pa)
given by

(4.6) Φa(ϕ, r) =

(
ϕ− 2ω

ea
ln

(
r

εa

)
, 1 + εa

(
r

εa

)δa)
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In(P  )

0

ϕ

W    (P )  loc v

W    (P )  loc w
2π

w

1 ϕ2

ϕ

A

s

u

Figure 3. The local unstable manifold of Pv intersects the cylinder In(Pw) on a closed curve,
the graph of a periodic Morse function ξ(ν,µ) : R→ [0, εw] with ν > 0, µ > 0.

where δa =
ca
ea

> 0. For the transition maps from one isolating block to the other we use assumptions

(A8) and (A9). With this notation, we formulate them as follows:

• The two sets W u(Pw) and W s(Pv) coincide;
• The manifold W u

loc(Pv) intersects the cylinder In(Pw) on a non-contractible closed curve γ(ν,µ).

We will assume that the universal cover of γ(ν,µ) is the graph of a smooth Morse function

ξ(ν,µ) : R→ [0, εw],

as in Figure 3, satisfying the following conditions for ν > 0:

• ξ(ν,µ) is not constant (because the perturbing term φµ is not constant) and is 2π-periodic;
• ξ(ν,µ) has a local maximum at ϕ1 > 0, a local minimum at ϕ2 > ϕ1 and no other critical point

in the interval (ϕ1, ϕ2);
• if µ > 0 and ν > 0 then ∀ϕ ∈ R, ξ(ν,µ)(ϕ) > 0;
• lim
ν→0

max
ϕ∈R

ξ(ν,µ)(ϕ) = 0.

With these assumptions, we may take the maps

Ψv→w : Out(Pv) −→ In(Pw) and Ψw→v : Out(Pw) −→ In(Pv)

to be given by

(4.7) Ψv→w(ϕ, r) =
(
ϕ, (r − 1) + ξ(ν,µ)(ϕ)

)
and Ψw→v(ϕ, r) = (ϕ, (r − 1)) .

4.3. The return map. Let R(ν,µ) = Φv ◦ Ψw→v ◦ Φw ◦ Ψv→w be the first return map to Out(Pv),
well defined on the set of initial conditions (ϕ, r) ∈ Out(Pv) whose solution returns to Out(Pv). For
r > 1, the map R(ν,µ) is given by

R(ν,µ)(ϕ, r) =

[
ϕ− ωK ln

[
(r − 1) + ξ(ν,µ)(ϕ)

]
− ωkε (mod 2π), 1 +

εv

εδww

[
(r − 1) + ξ(ν,µ)(ϕ)

]δ]
= (R1(ϕ, r), R2(ϕ, r))

where

δ = δvδw > 1, K = 2

(
ev + cw
ev ew

)
> 0 and kε = −2K ln εw > 0.

The map R(ν,µ) is well defined if εv + max
0≤ϕ≤2π

ξ(ν,µ)(ϕ) ≤ εw. In particular, we need εv < εw. The

inequality δ > 1 comes from Property (A5) and the conditions of [15, 16] for a heteroclinic cycle to
be attracting.



FORCING OF A HETEROCLINIC NETWORK July 13, 2021 9

ϕ
L

ϕ
R

S

R(S)

Figure 4. When ω ≥ ω0, the segment S (red) in the domain D ⊂ Out(Pv) (gray) is trans-
formed by the first return map R into a curve (blue) that makes a full turn around Out(Pv)
intersecting D in at least one segment.

5. Proof of Theorem B

The goal of the section is to obtain an invariant set Λ ⊂ Out±(Pv) where the map R(ν,µ)|Λ is
topologically conjugate to a Bernoulli shift with two symbols. The argument uses the Conley-Moser
conditions, see for instance [29].

5.1. Stretching the angular component. Let [ϕL, ϕR] be an interval where ξ(ν,µ)(ϕ) is monotoni-
cally decreasing, with

ξL = ξ(ν,µ)(ϕL) > ξ(ν,µ)(ϕR) = ξR

and consider D ⊂ Out(Pv) parametrised by (ϕ, r) ∈ [ϕL, ϕR] × [1, 1 + εv], with εv + ξL < εw. Then
D is a set of initial conditions (ϕ, r) ∈ Out(Pv) whose solution returns to Out(Pv). We start by
establishing some properties of the map R within this set.

