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INTRODUCTION

There are many results related to the algebraic and geometric classification of low-dimensional algebras
in the varieties of Jordan, Lie, Leibniz and Zinbiel algebras; for algebraic classifications see, for example,
[1,/ 10014, 14,|18,20-22,25,29]; for geometric classifications and descriptions of degenerations see, for
example, [1-30]. Degenerations of algebras is an interesting subject, which has been studied in various
papers. In particular, there are many results concerning degenerations of algebras of small dimensions in a
variety defined by a set of identities. One of important problems in this direction is a description of so-called
rigid algebras. These algebras are of big interest, since the closures of their orbits under the action of the
generalized linear group form irreducible components of the variety under consideration (with respect to the
Zariski topology). For example, rigid algebras in the varieties of all 4-dimensional Leibniz algebras [19], all
4-dimensional nilpotent Novikov algebras [21]], all 4-dimensional nilpotent assosymmetric algebras [18], all
4-dimensional nilpotent bicommutative algebras [22]], all 6-dimensional nilpotent binary Lie algebras [1]],
and in some other varieties were classified. There are fewer works in which the full information about
degenerations was given for some variety of algebras. This problem was solved for 2-dimensional pre-
Lie algebras [6], for 2-dimensional terminal algebras [9]], for 3-dimensional Novikov algebras [7], for 3-
dimensional Jordan algebras [15]], for 3-dimensional Jordan superalgebras [5], for 3-dimensional Leibniz
and 3-dimensional anticommutative algebras [20], for 4-dimensional Lie algebras [8], for 4-dimensional
Lie superalgebras [4], for 4-dimensional Zinbiel and 4-dimensional nilpotent Leibniz algebras [23]], for
5-dimensional nilpotent Tortkara algebras [14], for 6-dimensional nilpotent Lie algebras [[16,30], for 6-
dimensional nilpotent Malcev algebras [24], for 7-dimensional 2-step nilpotent Lie algebras [3|], and for
all 2-dimensional algebras [25]]. Here we construct the graphs of primary degenerations for the variety of
complex 5-dimensional nilpotent associative commutative algebras.
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1. DEGENERATIONS OF ALGEBRAS

1.1. Preliminaries. Given an n-dimensional vector space V, the set Hom(V® V, V) 2 V* @ V* @ V
is a vector space of dimension n®. This space has a structure of the affine variety C"*. Indeed, let us fix a
basis ej, ..., e, of V. Then any u € Hom(V ®V,V) is determined by n? structure constants cfi ; € Csuch
that pi(e; @ e;) = >, ¢F ;e A subset of Hom(V ® V, V) is Zariski-closed if it can be defined by a set
of polynomial equations in the variables cf” ; (L <i,5,k <n).

Let 7" be a set of polynomial identities. All algebra structures on V satisfying polynomial identities from
T form a Zariski-closed subset of the variety Hom(V ® V, V). We denote this subset by L(7"). The general
linear group GL(V) acts on IL(7") by conjugation:

(g*p)(z®@y) =gulg 'z @ g 'y)

forx,y € V,u € L(T) C Hom(V®V,V)and g € GL(V). Thus, L(T") is decomposed into GL(V)-orbits
that correspond to the isomorphism classes of algebras. Let O(y) denote the GL(V)-orbit of € L.(T") and
O(p) its Zariski closure.

Let A and B be two n-dimensional algebras satisfying identities from 7" and p, A € IL(7T') represent A

and B respectively. We say that A degenerates to B and write A — B if A € O(u). Note that in this case

we have O(\) C O(pu). Hence, the definition of a degeneration does not depend on the choice of ;¢ and \.
If A % B, then the assertion A — B is called a proper degeneration. We write A A Bif A € O(u).

