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Resumo

Hom-conexdes e formas integrais associadas foram introduzidas e estudadas por T.
Brzezinski como uma versao adjunta da nogao usual de uma conexado em geometria
nao-comutativa. Dada uma Hom-conexao plana num Calculo Diferencial (Q),d) sobre
uma algebra A, obtém-se o complexo integral, que para diversas algebras prova-se ser
isomorfo ao complexo de de Rham (que também é denominado célculo diferencial no
contexto de Grupos Quénticos). Para uma algebra A com uma Hom-conexao plana,
clarificamos quando é que os complexos de de Rham e integral sdo isomorfos. Espe-
cializamos o nosso estudo ao caso em que um célculo diferencial de dimensao »n possa
ser construido numa algebra exterior quantica sobre um A-bimédulo. Alguns critérios
sdo fornecidos para bimddulos livres com estrutura de bimodulo diagonal ou triangular
superior. llustramos os resultados para calculos diferenciais numa algebra polinomial
quéntica multivariada e num n-espaco quantico de Manin.

Hom-bimddulos covariantes sao introduzidos e, nesse “Hom-cendrio”, onde (co)al-
gebras associadas com um certo endomorfismo satisfazem umas condicdes de (co)as-
sociatividade e de (co)unidade torcidas, a sua teoria de estrutura é estudada em de-
talhe. Esses resultados estruturais sobre Hom-bimédulos bicovariantes e covariantes a
esquerda sdo também representados em forma de coordenadas. Prova-se que a cat-
egoria dos Hom-bimddulos bicovariantes € uma categoria monoidal (pré-)trancada. A
nocao de Hom-médulos de Yetter-Drinfel'd é apresentada e, em seguida, é provado que
a categoria dos Hom-modulos de Yetter-Drinfel'd € também uma categoria monoidal
(pré-)trancada. Por fim, sob certas condicdes, é provado que estas categorias monoidais
sao equivalentes no sentido monoidal trangado.

As nogdes de Hom-coanel, estrutura Hom-entrelagada e Hom-maodulo entrelagado
associado sdo introduzidas. Um teorema de extensdo do anel de base de um Hom-
coanel € provado e, em seguida, é usado para adquirir uma versao “Hom” do coanel



de Sweedler. Motivado por um resultado de Brzezinski, associado a uma estrutura
Hom-entrelagada, é construido um Hom-coanel e uma identificacdo dos Hom-médulos
entrelacados com os Hom-comédulos desse Hom-coanel é demonstrada. E provado,
entdo, que a algebra dual desse Hom-coanel &€ uma algebra de convolugdo y-torcida.
Por construgdo, mostra-se que um Hom-Doi-Koppinen datum é obtido a partir de uma
estrutura Hom-entrelagada e que os Doi-Koppinen Hom-Hopf médulos sdo os mesmos
que os Hom-médulos entrelagados associados. Uma construgdo semelhante, com re-
speito ao Hom-Doi-Koppinen datum, é também fornecida. Uma cole¢cdo de Hom-Hopf
médulos sdo apresentadas como exemplos especiais de estruturas Hom-entrelacadas
e Hom-médulos entrelacados correspondentes. E também sdo consideradas estru-
turas de todos os Hom-coanéis relevantes.

As definicdes de Célculo Diferencial de Primeira Ordem (FODC) numa Hom-&lgebra
monoidal e FODC a esquerda covariante sobre um espago Hom-quantico a esquerda,
com respeito a uma Hom-Hopf algebra monoidal, sdo dadas. Em seguida, a covarian-
cia a esquerda de um Hom-FODC é caracterizada. Também é descrita a extensao de
um FODC sobre uma Hom-algebra monoidal para um célculo Hom-diferencial univer-
sal. Introduz-se os conceitos de FODC covariante a esquerda e FODC bicovariante so-
bre uma Hom-Hopf algebra monoidal e, apés isso, os Hom-ideais e espacgos quanticos
Hom-tangentes associados sdo estudados. A nocdo de Hom-Lie algebra quéntica (ou
generalizada) de um FODC bicovariante sobre uma Hom-Hopf algebra monoidal, em
que versdes generalizadas de relacées de anti-simetria e identidades de Hom-Jacobi
sdo satisfeitas, € obtida.



Abstract

Hom-connections or noncommutative connections of the second type and associated
integral forms have been introduced and studied by T.Brzezinski as an adjoint version of
the usual notion of a noncommutative connection in a right module over an associative
algebra. Given a flat hom-connection on a differential calculus (Q, d) over an algebra A
yields the integral complex which for various algebras has been shown to be isomorphic
to the noncommutative de Rham complex (which is also termed the differential calculus
in the context of quantum groups). We shed further light on the question when the
integral and the de Rham complex are isomorphic for an algebra A with a flat hom-
connection. We specialize our study to the case where an n-dimensional differential
calculus can be constructed on a quantum exterior algebra over an A-bimodule. Criteria
are given for free bimodules with diagonal or upper triangular bimodule structure. Our
results are illustrated for a differential calculus on a multivariate quantum polynomial
algebra and for a differential calculus on Manin’s quantum n-space.

Covariant Hom-bimodules, as a generalization of Woronowicz’ covariant bimodules,
are introduced and the structure theory of them in the Hom-setting, where (co)algebras
have twisted (co)associativity and (co)unity conditions along with an associated endo-
morphism, is studied in a detailed way. These structural results about left-covariant
and bicovariant Hom-bimodules were also restated in coordinate form. The category
of bicovariant Hom-bimodules is proved to be a (pre-)braided monoidal category. The
notion of Yetter-Drinfe’d Hom-module is presented and it is shown that the category
of Yetter-Drinfe’d Hom-modules is a (pre-)braided tensor category as well. Finally, it
is verified that these tensor categories are braided monoidal equivalent under certain
conditions.

The notions of Hom-coring, Hom-entwining structure and associated entwined Hom-
module are introduced. A theorem regarding base ring extension of a Hom-coring is



proven and then is used to acquire the Hom-version of Sweedler’s coring. Motivated
by a result of Brzezinski, a Hom-coring associated to an Hom-entwining structure is
constructed and an identification of entwined Hom-modules with Hom-comodules of
this Hom-coring is shown. The dual algebra of this Hom-coring is proven to be a -
twisted convolution algebra. By a construction, it is shown that a Hom-Doi-Koppinen
datum comes from a Hom-entwining structure and that the Doi-Koppinen Hom-Hopf
modules are the same as the associated entwined Hom-modules. A similar construction
regarding an alternative Hom-Doi-Koppinen datum is also given. A collection of Hom-
Hopf-type modules are gathered as special examples of Hom-entwining structures and
corresponding entwined Hom-modules, and structures of all relevant Hom-corings are
also considered.

The definitions of first order differential calculus (FODC) on a monoidal Hom-algebra
and left-covariant FODC over a left Hom-quantum space with respect to a monoidal
Hom-Hopf algebra are given, and the left-covariance of a Hom-FODC is character-
ized. The extension of a FODC over a monoidal Hom-algebra to a universal Hom-
differential calculus is described. The concepts of left-covariant and bicovariant FODC
over monoidal Hom-Hopf algebras are introduced, and their associated right Hom-
ideals and quantum Hom-tangent spaces are studied. The notion of quantum (or gen-
eralized) Hom-Lie algebra of a bicovariant FODC over a monoidal Hom-Hopf algebra
is obtained, in which generalized versions of antisymmetry relation and Hom-Jacobi
identity are satisfied .
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Introduction

Hom-connections and associated integral forms have been introduced and studied by
T.Brzezinski, in [15], as an adjoint version of the usual notion of a connection in noncom-
mutative geometry. Given a flat hom-connection on a differential calculus (Q,d) over
an algebra A yields the integral complex which for various algebras has been shown
to be isomorphic to the noncommutative de Rham complex (which is also termed the
differential calculus in the context of quantum groups). The purpose of Chapter 2 is
to provide further examples of algebras which contribute to the general study of al-
gebras with this property. Hereby, necessary and sufficient conditions to extend the
associated first order differential calculus (abbreviated, FODC) (Q!, d) of a right twisted
multi-derivation (d,0) on an algebra A to a full differential calculus (Q,d) on the quan-
tum exterior algebra Q of Q! is presented. A chain map between the de Rham complex
and the integral complex is defined and a criterion is given to assure an isomorphism
between the de Rham and the integral complexes for free right upper-triangular twisted
multi-derivations whose associated FODC can be extended to a full differential calculus
on the quantum exterior algebra. Easier criteria for FODCs with a diagonal bimodule
structure are established and are applied to show that a multivariate quantum poly-
nomial algebra satisfies the strong Poincaré duality in the sense of T.Brzezinski with
respect to some canonical FODC. Lastly, it is shown that for a certain two-parameter
n-dimensional (upper-triangular) calculus over Manin’s quantum n-space the de Rham
and integral complexes are isomorphic.

The first examples of Hom-type algebras arose in connection with quasi-deformations
of Lie algebras of vector fields, particularly g-deformations of Witt and Virasoro alge-
bras (see [1}, 22, 23, 24, 25| 33} 134}, 48, [43], 57])), which have a crucial role in conformal
field theory. These deformed algebras are obtained by replacing the derivation with
a twisted derivation (o-derivation), and are no longer Lie algebras due to the fact that



they satisfy a twisted Jacobi identity. Motivated by these examples and their generaliza-
tion, the notions of quasi-Lie algebras, quasi-Hom-Lie algebras and Hom-Lie algebras
were introduced by Hartwig, Larsson and Silvestrov in [42] 54] 55, [56] to deal with Lie
algebras, Lie superalgebras and color Lie algebras within the same framework. The
Hom-associative algebras generalizing associative algebras by introducing twisted as-
sociativity law along a linear endomorphism were suggested by Makhlouf and Silvestrov
in [62] to give rise to Hom-Lie algebras by means of commutator bracket defined using
the multiplication in Hom-associative algebras. For other features of Hom-associative
algebras regarding the unitality and twist property one should also see [37, 38]. The
construction of the free Hom-associative algebra and the enveloping algebra of a Hom-
Lie algebra was given [83], and the so-called twisting principle was introduced in [85]
to construct examples of Hom-type objects and related algebraic structures from clas-
sical structures. The concepts of Hom-coassociative coalgebras, Hom-bialgebras and
Hom-Hopf algebras and their properties were considered in [63], 164, [84]. Hence, repre-
sentation theory, cohomology and deformation theory of Hom-associative and Hom-Lie
algebras were studied, and Hom-analogues of many classical structures such as n-
ary Nambu algebras, alternative, Jordan, Malcev, Novikov, Rota-Baxter algebras were
considered in [2, 13, 4, [7, 8 161}, 65, 167, [74] [90] 91, 192]. Hom-type generalizations of
(co)quasitriangular bialgebras and (quantum) Yang-Baxter equation were also studied
by Yau in [86 187,88, 189, 93| 194].

For a given braided tensor(=monoidal) category C, a braided monoidal category
H(C) with non-trivial associativity and unity constraints was constructed by Caenepeel
and Goyvaerts in [21], and the counterparts of Hom-type structures are investigated in
the context of monoidal categories. They obtained the symmetric monoidal category
H(My) for the category of modules over a commutative ring k and introduced monoidal
Hom-(co)algebras, Hom-bialgebras and Hom-Hopf algebras as (co)algebras, bialge-
bras and Hopf algebras in this tensor category. Besides its appropriateness to highlight
the general structures systematically, the framework of monoidal categories provides a
way to see what additional requirements in the definitions of Hom-structures are needed
and convenient for certain kinds of applications. In the original definitions of Hom-type
structures in [62, 163, |64], the deforming linear endomorphism (structure map) was not
required to be either multiplicative or bijective; one should check the results in [21] and
[66], respectively, to see the necessity of the multiplicativity and bijectivity assumptions



on the structure map in order to have monoidal structures on the categories of mod-
ules and Yetter-Drinfeld modules over (monoidal) Hom-biagebras, respectively. Further
properties of monoidal Hom-Hopf algebras and many structures on them have been
lately studied [26],[271,[28], [29], [39], [58].

Covariant bimodules were introduced by Woronowicz in [82] to construct differential
calculi on Hopf algebras, where bicovariant bimodules (or Hopf bimodules) are con-
sidered as Hopf algebraic analogue to the notion of vector bundles over a Lie group.
In Chapter 3, the notions of left(right)-covariant Hom-bimodules and bicovariant Hom-
bimodules are introduced to have twisted, generalized versions of the concepts of
left(right)-covariant bimodules and bicovariant bimodules. Afterwards, the structure the-
ory of covariant bimodules over monoidal Hom-Hopf algebras is studied in coordinate-
free setting and then the main results are restated in coordinate form. Furthermore,
it is shown that the categories of left(right)-covariant Hom-bimodules and bicovariant
Hom-bimodules are tensor categories equipped with a monoidal structure defined by
a coequalizer which is modified by a suitable insertion of a related nontrivial associa-
tor. Additionally, it is proven that the category of bicovariant bimodules over a monoidal
Hom-Hopf algebra forms a (pre-)braided monoidal category (with nontrivial associators
and unitors). In the meantime, (right-right) Hom-Yetter-Drinfeld modules are proposed
as a deformed version of the classical ones and it is demonstrated that the category
of Hom-Yetter-Drinfeld modules can be set as a (pre-)braided tensor category endowed
with a tensor product over a commutative ring k described by the diagonal Hom-action
and codiagonal Hom-coaction (together with nontrivial associators and unitors). As one
of the main consequences of the chapter, the fundamental theorem of Hom-Hopf mod-
ules, which is provided in [21], is extended to a (pre-)braided monoidal equivalence
between the category of bicovariant Hom-bimodules and the category of (right-right)
Hom-Yetter-Drinfeld modules.

Motivated by the study of symmetry properties of honcommutative principal bun-
dles, entwining structures (over a commutative ring k ) were introduced in [11] as
a triple (A,C)y consisting of a k-algebra A, a k-coalgebra C and a k-module map
P : C®A — A® C satisfying four conditions regarding the relationships between the
so-called entwining map and algebra and coalgebra structures. The main aim of Chap-
ter 4 is to generalize the entwining structures, entwined modules and the associated
corings within the framework of monoidal Hom-structures and then to study Hopf-type



modules such as (relative) Hopf modules, (anti) Yetter-Drinfeld modules, Doi-Koppinen
Hopf modules, Long dimodules, etc., in the Hom-setting. The idea is to replace al-
gebra and coalgebra in a classical entwining structure with a monoidal Hom-algebra
and a monoidal Hom-coalgebra to make a definition of Hom-entwining structures and
associated entwined Hom-modules. Following [13], these entwined Hom-modules are
identified with Hom-comodules of the associated Hom-coring. The dual algebra of this
Hom-coring is proven to be the Koppinen smash. Furthermore, we give a construction
regarding Hom-Doi-Kopinen datum and Doi-Koppinen Hom-Hopf modules as special
cases of Hom-entwining structures and associated entwined Hom-modules. Besides,
we introduce alternative Hom-Doi-Koppinen datum. By using these constructions, we
get Hom-versions of the aforementioned Hopf-type modules as special cases of en-
twined Hom-modules, and give examples of Hom-corings in addition to trivial Hom-
coring and canonical Hom-coring.

The general theory of covariant differential calculus on quantum groups was pre-
sented in [82], [80], [81]. Following the work [82] of Woronowicz, in Chapter 5, after the
notions of first order differential calculus (FODC) on a monoidal Hom-algebra and left-
covariant FODC over a left Hom-quantum space with respect to a monoidal Hom-Hopf
algebra being introduced, the left-covariance of a Hom-FODC is characterized as well.
The extension of a FODC over a monoidal Hom-algebra to a universal Hom-differential
calculus is described (for the classical case, that is, for an introduction on the differen-
tial envelope of an algebra A one should refer to [32], [31]). In the rest of the chapter,
the concepts of left-covariant and bicovariant FODC over a monoidal Hom-Hopf alge-
bra (H, «) are studied in detail. A subobject of kere, which is right Hom-ideal of (H, «),
and a quantum Hom-tangent space are associated to each left-covariant FODC over a
monoidal Hom-Hopf algebra: It is indicated that left-covariant Hom-FODCs are in one-
to one correspondence with these right Hom-ideals, and that the quantum Hom-tangent
space and the left coinvariant of the monoidal Hom-Hopf algebra on Hom-FODC form
a nondegenerate dual pair. The quantum Hom-tangent space associated to a bicovari-
ant Hom-FODC is equipped with an analogue of Lie bracket (or commutator) through
Woronowicz’ braiding and it is proven that this commutator satisfies quantum (or gener-
alized) versions of the antisymmetry relation and Hom-Jacobi identity, which is therefore
called the quantum (or generalized) Hom-Lie algebra of that bicovariant Hom-FODC.

The content of Chapter 2 consists of the results from a paper by the author and



Christian Lomp in [47]. Much of the contents of Chapter 3 and Chapter 4 consists of
results from the preprints [45] and [46], respectively, by the author.



Chapter 1

Preliminaries

This chapter contains some definitions and results regarding fundamental algebraic
structures such as (co)algebras, bialgebras, Hopf algebras and their (co)modules, which
are constructed in a (braided) tensor category. For a solid background on (braided)
monoidal categories one should refer to [60] and [49].

1.1 Monoidal Categories

Let C be a category and consider a functor ® : C xC — C. An associativity constraint for
® is a natural isomorphism

a:®o(®xide) > ®o (ide X ®).
This means that for any triple (U, V, W) objects of C there exist an isomorphism
agyw: (UQV)@W - U®(VeW),

such that the following diagram commutes:

UeV)eW 2 Us(Vew)
(f®g)®hl lf®(g®h)
UeV)eWw L eV ew)

whenever f: U - U’, ¢g: V- V’and h: W — W’ are morphisms in the category.



The associativity constraint a is said to satisfy the Pentagon Axiom if the following
diagram commutes:

ay,v,w®idy

(U(VeaW))eX (UdV)eW)®X (Pentagon)
ay,vew,x (U V)®(WeX)

laU,V,W®X

U®(Ve(WeX))

U(VeW)®X)

idU®uV,W,X

for all objects U,V,W,X of C. A left unit constraint (resp. a right unit constraint) with
respect to an object I is a natural isomorphism [ (resp. r) between the functors I ® —
(resp. —®1I) and the identity functor of C. This means that there are natural isomor-
phisms Iy, : I®V - Vand r, : VI — V, for all object V € C. The naturality means
that, for any f : V — U, the equations

foly=lyo(id;®f)  fory=ryo(f®idy)

hold.
The Triangle Axiom holds for a given associativity constraint a and left and right unit
constraints [, r with respect to an object I if the following diagram commutes:

au,Lv

(UeheVv Ue(I®V) (Triangle)
rm Af
UueVv

Definition 1.1.1 A monoidal category (C,®,1,a,1,v) is a category C with a functor ® :
C xC — C and an associativity constraints a, a left and right unit constraint | and r with
respect to I such that the Pentagon and Triangle Axioms hold. The monoidal category
is called strict ifa, | and r are identities in C.

Let us denote by 7: C xC — C xC the flip functor defined by t(U, V) = (V,U) on any
pair of objects. A commutativity constraint c is a natural isomorphism c¢: ® - ® o T and



we say that it satisfies the Hexagon Axiom if the hexagonal diagrams commute:

Us(VeWw) XY (vew)eU UeV)eW XY weUeV)  (Hex)
aU'V'WT Lav,w,u uUl'V'WT lav«},u,v
(UsV)eW Ve (WeU) U (Ve W) (WelU)eV

cU,V®idWl Tidv(@cu,v idU®cv,Wl Teu,w@'dv
(VelU)eW XY veUew) U®(W®V)M(U®W)®V

Definition 1.1.2 Let (C,®,1,a,1,7) be a monoidal category. A commutativity constraint
satisfying the Hexagon Axiom is called a braiding in C. A braided tensor category
(C,®,1,a,l,1,c) is a tensor category with a braiding. A monoidal category is said to
be symmetric if it is equipped with a braiding ¢ such that cy iy o cyy = idygy for all
objects U,V in the category.

Convention: In order to ease notation we will drop the subscripts from the associator
ay,v,w and unitors Iy, ry. Moreover we will simply write 1 for the identity morphism of
an object.