Lemma 1. For small ν, µ > 0, the following assertions hold in D with εv + ξL < εw:

(1) for any r ∈ [1, 1 + εv] the map ϕ→ R1(ϕ, r) is an expansion;
(2) for any ϕ ∈ [ϕL, ϕR] the map r → R2(ϕ, r) is a contraction.

Proof. The first assertion follows from

∂R1(ϕ, r)

∂ϕ
= 1− ωK

r − 1 + ξ(ν,µ)(ϕ)

dξ(ν,µ)(ϕ)

dϕ
> 1

because ξ(ν,µ)(ϕ) > 0 and
dξ(ν,µ)(ϕ)

dϕ
< 0 since we are assuming ξ(ν,µ) is monotonically decreasing in

[ϕL, ϕR]. The second assertion follows from

∂R2(ϕ, r)

∂r
= δ

εv

εδww

[
(r − 1) + ξ(ν,µ)(ϕ)

]δ−1
.

Since 0 < ξ(ν,µ)(ϕ) ≤ ξL and 0 < r − 1 ≤ εv ≤ εw < 1 then

0 <
∂R2(ϕ, r)

∂r
≤ δ εv

εδww
[εw + ξL]δ−1 = δ

εv
εw

+O(ξL),

where O stands for the standard Landau notation. We have lim
ν→0

max
ϕ∈[ϕL,ϕR]

ξ(ν,µ)(ϕ) = 0, therefore

0 <
∂R2

∂r
(ϕ, r) < 1 for small µ > 0. �

We call the graph (ϕ, s(ϕ)) in D of a monotonic map s(ϕ) with ϕL ≤ ϕ ≤ ϕR, a segment across D.
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Lemma 2. Consider the segment S = {(ϕ, r∗) ϕL ≤ ϕ ≤ ϕR} ⊂ D for a given r∗ > 0. For small
µ, ν > 0 with εv + ξL < εw, if

ω ≥ ω0 =
2π

K ln(1 + (ξL − ξR)/(1 + ξR))

then for any r∗ ∈ (1, 1 + εv], the set R(S) ∩ D is a curve containing a segment across D.

Proof. Since ξ(ν,µ)(ϕ) is monotonically decreasing in [ϕL, ϕR] then the map ϕ → R2(ϕ, r∗) is mono-
tonically decreasing and

ϕ 7→ ϕ− ωK ln
[
(r − 1) + ξ(ν,µ)(ϕ)

]
− ωkε = R1(ϕ, r∗)

is monotonically increasing in the same interval. Hence R(S) is the graph of a monotonic map s(ϕ),
with the map s defined in some interval I, as in Figure 4. It remains to obtain an estimate of the
variation of the first coordinate of R(S) to ensure that [ϕL, ϕR] ⊂ I. From the definition of R1 and
properties of the logarithm, one knows that the difference ∆ = R1(ϕR, r∗)−R1(ϕL, r∗) satisfies

∆ =
(
ϕR − ωK ln

[
(r∗ − 1) + ξ(ν,µ)(ϕR)

]
− ωkε

)
−
(
ϕL − ωK ln

[
(r∗ − 1) + ξ(ν,µ)(ϕL)

]
− ωkε

)
= (ϕR − ϕL) + ωK ln

(r∗ − 1) + ξ(ν,µ)(ϕL)

(r∗ − 1) + ξ(ν,µ)(ϕR)

= (ϕR − ϕL) + ωK ln
(r∗ − 1) + ξL
(r∗ − 1) + ξR

> (ϕR − ϕL)

where for the last inequality we use ξL > ξR hence ln
(r∗ − 1) + ξL
(r∗ − 1) + ξR

> 0. Moreover,

(r∗ − 1) + ξL
(r∗ − 1) + ξR

= 1 +
ξL − ξR

(r∗ − 1) + ξR
≥ 1 +

ξL − ξR
1 + ξR

.