Let A be represented by 1 € IL(7'). Then A is rigid in L(T) if O(u) is an open subset of IL(7"). Recall
that a subset of a variety is called irreducible if it cannot be represented as a union of two non-trivial closed
subsets. A maximal irreducible closed subset of a variety is called an irreducible component. 1t is well
known that any affine variety can be represented as a finite union of its irreducible components in a unique
way. The algebra A is rigid in I(7T") if and only if O(y) is an irreducible component of (7).

In the present work we use the methods applied to Lie algebras in [8}|16}/17,30]. First of all, if A — B
and A % B, then dim Detr(A) < dim Der(B), where ©et(A) is the Lie algebra of derivations of A. We
will compute the dimensions of algebras of derivations and will check the assertion A — B only for such
A and B that dim Det(A) < dim®er(B). Secondly, if A — C and C — B then A — B. If there is no
C such that A — C and C — B are proper degenerations, then the assertion A — B is called a primary
degeneration. If dim Det(A) < dim®er(B) and there are no C and D such that C — A, B — D,
C 4 D and one of the assertions C — A and B — D is a proper degeneration, then the assertion A 4 B
is called a primary non-degeneration. It suffices to prove only primary degenerations and non-degenerations
to describe degenerations in the variety under consideration. It is easy to see that any algebra degenerates
to the algebra with zero multiplication. From now on we use this fact without mentioning it.

To prove primary degenerations, we will construct families of matrices parametrized by ¢. Namely, let
A and B be two algebras represented by the structures p and A from L(7") respectively. Let eq, ..., e, be

a basis of V and cﬁ ; (1 <4,7,k < n) be the structure constants of A in this basis. If there exist al(t) e C
(1 <i,5 <n,te C*) suchthat Ef = Z?Zl al(t)e; (1 < i < n)form abasis of V for any ¢ € C*, and the

structure constants ¢} ;(¢) of y in the basis Ef, ..., E}, satisfy lim ¢ ;(t) = ¢, then A — B. In this case
I _) 9. i

El, ... E! is called a parametric basis for A — B.
To prove primary non-degenerations we will use the following lemma (see [16]).

Lemma 1. Let B be a Borel subgroup of GL(V) and R C L(T') be a B-stable closed subset. If A — B
and A can be represented by |1 € R then there is A\ € R that represents B.

Each time when we will need to prove some primary non-degeneration ;1 /4 A, we will define R by a
set of polynomial equations in structure constants cfj in such a way that the structure constants of j in the
basis ey, . . ., e, satisfy these equations. We will omit everywhere the verification of the fact that R is stable
under the action of the subgroup of lower triangular matrices and of the fact that A ¢ R for any choice of a
basis of V. To simplify our equations, we will use the notation A; = (e;,...,e,), ¢ = 1,...,n and write
simply A,A, C A, instead of ¢f; =0 (i > p,j > ¢, k > ).
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If the number of orbits under the action of GL(V) on IL(T') is finite, then the graph of primary degener-
ations gives the whole picture. In particular, the description of rigid algebras and irreducible components
can be easily obtained.

1.2. Degenerations of 5-dimensional nilpotent associative commutative algebras. The algebraic clas-
sification of 5-dimensional nilpotent associative commutative algebras was given in [29]. Also, in the same
paper, it was proved that the variety of all 5-dimensional nilpotent associative commutative algebras has
only one irreducible component. The main result of the present section is the following theorem.

Theorem 2. The graph of all degenerations in the variety of 5-dimensional nilpotent associative commuta-
tive algebras is given in Figure B (see, Appendix).

Proof. Tables C, D presented in Appendix give the proofs for all primary degenerations and non-
degenerations.