1.2 Algebras and modules in monoidal categories

Definition 1.2.1 An algebra A in a monoidal category C is an object A with morphisms
m:A®A — A andn:1— AinC such that the following diagrams commute:

a n®l 1®n
(A®RA)®A AR(AQA) I®A A®A A®I (Alg)
m®1L ll@m \ l"i/
A®A A®A A
x /
A

The first diagram corresponds to the associativity axiom and the second one is the
unity axiom. A homomorphism of algebras « : A — B in C is @ morphism in C such that

aomy =mpo(a®a)and aony =1np.

Definition 1.2.2 Given an algebra A in a monoidal category C, a left A-module is an
object M in C with a morphism ¢ : A® M — M such that the following diagrams com-

8



mute:

(A®A)®M “ A(AeM) TeM-~AeM (Mod)
-] - S
AQM A®M M
x /
M

The first of the above diagrams is the associativity condition and the second is the left
unity condition.

The subcategory of left A-modules in C shall be denoted by 4,C. Analogously one
defines right A-modules and the category of right A-modules shall be denoted by C4.

Definition 1.2.3 Let A be an algebra in a monoidal category C. For any object V of C
there exists so-called canonical left A-module structure on F(V)=A® V defined by the
composition of morphisms

@ ASF(V) -~ (A®A) @V "L AgV = F(V) (1.1)
together with a morphism iy : V. — F(V) defined by
v v 1ev 2L Ry
The morphism iy, : V — F(V) satisfies the following property:
po(l®iy)=1fy) (1.2)
To prove this we consider the diagram

-1 1 1
19 ae(eV)—2 | AeFv)—f (V)

_
-1 -1
k lﬂ La el

(AR)®V (ARA)®V

F(V)

(1en)®1

The first triangle commutes since the Triangle Axiom holds, the naturality of a implies
the commutativity of the square and the triangle at the end is the definition of ¢. The
upper line is the composition ¢ o (1 ® i) while the lower line is equal to the identity by
the right unity condition of the algebra A.



Definition 1.2.4 Let A and B be algebras in C. A (A,B)-bimodule M in C is an object
in C with a left A-module structure ¢ : AQ M — M and a right B-module structure
¢ : M® B — M such that the following diagram commutes:

(AQM)®B < A®(M®B) (Bimod)
q)®ll ll@zp
M®B A®M
M

We shall denote the category of (A, B)-bimodules by 4Cj.

The following theorem has been proven by Schauenburg for strict monoidal cate-
gories (see [72], Theorem 5.2). For the reader’'s sake we include here a proof for an
arbitrary monoidal category.

Theorem 1.2.5 Let A and B be algebras inC. LetV be any objectinC, F(V)=AQ®V
be the canonical left A-module with module structure given by ¢ as in and let iy :
V — F(V) be the canonical morphism attached to F(V). Then the following statements
are equivalent:

(a) F(V) is a (A, B)-bimodule with the canonical left A-module structure;

(b) There exists a morphism f : V® B — F(V) such that
fo(l®mp)oa=@o(l®f)oao(f®1) (Cond1)
fO(l@l”]B):iVorv (Cond2)

In this case, if ¢ : F(V)® B — F(V) denotes the right B-module structure on F(V'), then
the morphism f is defined by the composition of morphisms:

iy®1

f:V®B ¢

F(V)®B

F(V) (1.3)

On the other hand if f is given satisfying (Cond1)) and (Cond2), then the right B-module
structure on F(V) is given by the composition of morphisms:

¢:F(V)®B—" > A@(VeB) —Z

A®F(V)

10



Proof: (a) = (b): Suppose F(V) is an (A, B)-bimodule with right B-module structure ¢.
Let f asin (1.3), i.e. f = ¢ o(iy ®1) and consider the following diagram:

1®m3

(V®B)®B < V®B®B) ——= V®B
(iv®1)®ll ji‘/@(l@l) Lz‘v®1
fol (F(V)®B)®B —"~ F(V)® (B®B) —"* - F(V)®B f
¢®1l L‘P
F(V)®B ? (V)

The upper left square commutes because of the naturality of a, the upper right
square commutes for the functor ® : C x C — C preserves the composition of the mor-
phisms, while the commutativity of the lower diagram corresponds to the associativity
condition for the right B-module structure on F(V). In particular we get

fo(l@mploa=¢o(fe®l) (1.5)

and we will show that ¢ = ¢ o (1 ® f) o a which is a consequence of the compatibility
condition and the identity (1.2). We have namely the following diagram:

F(V)®B 2 A®(Ve®B)
l(l@iv)eal ll@(iml)
Lpw)®lp (AQF(V))®B < A®(F(V)®B) 1®f
P®1 ll@xp
F(V)®B A®FE(V)
e A
E(V)

The commutativity of the square follows from the naturality of a and the pentagon is
the bimodule compatibility condition (Bimod). We then conclude that po(1® f)oa= ¢
holds, which, when substituted in (1.5) yields (CondT). (Cond?2) indeed holds:

fo(l®ng)=¢o(iy®l)o(1®np)=do(1®np)o(iy®1)=rpy)o(iy®l)=iyory,

where the penultimate equality results from the right unity condition for ¢, which is
¢ o (1®np) = rr(v), the last equality is induced by the naturality of r.
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(b) = (a) Let f : V® B — F(V) be given satisfying (Cond1) and (Cond2). There are
three diagrams to check, namely the two diagrams in and the compatibility dia-

gram (Bimod): Let us first check the compatibility condition by considering the following
diagram:

PR1

(AQF(V)®B——% (AsA)eV)oB 2% (A V)2 B
A®(F(V)®B) ‘ §

1®a
A®(AS(VeB) ——— (AsA)e(VeB) %) 4V oB) ¢

1®¢ 1®(1®f) (181)®f 1®f

A®(ARE(V)) — " (AQA)®F(V) 2L~ AQF(V)

1®¢ P

AQF(V) F(V)

¢

The upper left pentagon commutes by the Pentagon Axiom. The commutativity of the
upper right and the middle left squares results from the naturality of a. The middle right
square commute since the functor ® preserves the composition of the morphisms. The
associativity condition for the canonical left A-module structure ¢ on F(V) implies the
commutativity of the lower pentagon. Hence the compatibility condition follows.

Now we check the unity condition of for ¢ : F(V)®B — F(V) by considering
the following diagram:

TE(V)

FV)®l — '~ Ae(Vel) -2~ F(V)

1®n3l L1®(1®;,B) LlAQN

F(V)®B—Q>A®(V®B)WA@F(V)?P(V)

12



The triangle is the property (1.2), the square in the middle follows from the condition
and the left square is induced by the naturality of a. Lastly, we prove the
associativity condition of for ¢ by the following diagram:

P®1
(F(V)®B)@ B (A@ (V@ B) @ B2 (AQ F(V))® B2 F(V) & B
‘ Ae(VeB @B LY ag(F(V)oB)
1®a ¢
F(V)®(B®B)—=A®(V®(B®B)) 1®¢
1®myp 1®(1®mp)
E(V)®B———A®(V@B) ——— A®F(V) F(V)
¢

where the lower middle pentagon is precisely the condition and the right pen-
tagon is the compatibility condition (Bimod), and the commutativity of the rest comes
from the Pentagon Axiom and the naturality of the associativity constraint a. O

1.3 Coalgebras and comodules in monoidal categories

Inverting the direction of arrows in the diagram that defines algebras and modules in a
monoidal category C we define colagebras and comodules in C. Hence

Definition 1.3.1 A coalgebra C over a monoidal category C is an object C with mor-
phisms A:C —- C®C ande: C — I inC such that the following diagrams commute:

(C®C)®C~—"  Co(CeC) I1eC< ceoc ®.Cel (CoAlg)
A®1T T1®A » TA o
CaC CxeC C

A
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Definition 1.3.2 Given a coalgebra C in a monoidal category C, a left C-comodule is
an object M in C with a morphism p : M — C ® M such that the following diagrams

commute:
(C®C)®M Co(CoM) IoM<3 ceMm (CoMod)
A®1T T1®P -1 Tp
CoM CoM M
\ /
M

The subcategory of left C-comodules in C shall be denoted by ©C. Analogously one
defines right C-comodules and the category of right C-comodules shall be denoted by
cC.

Definition 1.3.3 Let C be a coalgebra in a monoidal category C. For any object V of
C there exists a canonical left C-comodule structure on F(V) = C® V defined by the
composition of morphisms

P F(V) 22X (CoC)®V —2= CRF(V) (1.6)

together with a morphism jy : F(V) — V defined by

e®1 1

\%

jv  E(V) =%

The morphism jy : F(V) — V satisfies the following property:
(1®jy)op=1pw). (1.7)

Definition 1.3.4 Let C and D be coalgebras in C. A (C,D)-bicomodule M in C is an
object in C with a left C-comodule structure p : M — C ® M and a right B-comodule
structure ¢ : M — M ® D such that the following diagram commutes:

a1

(COM)®D C®(M®D) (BiComod)
p®1T Tl@q&
M®D CeM
X /

M

We shall denote the category of (C, D)-bicomodules by ¢CP.
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1.4 Bialgebras and Hopf modules in braided monoidal cate-
gories

Let C be a braided monoidal category with commutativity constraint c; vy : U®V —
VU, for all objects U, V in C. To simplify notation we define the following isomorphism
7,3 for objects U, V, W, X in C:

(UV)®(WeX)—~Ue(VeW)eX) (flip)

T23l ll@CV’W®1

UeW)e(VeX)<—Us(WeV)eX)
where

b:(UeV)®(WeX)——=Us(Ve(WeX) 2= Us (Ve W)oX)

Definition 1.4.1 Given two algebras (A, m,14) and (B, mg, 1) in @ symmetric monoidal
category, their tensor product A ® B carries a canonical algebra structure in C with the
product:

my@mpg

Magp: (A®B)®(A®B) —2> (A®A)® (B® B) A®B

and unit:
I-! 1491

I®I A®B

NagB: 1

Analogously for two coalgebras (C,Ac,ec) and (D,Ap,ep) in C, their tensor product
C® D carries a canonical coalgebra structure in C with the coproduct:

-1
Ac® _ (ceC)®(DeD)—2~(CeD)®(C®D)

and the counit:

€c®€p 1

€cop: C®D Iol I

With these canonical algebra and coalgebra structures on the tensor product of two
algebras resp. coalgebras we can define bialgebras in a braided monoidal category.

Definition 1.4.2 A bialgebra H inC is an object H that has an algebra structure (H, m, 1)
in C and a coalgebra structure (H,A,¢€) in C, such that A and € are algebra homomor-
phisms with respect to the canonical algebra structure on H® H respectively on I.
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Let H be a bialgebra in a braided monoidal category C. Then the categories of left
(resp. right) H-modules yC (resp. Cy) as well as the categories of left (resp. right)
H-comodules C (resp. CH) are braided monoidal subcategories of C. For example for
U,V e y4C the tensor product U® V belongs to yC by the left diagonal action defined as

‘PU ‘Pv

228 HeH)e(UeV)—2- (HeoU)eHe V)" “Y UeV .

Puev: HO(UGV)—

Analogously the right diagonal action of a bialgebra H on tensor products is defined.
For any object V in C the trivial left H-action on V is defined as follows:

ex1 I

IV V.

(PV cHeV
In particular the unit object I becomes a left H-module.

Definition 1.4.3 Let H be a bialgebra in a braided monoidal category C. Then H is
itself a coalgebra in yC, where tensor products carry the diagonal left H-module struc-
ture. Hence it makes sense to consider the category H(;C) of left H-comodules in this
category of left H-modules. Objects of this category are left H-modules and right H -
comodules M in C such that the coaction p,; : M — H®M is left H-linear. This category
is denoted by ﬁc and objects are termed left H-Hopf modules. Analogously the cate-
gories CH, yCH and Hcyy of right, left-right and right-left H-Hopf modules are defined
respectively.

The tensor product of objects U, V € HC carries a left diagonal coaction defined as

pPu®pv

puev: UV (HeU)e(HeV)—2- (HoH)o (U V)22%

He(U®V).
Analogously the right diagonal coaction of a bialgebra H on tensor products is defined.
For any object V in C the trivial left H-coaction on an object V is defined

-1 ®1
pv: V—>1eV->HaV.

In particular the identity object I becomes a left H-comodule. Note that if H is a bialge-
brain C. Then the assignment F(V) = H®V for any object V € Cis a functor F:C — gc.
Moreover if V is considered a trivial left H-module (resp. trivial left H-comodule), then
the map iy : V — F(V) is a morphism in yC (resp. in C).
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Definition 1.4.4 Let H be a bialgebra in a braided monoidal category C. Then H is itself
an algebra in "'C, where tensor products carry the diagonal left H-comodule structure.
Hence it makes sense to consider the category (7 C) y of H-bimodules in this category
of left H-comodules. Objects of this category are left and right H-modules and left H -
comodules M in C such that the left and right H-module actions are H-colinear and
the bimodule condition is satisfied. This category is denoted by ch and objects are
termed left covariant H-bimodules. Analogously the category HCII} of right covariant
H-bimodules is defined.

Definition 1.4.5 A left-covariant (resp. right-covariant) H-bicomodule is a left-covariant
(resp. right-covariant) H-bimodule in the dual category C°P.

We denote by ECH (resp. HC};I ) the category of left-covariant (resp. right-covariant)
H-bicomodules together with those morphisms in C that are left and right H-colinear
and left (resp. right) H-linear.

We now make use of the Theorem|1.2.5] which has been given in the general tensor
category framework, to prove the undermentioned theorem (see [72], Theorem 5.1):

Theorem 1.4.6 Let V € C and let H® V € ¢ with the canonical H-module and H-
comodule structures. Then there is a bijection between right H-module structures mak-
ing H® 'V a left-covariant H-bimodule and right H-module structures on V.

Proof:By performing the previous theorem to the left H-module H ® V in the category
of left H-comodules, we obtain a bijection between right H-module structures making
H®V an H-bimodule and left H-colinear morphisms f : V®H — H ® V fulfilling

1. fo(ly®@m)oa=(m®1ly)oalo(lp®f)oao(f®1y),
2. fo(lyen)=(n®ly)olylory.

For any left H-comodule X with the coaction p : X — H ® X, there is the bijective

mapping
Fx:"Hom(X,H®V)— Hom(X,V), f > lyo(¢®1y)of

with the inverse given by g— (1y®g)op. Letustake f : V® H - H® V and put

¢:lvo(€®1v)OfZV®H—)V.
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Then we prove that f satisfies the above equations if and only if ¢ defines a right H-
module structure on V.

Fvemer(m®1ly)oa ' o(ly®f)oao(f@1y))
lyo(e®ly)o(m@ly)oa'o(ly®@f)oao(f®ly)
Yo(Pp®1).

Indeed, we first show that the equality
(e®1y)o(m®ly)oa'o(ly®floa=(1@P)oao((e®1y)®1y)

holds by the diagram

(H®V)®H(“m—)®>l(1®\/)®H—“>I®(V®H)
10y
¢ e®(1®1)
H®(VeH) Hov —2 1oV
10y
1®f 1®l
HeHeV) te(eel) He(eV) 1ol
e®(1®1)

(H®H)®V

me1 HeV e®1

where the fact of € being an algebra map implies the commutativity of the lower square,
the middle left square is the definition of ¢ and the commutativity of the rest follows from
the naturality of a and the fact that ® preserves the composition of the morphisms. To
get the above equality we also used the the Triangle Axiom, which implies a~! o(1®l“,1) =
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r;1®1y, and the fact that r; = I;. Thus

lyo(e®1ly)o(m®ly)oa ' o(ly®f)oao(f®1y)
= ly(1®y)oao((e®1y)®1y)o(f@1g)
= tpolygyoao((e®ly)of®1p)
= po(ly®1)o(ly olyo(e®1y)of@1y)
= Yo(lyel)o(ly'®1)(p®1y)
= Po(p®1)

where the second equality results from the naturality of I and the third one is obtained
by the Lemma XI.2.2 in ([49]). We also have

Fvemen(f o (ly ®m)oa) lyo(e®ly)ofo(ly®m)oa

po(ly®@m)oa.

Therefore, the associativity of ¢ holds if and only if Fygm)gr(f o(1y®m)oa) = Fiygm)en ((m®
1y)oalo(lg®f)oao(f®1p)), which is equivalent to the relation (1) due to the fact that
FvemeH is @ bijective map. By a similar argument, we get the equivalence between
the unity condition of ¢ and the relation since Fygi(fo(ly®#y)) =1¢o(ly ®n) and
Fyer((n®1y)oly! ory) =ry and Fygy is a bijection. O

Definition 1.4.7 M < C is called bicovariant H-bimodule if it is an H-bimodule and an
H-bicomodule such that M € Cf, ycH, Hey, ¢

We denote by gcg the category of bicovariant H-bimodules together with those mor-
phisms in C that are H-linear and H-colinear on both sides. By applying the Theorem
(1.4.6) in the opposite category we get

Corollary 1.4.8 Let V eC)and let HQV € gc with the canonical H-module and H -
comodule structures. There is a one-to-one correspondence between right H-comodule
structures on H® V making it a left-covariant H -bicomodule and the right H-comodule
structures on V.

Definition 1.4.9 A right-right Yetter-Drinfel’d module V in C is a right H-module with an
action: V®H — V and a right H-comodule with a coaction p : V — V ® H such that
the following condition
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’U(O)<1h1®7}(1)h2 = (Vﬂhz)(o)@hl(vﬂhz)(l) (18)

holds, forh € H andv € V, if we write (v ®h) =v <h and p(v) = v() ® v(1).

The category of right-right Yetter-Drinfel’d modules together with those morphisms
in C that are both H-linear and H-colinear is indicated by Y DI.

In what follows we prove ([72], Theorem 5.4) in an arbitrary category, where the
notion of generalized elements of objects in a category C is used, refer to ([70]). We use
the notations, A(c) = ¢, ® c, for a generalized element c of a coalgebra C and p™(m) =
m) ® m(y) for a generalized element m of a right C-comodule M with the structure
morphism pM : M — M ® C; and for the left comodules we use Mp(m) = m_y) ® m),
which is the Sweedler’s notation where the summation is dropped, and that notation is
used throughout the thesis.

Theorem 1.4.10 Let V € C and let H® V € HC with the canonical H-module and H-
comodule structures. Then there is a one-to-one correspondence between

1. right H-module structures and right H-comodule structures making H® V bico-
variant H-bimodule,

2. right-right Yetter-Drinfel'd module structures on'V.

Proof: The right H-module structure v® h — v < h and the right H-comodule structure
v > v()®v() on V are induced by the correspondences in (1.4.6) and (1.4.8] - What is
left to finish the proof is to show the equivalence of the rlght H- Hopf module condition
on H® V to the compatibility condition (1.8) on V. Let's write ¢": (HQV)®@H - HQV
for the diagonal right actionon H®V, ¢” : (H®V)® H)® H - (H® V)® H for the
diagonal right actionon (H® V)®@ H and 6’: H® V — (H® V)® H for the codiagonal
right coaction on H® V. So we have, for g,he H and v e V,

o’(ghy ®v <hy)
((gh1)1 ® (v < hy)(0)) ® (gh1)2(v < hp))
= (&1h11 ® (v <hy)(0)) ® (825112)(v < ha)(y)
(8111 ® (v < ha2)(0) ® (82h121)(v < hap) ()
( ) ® &2(ha1 (v <hya) ), (1.9)

o' (¢'(g®v)®h)

g1h1 ® (v <hy)o
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¢”((0’®idy)(g®v)®h))
= ¢"(((51®v(0)) ®&v(1)) ®h)
= (8§1®Y(0)) -1 ®(g2v(1))h?
(81111 ®v(0) <hi2) ® g2(v(1)h2)
(8111 ®v(0) <ha1) ® §2(v(1)h22)- (1.10)

Thereby if the condition on V holds then the right hand sides of and
are equal, and thus the left hand sides of and are equal, that is, the
requirement that H ® V be a right Hopf module is fulfilled. Conversely, if we assume
that H® V is a right H-Hopf module, then by applying (¢ ® (1, ® 1)) o a to the equation
(0’0o )N(1®v)®h)=(¢" o(0’®idy))((1 ®v)®h) we obtain the condition onV.nO
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Chapter 2

Integral Calculus On Quantum
Exterior Algebras

2.1 Introduction

Let A be an algebra over a field K. A derivation d : A — Q! of a K-algebra A into
an A-bimodule is a K-linear map satisfying the Leibniz rule d(ab) = ad(b) + d(a)b for all
a,b e A. The pair (Q!,d) is called a first order differential calculus (FODC) on A. More
generally a differential graded algebra Q = B, _,
linear mapping 4 : Q — Q of degree 1 that satisfies 4> = 0 and the graded Leibinz rule.