Therefore, if ω ≥ 2π

K ln(1 + (ξL − ξR)/(1 + ξR))
, then ∆ ≥ 2π + (ϕR − ϕL) and hence the curve R(S)

goes across D at least once, as in Figures 4 and 5. �

5.2. Proof of Theorem B. Part I. Given a rectangular region inOut(Pv), parametrised by [ϕa, ϕb]×
[r1, r2], a vertical strip in the region is a set

V = {(ϕ, r) : ϕ ∈ [u1(r), u2(r)] r ∈ [r1, r2]}

where u1, u2 : [r1, r2] → [ϕa, ϕb] are Lipschitz functions with Lipschitz constants less than µv ≥ 0,
such that u1(r) < u2(r). The vertical boundaries of a vertical strip are the graphs of the maps ui;
the horizontal boundaries are the lines {ri} × [u1(ri), u2(ri)], i = 1, 2; the width d(V) of the strip is

d(V) = max
r1≤r≤r2

|u1(r)− u2(r)|.

In an analogous way we define a horizontal strip across a horizontal rectangle in Out(Pv) with the
roles of ϕ and r reversed, Lipschitz constants less than µh ≥ 0.

Let I1 = [ϕa, ϕb] and I2 = [ϕc, ϕd] be two disjoint intervals satisfying

ϕL ≤ ϕa < ϕb < ϕc < ϕd ≤ ϕR.

We claim that for ω ≥ ω0 (of Lemma 2) the two vertical strips

Vi = {(ϕ, r) ∈ D : ϕ ∈ Ii} i = 1, 2

satisfy the Conley-Moser conditions [29]:

(P1) The image R(Vi) ∩ D = Hi is the union of disjoint horizontal strips across D.
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Out(P )v

W    (P )  
u
loc �

v

r=r

I1 I2

D

ϕ
L

ϕ
R

ϕ
a ϕb

ϕc ϕd

V1 V2

*

Figure 5. For r? ∈ [0, 1], the image under R of the segment [ϕL, ϕR] × {r = r∗} is a curve
(without folds) intersecting twice the rectangle D. The subsets I1 and I2 are stretched by the
first return map R into segments across D.

(P2) For every vertical strip V ⊂ (V1 ∪ V2) the set R−1(V ) ∩ Vi = Ṽi is a vertical strip across D
with d

(
Ṽi

)
≤ λvd(V ) for some λv ∈ (0, 1).

(P3) For every horizontal strip H ⊂ (H1 ∪H2) the set R(H) ∩Hi = H̃i is a horizontal strip across

D with d
(
H̃i

)
≤ λhd(H) for some λh ∈ (0, 1).

In order to establish the claim, note that by Lemma 2 each line with constant r in Vi is mapped by
R into a curve in Out(Pv) that intersects D in at least one segment. Lemma 1 ensures that as r
varies in ]1, 1 + εv], the second coordinate of their image varies in an interval of length less than εv, so
the union of these segments lies in horizontal strips across D, establishing (P1). Properties (P2) and
(P3) follow from Lemma 1. From this claim it follows that there exists an R-invariant set of initial
conditions

Λ =
⋂
n∈Z
Rn(V1 ∪ V2)

on which R|Λ is topologically conjugate to a Bernoulli shift on two symbols. By construction it is a
rotational horseshoe (according to [20]) with m = 2.

5.3. Proof of Theorem B. Part II. For ν > 0 and µ = 0, the flow of (3.3) has an attracting
two-dimensional torus (by Proposition A). In particular, there is a cross section Σ where the torus
defines an invariant curve C under the first return map R. Furthermore, there is countable set of
values of the type (νi, 0), i ∈ N, for which the first return map R has at least one saddle and a sink
lying on C (⇒ the torus is decomposed into periodic orbits with rational rotation number). Fix, once
for all, one of these values.

For such a νi > 0, increasing µ > 0 the coexistence of this pair of periodic orbits persists along a
wedge, the so called Arnold tongue [3]. As illustrated in Figure 6, for a fixed µ > 0, we know that:

• R(C) is a closed curve on Out+(Pv) because R|D is a diffeomorphism;
• for ω ≈ 0, this curve may be seen as the graph on Out+(Pv) of a non-constant map defined

on [0, 2π] (cf. [22]); the curve C is the ω-limit of W u(Pw);
• by Lemma 2, there exists ω0 > 0 and a segment S ⊂ C such that R(S)∩D is a curve containing

a segment across D.