O

2. APPENDIX.

] Table A. 5-dimensional nilpotent associative commutative algebras

A [ Der A Multiplication table
A01 5 6% = €9, 6% = €4, €1€3 = €4, €1€9 = €3, €1€4 = €5, €2€3 = €5
Ay 6 ei = e3, eg = es, e% = es, €163 = €4, €164 = €5
A03 6 €1 = €3, €y = €4, €13 = €5, €9€4 = €5
Aos| T |el=e3,  erep=eq, ereq=es, eze3 = €5
Aos 7 e =ey, e3=-ey €16y = €3, eles = €4
A06 7 6% = €9, €1€9 = €3, 6?1 = €5

A07 7 €163 = €4, €9€3 = €5, €162 = €4 + €5

Ao 8 el =e3, e3=ey, e163=ey, ey = €5
Aoy 8 €1€3 = €5, €1€3 = €4, €263 = —€5

A10 9 6% = €3, €1€3 = €4, €1€9 = €5

A11 9 6% = €4, €9€3 = €4, €1€3 = €5

A12 11 €162 = €4, €1€3 = €5

A 8 €3 =e4, €16y =e€5, €364 =Cs

Ay, 9 e =e3, e3=e¢4 €e3=¢

A15 9 €1€9 = €3, 6?1 = €5

A16 10 6% = €3, 6% = €5, €162 — €4

A, 10 |et=ey, e€5=ce5 cre9=c;

Ag| 11 [ef=ey ere3=c¢s3

A19 11 6% = €3, 6% = €4

A.20 12 6% = €3, €1€2 — €4

A21 11 €9€3 = €5, €1€4 = €5

Ay | 12 [et=ey, ere3=c¢4

A23 14 €1€9 = €3

A24 17 6% = €2
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Figure B. The graph of degenerations of 5-dimensional nilpotent associative commutative algebras
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Table C. Degenerations of 5-dimensional nilpotent associative commutative algebras

Ap1 — Ao2 El =te; El = —i(t7les —t~%ea +t Tes — t2eq)
E§ = t2es E}i =e4 —t 3es Eé = tes
E{ =te1 + gt;’iezﬁ’ Eé =te1 + 21732
Ao — Ags | 1-5t4562 | —340t-7¢2 R A 2 TR (N
s 2t(2—3t)2 ©3 T 43(—2+31)3 ©4 2t(2—3t)2 3 T q(—2+31)3 ¢4
El = —tez + 5—5test+
3 2-3t + 14+t—3¢2 t
,1?” 25265 Ej =tes + 5= 3t€4+m65 E; = tes
2t(2—3t
Apgz — Aps E% = tey Eé = ie2 + e3
Eg = t2e3 E}i = tey Eé = t2e5
Aoz — Aos El =e; El =e3
E§ = €4 EZ; = €5 Eg = te2
Aoz = Ags Ef =e El=e3
—1—-¢3
El=e4 Ei:\/iltt es + tes Eg:—%e5
Ap2 — Aoy . ) El =te1 + %63 El =ies +e3+ 3%64
EL = —ieg 4+ e3 — 5764+ g3€5 El =tey B! = 2e5
Aoz — Aoy E! =te; —tea EL = t2eq
Ef =t2e3 + t%ey Ef = —t3ey E! =t'es
Aoz — Ags El =e EL =e3
El=es El =tey Eg = t2¢y
Ao4 — A08 Ei =l + 362 — grzes + azea  Bs=ex+ 5ze3
=e3t g€ By = zes Bl =e4
A04 - A09 El =te1 — feo El =e
=tes — 5 Efl = tey Eé = —tes
A04 - A13 El = e EY =tes — wes
=le1 + gze2 El=e4 El = tes
Aos - A08 E! =te; Ef{ =tes —e3 —es5
EL = tes + tes E! = —t3e;5 Et = —teq — t2e5
Aps — Ao El =€ +ey El =teqs —t ley
E§:€2+65 Ei=e3 Eé:teg,ft leg

Aos — Aogg E{ = te1 + tey E; = 7(1561 + t64) + 2teq + teg
Eé = ez +e5 Efl = 2t2e5 + t2e3 Eé = teg