Q" is an IN-graded algebra with a

This means that 4(Q") € Q"*!, 4> = 0 and for all homogeneous elements a,b € Q) the
graded Leibniz rule:
d(ab) = d(a)b + (1) ad(b) (2.1)

holds, where |a| denotes the degree of a, i.e. a € Q|a] (see for example [30]). We
shall call (Q,d) an n-dimensional differential calculus on A if Q™ = 0 for all m > n.
The zero component A = Q° is a subring of QO and hence Q" are A-bimodule for all
n > 0. In particular d : A — Q! is a bimodule derivation and (Q!,d) is a FODC over
A. The elements of " are then called n-forms and the product of Q) is denoted by A.
Given an FODC (Q!,d) over A, a connection in a right A-module M is a K-linear map
VoM - M®, Q! satisfying

VO(ma) = VO (m)a+me, d(a) VYae A,me M. (2.2)
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In [15] T.Brzezinski introduced an adjoint version of a connection by defining the notion
of a right hom-connection as a pair (M,V,), where M is a right A-module and Vj :
Homy (Q!, M) — M is a K-linear map such that

Vo(fa)=Vo(fla+f(d(a)) VaeA,feHomy(Q!,M) (2.3)

Here the multiplication (fa)(w) := f(aw), for all w € Q!, makes Hom4(Q', M) a right
A-module. In case the FODC stems from a differential calculus (Q,d), then a hom-
connection V, on M can be extended to maps V,, : Hom 4 (Q"*!, M) — Hom,(Q"™, M)
with

Vol £)@) = V(fv) +(-1)"" f(dv),  Vf eHomy(Q"™!,M),veQ™, (2.4)
If VoV = 0, the hom-connection V,, is called flat. In this paper we will be mostly inter-
ested in the case M = A. Set 2}, := Hom4(Q", A) as well as Q" = @mQjﬂ and define
V:Q"— Q" by V(f)=V,,(f) forall f Q)] ..

If Vq is flat, then (Q*, V) builds up the integral complex:

Vi e Vo Y Y
Q; Q3 ol A

It had been shown in [16], [18] that for some finite dimensional differential calculi the
integral complex is isomorphic to the de Rham complex given by (Q,d):

d d
AL 0 -0, 0,

i.e. for certain algebras A and n-dimensional differential calculi Q) = @;ZOQ’” it had
been proven that there is a commutative diagram

V. Vi \ \
Q:l n-1 Q:l_l n-2 1 Qi 0 A

eoT @4 @,HT @T

A __d__) Ql d d QTZ—] ___d__) Qn

in which vertical maps are right A-module isomorphisms: In this case, we say that A

satisfies the strong Poincaré duality with respect to (Q),d) and V, following T.Brzezinski
[16].

The purpose of this chapter is to provide further examples of algebras whose cor-
responding de Rham and integral complexes are isomorphic with respect to some dif-
ferential calculi which contributes to the general study of algebras with this property. It
should be noticed that the Poincaré duality in the sense of M.Van den Bergh [79] (see
also the work of U.Krahmer [53]) is different.
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2.2 Twisted multi-derivations and hom-connections

From Woronowicz’ paper [80] it follows that any covariant differential calculus on a quan-
tum group is determined by a certain family of maps which had been termed twisted
multi-derivations in [18].
We recall from [18] that by a right twisted multi-derivation in an algebra A we mean
a pair (d, o), where 0 : A — M,,(A) is an algebra homomorphism (M,,(A) is the algebra
of n x n matrices with entries from A) and d: A — A" is a k-linear map such that, for all
ac€A,beB,
d(ab) = d(a)o(b) + ad(b). (2.5)

Here A" is understood as an (A-M,(A))-bimodule. We write o(a) = (0;j(a));._; and

n
ij=
d(a) = (di(a))i_, for an element a € A. Then (2.5) is equivalent to the following n equa-
tions

9;(ab) = Zaj(a)aﬁ(b) +adi(b), i=1,2,...n (2.6)
j

Given a right twisted multi-derivation (d,0) on A we construct a FODC on the free left
A-module

n
Ql=A"= @Awi (2.7)
i=1

n

with basis wy,...,w, which becomes an A-bimodule by w;a = j=1 oij(a)w; for all 1 <

i <n. The map
n
d:A Qb quai(a)wi (2.8)
i=1
is a derivation and makes (Q',d) a first order differential calculus on A.
Amapo : A— M,(A)can be equivalently understood as an element of M,,(End;(A)).

Write e for the product in M, (Endi(A)), T for the unit in M, (End,(A)) and oT for the
transpose of o.

Definition 2.2.1 Let (d,0) be a right twisted multi-derivation. We say that (d, o) is free,
provided there exist algebra maps 6 : A — M,,(A) and 6 : A — M, (A) such that
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Theorem [18, Theorem 3.4] showed that for any free right twisted multi-derivation
(d,0;6,8) on A, and associated first order differential calculus (Q!,d) with generators
w;, the map

V:Homy(Q!,A) — A, fl—)Z&?(f(a)i)). (2.11)
i

is a hom-conection, where 07 := Zj,k Gxjod;jody;, foreachi=1,2,...,n. Moreover V had
been shown to be unique with respect to the property that V(&;) =0, foralli =1,2,...,n,

where &; : Q! — A are right A-linear maps defined by &i(w)) =645, 1,j=1,2,...,n.

ijs

We shall be mostly interested in right twisted multi-derivation (d, o) that are upper
triangular, for which o;; = 0 for all i > j holds. It had been shown in [18, Proposition 3.3]
that an upper triangular right twisted multi-derivation is free if and only if o14,...,0,, are

automorphisms of A.

2.3 Differential calculi on quantum exterior algebras

Let A be a unital associative algebra over a field K. Given an A-bimodule M which is
free as left and right A-module with basis {w;,...,w,} one defines the tensor algebra of
M over A as

[ee]

TA(M):A@M@(M®M)@M®3@...:@M@n (2.12)
n=0

which is a graded algebra whose product is the concatenation of tensors and whose
zero component is A. Following [10, 1.2.1] we call an n x n-matrix Q = (q;;) over K a
multiplicatively antisymmetric matrix if g;;q;; = q;; = 1 for all i,j. The quantum exterior
algebra of M over A with respect to a multiplicatively antisymmetric matrix Q is defined
as

/\Q(M) = TAM)/w;i®wj+gjjwj@w;,w;®w; |i,j=1,...,n).

This construction for a vector space M = V and a field A = K appears in [68, [78]. The
product of A?(M) is written as A. The quantum exterior algebra is a free left and right
A-module of rank 2" with basis

{1}U{a)l-l /\(1)1'2'~-/\a)ik|i1 <ip<---<i, 1 <k<n}
Write sup(w;, A w;,-+- A w;,) = {i1,ip---, i} for any basis element. Given a bimodule

derivation d : A — M, we will examine when d can be extended to an exterior derivation
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of A9(M), i.e. to a graded map d : A®(M) — A2(M) of degree 1 such that 42 = 0 and
such that the graded Leibniz rule is satisfied.

n
w; :ijaﬁ(a) VaeAi=1,..n (2.13)

Proposition 2.3.1 Let(d, o) be a right twisted multi-derivation of rank n on a K -algebra
A with associated FODC (Q',d). Let Q be an nxn multiplicatively antisymmetric matrix
over k. Thend :A — Q! can be extended to make Q = A?(Q!) an n-dimensional
differential calculus on A with d(w;) =0 for alli =1,...,n if and only if

818] _qﬂa 8 and 8iok]-—q]~i8]-aki:qjio-kjai—okiﬁj Vi<j, Vk. (2.14)

Proof: Suppose d extends to make Q a differential calculus on A with d(w;) = 0. Then
forallae A and k =1,...,n the following equations hold:

n

d(wia) = d(wp)a—wp Ad(a Z ~wp Adj(a Z—o-ki(aj(a))w,.w (2.15)
i,j=1

d [Zo-kj(a)ij = Z di(0y(@)w; A w; + Zo-kj(a)d(wj) = Z di(0y;(@)w; Aw; (2.16)
j=1 i,j=1 j=1 i,j=1

Hence, as wya = Z}Ll oxj(a)w; and w; A w; = —qj;w; A w; for i < j, we have
—aki8j+qji0kj8,- :aiO'kj—q]'ia]'O'ki Vl<] (217)

Furthermore d? = 0 implies for all a € A:

= Z 9;9;(a)w; A w; = Z(aiaj ~49;9;)(a)w; A w;, (2.18)
ij= i<j
which shows 0;d; = g;;d;d;, for i <j.

On the other hand if (2.14) holds, then set for any homogeneous element aw € Q™
withae Aand w = wj, Awj, A+ Awj, , With j; <j, <--- <j,, a basis element of Q™

n
d(aw) = d(a) Aw = Zai(a)wi Awj, Awj, A+ Awj, . (2.19)
i=1
We will show that 4 : QO — Q in that way, will satisfy d> = 0 and the graded Leibniz rule.
For any aw € Q™ as above:

aw)= ) 9dj(a)w; Awj Aw = Z —gidd)@w Aw Aw=0  (2.20)

l<]
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Since 1} implies that 0;(1) = Y d;(1)aji(1) + d;(1) = 2d;(1), as 0j;(1) = 0 if i = j, we
have d;(1) = 0 and henced(w;) = d(1) A w; = 0 for all i.
We prove the graded Leibniz rule

d(aw A bv) = d(aw) A by + (=1)"aw A d(bv) (2.21)

inductively on the grade of w, where w = wj, A+ Awj,

elements of () and a,b € A. Fora m =0, ie. aw = a, equation (2.21) follows from the

and v = w; A--- A w;, are basis

definition and d(v) = 0. Let m > 0 and suppose that (2.21) has been proven for all
basis elements w of grade |w| < m—1. Let w be a basis element with |w| = m and write

w=w Awg.
dlaw Abv) = d(aw’ Awyr Abv)

= id(aa)' A ogj(b)w; A v)
=T
n

= id(aa)’) Aogj(b)w; Av+(=1)"! Zaw' Ad(orj(b)wj Av)

=1

= d(aw’)Awr Abv +(-1)"" aa)/\ZQ oj(D)w; Awj Av

= d(aw)Aby - "aw’ A Z[a 0xj (b)) — ;i 9;(0o%i( ))]a)l- AwjAv
Z<]

= d(aw)Abv +(-1)"aw /\Z[le qﬂak] ]wl/\w AV
i<j

= d(aw)Abv+(-1)"aw /\ZO‘k, b))w; Nwj Av

= d(aw) Abv +(=1)"aw’ A wg A Zaj(b)wj Av
=1
= d(aw)Abv+(-1)"aw Ad(bv)

which shows the graded Leibniz rule, where the induction hypothesis has been used in
the third line and where (2.14) has been used in the sixth line . O

Suppose that (d,o0) is a free right twisted multi-derivation satisfying the equations
(2.14) and that (Q,d) is the associated n-dimensional differential calculus over A for
some n x n matrix Q. Then, as mentioned above, V : Homy(Q!,A) — A with V(f) =
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Y 99(f(w;)) forall f e Hom 4(Q',A) is hom-connection. For each 1 < m < n one
defines also V,, : Hom4(Q™*1,A) — Hom 4 (QQ"", A) with

Vol () = V(fu)+ (-1 f(d(u),  Vf € Homa(Q™,A)ueQ”,  (2.22)

where fu € Hom4(Q!, A) is defined by fu(v) = f(uAv) for allv € Q!. As every element
u € Q™ can be uniquely written as a right A-linear combination of basis elements w =
A Aw; and since V,,(f) is right A-linear and furthermore by Proposition m
d(w) = 0 is satisfied, we conclude that for u = wa:

C()i1

Vil f)(@a) = Vyu(f)@)a = V(fw)a+ (=1)"* f(d(w))a = V(fw)a (2.23)

holds. If 8?(1) = 0 for all 7, the hom-connection is flat, because for any dual basis
element f = B;, € Hom4(Q?, A) with s < £, i.e. By, (w; A w;) = 6,0 one has

VIVi(F) = ) (Vi@ =) 9 (V(fwi)
i=1 i=1

n n
D) @ flwihwj)) = (7 (1)) =0.
i=1 j=1
Set O = Homy(Q,A) = @;:0 Hom 4 (0™, A) and note that V induces a map of
degree —1 on QO*. We want to establish an isomorphism between the de Rham complex
given by d : QO — Q) and the integral complex given by V: Q* — Q. More precisely we
are looking for a bijective chain map © : (Q,d) — (Q*, V) such that the following diagram

commutes:
A L) Ol d d Qnr-1 L) Q"
G)Ol 91 l ®n—1 l Gnl
Homy (Q",A) —— Hom,4(Q""1,A) Homy(Q',A) —— A
Vn—l anz Vl \%

One attempt is to define the maps ©,, via the dual basis element of Q". Define
w=w A Aw, Q"

for the base element of Q". Let B € Q™" be the dual basis of Q" as a right A-module, i.e.
B(wa) =aforall ae A. For any 0 < m < n define ©,, : Q™ — Hom4(Q2"™™, A) through
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0,,(v) = (-1)"" gy for all v € Q™. Note that ©,, = . Moreover the maps ©,, are right
A-linear taking into account the right A-module structure of Hom 4 (Q"™, A), namely for
aceA,veQ™and we Q"

O, (va)(w) = (-1)"" Vpwa Aw) = (-1)"" V(v A aw) = ©,,(v)(aw) = (O,,(v)a)(w).

Hence ©,,(va) = 0,,(v)a.

For a certain class of twisted multi-derivations, extended to a quantum exterior al-
gebra, we will show that the maps ©,,, are always isomorphisms. We say that a twisted
multi-derivation (d, o) on an algebra A is upper triangular if o;; = 0 for all i > j. By [18]
Proposition 3.3] any upper triangular twisted multi-derivation is free if and only if ¢;; are
automorphisms of A for all i. The corresponding maps & and & are defined inductively
by 6;; = 0;; foralli, 5;; = —Z;;lj o7 oo foralli>jand 6;; =0 fori < j. The map 6 is
defined analogously using &.

Theorem 2.3.2 Let (d,0) be a free upper triangular twisted multi-derivation on A with
associated FODC (Q!,d). Suppose thatd : A — Q' can be extended to an n-dimensional
differential calculus (Q),d) where Q) = /\Q(Ql) is the quantum exterior algebra of Q! for
some matrix Q. Then the following hold:

1. wa = det(o)(a) w, for alla € A, where det(c) = 01100 0,,-

2. The maps ©,, : QO™ — Hom4(Q"™,A) given by ©,,(v) = (—1)’”(”‘1)/31/ for all v €
Q™ are isomorphisms of right A-modules.

3. Moreover if

97 = [l_[ qij] det(o)'0;det(c)  Vi=1,...,n (2.24)
j

holds, then ©® = (©,,)" _, is a chain map, that is, A satisfies the strong Poincaré

m=0

duality with respect to (Q,d) in the sense of T.Brzezinski.

Proof: (1) By the definition of the bimodule structure of A2(Q!) and by the fact that ¢
is lower triangular we have

aw = Z---th A+  Awj Gyj 006 (a)

jnZTl lel
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By the definition of the quantum exterior algebra the non-zero terms wj, A--- A w;, must
have distinct indices, i.e. ji = j; for all k = [. In particular j, = n and hence inductively
we can conclude that j; =i for all i. This shows that aw = Bdet(o-)‘l(a).

(2) For every basis element of w = w;, A---Aw; of Q"™ there exists a unique
complement basis element v’ = cu]’.1 Ao A a);m of Q™ such that v’ A w = 0. Let C,, be
the non-zero scalar such that v’ A w = C,w Let f € Hom4(Q"™,A) be any non-zero
element and set

a, = (-1)"" Vgl det(o)(f (w))
for any basis element w €e Q"™. Setv =) a,w’. Then
©,,(v)(@) = (-1)"" V(a0 Aw) = (-1)""DB(a,,C,,@) = det(0) ! (det(0)(f (w)) = f(w).

Hence ©,,(v) = f, which shows that ©,, is surjective. To prove injectivity, assume that
v=) a,w’ €Q"is an element such that ©,,(v) is the zero function. Then for any basis
element w € Q"™ one has

©,(v)(w) = (-1)"" V(a0 Aw) = (-1)""DC,, det(0) ' (a,) = 0

which implies a,, to be zero. Thus v = 0 and ©,, is an isomorphism.
(3) We will show that (®,,),, is a chain map, i.e. that ©,,,;0d =V,_,,_1 00,,. Let

w = wj A+ Awj be a basis element of O™ and let a € A. For any basis element

V=w, A A €Q" 1 we have

n-m-1

®m+1(d(aw))(v) = (_1)(m+1)(n—1) E ﬁ(ai(a)a)i ANw AN v).
i=1
On the other hand

Vi1 (O (a@))(v) = (<1)"" DV (B(aw Av) = (-1)"" ) 9(Blaw Av A w)),
i=1

as d(v) = 0. Note that ©,,,1(d(aw))(v) = 0 and V,,_,, 1(0©,,(aw))(v) = 0 if sup(w)N
sup(v) = 0. Hence suppose that w and v have disjoint support. Then there exists a
unique index i that does not belong to sup(w)Usup(v). Let C be the constant such that

w AV Aw; =Co.
Recall also that by the definition of the quantum exterior algebra we have:
W, NWAY = []_[—qij]a) ANV ANw; = (—1)n_1C(Hqij]5.
j#i j
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Note that hypothesis (2.24) is moreover equivalent to
97 o det(0)™! = [H qij] det(c) ! 0 0; (2.25)
j

These equations yield now the following:

Opsi(d(aw)(v) = (-1)"™DDB(0;(a)w; Aw Av)

)
= (-1)"nic ]_[qij]ﬂwi(a)a)

= (1" Vel ] Jai | det(o) ™ (@i(a)

= (-1)""IC 9¢ (det(o) " (a)
= 97 ((~1)" e plaw))
= 97 ((-1)""VB(aw AV Aw;)) = V-1 (Op(aw)(v))

Thus ©,,,10d =V,_,_1 ©9,,. Hence O is a chain map between the de Rham and the
integral complexes of right A-modules.
O

Remark 1 Let (d,0) be an upper-triangular twisted multi-derivation of rank n on A and
let Q be an nxn matrix with q;;q;; = q;; = 1. The conditions to extend the multi-derivations
to the quantum exterior algebra () = /\Q(Ql) such that the complex of integral forms on
A and the de Rham complex are isomorphic with respect to (Q,d) are:

1. oy; is an automorphism of A for all i;
2. 818]:(1],8]81 foralli<j;
3. aio‘k]' - q]'i()'k]'al' = qjiajaki - O‘kia]' for all i <j and all k;

4. 97 = ([1;9i;) det(o) ™" 9; det(o) for all i.

2.4 Differential calculi from skew derivations

The simplest bimodule structure on Q! = A" is a diagonal one, i.e. if oij = 9;j0; for all
i,j where o1,...,0, are endomorphisms of A. Moreover if ¢ is diagonal and (d,0) is a
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right twisted multi-derivation on A, then the maps o; are right o;-derivations, i.e. for all
a,beAandi:
ai(ab) = ai(ﬂ)ﬁi(b) + ﬂal(b) (226)

Conversely, given any right o;-derivations d; on A, fori = 1,...,n one can form a corre-
sponding diagonal twisted multi-derivation (d,o) on A. Such diagonal twisted multi-
derivation (d,o0) is free if and only if the maps oy,...,0, are automorphisms. The
associated A-bimodule structure on Q! = A" with left A-basis w;,...,w, is given by
w;a = o;(a)w; for all i and a € A. From Proposition [2.3.1| we obtain the following corol-
lary for diagonal bimodule structures.