This means that the curve C starts to develop folds as in Figure 6 (B) and (C). If ω > ω0 it
creates the rotational horseshoes proved in §5.2. Within this wedge, Anishchenko, Safonova and Chua
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In(P  )

0

2π

w

2π

W    (P )
loc w

2π

2π

(A) (B) (C)

S

F

In(P  )w In(P  )w In(P  )w

W    (P )u
loc v

s

μ ν

Figure 6. Image of R(C) for different values of ω with ν > 0 and µ fixed. Transition from an
invariant and attracting curve (A) to a rotational horseshoe (C), passing through a homoclinic
tangency (B). One observes the breaking of the wave which accompanies the break of the
invariant circle (corresponding to the torus). Here the point F is a sink and the point S is
a saddle. In (C), a neighborhood of r = 1 is folded and mapped into itself, leading to the
formation of rotational horseshoes.

have shown in [3] that there are curves on the parameter space (ν, µ) corresponding to a quadratic
homoclinic tangency associated to a dissipative periodic point of the first return map R.

Using now the results of Mora and Viana in [19], there exists a positive measure set U of parameter
values, so that for every (ν, µ) ∈ U , the return map R admits a strange attractor of Hénon-type.
These strange attractors are supported in SRB measures.

Remark 1. In this type of result, the number of connected components with which the strange attrac-
tors intersect the section Σ is not specified nor is the size of their basins of attraction. The strange
attractors coexist with sinks from Newhouse phenomena. A discussion of these results may be found
in [6, 22, 26].

6. Proof of Proposition C

This proposition concerns the case µ = 0 when the time-periodic perturbation to ẋ = Fν(x) is
constant. For ν = 0, Properties (A1) to (A4) and (A6) of ẋ = F0(x) were established in [4,
Theorem 7], with M2 = S2.

Proof. The κ-equivariance is easily checked directly from the expression of Fν .
The first part of the proof of Proposition C consists in establishing that Properties (A1) to (A3)

persist when the perturbation term ν(1− x1) is added. Properties (A4) and (A6) are established in
[4] and Property (A5) is a consequence of their results. Then it remains to show that two periodic
solutions are created by the perturbation when the connections from w to v are broken, as stated in
(A7). Addressing the persistence and property (A7) constitutes the remainder of this proof.

(A1) Since for ν = 0 the sphere S2 is normally hyperbolic as in [12], then for small ν 6= 0 it persists as
a flow-invariant, normally hyperbolic, globally attracting manifold M2. See also the analysis
by [13].
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Figure 7. Equilibria of ζ̇ = Fν(ζ) for ν = 0 (left) and ν = 0.5 (right), α = 1, β = −0.1 in
the flow-invariant subspace Fix(Z2(κ)) occur at the intersection of the curves F1(x1, x3) = 0
(blue) and F2(x1, x3) = 0 (red), here plotted with Maxima.

(A2) For ν = 0 the only equilibria in the flow-invariant plane Fix(Z2(κ)) are v and w above, as well
as the origin O. Since they are hyperbolic, then their hyperbolic continuations should exist
within the plane Fix(Z2(κ)). Another way to see this is to solve F1(x1, x3) = x1[(1− x2

1 − x2
3)− αx3 + βx2

3 − ν] + ν = 0

F2(x1, x3) = x3[(−x2
1 − x2

3)− βx2
1] + αx2

1 = 0.

Figure 7 shows the curves F1 = 0 and F2 = 0 plotted with Maxima. For ν = 0 the curves
intersect transversely at O, v and w and this property is preserved for small ν 6= 0.

(A3) Within the flow-invariant plane Fix(Z2(κ)), the origin is a repelling source, v is a sink and w
is a saddle. Since both the plane y = 0 and the manifold M2 are flow-invariant, this means
that there are two heteroclinic connections from w̃ to ṽ.

(A5) In [4] it is established that the only other equilibria in S2 are the four hyperbolic repelling
foci (±

√
2/2,±

√
2/2, 0). This means that for ν = 0, by the Poincaré-Bendixon Theorem, the

ω-limit set of all other points in S2 must be contained in the heteroclinic cycles that contain
v and w. The unstable foci remain for ν 6= 0 small.