Ag7 — Aoy Ef=—e1 —ez+es EL =eo
Eé = tes Efl = —ey E_% = —tes

Aoz — A1o El =tey Ei =t2ey
Eé = t“e3 Efl = t364 Eé = t365

Aogs — Aqq Ei = teg E; = te3
Eg =tey Eﬁ =t2eq Eé = t2ep

Aps — Ay E{ =e1 Eé = e2
Eé = e3 Eztl = ey Eé = %65

Aos — Ais Ei = tey Eé = tea + t_1€3
Eé = t“e3 Efl = ey + t2e5 Eé = —ttes

Agg — A1 El =te1 + 5-e3 EL = —e3
Bl =cs Ef=ecs Ef =tes — 5ie5

Agg — A Ezlt =e3 Eé = t%es
Eg = —t%es5 Efl = te1 + tea Eé = 2t%¢y

Aig — Ajo Ei = tey E; = —t_162 +e3
Eé = teg Eﬁ = teg — e5 Eé = tes

Ao — Aig E% = tey Eé = t263
Ef =t3ey El =e; El =es5

A1 — Aqg Ei =e3 Eé = tea
Eé =tey Efl = tey Eé = tes

A1 — Ajr E{ =te; + 14:3 ey — 2t_163 Eé = te3
Ef=Les+es Ef = —t"ley —des Ef = —tPes

Ao — Aoy E{ =tey + %62 + tes Eé = teg + %63
Eit’, = teq Eﬁ =e5 Eé =e3

A1z = As Ef =e3 EL = tes + %61
El=ey El =es5 El =e;




A3 — Ais Ei =e1 Eé =e2 Eé =e5 Efl = tes Eé = t2ey
A1z — Aoy Ei = tes Eé = teg Eé = tey Efl = tey E; = t2e5
Aig — Aqr Ei = tey Eé = te3 —es5 Eé = tea Ei = tes Eé = t264
Ay — Agg Ezlt =te1 Eé = t263 Eé = t3€4 E}i = t362 Eé =e5

A5 — Arr Ef =eq4 + €1 + €2, Eé = —2t2ey E:t)’ =te1 — teg Eﬁ = e5 + 2e3 Eé = —2t2e3
A1 — Aqg E{ = tey Eé = teg Eé = t2e3 Efl = t2e5 Eé =ey

A7 — Aqg Ei = te; — t2e3 Eé = teg + €3 Eé = t2eyq + tles Efl =e5 Eé = tes
A7 — Ago Ei = —2te; — %62 —e3 Eé =te1 + e3 Eé = —2te; — %62 E}l =e5 Eé =e4 + t%65
Ai1s — Agg Ei = tey Eé =teg —e3 + %64 Eé =tes — ey Efl = tey E; =e5

A9 — Agg Ei =te1 + ez Eé = teg Eé =t2e3 + ey Ei = teq Eé =e5

Ago — A23 Ezlt =e1 Eé = e2 Eé = e4q E}i = %63 Eé = €5

Asy — Aoo Ef =te1 + %t€4 Eé = tea E:t)’ = tes Eﬁ = t265 Eé =t2ey
Aoo — Asg E{ = ea Eé =e3 Eé =e4 Eﬁ = tey Eé =es5

Aoz — Aoy Ei = te1 + e2 Eé = 2tes Eé = 2tes Efl =ey Eé =e5

[ Table D. Non-degenerations of 5-dimensional nilpotent associative commutative algebras ]

[ Non-degeneration | Arguments ]

Aoz A Ags, Aoy R={ AT=0,A2=0,A1A5 C A5 }
Acs /A Ais R={ AsA5 =0,c{3c3, = cf3c5, }

Aos,Aos, Ao A Ao R={ dimAnn(Ag;) =1 }
Agr /A~ Ass, Aig R={ A7 C A4, A3=0 }
Ao A Agg, Ao R={ A2=0 }
Az A A, A R={ A7C A4, AfA2 CAs [, fi=es,fo=ea,fs=e1,fa=e4,f5=e5
A A A, Ag,Ag [R={ 4145 =0,45=0 }
A2 A Ay R={ A7C A5 }
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