Corollary 2.4.1 Let A be an algebra over a field K, o; automorphisms and d; right
0;-skew derivations on A, fori = 1,...,n and let (Q',d) be the associated first order
differential calculus on A.

1. The derivationd : A — Q! extends to an n-dimensional differential calculus (Q,d)
where Q = \2(Q!) is the quantum exterior algebra with respect to some Q such
thatd(w;) =0 foralli=1,...,n if and only if

ain :6]]10]81 and 818] :q]la]al Vl<] (2.27)

2. /f810'] = q]‘iO'jai for all l,] and 818] = q118]81 for all i < j, then the de Rham and the
integral complexes on A are isomorphic relative to (Q,d).

Proof: (1) Since oy; = 0 for all k = i, equation (2.14) reduces to equation (2.27).
(2) Note that d7 = a;laiai = d;. On the other hand by hypothesis d; det(o) =
(IT; g;) det(c)2;. Hence

]_[qij] det(c) ™' 9; det(c) = 9; = 9.
j

Thus by Theorem [2.3.2] A satisfies the strong Poincaré duality with respect to (Q,d) in
the sense of T.Brzezinski. O
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2.5 Multivariate quantum polynomials

Let K be a field, n> 1, and Q = (g;;) @ nxn multiplicatively antisymmetric matrix over K.
The multivariate quantum polynomial algebra with respect to Q is defined as:

A=0q(K"):= K(x1,..., %, )/{xiXj = 4ijXjx; | 1 <, j < ).

This means that x; and x; commute up to the scalar g;; in A. Moreover every element
is a linear combination of ordered monomials x® = x{'---x;," with a = (a,..., @) € N".
The set of n-tuples IN” is a submonoid of Z" by componentwise addition. For any
a € Z we set x* = 0 if there exists i = 1,...,n such that a; < 0. Furthermore IN" is
partially ordered as follows: « < g ifandonly if a; < p;,i=1,---,nfora,peN". If a <,
then p—a € N" and xf~% = 0.

For two generic monomials x* and x# with a, g € IN" one has

xxP =[ H q?jiﬂj]x“+ﬁ = ;,t(a,ﬁ)xaﬂg, (2.28)

1<j<i<n

where (e, ) = [Ti<jcicn qf;iﬁj. The algebra A has been well-studied by Artamonov
[5] [6] as well by Goodearl and Brown [10] and others. The Manin’s quantum n-space is
obtained in case there exists q € K with g;; = g for all i < j. In particular for n = 2 one
obtains the quantum plane.

We define automorphisms o7,...,0, and right ¢;-derivations of A as follows: For a

generic monomial x* with « € IN" one sets
0;(x%) := Aj(a)x® and d;(x%) := a;0;(a)x™€ (2.29)

where A;(a) = [T, q?jj, di(a) = [T q?jj and €' € IN" such that € = 6;;. Let &;(a) =

[T qj;j and note that A;(a) = 6;(@)d;(a). Since pu(a, ) = p(a — €', B)d;(B) if a; = 0 and
u(a, B) = u(a, p—€')d;(a)7l if ; = 0, we have:

(a; + B, B)5;(a + p)x*+P

= aipla—e', B)3i(B)oi(a)3i(Bx" P + pipla, f—€)i(a) ! oi(a)oi(Bx P E
= 0;(@)x A (B)xf +x B0y (B)xP

= 0i(xM)oi(xP) + x*9;(xP)

di(x“xP)

33



Leti<jand a e N". Then 6;(a — €)= 0j(a), while o;(a —el) = oi(a)g;j;. Hence

9(9:(x%)) = a;a;o;(a)8j(a — €)x2 ¢ = aja;q;;6i(a — )d;(@)x ¢ = g;;9,(9;(x%))
(2.30)
Thus d;0; = g;;0;d; for all i < j.
Leti<jand a € IN". Then

0i(9j(x%)) = ajd;(@) i (a—e/)x ¥ = a;o;(@)Ai(@)g;ix® ¢ = q;iAi()2;(x%) = q;;9j(0;(x%).
(2.31)
Hence 0;d; = q;;d;0; for all i < j. By Corollary we can conclude:

Corollary 2.5.1 Let A = Og(K") be the multivariate quantum polynomial algebra and
let QO = A\2(Q') be the associated quantum exterior algebra. Then the derivation d :
A — Qb withd(x®) = Y, 9i(x*)w; makes Q) into a differential calculus such that the de

Rham complex and the integral complex are isomorphic.

2.6 Manin’s quantum n-space

In this section we will show that for a special case of the multivariate quantum poly-
nomial algebra there exists a differential calculus whose bimodule structure is not di-
agonal, but upper triangular and nevertheless the de Rham complex and the integral
complex are isomorphic.

Let g € K\ {0}. For the matrix Q = (g;;) with q;; = q and q;; = g ! foralli<;j and
gi; = 1, the algebra Og(K") is called the coordinate ring of quantum n-space or Manin’s
quantum n-space and will be denoted by A = K,[xy,...,x,]. We have the following
defining relations of the algebra A

XiXj = qx;X;, i<j. (2.32)

Note that for « e N" and 1 <i < n we have:

where

Ay =[ g and T =] [

i<j j<i

34



More generally

n-1
PRALES [I_[ Aj(a)ﬁf]xaxﬁ = ]_[ q%Pix®xP
j=1

1<s<j<n
Let u(a, B) be the scalar such that x*xf = u(a, g)x**F.

We take the following two-parameter first order differential calculus Q! (see [51),
p.468] for the case p = ¢ and [18, Example 3.9] for the case n = 2), which is freely
generated by {w1,...w,} over A subject to the relations

W;X;j :qx]-a)iJr(p—l)xl-w]-, i <j, (2.33)
WiX; = px;;, (2.34)
w;jx; = pq_lxiwj, i<j, (2.35)

There exists an algebra map o : A —» M,,(A) whose associated matrix of endomor-
phisms o = (oj;) is upper triangular and such that w;x® = Zisj 0ij(x*)w;. The next
lemma will characterize the algebra map o. Forany a e N" and i =1,...,n set w;(a) =
[Ts<ip®-

Lemma 2.6.1 For a € IN" the entries of the matrix o(x®) are as follows o;;(x*) = 0 for
i>jand
L T(j(a)ii(a)/\]'(a)(p“f -1) for i<j,
0ij(x®) = n;j(a)x®€ ¢ where ij(a) = B
i) Xi(@)di(a)p® for i=j

Proof: Fix a number i between 1 and n. We prove the relations for o;; by induction on
the length of a, which by length we mean |a| = a; +--- + «,,. For |a| = 0 the relation is
clear, because a; = 0 for all j, i.e. x* = 1. Hence w;x® = w;, i.e. 0;;(x%) = 9;;. Since
p% —1=0forall j and p® =1 the relation holds.

Now suppose that m > 0 and that the relations hold for all « € N" of length
m. Let p € IN" be an element of length m + 1 and let k be the largest index j such that
Bj=0. Set a = p—e*,ie. p=a+ek. We have to discuss the three cases k <i, k =i
and k > i.

If k <i,thenforalli<j, a; =0, ie. 0;;(x*) = 0. Hence

wixP = wx%xy = 05 (xY)wixg = pq o (xM)xpw; = preg(@)g Tt A (@)x xpw; = () A (B)xP w;,
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since \j(a) = p% =1, wj(a + €X) = prj(a) and X;(a + €X) = g7 A;() for any k < i and
a € N". Thus oy;(xF) = 7;(B)A; (B)Ai(B)pFixP.
)=

If k =i, then again o;;(x*) = 0 for all j > i. Moreover A;(a) =1 for all j >i. Thus

a;+1 . .«a

wixP = 07 (xM)w;x; = 03 (x¥)px;; = (@) A (@)p® T x¥x;0; = 11 (B) Ay (B)pP P wj,

since a, = f, for all s < i, i.e. 7;(B) = m;(a) and A;(B) = Aj(a).
If i < k, then note that o;;(x%) = 0 for all k < j, because p®/ = 1. Thus

wixP = 0,;(x%)wixg + Zol] WXy + ojg(x Y wgxy
i<j<k

oii (x*)[qxrw; + (p — D)xji ] + Zoij(xa)[quw] (p = 1)xjwi] + ojp(x )pxgwy

i<j<k

q0i; (x")xpw; + Z qO}] ka

i<j<k

+

(p—1)oii(x¥)x; + Z p-1) (71] +pazk( )xk}wk

i<j<k

()

Note that for any j < k we have gA;(a) = A;(). Hence qo;;(x%)x; = gi].(xﬁ) for all j < k.
It is left to show that the expression (+) equals oj;(xf). Recall that A;(a)x%x; = xa+e’,
Hence /\j(a)x““f‘f% x@*¢' Note also that p®ir(a) = 1j,1 (@).

(%)

(p—DAi(@)|mi(@)A;(a)p®xx; + Z nj(a)/\j(a)(l?a"—l)xwe < ]+P01k( “)xx

i<j<k

= (p-DAi(a)|p¥mia)+ Z”j(a)(p“f—1)]xa+€i+povk(xa)xk
| i<j<k
= (p—DAia) | mia (@) + Z(nm(a)—nj(a))]x“*"+pnk<a>ii<a><p“k—1>x“+e"
i<j<k
= (p= DAi(@) [0 (@) + (@) = T4 (@)] 77+ preg(a) () (p™ = 1)x

1)A
= Xi(@) [(p - (@) + prg(a)(p® — 1)) xo*
(p

— _(0() ak+1_1) (a)xoﬁ—ei

= (B (B)A(B) (PP — 1)xF+e =€ = gy (xF),

since Ax(B) =1 = A(a) and my () = i (B) as a and g differ only in the kth position. O
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We will define a derivation d : K,[xy,...,x,] — Q! such that d(x;) = w; for all i. For
n

any a e N" we set d(x%) =) i, d;(x%)w; where

9:(x%) = 5:(a)x*  and 6i(a):ni(a)/\i(a)p:l;_11.

(2.36)

foralli =1,...,n. Note that for i, kK we have:
Si(a)=q 1o (axeb), ifi<k and  j(a)=pTlo(axel), ifi>k

Lemma 2.6.2 The pair (d,0) is a right twisted multi-derivation of K,[x1,...,x,] satisfying
the equations (2.14) with respect to the multiplicatively antisymmetric matrix Q" whose
entries are Q}; = p~'q fori <j. In particular

0;0;=pq'0;0;,  Vi<]j (2.37)
holds as well as for all i, k, j:

dioyj = pqilakjai, i<k<j
dioyj = pq_lajaki, k<i<j
oidj = pq_lakjai, k<i<j
di0ij—pq ' djoi; = pq 'oi;d;—0;;d

jr l<]

Proof: Let a, p € IN". To prove that the pair (d, o) is a right twisted multi-derivation, we
show the following n equations hold

[(xxP) = Z&k Yo (xP) + x¥ 9, (xP), I=1,..,n. (2.38)

Bj

Since x;x; = q~ xx,forz>] wehavex x _q“ﬁfxﬁjx’forz>],andhencex xP =

u(a, B)x ‘“/5, where (e, B) = [Ti<yes<nd” sﬂr. We then obtain

a+pr _q

9(xxP) = p(a, Boy(a + Px P = my(a + p)As(a + B pu(a, prxa+P=<.
p-1
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On the other hand, we compute

Zak Jori(x

= Zak Jori(xP) + 9y (x¥) oy (xP)

- Zék (BB (B) (PP~ 1)x = <  pPisy @)y (B)A(B)A (B

pr_q L pY — .
= m(/ﬂ)pp_ll m(@)(p™ - 1)+ phifas ) 1]/\1(06+/5) (a, e
k=1
pﬁl_l B a, 1 a+p—¢!
= (B ta) - 1)+ P HEE (e + Bt
artfr Bi — ;
. nz<a+ﬁ>%—m(ﬁ)%]w+ﬁ>y<a,/s>x“+ﬁ-€ (2.39)

where the third equality holds because
Al X (B)x = P = (@), px® P and  x*xf = A(B)p(a, B)x e

The fourth equation follows since my(a)p® = mi4q(a). As we also have

.31_1

x99)(xP) = 8(B)xxP=€ = 7y (B) Ay(a + /3 plar, B)x B, (2.40)

We can conclude, combining (2.39) and (2.40) that (2.38) holds:

pa1+ﬁz _

Zak Yok (xP) + x% 9y (xF) = 7 (a +/>’)/\z(06+ﬁ)Tllﬂ(a;/3)x“+ﬁ_el = 9y(x"xP).

(2.41)
For any i < j we have:

9;9;(x) = ;(a - €)8;(a)x® ™~ = g5, (a)po;(a — €)x " = pg19;0;(x*) (2.42)

For i <k < j, we have rj(a) = pq‘lqkj(a —¢€'). Hence

k

0k 9;(x%) = Syl — €)x €€ = plgpy(@)oi(a)x

a—el+ek—elf

= p '99i(04j(x"))
(2.43)

which shows that d;oyj = pg~'oy;d; for all i <k <j.
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Fori<k=j, we have nj;(a) = pq’lqjj(a —¢'). Thus
9;0ji(x%) = 1;5(@)5i(@)x* ¢ = pg ' 5;(a)nji(a — €)x¥ ¢ = pg o} (9i(xY)),  (2.44)

showing 810]] =

For k <i <j using nj(a)o;(a) = ni(a)o;(a) we get:

pq‘la]-jai fori< ]

diokj(x%) = mj(@)o;(a+ ek - ej)x“_€i+ek_€j (2.45)
= Pq_lUkj(a)5i(0f)xa_ei+ek_€j
= P‘flWki(a)fsj(a)x“*e%k*ej
k a—e'+ef—el

= pq 'nki(@)dj(a+e* —e')x =pq ' 9j0i(x")
showing d;oyj(x*) — pq~' 9;0i(x*) = 0. In a similar way, the relation
pq' 0yjdi(x*) = 0y;9;(x*) = 0
holds for k < i < j. Lastly, we show that the equations
0;01j(x*) = pq ' 9;03i(x%) = pq ' 0j0i(x%) — 0;9j(x*),  i<j

are satisfied, because of the following equations for i < j

q—lp[X,' i
0;i0;(x%) = ——n;j(@)m;(@) Ai(a)x*¢ = 7' ;0 (x)

p-1
1 _
dioij(x?) = Pqu’71']'(05)711'(01)/\1'(0()(}70"'+1 ~1)x*,
-1 a; _1 .
0ij0;i(x%) = % ij(@)mi(a)Ai(a)x®,

By using these equations we attain the equation:

-1

0;0j(x*) = pq ™' 9j0y;(x") = —I%ﬂij(a)ni(a)f\i(a)xa_ej
and N
pq ' 0j0i(x%) - 07;0;(x*) = _I%Uij(a)ni(a)/\i(a)xa_ej;

which completes the proof the lemma. O

Denote by Q = AP 9(Q!) the quantum exterior algebra of Q' over Ky[x1,...,x,] with
respect to the matrix Q’.
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Theorem 2.6.3 The derivation d : K,[x1,...,x,] — Q! extends to a differential calculus
AP QY on Ky[x1,...,x,]. Furthermore the de Rham and the integral complex associ-
ated to the differential calculus (AP~ 9(Q"),d) are isomorphic.

Proof: The first statement follows from Proposition[2.3.1]and Lemma[2.6.2] We have an
upper-triangular o = (o;;) matrix by Lemma of which the diagonal entries o;;,i =
1,...,n are automorphisms. Hence we construct the corresponding lower-triangular ma-
trix ¢ according to [18, Proposition 3.3]. The entries of ¢ are ¢;; = 0 for i < j and
;i = o;;' while

Gij(x) = qrei(a) " Aj(@) ™ Ai(a) ™ (pm% - 1)gtix e, (2.46)

for a e N" and i > j. Applying [18], Proposition 3.3] again yields the map &. The entries
of 6 are 6;; =0 for i > j and 6;; = o;; while 6;; = p/~o;; for i < j.

By using these formulas for the entries of the matrices (x%*) and 6(x“), we obtain
an explicit expression for

27 (x%) = Z Gij 0 9; 0 Gri(x™).

1<j<k<i

forany fixedi =1,...,n. For j <k <i we get:
Gy 0 9j 0 61i(x*) = —p" Fmj(a)mp(a) " (p — p~ ™) (p® — 1)9;(x®)
while for j = k <i we have:
Gk © I © Ski(x*) = pF(p — p~ )i (x7)

Thus for any k < i we get the partial sum:

k
Ay = Z _kj o 8] 0 O (x%)

j=1
k-1
= ) —p'Frjl@)m(a) T (p-p ) (p% — 1)2;(x%) + p' K (p - p~™); (x*)
j=1
k-1 ‘
= [1-) mi(a)(p® - Dmla)™ [p" ™ (p—p)9;(x%)
j=1
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Similarly, for k = i we have for j <k = i: G;jod;06;;(x*) = —pm;(« )p%i—1)m; ()1 9;(x%)
and for j = k =i we have 6;; 0 d; 0 6;;(x*) = pd;(x?). This gives

Ai=) Gijod;06ii(x") = prii(a) ! 9;(x").
i=1

The sum of these partial sums Ay yields:

27 (x%)

1

ZAk = an iR (p - p7)9;(x*) + prri(@) 1 9;(x%)

-1

- X )P K (p - p—“k>+pm<a>-1]ai<xa>

a; ) i—1
— p/\l(a)pp_ll 1+p1—1 Zp—k(pak+l_1)[]_[pas]]xa—€
L k=1

k<s<i

a; _ [ ) i—1 Z_
— p/\z(a)pp_ll 1+pl—l ((p—(k—l)[ ]_[ pasJ_p—k[ ]_[ pas))]xa—e

k=1 k—-1<s<i k<s<i
a, -1

= pAi(a)

= p'di(xY)

—[1+ P (mila) - p )

In order to apply Theorem we need to calculate det(o) as well as [1;q;;
where Q' = (q;j) is the corresponding multiplicatively antisymmetric matrix with qlf]. =
plq fori<j. LetaeIN". By Theorem it is enough to show that o7 (x%) =
(IT; q;].) det(0) ™! (9;( det(0)(x?))) holds, i.e.

) =| | |aijmijt@mjjia—e)™ i),
j

By the definition of #;; we obtain p~gj;;(a)n;;(a—e’)™! = 1 fori < jand pq~"n;j(a)n;j(a—
e’)”! = pfori>j, while 1;;(a);i(a —€)~" = p. Hence the product of the q;,77j;(a)nj;(a
e’)! equals p' and by Theorem Kq[xl,...,xn] satisfies the strong Poincaré duality
with respect to the differential calculus (/\Pilq(Ql),d).

O
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Chapter 3

Covariant Bimodules Over
Monoidal Hom-Hopf Algebras

3.1 Introduction

Covariant bimodules have been studied in [82] to construct differential calculi on Hopf
algebras over a field k. The concept of bicovariant bimodule (or Hopf bimodule) in [82]
is considered as Hopf algebraic analogue to the notion of vector bundle over a Lie group
equipped with the left and right actions of the group, that is, it replaces the the module
of differential 1-forms of a Lie group, which is a H-bimodule and a H-bicomodule sat-
isfying Hopf module compatibility condition between each of the H-actions and each of
H-coactions. The structure theory of covariant bimodules in a coordinate-free setting
was introduced in [72], where bicovariant bimodules are termed two-sided two-cosided
Hopf modules; see also [51] for a detailed discussion of the theory both in coordinate-
free setting and in coordinate form. With regard to knot theory and solutions of the
quantum Yang-Baxter equation, the notion of a Yetter Drinfeld module over a bialgebra
H has been investigated profoundly in [95] [71], where it is defined as an H-module and
an H-comodule with a compatibility condition different than the one describing a Hopf
module. One of the most essential features in [95] [71] is the fact that Yetter-Drinfel'd
modules over a bialgebra H constitute a prebraided monoidal category which is braided
monoidal one if H is a Hopf algebra with an invertible antipode. For a symmetric tensor
category admitting (co-)equalizers the main result (Thm. 5.7) in [72] expresses that the
structure theorem of Hopf modules extends to an equivalence between the category of
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bicovariant bimodules and the category of Yetter-Drinfeld modules over an Hopf algebra
H. If the category of Hopf bimodules is equipped with a monoidal structure over H and
the category of Yetter-Drinfeld modules is endowed with a tensor product over k with
the diagonal action and codiagonal coaction, then the aforementioned equivalence is
braided monoidal as well, in case H has a bijective antipode.