(A7) The flow-invariant subspace Fix(Z2(κ)) divides M2 in two flow-invariant components. We
will show that the x2 > 0 component contains a non-constant periodic solution, the proof
for x2 < 0 follows from the symmetry. For x1 = 0 and µ = 0 the expression (3.4) yields
ẋ = ν 6= 0. Suppose ν > 0, then the region x1 > 0, x2 > 0 in M2 is positively invariant, see
Figure 8. This region only contains one equilibrium, one of the repelling foci in (A4), hence
by the Poincaré-Bendixon Theorem, the ω-limit of the unstable manifold of ṽ is an attracting
periodic solution. When ν < 0 the periodic solution appears for x1 < 0. The period tends to
+∞ as ν goes to 0, since the periodic trajectory accumulates on the heteroclinic cycle.

�

Proposition C shows that for sufficienly small |ν| > 0, each heteroclinic cycle that occurred in the
fully symmetric case is replaced by a stable hyperbolic periodic solution. Using the reflection symmetry
Z2(κ), two stable periodic solutions co-exist, one in each connected component of M\Fix(Z2(κ)).
Their period tends to ∞ when ν vanishes and their basin of attraction must contain the basin of
attraction of Σ0.
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Figure 8. Qualitative phase portrait for the dynamics or (3.4) in M2 with y > 0, projected
into the (x1, 0, x3) plane for µ = 0 and ν > 0 .

7. Discussion and concluding remarks

Routes to chaos have been a recurrent concern on nonlinear dynamics during the last decades
[2]. The novelty of the present paper is the illustration of a new route for the emergence of strange
attractors from an attracting heteroclinic network as a codimension-two phenomenon.

7.1. Literature. In [14] Kaneko investigates numerically the bifurcations of tori in a two-parameter
family of dissipative coupled maps. Each map undergoes a period-doubling cascade accumulating on
a given parameter value, which generates chaos in the coupled system. In the same setting Bakri and
Verhulst show in [5] that, for small amplitudes, zero damping and zero coupling, their system reveals
a periodic solution which undergoes a Hopf bifurcation, generating an attracting torus. They use
numerical bifurcation techniques to show how the torus gets destroyed by dynamical and topological
changes in the involved manifolds. The results agree with [24, 26].

In the context of dissipative vortex dynamics Fleurantin and James have studied in [9] the Langford
system, a one-parameter family of three-dimensional vector fields. The flow of this model exhibits a
sink, two saddle-foci of different Morse indices and a non-trivial periodic solution with a complex con-
jugate pair of Floquet exponents. The frequency of the periodic solution together with the frequency
of the complex exponent constitute two competing natural modes of oscillation. The periodic orbit
undergoes a bifurcation giving rise to observable chaos through the same mechanism of [5]. These
authors studied the evolution of the torus, its loss of differentiability, and the appearance of a strange
attractor via the existence of tangencies. The relative position of the manifolds according to the
parameter allows the authors to prove the existence of bistability between an equilibrium and a torus.

7.2. Heteroclinic tangle. The formation of the horseshoe of Theorem B has a different nature to
those found in [4, 18] – in this case, the shift dynamics is obtained via the transverse intersection of
two two-dimensional invariant manifolds. The parameter ω is not necessary to prove the existence
of chaos. The non-wandering set associated to the network contains, but does not coincide with, the
suspension of horseshoes; it contains infinitely many heteroclinic pulses and attracting limit cycles with
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long periods, coexisting with sets with positive entropy, giving rise to the so called quasi-stochastic
attractors [18]. The sinks have long periods and narrow basins of attraction.

7.3. Open questions. In the context of this class of examples, some problems remain to be solved:

(1) the basins of attraction of the strange attractors of Theorem B are relatively small in terms
of Lebesgue measure (they are close to Newhouse domains). Could we improve Theorem B in
order to get the existence of a “larger” strange attractor?

(2) is it possible to generalize our result for clean heteroclinic networks (networks whose unstable
manifolds are contained within it) whose connections are one-dimensional?

We believe that these problems can be tackled by using the theory of rank-one attractors developed
by Wang and Young [28]. We defer these tasks for future work.
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