In the present chapter, we introduce the notions of left(right)-covariant Hom-bimodules
and bicovariant Hom-bimodules to have twisted, generalized versions of the concepts
of left(right)-covariant bimodules and bicovariant bimodules. Afterwards, we study the
structure theory of covariant bimodules over monoidal Hom-Hopf algebras in coordinate-
free setting and then we summarize the main results in coordinate form. Moreover, we
show that the categories of left(right)-covariant Hom-bimodules and bicovariant Hom-
bimodules are tensor categories equipped with a monoidal structure defined by a co-
equalizer which is modified by a suitable insertion of a related nontrivial associator. In
addition, we prove that the category of bicovariant bimodules over a monoidal Hom-
Hopf algebra forms a (pre-)braided monoidal category (with nontrivial associators and
unitors). Meanwhile, we propose (right-right) Hom-Yetter-Drinfeld modules as a de-
formed version of the classical ones and we attest that the category of Hom-Yetter-
Drinfeld modules can be set as a (pre-)braided tensor category endowed with a tensor
product over a commutative ring k described by the diagonal Hom-action and codiag-
onal Hom-coaction (together with nontrivial associators and unitors). As one of the
main consequences of the chapter, we prove that the fundamental theorem of Hom-
Hopf modules, which is provided in [21], can be extended to a (pre-)braided monoidal
equivalence between the category of bicovariant Hom-bimodules and the category of
(right-right) Hom-Yetter-Drinfeld modules.

3.2 Monoidal Hom-structures

Let My = (M, ®,k,a,l,r) be the monoidal category of k-modules, where k is a com-
mutative ring throughout the chapter. We associate to M; a new monoidal category
H(Mj) whose objects are ordered pairs (M, ), with M € M; and u € Aut (M), and
morphisms f : (M, u) — (N, v) are morphisms f : A — B in M satisfying vo f = f op.
The monoidal structure is given by (M, ) ® (N,v) = (M@ N,u® v) and (k,1). If we
speak briefly, all monoidal Hom-structures are objects in the tensor category ﬁ(/\/lk) =
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(H(My),®, (k,id),a,1,7) introduced in ([21]), with the associativity constraint  defined by
dppc=aapco((@®id)@y™)=(a(idey ) oaspc, (3.1)
for (A,a), (B, ), (C,y) € H(My), and the right and left unit constraints 7, I given by
fa=aorg=rpo(a®id); [y =aoly=140(id®a), (3.2)
which we write elementwise:

dgpc((a®b)®c)=al@)®(bey™ (o),

la(x®a)=xa(a) =Ta(a®x).

The category H(M;) is termed Hom-category associated to M, where a k-submodule
N c M is called a subobject of (M, p) if (N, ), ) € H(My), that is p restricts to an auto-
morphism of N. We now recall some definitions of monoidal Hom-structures.

Definition 3.2.1 [21] An algebra in H(My) is called a monoidal Hom-algebra and a
coalgebra in H(M,) is termed a monoidal Hom-coalgebra, that is, respectively,

1. A monoidal Hom-algebra is an object (A, «) € ﬁ(/\/lk) together with a k-linear map
m:AQA - A, a®b> ab and an element 1, € A such that

a(a)(be)=(ab)a(c); alpa=a(a)=14a; a(ly) =14 (3.3)
foralla,b,c € A.

Remark 2 The so-called multiplicativity , that is, the equality, fora,b € A,
a(ab) = a(a)a(b) (3.4)

follows from the equations in (3.3):

a(a)a(b) = (14a)a(b) = a(14)(ab) = 14(ab) = a(ab),

which is in fact the requirement for m: A® A — A to be a morphism in H(My).
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2. A monoidal Hom-coalgebra is an object (C,y) € H(My) together with k-linear
maps A:C—->C®C,A(c)=c;®c, and e: C — k such that

Y He1)®ca1®c0 = c11®c1,®Y " (cr); cre(cr) = y 1 (e) = e(er)eas e(p(c)) = elc) (3.5)
forallceC.

Remark 3 The so-called comultiplicativity, that is, the equality, forc € C,

A(y(c)) =y(c1)®y(c2) (3.6)

is a consequence of the equalities in (3.5):

Ay~ (o))

A(c1€(cz)) = c11 ®c12€(cr)

Y Her)®cne(cn) =y )@y (ca),

which is actually the condition for A : C — C® C to be a morphism in H(Mj).
Definition 3.2.2 [21]] Now we consider modules and comodules over a Hom-algebra
and a Hom-coalgebra, respectively.

1. A right (A, «)-Hom-module consists of an object (M, ) € H(My) together with a
k-linear map ¢ : M® A — M, Y(m @ a) = ma satisfying the following

u(m)(ab) = (ma)a(b); mly = u(m), (3.7)

forallme M anda,b e A. The equation , forae A and me M,

p(ma) = p(m)a(a), (3.8)

follows from and as in the Remark (2). ¢ is termed a right Hom-action
of (A,a) on (M, ). Let (M,u) and (N,v) be two right (A, «)-Hom-modules. We
call a morphism f : M — N right (A, a)-linear if it preserves Hom-action, that is,
f(ma) = f(m)a for allme M and a € A. Since we have, for any m e M, f(u(m)) =
f(mly) = f(m)la =v(f(m)), the equality f op=vo f holds.
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2. Aright (C,y)-Hom-comodule consists of an object (M, u) € H(My) together with a
k-linear map p: M — M ® C, p(m) = m[q)® m[1] such that

=t (myop) @ mpy) ® my1y2 = myg)jo) ® myoy11® ¥~ (my1)); mygje(myy)) = p~' (m) (3.9)

for allm e M. The equality, forme M,

p(m)jo) ® p(m)y) = p(mpop) ® y (my17) (3.10)

is a consequence of (3.9) and (3.5) in a similar manner as in Remark (3). p is
called a right Hom-coaction of (C,y) on (M, u). Let (M, u) and (N,v) be two right
(C,y)-Hom-comodules, then we call a morphism f : M — N right (C, y)-colinear
if it preserves Hom-coaction, i.e., f(mo) ® mj1) = f(m)jo)® f(m)[1) for all m € M.
The equation f oy =v o f follows from @) and (C,y)-colinearity: Form e M,

fp(m)) = f(myo)e(mp) = f(m)oe(f (m)p)) = v (f (m)).

Definition 3.2.3 [21]] A bialgebra in H(My) is called a monoidal Hom-bialgebra and a
Hopf algebra in H(My) is called a monoidal Hom-Hopf algebra, in other words

1. A monoidal Hom-bialgebra (H, «) is a sextuple (H, a,m,n, A, €) where (H,a, m, 1)
is a monoidal Hom-algebra and (H, a, A, €) is a monoidal Hom-coalgebra such that

A(hh') = A(WAR); A(lg) =1 @1y, (3.11)
e(hh’) = e(h)e(h'); e(1y) =1, (3.12)
for any h,h’ € H.

2. A monoidal Hom-Hopf algebra (H, «) is a septuple (H, o, m, 1, A, €,S) where (H, o, m, 1, A, €)
is @ monoidal Hom-bialgebra and S : H — H is a morphism in H(My) such that
S*idy =idg+S=noe.

S is called antipode and it has the following properties
S(gh)=S5(h)S(g); S(Iy) =1x;
A(S(h)) = S(hy)®S(hy); €08 =¢,

for any elements g, h of the monoidal Hom-Hopf algebra H.
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Definition 3.2.4 ([21]) Let (H,a) be a monoidal Hom-Hopf algebra. Then an object
(M, p) in H(My) is called a left (H, a)-Hom-Hopf module if (M, p) is both a left (H, a)-
Hom-module and a left (H, o)-Hom-comodule such that the compatibility relation

p(hm) = hlm(_1)®h2m(0) (313)

holds forh € H andm € M, where p: M — H®M is a left H-coaction on M. A morphism
of two (H, a)-Hom-Hopf modules is a k-linear map which is both left (H, a)-linear and
left (H, «)-colinear. The category of left (H, «)-Hom-Hopf modules and the morphisms
between them is denoted by T H(M).

We also have the fundamental theorem of Hopf modules in the Hom-setting as follows.

Theorem 3.2.5 ([21]) (F,G) is a pair of inverse equivalences, where the functors F and
G are defined by

F=(H®—-,a®-): H(M) — BH(M), (3.14)

G = (=) FH(My) — H(My). (3.15)

Above, we get M = {m € M|p(m) = 1y ® p~(m)} for a left (H, «)-Hom-Hopf module

(M, u), which is called the left coinvariant of (H,a) on (M, u), and (“°H M, plconps) is in

H(My).
In the following, we introduce the concepts of Hom-bimodules, Hom-(co)module
algebras and left (right) adjoint Hom-actions of a monoidal Hom-Hopf algebra on itself.

Definition 3.2.6 Let (A, a) and (B, p) be two monoidal Hom-algebras. A left (A, ), right
(B, p) Hom-bimodule consists of an object (M, u) € H(M,) together with a left (A a)-
Hom-action ¢ : AQ M — M, ¢p(a®@m) = am and a right (B, p)-Hom-action ¢ : M®B — M,
p(m®b) = mb fulfilling the compatibility condition, for allac A, b e B and m e M,

(am)B(b) = a(a)(mb). (3.16)

We call a left (A, o), right (B, B) Hom-bimodule a [(A, ), (B, B)]-Hom-bimodule. Let (M, u)
and (N,v) be two (A, ), (B, p)]-Hom-bimodules. A morphism f : M — N is called a
morphism of [(A, a),(B, B)]-Hom-bimodules if it is both left (A, «)-linear and right (B, )-
linear. f satisfies the following, for allac A, be Bandme M,

(af (m))B(b) = a(a)(f(m)b), (3.17)
directly from (3.76).
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Lemma 3.2.7 Let (H,a) be a monoidal Hom-Hopf algebra and (M, ) a (H, a)-Hom-
bimodule. Forhe H and m e M,

1. the linear map
M®@H — M, m@h i adg(h)(m) = (S (1)~ (m))ar(hy)
defines a right (H, a)-Hom-module structure on (M, u), and
2. the linear mapping
H®M — M, h@m — ady(h)(m) = a(hy)(u" (m)S(hy))
gives (M, p) a left (H, «)-Hom-module structure.

Proof:

1. We first set m <th = adg(h)(m) for h € H and m € M. Let g also be in H, then

pim)<i(hg) = (S((hg)1)p " (u(m))a((hg)s)
= (S(g1)S(hy)m)(a(hy)a(g,))
= (a(S(g))(S(hy)p (m))(e(hy)a(gs))
= a?(S(g))(S(h)u" (m))(h2g2))
= &*(S(g))(((a  (S(hy))p > (m)hy)ar(g,))
= (a(S(g))((a " (S(h))u 2 (m)ha))a’(g2))

(S(g1))
S(a(g))a ((S(hy)p ! (m))a(hy)))a?(g2))
S(a(g)a " (m<ah)a(a(g,))

(
(
=
(m<h)<a(g).

m<ly = (S(Ay)pt(m)a(ly) = (1gp t(m)ly = mly = u(m), which finishes the
proof.

2. The proof is carried out as in (1).

Remark 4 Since a monoidal Hom-Hopf algebra (H,«) is a (H,a)-Hom bimodule, by
taking (M, ) as (H,a) in the above lemma, the mappings ady and ad; give us the
so-called right and left adjoint Hom-action of (H, ) on itself, respectively.
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Definition 3.2.8 Let (B, ) be a monoidal Hom-bialgebra. A right (B, )-Hom-comodule
algebra (or Hom-quantum space) (A, «a) is a monoidal Hom-algebra and a right (B, B)-
Hom-comodule with a Hom-coaction p* : A —> A®B, a — a() ® a1y such that p* is a
Hom-algebra morphism, i.e., for any a,a’ € A

(aa')(o) &® (aa')(l) = 11(0)61{0) ®a(1)a'(1), pA(lA) =1,®13. (3.18)

By using the properties of (A, a) and (B, ) as monoidal Hom-algebras and the equalities
in (3.18), we get
ploa=(a®p)op’

Definition 3.2.9 Let (B, ) be a monoidal Hom-bialgebra. A right (B, )-Hom-module
algebra (A, ) is a monoidal Hom-algebra and a right (B, )-Hom-module with a Hom-
actionp, : A®B — A, a®b+— a-b such that, for any a,a’ € A and b € B

(aa’)-b=(a-by)(a -by), 14-b=¢e(b)ly. (3.19)
The equation
pac(a®p)=aopy
follows from the defining relations of Hom-module algebra in (3.79), Hom-counity of

(B, B) and Hom-unity of (A, @).

Proposition 3.2.10 The right adjoint Hom-action ZzER (resp. the left adjoint Hom-action
E[JL ) turns the monoidal Hom-Hopf algebra (H, «) into a right (H, a)-Hom-module alge-
bra (resp. a left (H, a)-Hom-module algebra).

Proof: We prove only the case of ZzER. Since we have already verified in the Lemma
1; that ad determines a right (H, @)-Hom-module structure on itself, we are left to
prove that the conditions in (3.19) are accomplished: In fact,
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(g <ki)(haky) = ((S(kia™ (g)a(kin)(S(ky)a™ (h)a(ka))
(

S(ki1)a ™ (g))ar(kio))(a(S(kyy))(a ™! (h)kay))
a(kyn)(S(kar)(@ 2 (h)a " (ky2))))
(k12S (k1)) (@™ (h)ky2))

= a(S(ki)((a™ (g)a™" (h)kz)
= (S(ki)a™" (gh)al(k,)
= (gh)<k,

where the fifth line is a consequence of the equality
hi ®h11 ®hy1o @My = a(hy)®@a ™ (hp)®@a ™ (hyy) ®hyy, (3.20)
which follows from the relation
(id®(A®id)) o (id®A)o A = (id ® 4z} 1) 0 Ap i e © (idHen ®A) o (A®id)o A, (3.21)
and

lg<h = (Sthy)a '(1g)a(hy) = a(S(hy))a(h,)
= a(e(h)1) = e(h)1y.

In the case of ad;, similar computations are performed. O

Definition 3.2.11 Let (M, u) be a right (A, «)-Hom-module and (N,v) be a left (A, a)-
Hom-module. The tensor product (M ®4 N,u®v) of (M, u) and (N, v) over (A, a) is the
coequalizer of p®idy, (idyy ®p)odpan: (M®A)QN - MQN, wherep: M®A —
M, m@ar>maandp: AQN — N,a®nwan, forac A, me M andn € N, are the right
and left Hom-actions of (A, a) on (M, u) and (N, v) respectively. That is,

man={mene MON|ma®n = u(m)®@av~'(n),Yac A}. (3.22)
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3.3 Left-Covariant Hom-Bimodules

Definition 3.3.1 A left-covariant (H, a)-Hom-bimodule is an (H, a)-Hom-bimodule (M, u) €
H(My) which is a left (H, a)-Hom-comodule, with Hom-coaction p: M — H®M, m >
m(_1)® mq), in H(My) such that

p((hm)a(g)) = A(a(h))(p(m)A(g)). (3.23)

We here recall the left coinvariant of (H,a) on (M, ) for a left (H,a)-Hom-Hopf
module (M, i), M = {m € M|p(m) = 1 ® ' (m)}, which is in H(M).

Lemma 3.3.2 Let (M, u) be a left-covariant (H, a)-Hom-bimodule. There exists a unique
k-linear projection Py : M —> MM, m s S(m(_1))myq), in H(My,), such that, for all h € H
andme M,

P(hm) = e(h)p(PL(m)). (3.24)

We also have the following relations
m = m_yP(mq)), (3.25)
P (mh) = adg(h)(Py(m)). (3.26)
Proof: We show that P, (m) is in ©“H M : Indeed,

p(P(m)) = p

where in the fifth equality we have used
M1y @12 @My -1) @m0 = & (1)) @a(mg)-1)1) ®a(m(o)-1)2)®m(o)(0), (3.27)
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which results from the fact that the following relation holds:

(A®id)o(id®p)op =1y pam © (id®dp ) 0 (id®(A®id)) o (id®p)op. (3.28)

Now we prove that M = H - ©°H M

m_)Pr(m)) = m1)(S(mo)-1))"(0)0))

= (a N (m_1))S(mg)1)))p(mo)0)
= (m_1y1S(m1)2))myo)

= e(my))1gm

where we have used the Hom-coassociativity condition for the left Hom-comodules in

the third equation.

Py (hm)

PL(mh)

If m belongs to ©°H M, then

(hlm 1))(h2m )

(S (m-1))S(h1)(homg))

)(S(hy)(a™ (hy)p™ (m(g)))
)((

)

a(S(m-1))
a(S(mp)) (e (S(hy)a™ (hy))m(g))
a(S(mp) (@ (S(hy)hy)mq))

E(h)a(S(m(-l)))ﬂ(mo)
e(h)pu(S(m_1ymo)) = e(h)p(PL(m)).

S(m_1yhy)(moyhy)



proving that P; is a k-projection of M onto ©“HM. Let P/ :M —H M be another
k-projection, in (M), such that P/(hm) = e(h)u(P/(m)), then, by the fact that P/ is a
morphism in H(M,), we have for all m € M

P/(m) = P/(m_yP(m))) = e(m_q1)) p(P;(PL(m(0)))

e(m_1))p(Pr(m))) = Pr(p(e(m_1))m(q)))
= P(p(p~"(m))) = Pr(m),

which shows the uniqueness of P;. O

Proposition 3.3.3 Let (N, v) € H(M,) be a right (H, «)-Hom-module by the Hom-action
N®H — N, n®h+ n<h. The following morphisms

H®H®N)—>H®N, h®(g®n)— a  (h)gev(n), (3.29)
(H®N)®H - H®N, (h®@n)gr—hg ®n<g,, (3.30)
p:H®N - H®H®N), han a(h)® (h,@ v (n)), (3.31)

in H(My), define a left-covariant (H, ’)-Hom-bimodule structure on (H®N,a ®v).

Proof: We verify the Hom-associativity and Hom-unity conditions for the left and the
right Hom-multiplications of (H,a) on (H® N,a®v) , respectively: For all h,k,g € H and
n€ N, we get
a(k)(h(gon) = a(k)a ' (Hgev(n)=k((a"(h)g)®v:(n)
= al(kh)a(g)®vi(n) = (kh)((a @ v)(g®n)),

lg(gen)=a ' (1g)g®v(n)=a(g)®v(n)=(a®v)(g®n),

(@@v)(h®n))(gk) = a(h)(gik)®v(n)<(gk:)=(hg1)a(k)®(n<g)<a(ky)
(hg1@n<g)alk) = ((hen)g)a(k),

(hen)lg=hlg®n<ly=(a®v)(hen).
We now show that the compatibility condition is satisfied:
(ghen)ak) = (a ' (Qhev(n)ak)=(a " (9hak)@v(n) <alk,)
= g(hk))@v(n)<a(ky) = a~ (a(g))(hky) @ v(n<ky)
= a(g)(hk, ®n<ky) = a(g)((h@n)k).
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p satisfies the Hom-coassociativity and Hom-counity condition: Indeed, on one hand
we have

A((h@n) 1)@ (a ' @v ) (hen)g) = Alah))@(@ ' @v ) (hev(n)

noo
= 3
=~
® =
QR T
= ®
X o
®
=
N
[\S)
®
<
|
B

where in the first equality we have used p(h®n) = (h®n)_;)® (h®n)g) = a(h)) ®(h, ®
v~1(n)), the third equality has resulted from the relation

a(h11)® Oé(hlz) ® h2 ® V_l (TZ) = h1 ® (x(h21)® Oé(hzz) ® V_l(n), (332)
which follows from
(A®id)op=adg g yen © ((d®dy pN)o (id®(A®id))op,

and in the last line we have used p((h®n)g)) = (h®1)(0)-1)®(h®n)0)0) = a(h21)®(h22®
v~2(n)). On the other hand,

e(alhy))(hy® v~ (n))
e(h)h, v (n)=(a ' @v ) (hen).

e((h®@n)1))(h®n)q)

To finish the proof of the fact that the above Hom-actions and Hom-coaction of (H, «) on
H ® N define a left-covariant (H, «)-Hom-bimodule structure on (H® N, a ® v) we show
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that the following relation holds:

Ala(@)phemAk) = (a(g)®a(g)(a(h)®(h®v™ (n)(k ®ky))

®a(g)((hy ® v (n))ky)
® (a ! (a(g2))(haky) @ v(v ™! (n) <kyy))

where the sixth equality has resulted from Hom-coassociativity of A for ke H. O

Proposition 3.3.4 If (M, ) € H(M,) is a left-covariant (H, a)-Hom-bimodule, the k-
linear map
0:H® UM — M, h®m— hm, (3.33)

in H(My), is an isomorphism of left-covariant (H, «)-Hom-bimodules, where the right
(H, @)-Hom-module structure on (<! M, uli ) is defined, by using (3.26), as follows

m < h:= P (mh) = adg(h)(m), (3.34)
forhe H and m e ©°“H M.
Proof: Define 9: M — H® “HM as follows: For any m e M
d(m) = m_1)® P (m(q)),

which is shown that 9 is the inverse of 0:

0(3(m)) O(m_1)® Pr(m(q)))

=m_)Pr(mg)) =m,
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where in the last equality the equation (3.25) has been used. On the other hand, for
m e ©“HM and h € H we obtain

(O (h®m))

= S(hm)

= (hm)1)® P ((hm)q))

= hym_1)® P (hym(g))

= Il ®@Py(hyu " (m))

= a(h)®e(hy)u(P(p (m)))
= a(hye(hy)®Py(m)

= a(a‘l(h))®m:h®m,

where in the fourth equality the fact that the Hom-coaction of (H, «) on (M, u) is a mor-

phism in H(My) has been used. Now we show that 0 is both (H, a)-bilinear and left

(H, «)-colinear:

O(g(h@m))

O((h®@m)k)

=0(a” (g)h®pu(m)) = (a” (g)h)u(m)) = g(hm) = gO(h@m),

O(hk; ® m <ky) = (hky)(ad g (ky)m)
(hky )((S (kay ) (m)ar(k22))
(hky)(a(S (kpy))(p  (m)ky2))
(@™ (a™ (k) (S (ka1))(ma(ksy))
(h(a™" (k1)S (ka1)))(mar(kyy))

(

h(k11S(ki2)))(mk;)
a(h)(ma~t (k) = 0(h@m)k,

where the penultimate line follows from the first relation of (3.5). Lastly, put ¥p: M —
HeM and H&“"M . Hg ©HM - He (H® “HM) for the left Hom-coaction of (H, a)
on (M, u) and (H® "M, a ® pleorps), resp., thus

M

p(6(h®m))

= Mp(hm)

hily @y (m)
a(hy) ® hyp™" (m)
(id®0)(a(h) @ (hy® ™" (m))
(id ® 0)(F® "M p(h @ m)).
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By Propositions (3.3.3) and (3.3.4), we have the following

Theorem 3.3.5 There is a bijection, given by (3.29)-(3.31) and (3.34), between left-
covariant (H, a)-Hom-bimodules (M, u) and the right (H, a)-Hom-module structures on
(COHM, ’/llcoHM).

If the antipode S of the monoidal Hom-Hopf algebra (H, «) is invertible, we have, for
me ““Mandhe H
hm = (™t (m) < S71(hy))a(hy). (3.35)

Indeed:;
(m<aS~ (hp)a(hy) = (gp~'(m<S™ (hy))a(hy)

= (g(p ' (m)<a (87 (h)a(h)
= (lga(h))((u " (m)<a™ (57 (hy)) < a(hyy)
= & (hy)(p(p (m) < (a1 (S7 (ha)a (a(hy2))))
= a(l)(m<(a (S (a(hy))ha)
= a(l)(m<(S7 (hyp)hy)

a(hy)(m<e(hy)ly) = hp(m),

which implies that M = ©°HM - H.
We indicate by gﬁ(Mk)H the category of left-covariant (H, «)-Hom-bimodules; the

objects are the left-covariant Hom-bimodules and the morphisms are the ones in H(M;)
that are (H, a)-linear on both sides and left (H, «)-colinear.

We next show that the category gﬁ(Mk)H of left-covariant (H, «)-Hom-bimodules
forms a monoidal category.

Proposition 3.3.6 Let (H,a) be a monoidal Hom-Hopf algebra and (M, u), (N,v) be
two left-covariant (H, a)-Hom-bimodules. Define the k-linear maps

HM®yN)—>M®yN, h®(meyn)=a (h)mey v(n), (3.36)
(M®y N)®H — M®y N, (mey n)®h = u(m) @y na~' (h), (3.37)
p-M®N->H®MQ®yN), m@gn= me-n-1)® (m(g) Ry n(o)), (3.38)

Then (M ®y N, u®y v) becomes a left-covariant (H, «)-Hom-bimodule with these struc-
tures.
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Proof: We first prove that the map (3.36) gives M ®y N a left (H,a)-Hom-module
structure:

a(@)(h(meyn) = a(@)a ! (hmey v(n)=gla (hym)ey v:(n)

= a l(gh)u(m) @y v(v(n)) = (gh)(n®n v)(m®y n),

lg(m®yn) = a’l(lH)m ®py v(n) = pu(m) @y v(n).

Similarly, one can also show that the map (3.37) makes M ®y N a right Hom-module.
We now prove that the compatibility condition is satisfied:

(gmeymath) = (a ' (@mey v(m)alh) = pla (g)m) @y v(n)h
= gu(m)®y v(nh = a (a(g)p(m) &y v(na™ (k)
= a(g)(u(m) @5 na (k) = a(g)(m @y n)h)

We next demonstrate that M®y N possesses a left (H, «)-Hom-comodule structure with
p which is given by p(m®g n) = m_yyn_1) ® (m(o) ®x 1(0))-

A((m @ n)-1) @ (4 ® v~ )(m®p 1) g))
= A(m1))A(n 1) ® (1 (mg) @ v (n(0)))
= (@ (mer))a” (1) ® mooy-1ym(0)-1) @ (M(0)0) B 1(0)(0))
= (a ' ((mey n)1) ® (M n)()(1)) ® (M ® 1)(0)0)

e((m®y n)1))(m®y 1)) e(m_yyn_1))mp) ®y 1)

= e(m_1))mo) ®y e(n(—1))n(o)

pH(m)@y v(n),

which prove the Hom-coassociativity and Hom-counity of p, respectively. We then finish
the proof by the below computation:
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Aa(g))(p(m @y n)A(h))

(a(g1) ® a(g2))((m_1yn—1) ® (m (o) ®y 1(0)))(h1 ® hy))

a(g1)((m1yni1))hy) ® a(g2)((m o) ®y 1(0))h2)
)(a(m(—l))(n(—l)a_l(hl))) ® a(g2)(p(mg)) ®y ”(0)05_1(}12))

(g1a(m_1))(a(n1)hy) @ (g2p(mo) ®y v(nya~ (hy)))

(g1 p(m) 1)) (v(n)(—1)h1) ® (§21(m)(0) ®H V(1) (0)h2)

(gu(m))—1)(v(n)h)—1) ® ((gu(m))(0) ®H (v(n)h)o))

p(gp(m) ®y v(n)h)

p((a”! (g)m®y v(n))a(h))

p((g(m &y n))a(h)).

Proposition 3.3.7 Let(H,«) be a monoidal Hom-Hopf algebra and (M, ), (N,v), (P, )

be left-covariant (H, «)-Hom-bimodules. Then the linear map

apNp  (M®y N)®y P — M®p (N®y P), dy n,p((m®pn) @ p) = pu(m) @ (n®p 10 (p)),

(3.39)

is an isomorphism of (H, «)-Hom-bimodules and left (H, «)-Hom-comodules.

Proof: It is clear that 4y, x p is bijective and fulfills the relation dy;ypo(p®v®m) =

(p®v®m)ody n,p. In what follows we prove the left and right (H, a)-linearity, and left

(H, a)-colinearity of dy; 5 p: The calculation

avnp(h(megn)®yp)) = dynpla (h)(meyn) @y n(p))

= aynp((@(mey v(n) ey n(p))

= wa"*(hym)®y (v(n)®y p)

= a ' (Wu(m)ey (vey n)(ney ' (p)))
= h(p(m)®y (ney ' (p))

= hayN,p((m®p n)®y p)
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shows that 4,y p is left (H,a)-linear. By performing a similar computation, one can
also affirm that ay; n p(((m ®y 1) ®y p)h) = dy N p((Mm ®y n) ®y p)h, i.e., ay N p is right
(H, @)-linear too.

Now we verify the left (H, a)-colinearity of dy; y p:

Qo(ann,p((m®y 1) g p))

= 2p(u(m) @y (n@x 7 (p)))

= p(m)1)(n®p 7w (p))(—1) ® (1(m)0) @ (n @y 71 (p))0))

= p(m)1y(n-1)®m 7 (p)(—1) ® (p(m)(0) ®n (1) @1 70" (P)(0))
= Of(m(—n)(n(_na_l (P-1)) ® (1(m(q)) ®xr (1(0) @1 T (p(0))
(m—1)n(-1))P(-1) ® am,N,p((M(0) ®H 1(0)) ®H P(0))

(m®y n) 1)P(-1) ® dpm,N,p((M(0) ®H 1(0)) ®H P(0))

= (id®dp,N,p)((Mm®y n)_1)P(-1) ® (M & 1)(0) ®H P(0)))

( ©

id @ dpN,p)(~ p((m®y n) ®y p)),

where 9p and Q'p are the left codiagonal Hom-coactions of (H,a) on the objects Q =
M®y (N®y P)and Q"= (M ®y N)®y P resp. O

Proposition 3.3.8 Let (H,a) be a monoidal Hom-Hopf algebra and (M, u) be a left-
covariant (H, a«)-Hom-bimodule. Then the following linear maps

M MeyH—> M, m®y hv mh. (3.41)

are isomorphisms of (H, a)-Hom-bimodules and left (H, «)-Hom-comodules.

Proof: With the left and right (H, a)-Hom-module structures given by Hom-multiplication
H®H — H,h®gw— my(h®g)=hg and the left (H, «)-Hom-comodule structure given
by Hom-multiplication H - H® H, h — hy ® h,, (H,«a) is a left-covariant (H, a)-Hom-
bimodule. We show only that I, is (H,a)-linear on both sides and left (H, a)-colinear.
For 7, the argument is analogous. Obviously, I, is a k-isomorphism with the inverse
i :M — H®y M, m— 1@u ! (m) and the relation poly = [ o(idy®p) is satisfied. We
show now left and right (H, a)-linearity, and (H, a)-colinearity of I, respectively: For
any h,ge H and me M,
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hu(a™ (h)g @y p(m)) = (a™" (h)g)u(m)
h(gm) = hly (g ®y m),

v (h(g ®y m))

hu((g@umh) = Iy(a(g)®yma™ (h)
a(g)(ma~" (h)) = (gm)h = Iy (g ®y m)h,

(idy ® ) ("®Mo(heg m)) = (idy ® Iy)(h_1ym 1) ® (h(o) ®p M)
= (idg ® L) (hym_1) ® (hy @ myq)))
= hymyy®hymo)=h™p(m)
= Mo(hm) = Mp(ly(hey m)),

where H®:Mp and Mp are the left Hom-coactions of (H,a) on the objects H ®y M and
M, respectively. O

Theorem 3.3.9 Let(H,a) be a monoidal Hom-Hopf algebra. Then the categorygﬁ(Mk)H
of left-covariant (H, «)-Hom-bimodules forms a monoidal category, with tensor product
®py, associativity constraints d, and left and right unity constraints [ and 7, defined in

Propositions[3.3.6,[3.3.7 and([3.3.8, respectively.

Proof: The naturality of @ and the fact that 4 satisfies the Pentagon Axiom follow from
Proposition 1.1 in [21]. Let f : M — M’ be a morphism in 2 H(M,);; and let (M, u) be a
left-covariant (H, «)-Hom-bimodule. Then, for m e M and h € H, we have

(f o lm)(h @y m) = f (hm) = hf (m) = lyp (h @ f (m),

showing that [ is natural. The naturality of 7 can be proven similarly. We finally verify
that the Triangle Axiom is satisfied: Forhe H, me M and ne N,

(idy ®p1 In)(p(m) ®p (h @y v (n)))
u(m) @y hv_l(n) =mhQ®yn

((idp ®p1 In) 0 dpng, N ) (M ®pp h) @ 1)

= fM(m Ry h) Ry n= (fM ®1dN)((m Ry I’l) Ry i’l).
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In the rest of the section, we study the structure theory of left-covariant Hom-
bimodules.

Let (H,«) be a monoidal Hom-coalgebra with Hom-comultiplication A: H - H®
H, h +— h; ® h, and Hom-counit ¢ : H — k. Then the dual (H' = Hom(H,k),a) is a
monoidal Hom-algebra with the convolution product (f f’)(h) = f(h1)f’(h,) for function-
als f, f’ € H and h € H, as Hom-multiplication, and ¢ as Hom-unit, where @(f) = foa™!
forany f e H": For f,g,ke H and he H,

(@(f)(gk)(h) = a(f)(hi)(gk)(hy)= f(a_l(hl))g(azl)k(azz)
= f(h11)g(arn)k(a” = (fg)(hy)a(k)(hs)
((fg)a(k))(h)

which is the Hom-coassociativity, and

(ef)(h) = e(hy)f (hy) = f(a™ (b)) = &(f)(h) = (fe)(h),
which is the Hom-unity. Then we have the following

Lemma 3.3.10 1. The linear map H'®H — H, f@h +> feh:= a?(h)f(a(h,)) defines
a left Hom-action of (H’,a) on (H, «).

2. Thelinearmap H®H' — H, h® f > he f := f(a(hy))a?(h,) defines a right Hom-
action of (H’, @) on (H, «).

Proof: We prove only the item (1). Let f, f"€ H and h € H. Then,

a(f)e(f'eh) = (foa™')e(a’(h )f( a(h)))
a?(a*(h))(f o a” M) (a(a?(h)))f (a(hy))
= a4(h11)f( (hlz)f(( 2)) = a*(a” (h)f(@?(hy1)) f (a(a(hyy)))
= 043( )f (a (h21))f( (hzz))za (h 1)f(a2(h2)1)f’(a2(h2)2)

= a’(h ff a®(a(h))(f f')(a(a(h),))

= (ff)ealh

eoh=a’(h)e(a(hy)) = a’(h)e(hy) = a*(a™" (h) = a(h),
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which are the Hom-associativity and Hom-unity properties, respectively. We also have
a(f)ea(h)=(foat)ea(h) = a’(h)f(a(hy)) = a(f k), which finishes the proof that
(H,«a) is a left (H’, @)-Hom-module with the given map. O

For the discussion below we assume k as a field. Suppose that I is an index set.
The matrix (V;)i,jel with entries v]’f € H is said to be pointwise finite if for any i € I, only
a finite number of terms v]l. do not vanish. The matrix (f].l)l-,jel of functionals fjl € H'is
called pointwise finite if for arbitrary i € I and h € H, all but finitely many terms fjl(h)
vanish. If (M, u) be a left-covariant (H,a)-Hom-bimodule and {m;};c; is a linear ba-
sis of MM, then there exist uniquely determined coefficients s}, i; € k, which are
the entries of pointwise fine matrices (/M})i,jel and (ﬁ})i,jel, such that plconpg(m;) = y;mj,
(pleorng) ™ (my) = ﬁ;.mj (Einstein summation convention is used, i.e., there is a summa-
tion over repeating indices) satisfying y;'.ﬁ{( = 01 = ﬁ;.y{(. Thus, by using the above
lemma, we express some of the results obtained about left-covariant Hom-bimodules in
coordinate form as follows

Theorem 3.3.11 Let (M, u) be a left-covariant (H, a)-Hom-bimodule and {m;},c; be a
linear basis of “““M. Then {m;};c; is a free left (H,a)-Hom-module basis of M and
there exists a pointwise finite matrix ( fj"),-,]-d of linear functionals f].i € H’ satistying, for
anyh,geH andi,jel,

K fl(hg) = Fif(a(9), (1) = i, (3.42)
mih = (i f] o ™} (h)my. (3.43)

Moreover, {m;};c; is a free right (H, «)-Hom-module basis of M and we have
hm; = mj((,z;;f].kos—l).a—l(h)). (3.44)

Proof: By the equation (3.25) and the fact that P;(m) € “HM for any m € M, we write
any element m € M in the form m =} ; h;m;, where h; € H, i € I. Then, applying the left
Hom-coaction to the both sides of m =Y, h;m;, we get p(m) =Y ; A(h;)(1®pu~!(m;)), and
hence by the equations and P;(m;) =m;, i € I, we have

(id@P)(p(m) = Y hiyl@P(hiop " (mi) =) alhiy)@e(h)u(PLp" (m;))

D) alhiye(hin) ®Pi(my) =) hi@m,

i i
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where we put A(h;) = h; ; ®h; ,. By the linear independence of {m;};c;, we conclude that
h; € H are uniquely determined.
Since, forany he H, m; <h = EzHR(h)(mi) e ©HM, there exist fji(h) €C, i,jel such
that
m;<h = fi(h)ymj, (3.45)

where only a finite number of ff(h) do not vanish. For any h, g € H, we have

pifl (hgymy = p(m;) <(hg) = (m; < h) < a(g)
= (i (ymj) <a(g) = f () (a(g)my,

which implies 4t £/ (hg) = £/(h)f{(a(g)), and
S (Um = m; <1 = () = pim;

concludes that ff(l) = ;4; By using the identification of hm; with h ® m; and the right
Hom-action of H on H ® ' M we obtain

(1@p  (m;)h=1h @u " (m;)<h,

= a(h)® (fim)) <hy = a(hy) @ il f) (h)my

= a(m)( £ (ho)my = (@ (W) F ) ala™ ()))my
= (flea ()my

mih

The equation (3.35) yields

hmi = (5 (mi) < S (h))a(l) = ((frimy) < S7" (hy)a(hy)
= (@S (hy)ymya(hy) = mga(hy)( £)(S7 ()
= ma()(f] o ST ho) = m((ff) 0 ST e ™! (),

Since, forany p,sel, 7 oa = il £yt and (g £ )(hg) = (it f;')(h)(ji, £7)(g) for h,g € H,
we have

64



(T o STONSM) = (7 FHSIESFE 0 SIS (R),)
= (@ f)(S(h) fzzf-P (1) = (s ) £ () (S (1)

= Vp/"rfl oa” (}ll]ls joa “1)(S(hy))
= ,Mplll :"lffl h /usfq)(s (h)2))
= I’lp’/li(:"lqﬁ )@ (h)1S(a (h)y))

= Eul Ll (De(a™ (h) = ikl il pf (1)e(h)
= O1k01;€(S(h)) = 6x;e(S(h)),
that is, we have shown that

(i f (ypfp 0S7l) = d;pe. (3.46)
In a similar way, one can also prove that
(7] £ 0 STNpfF) = Skie. (3.47)

Since {m;};¢; is a free left (H, «)-Hom-module basis of M and the equation holds,
any element m € M is also of the form m =}, m;h; for some h; € H. Let us assume that
Y ;m;h; = 0 (all but finitely many h; vanishes, i € I). So, by the equation (3.43), we get
Y (it £ @ &~ (h))my = 0 which implies that

Z(ﬁjf,j ea () =0, Vkel.

If we apply a(jif £} o S~!) from left to the both sides and use the equation (3.47), we
obtain

0 = Y a(@flos el ea ()

i

= ) (R oS s ata ()

1
) Spicehi=) syalh)=a(by),
i i

for all p € I, that is b, = 0,Yp € I. This finishes the proof that {m;};c; is a free right

(H, «)-Hom-module basis of M. O
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3.4 Right-Covariant Hom-Bimodules

Definition 3.4.1 A right-covariant (H, a)-Hom-bimodule is an (H, a)-Hom-bimodule (M, u) €
H(M,) which is a right (H, «)-Hom-comodule, with Hom-coaction o : M — M ® H,
m > mg ® myy), in H(My) such that

o((hm)a(g)) = Ala(h))(o(m)A(g)). (3.48)

The set M°H = {m € M|p(m) = u~'(m)® 1y} of M is called right coinvariant of (H,a) on
(M, p).

Without performing details, we can develop a similar theory for the right-covariant
(H, a)-Hom-bimodules as in the previous section by making the necessary changes.
We define the projection by

Pr:M — MH mio)S(my)), (3.49)
which is unique with the property
Pr(mh) = e(h)u(Pr(m)), forallhe H,m e M. (3.50)
Since the relation
(id®A)o(0®id)oo = Ayemn mu o (A ®id) o (id®A)®id)o(c®id)oo  (3.51)
holds, that is, for any m € M, the following equality
miojfo] @ Mio)1] ® 1)1 @ M{1)> = Moo} @ A(mp]a)1) ® a(mpojuj) ® ™ (mpy)  (3.52)
is fulfilled, one can prove that
o (Pr(m)) = ! (Pr(m)) @ 1.

One can also show that
m= PR(M[O])W![” (353)

is acquired by using the Hom-coassociativity property for the right Hom-comodules,
which specifies that M = M°H . H. Py also satisfies

Py(hm) = a(hy) (™" (Pe(m))S (h2)) = ad () Pe(m). (3.54)
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Since (M, u) is an (H, a)-Hom-bimodule, M®H has a left (H, @)-Hom-module structure
by the formula

h>m := Pg(hm) = ady (h)m. (3.55)

ady is in fact a left Hom-action of (H, a) on MH:

adp(1g)m =1y >m=a(ly)(p (m)S(1y)) = 1gm = p(m),

(gh)>pu(m) = a(gihy)(u " (u(m)S(g2h2))
(81)a(hy))(m(S(h2)S(g2)))
a(gr)a(h)((u ' (m)S(h,))S(a

(a

( (82)))
= ((gh)(p (m)S(hy))a(S(a(g2))

( 2)

(

)
a(gl)(hml(ﬂ Y(m)S(hy))))
a(g)p ((alhy) ™ (@ <m>s<h2>>>>> a(S(a(g))
= a(a(g) (" (h>m)S(a(g))

= a(g)>(h>m)

for all m € MH and g,h € H. Once this left Hom-module structure has been given to
Mc°H it can be proven, in a similar way as in the proof of the Proposition (3.3.3) and
the Theorem (3.3.4), that the right-covariant (H, a)-Hom-bimodule (M, u) is isomorphic,
by the morphism in H(M,)

0 MY QH > M, m®h > mh, (3.56)

to the right-covariant (H, a)-Hom-bimodule M°H @ H with Hom-(co)module structures
defined by the following maps in H(M;)

MP@H)@H — M T @H, (m®h)® g u(m@ha™(g), (3.57)
He M TeH) > MU oH, g@(meh) — g >megh, (3.58)
MY eH - (MU @H)®H, m@h (1" (m)@hy)®a(h,). (3.59)

Thus we have the following

Theorem 3.4.2 There is a one-to-one correspondence, given by (3.55) and (3.57)-
(3.59), between the right-covariant (H,«)-Hom-bimodules (M, ) and the left (H,a)-
Hom-module structures on (MH, y|yreon).
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We denote by Hﬁ(Mk)ﬁ the category of right-covariant (H, «)-Hom-bimodules whose
objects are the right-covariant (H, «)-Hom-bimodules with those morphisms that are left
and right (H, a)-linear and right (H, «)-colinear.

Proposition 3.4.3 Let (H,«a) be a monoidal Hom-Hopf algebra and (M, u), (N,v) be
two right-covariant (H, «)-Hom-bimodules. Along with (3.36) and (3.37), define the mor-
phism in H(M;)

o0:Me®yN—->(MeyN)®H, myn— (m[O] Ry n[o])®m[1]n[1], (3.60)

which is the right codiagonal Hom-coaction of (H,a«) on M@y N. Then (M ®y N, u®gy v)
is a right-covariant (H, a)-Hom-bimodule .

Proof: It is sufficient to prove first that M ® gy N becomes a right (H, «)-Hom-comodule
with ¢ and then to assert that the right covariance is held.

(plegv! )((m®g n)o)) ® A((m ®p n)1)
=t (myo) ®p v (107)) ® A(my1)) A1)
Moo ®H”[0][0]) (myo)ynoj ® @ (mpy)a” (1))

(
(
(
(

m®g n)[o)[0] ® (M ®y n)o)1] ® (M ®y 1)17),

where in the second equality the Hom-coassociativity condition for right (H, a)-Hom-
comodules has been used, and we also have

(m @y n)[o)e(m @y n)1)) = myoje(m1)) ®p nygje(npy) = p~ ' (m) @y v~ (n),

that is, o satisfies the Hom-coassociativity and Hom-counity, respectively.
And with the next calculation we end the proof:

o((gmeyn)a(h) = o(gu(m)®y v(n)h)
= ((gu(m))jo)®H ((v(n)h)jo)) ® (gp(m)) 1) (v(n)h)1,
= (g1pu(mg) ®y v(npo)h1) ® (g2 (myp1)))(a(ny))h2)
= alg)(p(mpo) ®u njoja" (1)) ® a () (mpnp))hs)
= A(a(g))((m)o) ®y nyo))h1 & (my1)n1))h2)
= Aa(g))(o(m®y n)A(h)).
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Theorem 3.4.4 Let (H,a) be a monoidal Hom-Hopf algebra. Then Hﬁ(Mk)g is a ten-
sor category, with tensor product ®y is defined in Proposition (3.4.3), and associativity
constraint a, left unit constraint [ and right unit constraint 7 are given by (3.39),

and (3.41)), respectively.

Proof: What is left to be proven is that the associator ay; n p, left unitor Iy and right
unitor 7y, are all right (H, «)-colinear.

o< (u(m) @y (n@p w1 (p))

= (u(m)[0)®y (n®H ﬂ_l(P))[o]) ® p(m)1)(n®y 71_1(17))[0]

(09 o dyrn p)((m ®p 1) ®p p)

= (p(mio) ®n (njo)®1 7' (p[o))) ® a(myr))(npa™ (pp1))
= dpm,N,p((m)o) ®y 1jo)) ®H Plo}) ® (M[1)1[1])P[1)
= (am,n,p®id)(((m®y n)[o] ®H po]) ® (M Oy 1)[11P[1])
= ((amn,p®id)oa?)(m®y n)®y p)
which stands for the right (H, a)-colinearity of @y x p, where 09" and o< are the right
Hom-coactions of (H,a@) on Q"' =M ®y (N ®y P) and Q = (M ®y N)®y P.
By considering the fact that (H,a) is a right-covariant (H, «)-Hom-bimodule with

Hom-actions given by its Hom-multiplication and Hom-coaction by its Hom-comultiplication,
we do the computation

(Iy @idy)(c"® ™M (heym) = (ly®idy)((hjo)®u M) ® hpyymp))
= (Im®idy)((h ®y myo) ® hymyy))
= hoM(m) = oM (hm)
= oM(Iy(hey m)),

concluding I, is right (H, )-colinear. By a similar argument, 7, as well is right (H, a)-
colinear . O
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3.5 Bicovariant Hom-Bimodules

Definition 3.5.1 A bicovariant (H, «)-Hom-bimodule is an (H, a)-Hom-bimodule (M, p)
together with k-linear mappings

p:-M—>HQM, m— m_1) @ 1),

o:M—>M®H, m mjg®mi,
in H(My), such that
1. (M, p) is a left-covariant (H, a)-Hom-bimodule with left (H, «)-Hom-coaction p,
2. (M, p) is a right-covariant (H, ««)-Hom-bimodule with right (H, «)-Hom-coaction o,

3. the following relation holds:
ﬁH,M'HO(p(@id)OO':(id®0')0p. (361)

The condition (3.61) is called the Hom-commutativity of the Hom-coactions p and ¢ on
M and can be expressed by Sweedler’s notation as follows

m(-1)® (mo)[0] ® m(o)11) = @(myo)-1)) ® (myo0) @ @™ (my1))), m € M.

Proposition 3.5.2 Let (N,v) € H(M,) be a right (H, a)-Hom-module by the map N ®
H — N,n®hw— n<h and a right (H,a)-Hom-comodule by N — N ® H, n + ng) ® n()
such that the compatibility condition, which is called Hom-Yetter-Drinfeld condition,

ny<a (hy)®@npya (hy) = (n<hy))®a " (hy(n<hy))) (3.62)
holds for h € H and n € N. The morphisms (3.29)-(3.31) and
0:H®N - (H®N)®H, h®n (h; ®n)) @ hyn(), (3.63)
in ﬁ(Mk), define a bicovariant (H, a)-Hom-bimodule structure on (H® N,a ® v).

Proof: As has been proven in Proposition[3.3.3] the left-covariant (H, «)-Hom-bimodule
structure on (H ® N,a ® v) is deduced from the right (H, a)-Hom-action on (N, v) by
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the morphisms (3.29)-(3.31). The morphism (3.63) fulfills the Hom-coassociativity and
Hom-counity:

(@ 'ev ) (hen)g)@A(hen)y) = (a ' (h)®v ' (ng))®Alhn))

(@ (h) @ v (1(0)) ® (ho11(1)1 ® haon1)a)

(h11 ® 1(0)(0) ® (h121(0)(1) ® @™  (hy)a ™ (1))
(h®n)[0)j0}® (h®n)[o)11®a” (h®n)[1))),

where the fact that (N, v) is a right (H, a)-Hom-comodule and the relation (3.32) have
been used in the third equation, and we besides obtain

(h®n)joe((h@n)17) = (hy @ ng))e(hyngy) = hye(hy) @ nigye(ng) = (@~ @ v )(hen).

By again using the relation (3.32)) and the fact that the right (H, «)-Hom-coaction on
(N, v) is a morphism in H(M,), we prove the Hom-commutativity condition:

a’(hy1)®((h, @ v (n(0))) ® a (hy)a™ (n)))
a(hy)® ((ha1 ® v (1)) ® hppa ™ (1))

= a(h)®((hy ®v! (1)(0)) ® hyv! (n)1))

m(-1) ® (M(0)[0) ® M(o)[1)):

a(myg)-1)) ® (myo)0)® & (1))

For g,h,k € H and n € N, we have

o((g(h®@n))a(k))
= o((a ! (g)h@v(n)a(k)
= a((a M (@malk) @v(n) < a(k,))
(((a” (@M a (k1)) ® (v(n) < a(ky))0) @ (@' (g)h)a(ky))2 (v(n) < a(ka)))
= (g1(hiky1) ®v((n<ky) ) ®(g2(h2ky2))a((n <ky)(1))
(@~ (a(g1)(h1k1) ® V(1 < ka) () ® a(2)((haky2) (n < ka) 1))
(@~ a(g)(hra™ (k) @ v((n < a(kyz))o) ® a(g2)(a(ha)(kpra ™ (n < a(ky)))
= a(g)(ma(k)® (n<a(kyz))o) ® a(g)(a (hz)(kzla_l((”<1a(kzz)(l))); (3.64)
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and

Ala(g)(a(h@n)Ak) = (a(g)®a(g))(((h &n))®hyn))(ki ®ks))
= (a(g1)®a(g2))((h @ n(g)ks ® (han(1))kz)
= (a(g1)®a(g))((hiki ®n )<1k12)®a(h2)(n(1)a‘1(k2))
= a(g)(ha (k) ®n) <ky) ® a(ga)(a(ha)(1(1)k22)). (3.65)

The right-hand sides of (3.64) and (3.65) are equal by the compatibility condition (3.62):
To see this, it is enough to set h = a(k,) in (3.62) to obtain the following

ngy e (aky)) @naya N alks)y) = (n<a(ky)r)oy®a(alks)i(n<alks)r)n))

= ngy<a alky)) @ nuya (alkyn)) = (n<alkyn)) o) ®a (alky))a (n<alk))q)
= (o) ka1 ® n(1)kaa = (n < a(kyy)) o) ®kaa (n<a(kar))))-

Thus we proved that (H® N,a ® v) is a bicovariant Hom-bimodule over (H, «). O

Proposition 3.5.3 If (M, ) € H(M,) is a bicovariant (H, )-Hom-bimodule, the k-linear
map in H(My) is an isomorphism of bicovariant (H, «)-Hom-bimodules, where
the right (H, a)-Hom-module structure on (““" M, plet ) is defined by m < h := P (mh) =
ER(h)(m), for h € H and m € “°““M and the right (H,a)-Hom-comodule structure is
obtained by the restriction of right (H, a)-Hom-coaction on (M, u) fulfilling the condition

:

Proof: Let (M, u) be a bicovariant (H, a)-Hom-bimodule with left (H, «)-Hom-coaction
p:M—h®M, m+— m_y)®m and right (H,a)-Hom-coaction 0 : M - M®H, m
myo] ® m1]. By Hom-commutativity condition (3.61) we get,

G(CDHM) C CDHM(X)H,

which implies that the restriction of ¢ to “?M can be taken as the right Hom-coaction
of (H,a) on (“°“HM, plenys) = In fact, for m e ©HM,

(id®o)(p(m) = 1&(u  (mg)@a " (mp))
= agmu((p®id)(o(m)))
= a(mo)1)) ® (myoj0)® " (m[1))),
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which purports that p(mjo) = 1 ® p~* (mjq)).

Since it has been proven in Proposition that the morphism 6 : H® “°"M —
M, h®@m — hm in is an isomorphism of left-covariant (H, «)-Hom-bimodules,
we next show that it is right (H, a)-colinear to conclude that it is an isomorphism of
bicovariant (H, a)-Hom-bimodules:

o (O(h@m)) = hymo) @ hymy) = (0 @id)((hy @ m(o)) & hympy)) = (0 @id)(@™® ™ M (h@m)),

where cH®“"M . g coH M 5 (He “HM)®H, h@m — (h ®myq))®hymyy), for he H
and m e “°" M, by the equation (3.63).

Due to the fact that (M, p) is a bicovariant (H, «)-Hom-bimodule, the left-hand sides
of (3.64) and (3.65) are equal: Thus, by applying (¢ ® idygp) o 4y N1 to the right-hand
sides of (3.64) and (3.65), we acquire the compatibility condition (3.62). o

Hence, by Propositions (3.5.2) and (3.5.3), we acquire

Theorem 3.5.4 There is a one-to-one correspondence, given by (3.29)-(3.37)), (3.63)
and , between bicovariant (H,a«)-Hom-bimodules (M,u) and pairs of a right
(H, @)-Hom-module and a right (H, «)-Hom-comodule structures on ("M, uleorps) ful-
filling the compatibility condition (3.62).

We indicate by H#(M;)! the category of bicovariant (H, @)-Hom-bimodules; the objects
are the bicovariant Hom-bimodules with those morphisms that are (H, a)-linear and
(H, a)-colinear on both sides.

Proposition 3.5.5 Let (H,«) be a monoidal Hom-Hopf algebra and (M, ), (N,v) be
two bicovariant (H, «)-Hom-bimodules. Then, with the Hom-module and Hom-comodule

structures given by (3.36), (3.37), (3.38) and (3.60), (M ®y N, u®y v) becomes a bico-
variant Hom-bimodule over (H, «).
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Proof: The only condition left to be proven to finish the proof of the statement is the
Hom-commutativity of p and o :

(aH,MeyN,H© (p®id))(0(m @y n))
= d((p®id)((mpo®y njo)) ® m1n[1)))
= d((mo)-1)njo)-1) ® (M[0)(0) ®H M[0)(0))) ® M[1)1[1))
= a(myoy-1))a (o)1) ® (m[0)(0) @ Mo)(0) ® & (mpy))a (my1))
= mnne-n @ ((mo)o) ®H 1(0)[0)) ® Mo)1)(0)[1])
= (id®0o)(m_1yn1)® (m) ®y 1))
= ((id®0)op)(m®yn),

where the fourth equality follows from the Hom-commutativity of the Hom-coactions of
(H,a)on (M, ) and (N,v). O

Lemma 3.5.6 Let(H,a) be a monoidal Hom-Hopf algebra. Then the k-linear map cy; n :
M®y N — N®yM givenby, forme M andneN,

emN(m®gn) = m_y)Pr(ngo)) ®u Pr(m))np (3.66)
= myy(no)01S (o)1) ® (S(M(0)(=1)) M (0)(0))1[1] (3.67)

is a morphism in BH(M;)H.

Proof: Let (M, u) and (N, v) be bicovariant (H, «)-Hom-bimodules. Since M ®y N is
linearly spanned by each of the sets {hu ®y v}, {w ®y zh}, {hu ®y z}, where he H, u €
cHM, v e ©“HN, we M and z e NH | we prove the statement of the lemma for such
elements: Since Mp(hu) = A(h)Mp(u) = h- Mp(u) =1y @ hop (1) = a(hy) @ hop(u)
and thus

(id® Mp)(Mp(hu)) = a(hy) ® (a(hy1) ® hyop~*(u)),

we have
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cun(hu®pv) = a(hy) (@S (Vo)) @ (S(a(hor)) (oo (w)))v
= a(h)(vp [o]S(V 1))@ (@ (S(a(har))haa)p™ (u))vy
= a(h)(©[o)0)S (Vjoy1)) @ ((e(h2)Le) ™ (1))
= a(hye(ha)(oyorS (vioyn) ®n (1p " (u))vpy
= h(v [O]S(V[O][l]))®H Uy
= h(v~ ( ) (7/[1]1))®Hu06 v[1]2)

Similarly, we obtain the following equations

CM,N(w Ry Zh) =

cyv N (hu ®y z) = h

(3.68)
w(-1)>zQ8y ‘W(O)h, (3.69)
“H(2) @ pln). (3.70)

By using the formula (3.69), we now prove the right (H, a)-linearity and then in the

sequel the right (H, a)-colinearity of cy; n:

cmN ((w ®p zh)g)

(3

v (p(w) ®p v(2)(ha2(g)))

v(2) ®p1 p(w) o) (ha~*(g))
v(2) ®y p(w(g))(ha*(g))
v(w1) > 2) @ (wipyh)a(g))

cm N (w®y zh)g,

cm N (H(w) ®y (zh)a

ww) 1) >

a(w ) >
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(em,n @ idp) (oM N (W@ zh)) = (cpn ®idy)(w)o) ®n (zh)[o) @ wi1)(zh)[1))
= cm,N(w)o) ®H zjo)h1) ® wi1)(z[1)h2)
= cun(p (W) ey v (2)h) @1y (1ghy)
(@ (we1) & v (2) @y 1 (wio))h) @ 1 (Lphs)
= (v ' w1y >2)®u p (wio)h1) ® 1(11hy)
(v (wi-1) > 2) ®H w(o)0)11) ® L (w(o)11h2)
(w-1) > 2)10] ®H (w(0)M)0]) ® (w(—1) > 2)[1)(w(0)h)[1]
NeuM

= 0 (-1)>z®y W(O)h)

where the sixth equality follows from the fact that ¥p(w) € H® M®H and the seventh
one results from w_;>z € N¢oH _ Analogously, one can also show that c; v is both left
(H, «)-linear and left (H, a)-colinear, which finishes the proof. O

Proposition 3.5.7 Let (H,«a) be a monoidal Hom-Hopf algebra with a bijective an-
tipode. Then the k-linear map cj;y : M ®y N — N ®y M given by in the above
lemma is an isomorphism in ﬁﬁ(/\/tk)g.

Proof: In the above lemma, it has already been proven that cy; n, where (M, u) and
(N,v) are bicovariant (H,@)-Hom-bimodules, is a morphism in B+(M;)H. Hereby we
prove that it is an invertible linear map to finish the proof of the proposition: Define the
k-linear map ¢!y, : N®y M —> M &y N by

N (n®p m) = npy)(m0)0)S ™ (m0)-1))) ® (S~ (0)1)) 7 [0][0)) 7 (-1)- (3.71)
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ForheH,ue “HM,ve “HN, we get

(havp)) (2 (w)S™ (1 g)) &1 (S (hy2vpo)a)) (1 vpo)i0)) 11

= (hyvp ) (W) @ (ST (Wyoy17)S ™ (h12))(h11v]oj0)) 1 1
= a(h) (v > (W) @u (@ (ST (Wioy1)S ™ (h12))h11)v(vo)0) L
= a(hz)(v[l]y_z( )) (ST (wopa ™ (S (h12)h1)v(vioj0) 11

= a(e(h (S~ o) 1a)v (o)) 11
= h(a(vpp)p (1) @ (a 571(1’[1]1))7/[0])1H
(
1

(v ®p 1)

( (
= h(a(wpp)p (u) @ (S (vup)v(vio)
= (a” (h)( kW) a? (S () @ v:(vpe))
= h((S(S ) (3 N
= h((vppp > w)a(S™ (vap)) @1 v:(vj)
(
(

Il
3‘

adg(S~ ([1]))# (1)) ®y v2(vjo))
= h(p(u) <2S7 (vp)) ®m v (vo)), (3.72)

and we now verify that ¢,  is the inverse of ¢y, y in this case;

CX/},N(CM,N(W ®uv)) = X/I (hvjo)®1 u < V(1))

h(p 2(M<W 1)< S (wo)) ®n v (vjoj0)
(p2(w) <a2(vp)) < S~ (o)) ®1 V2 (vjoj0)
(w (w)<a (@ vp) S~ (o)) @1 v (Vo)
(

(

Il Il
= S

= h(p () 2a™ (vppSTHvpp) ® v(v)e)
= h(p~ Yu)<aly)eyviv [01€(v1))

= hu®yv,
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and

cun(Eyn(hv @) = ey (h(p*(u) < S™ (v1) &1 V2 (v))))
= hv*(voqo) ®u (1> (1) < S7 (v1))) < @ (voypn))
= 2 (vpo)0) ®u () < (ST (v a(voyn))
= hv(vje) ®n p (u) <a(S™ (vpap2)vpp)
= hv(voe(vp)) @ p (u) < ly

= hveyu.

By a similar reasoning we obtain, for h € H, w e MH  z e N°H and u e “HM, the
following formulas:

eyt n (281 wh) = 1 (W) ®p (S~ (w1)) > v 2(2)h, (3.73)

cpin(hz®y u) =hu™ (1) @y v(2), (3.74)

and thus for each of the sets {w®y zh}, {hu ®g z} linearly spanning M ®y N, we also get

c]‘wl’N(cM,N(w ®y zh)) = w Qg zh, cM,N(cX/}’N(z ®y wh)) = zQy wh, CX/}’N(CM’N(]’IM ®y z)) =
hu ®y z and CM,N(CI_VII,N(I’!Z ®ygu))=hz®yu.O

Theorem 3.5.8 11 (M, )E is a prebraided tensor category. It is a braided monoidal
category if (H,«) has an invertible antipode.

Proof: We have already verified that 1 7(M; )t is a tensor category, with tensor product
®y is defined in Proposition , and associativity constraint 4, left unit constraint [
and right unit constraint 7 are given by (3.39), and (3.41), respectively. Thereby,
together with the Proposition , to demonstrate that the Hexagon Axioms for cy; n
hold finishes the proof the statement. Since (M ®y N)®gy P is generated as a left (H, a)-
Hom-module by the elements (1 ® z) ® p where u € “HM, z e NH and p e P<°H, it
is sufficient to prove the hexagonal relations for such elements. One can first note that
cyvN (1 ®p z) = z®y u and thus
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(an,p,M © CM,NeyP © AM,N,P)((4 ®F 2) ®y p)
= v(2)®p (1 (p) @ 1)
= (idy ®cp,p)(v(2) ®p (4 ®p 7 (p))
= (idy ®y cpm,p 0 AN,M,pP)((2®H U) ®p P)
= (idN ®p cp,p 0 dN,m,p © (Cp,N ®n idp))((1 ®y 2) ®Y p),

which asserts the first hexagon axiom and the second one is obtained by a similar
reasoning. O

Remark 5 The (pre)braiding c,; N defined by is called Woronowicz’ (pre)braiding.

Lemma 3.5.9 Let (H,a) be a monoidal Hom-Hopf algebra with bijective antipode and
(M, n) be a bicovariant Hom-bimodule with left Hom-coaction m — m_yy®m ) and right
Hom-coaction m + mo ® m(y}. Then the morphism ® : M — M, in H(My), given by

O(m) = (S(mo)-1))m[01(0))S (Mm1]) = S(m_1))(m(0)[0)S (M(0)[1))

is bijective. Furthermore, it restricts to an isomorphism of the subobjects “°“M and
McoH .

Proof:Let us set W(m) = (S~ (mq);17)m0)0)S ™' (m(-1)). Since the following equality
holds:

D (m)(-1) ® D(m)(0)[0] @ P(m)0)1]
= S(a(mpp) @ (S(a™ (myo-1)2) i > (myo)0))S (@™ (mp11)) ® S(a(myg)-1)1),
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we compute
W(®(m))
(STHD(m)(0)1)) @ (m)0y07)S ™ (P(m) (1))
(S7H(S (almyoy1y))I(S (@ (myoy-1)2)) 12 (my05(0))S (@~ (mp ))S ™ (S(a(mp1 )
(a(myoy-1)1)[(S (™ (myoy-1)2) 1% (mjoy0))S (™ (mpyy))Dax(my11)
= <[mm (S (@™ (o)1)= (m10y0))]S () er(myy2)
([(a™ (mpo—1)1)S (@™ (myoy—1)2))) " (myoy0)]S (mpyn))a(my132)
([a™" (myoy1)1 S (myoy-1)2)) " (my010))1S (mya ) (my112)
(e(myoy=1))m0)0)S (mpp))a(mp2)
(" (myo)S (mypyp ()
= mo)(S(mp1)1)my1p) = m.
In a similar way, one can easily get ®(\W(m)) = m for any m € M meaning @ is bijective
with inverse W. It can also be shown that yo® =®opand poW =W o u. To prove the

second statement in the lemma, we next show that @ : ©“HM — M©H gnd W ;: M°H
coHM\T: For any m e “H M, we obtain

O(m) = S(m1))(mo)01S(mo)1]))
= S()( " (mo))S(a™ (my1))) = m;S (my1)) = Pr(m),

that is, @ (m) € M°H  and for any n € M°H  we have
y

W(n) = (S noyp)moyo)S ™ (1))
= ST (np(njoy0) S (o)1) = ST (o) S (@ (n(-1))))
= ni)S (1)) = (m(0)-1)PL((0)0)S " (n(_1))

i.e., W(n)e ““HM forall ne M. o
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We now restate the structure theory of bicovariant Hom-bimodules in the coordinate
form as follows, here we assume that the scalars belong to a field k,

Theorem 3.5.10 Let (M, u) be a bicovariant (H, «t)-Hom-bimodule with right (H, «)-Hom-
coaction ¢ : M — M ®H, m +— mjo)® m[y) and {m;};c; be a linear basis of coHM. Then
there exist a pointwise finite matrices ( f:]-i)z"]‘el and (V]Z:)i,jel of linear functionals f].i eH’
and elements v]l. € H such that forany h,g € H and i, j,k € I we have

1R (hg) = f{O0F (@l £(1) = s mih = (B o 0™ (),

2. ¢(m;)=m; ®vf, where v]l: € H, i,j €1, satisfy the relations
AW)) = pv, @ (vf), e(vf) = i,

3. the equality

vi(he(ffoa) =((foa®)eh)a™"(v)) (3.75)

holds. Moreover, {n; := ij(vf)}id is a linear basis of M . {m;};c; and {n;};c; are
both free left (H, a)-Hom-module bases and free right (H, a)-Hom-module bases
of M.

Proof: (1) had already been proven in Theorem (3.3.11). Since ¢(“°"M)c “"M®H,

there exists a pointwise finite matrix (v]l')i,jel of elements v]? € H such that ¢(m;) = m; ®
vf‘. Let us write ¢(m;) = m; o) ®m; [1). Then, by the Hom-coassociativity and Hom-unity

of ¢ we have

pH (mg) @ AE) = pt (m; o) @ A(m; 1))

=
2
®

>
=
I

mi[o](o) ® Mo ® @ (1))

' -1,k
mj®v,]<®a (v;)

which implies A(v}) = sjv] ® a! (vF) by the relation y] % = oy, and

iy =t (my) = my jo1e(m; 1)) = mye(vk),
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which finishes the proof of item (2). To prove (3),letiel and he H. Then

mijo)<a” (h)@mipja (h) = mp<a (m)®via~ (h)
= ffa (m)mjevia (hy)
= mevi(ff(a”(m))a" (hy))
= myevia (ff(a (h)hy)

= mjevia (a7 (h)e ),

(mi <hy)jg®@a™" (hy)a™ (m;<ahy))) = mp@a™ (hy)ff (h)a™" (vf)
= me@a! (i f(h)a™ (v])

= m@a ((floa)e a*z(h))afl(v]'.f).

Thus, by Hom-Yetter-Drinfeld condition (3.62), we acquire

vka (a2 (h) e fF) = a7 (fl 0 a) e a2 (M) (v]),

thatis, v¥(a=3(h) e (f].k oa))=((floa?)e a—3(h))a—1(v,{) holds. If we replace a~3(h) by h,
we get the required equality vf‘(ho(fjkoa)) = ((f oaz)oh)a_l(v,];). By the above Lemma,
we obtain n; = ®(m;) = m; 0;S(m; 1)) = mS(v¥) for all i € I. In Theorem (3.3.11), we
have shown that {m;};¢; is both free left (H, «)-Hom-module basis and free right (H, a)-
Hom-module basis of M. Similarly, one can prove that this statement also holds for

{nitier. O

3.6 Yetter-Drinfeld Modules over Monoidal Hom-Hopf Alge-
bras

In this section, we present and study the category of Yetter-Drinfeld modules over a
monoidal Hom-bialgebra (H, «), and then demonstrate that if (H, «) is @ monoidal Hom-
Hopf algebra with an invertible antipode it is a braided monoidal category.

Definition 3.6.1 Let (H,«) be a monoidal Hom-bialgebra, (N, v) be a right (H, a)-Hom-
module with Hom-action N@ H - N, n®h +— n<h and a right (H, a)-Hom-comodule
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with Hom-coaction N — N ® H, n +— n( g ®n1). Then (N, v) is called a right-right (H, a)-
Hom-Yetter-Drinfeld module if the condition ) holds, that is,

noy<a () @nya ! (hy) = (n<ahy) gy @a ™ (hy(n <hy))),
forallhe H andn e N.

We denote by ﬁ(yp)g the category of (H, a)-Hom-Yetter-Drinfeld modules whose
objects are Yetter-Drinfeld modules over (H,«) and morphisms are the ones that are
right (H, «)-linear and right (H, a)-colinear.

Proposition 3.6.2 Let (H,a) be a monoidal Hom-bialgebra and (M, u),(N,v) be two
(H, a)-Hom-Yetter-Drinfeld modules. Then M ®N, u®v) becomes a (H, «)-Hom-Yetter-
Drinfeld module with the following structure maps

(M®N)®H > M®N, (m®n)@h—>m<h;®n<hy,=(men)<h, (3.76)
M®N - (M®N)®H, m®n > (mg) ®n(g)) ®m)n). (3.77)

Proof: (M®N, u®v) is both right (H, «)-Hom-module and a right (H, «)-Hom-comodule;
to verify this one can see Propositions 2.6 and 2.8 in [21] for the left case. We only prove
that the Hom-Yetter-Drinfeld condition is fulfilled for ( M® N,y®v): For he H, me M
andne N,

“Hh)a T (men)<hy)y))
m<1h21®n<1h22)( ®a ! (hy)a (m<hy ®@n<hy)y))

(men)<h,

m<h,@n<a” (hz))(o ®h11a71((m <hj,®n< ail(l/lz))(l))
1

(h2)

Jo)®hia ((m<hya)ay(n<a (ha))))

m <)) ®(n<a™ (hy)))®@hya™ (m<hiy)a))a (n<a™(hy))1)
)
(

)(0)
(
(
(m<hiz))®(n<a”
(
(m<hiz)o)® (n<1a1(h2)(0 ®(a” (hu) ((m<1h12)(1)))(n<1a_1(h2))(1)
() ® (”<1alh2)) ® (m (1)<1a‘1(h12))(n<1a_1(h2))(1)
= ya 2(’11) ® (n<hyy)0)® a(m) )(a_l(hzl)“_l((”<h22)(1)))
() @ngy<aa (hay) @ a(my(naya (hy))
(h11)®” ") ® (myny)a (hy)
= (m(0)®”(0))<1a (h1)®(m(1)”(1))a_1(h2)
= (m®n)g<a ' (h)®(men) ) <xa ' (hy).
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Proposition 3.6.3 Let (H,a) be a monoidal Hom-bialgebra and (M, u), (N,v), (P,n)
be (H, a)-Hom-Yetter-Drinfeld modules. Then the k-linear map aynp: (M®N)®P —
M®(N®P),dynp((men)®@p) = (um)®(nen(p)) is a right (H,a)-linear and right
(H, «)-colinear isomorphism.

Proof: The bijectivity of a5 n,p is obvious with the inverse d;/}’N’P(m@)(n@p)) = (g Y (m)®

n)®1(p)).

amN,p(m@n)®@p)<h) = dyNp((m<hy ®n<h;y)®p<hy)
= pm<hy)@(n<ah@n ! (p<hy))
= pm)<a(h)®@n<hpen ! (p)<aa (b))
= p(m)<h; ®(n<hy @' (p)<hyy)
= p(m)<h ®((ne@n " (p))<hy)
= (u(m)®(me@1 ! (p) <h=dmNp(men)®p)<h,

which proves the (H, «)-linearity. Below we show the (H, a)-colinearity:

pMENE ay  p((men)@p) = pMEN(um)e (nen(p)
= (u(m))® (n@1 ' (p))(0) ® p(m)1)(n@ T (p))1)
= (u(m o)) ® (ni0)® 71 (p(0)))) @ a(m1))(nya ' (p(1)))
= (u(mg) ® (n(0)® 1" (p(0))) ® (m(1yn(1)p(1),
(am,n,p ®@idy) (MNP (m@n) @ p))

(Am,n,p®idy)((Mn) ) ®p(o) ®(M®n)1)p(1))
(@m,N,p ® idp)(((m(o) ® 10)) ® p(0)) ® (M1yn(1))p(1))

(1(mg)) ® (n(0) @71 (p(0))) ® (m(1y1n(1))P(1)s

where p9 denotes the right (H,a)-Hom-comodule structure of a Hom-Yetter-Drinfeld
module Q. O
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Proposition 3.6.4 Let (H,«) be a monoidal Hom-bialgebra. Then the unit constraints
in H(YD)! are given by the k-linear maps

Ivi:k®@M — M, x®m +— xu(m), (3.78)

iy M®k > M, m®x > xpu(m) (3.79)

with respect to (k,idy).

Proof: In the category M, of k-modules, k itself is the unit object; so one can easily
show that (k,id}) is the unit object in ﬁ(yD)ﬁ with the trivial right Hom-action k@ H —
k, x®h +— ¢(h)x and the right Hom-coaction k — k®H, x — x®1y forany xink and hin H.
It is obvious that I is a k-isomorphism with the inverse I} : M — k@M, m — 1®@u~! (m).
It can easily be shown that the relation y o [y = Iy; o (idy ® ) holds. Now we prove the
right (H, a)-linearity and right (H, a)-colinearity of I,;: Forall x ek, he H and m e M,
Iv((x@m)<h) = ILy(e(h)x®@m<hy) = e(hy)xpu(m < hy)
= xp(m) <a(e(hy)hy) = xp(m) < a(a™ (b))

= Iy(x@m)<h,

(ly®idy)op**M)(x@m) = (Iy®idy)(x®m)®1ym))
= xp(mg)) ® a(m())
= x((p®a)op™)(m)
= pM(xp(m))

= (pPMoly)(x®m).

The same argument holds for 7. O

Proposition 3.6.5 Let(H,a) be a monoidal Hom-bialgebra and (M, ), (N, v) be (H, a)-
Hom-Yetter-Drinfeld modules. Then the k-linear map

cMN:MON >NOM, m@n - v(n(o))®y_1(m) <) (3.80)

is a right (H, «)-linear and right (H, a)-colinear morphism. In case (H, «) is a monoidal
Hom-Hopf-algebra with an invertible antipode it is also a bijection.
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Proof: We have the relation (v ® u) o cprn = cp N © (1 ® v) by the computation

(veu)(cpyn(men))

The (H, a)-linearity holds as follows

CM,N((W’I@?Z) < h)

4
VYl

Voo

(
(
(
(

4 (Tlﬂl’lz)

(n<thz)o

(v pu)(v(n)

Y@ p ! (m)<n))

v(v(n))) ® m<a(ng))
v(v(n)(0) ® p (p(m)) < v(n) )
cm,N (p(m) ® v(n)).

-1

(v(n(o) ®p~" (m) <

cuN(m®n)<h,

)@
) ®
) ®
(

CMN(m<1h1®n<1h2)

v((n<thy)o

(m<1h) (n<hy)q)
(m)<a(hy)) < (n<hy)q
Yhy)a ™ ((n<hy) )

a”!(hy))

(

m<(a”

1)®m<(n (1)

<1h1®(/“ Y(m m) <Any)) <hy

n(l))<1h

where in the fifth equality the twisted Yetter-Drinfeld condition has been used. We now

show that cy;  is (H, a)-colinear: In fact,

(ENM ooy N men) = pNM(v(ng)) @ pt (m) ang)
= (v(ng0))i0)® (" (m) < m(1))0) ® v(no)) 1y (m) <mgyy) )
= (v(noy0) @ 1 ((m<a(ng)))o)) ® alneyr))a " (m<a(ng))q)
= (noy®p 1((m<1a2(n(1)2))<0)))®a(n(1)1)a H(m<a?( 12)a))
= (noy®p ' (mgy<a” (@ (nay)) @ maya~ (a®(n(1)2))
= (v(ng)0) ® p~ (mo) < (o)) ® Moy
= (emn ®idy)((m o) @ n(g)) ® m1)yn(y))
= (emn ®@idy)(pM N (m@n)).
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Let us define
Mn i NOM —>MEN, n@m >y (m)<aS™ (ng1)) ® v(ng)).
We verify that Cz_vfl,N is the inverse of cy; n:

cun(emn(men) = cypn(ving)®p (m) <)

= it (m) <ang)) ST (v (ng)) ) ® v(v(ng) o)

(u2(m)<a(ng1)) S Ha (o)1) ® v2(1(0)(0)
= N (m)<(a N (na) S (n(0)1)) ® v2(n0)(0))

= (m)<(npS™ (nan)) @ ving))

= pl(m)<ly@v(nge(ng))

= mQ®n,
and on the other hand we have

cun(Cynmem) = N (m)<S™ (ng)) @ v(ng)))
= v(v(n)) o) ®p (™ (m) S (n(1)) < v(ng)))
= v (n(0)0) ® (1 *(m) <™ (S7 (ng1)))) < a(noy))
= v(n)@u " (m) < (ST (nay2)man)

= n@m.

Theorem 3.6.6 Let(H,«) be a monoidal Hom-bialgebra. Then ﬁ(yp)g is a prebraided
monoidal category. It is a braided monoidal one under the requirement (H,«) be a
monoidal Hom-Hopf algebra with a bijective antipode.

Proof:The definition of tensor product is given in Proposition (3.6.2), the associativity
constraint is given in Proposition and the (pre-)braiding is defined in Proposition
(3.6.5). The Hexagon Axiom for ¢ are left to be verified to finish the proof.

Let (M, pu),(N,v), (P, ) be in ﬁ()ﬂ))ﬁ; we show that the first hexagon axiom holds
for c:
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((fdn ® cp,p) 0 dn,m,p © (cm,N ®1dp))((m®n) @ p)
= ((idy ®carp) o dn o, p)(V(n(0)) @ p~ ! (m) < (1)) ® p)
= (idy ®cpm,p)(v2(n() ® (' (m)<nqy®@m ' (p)))

)

(10)) ® ( (p1))
= v2(n() ® (poy® p~ ' (m) < (a (n1))a(pr))))
(7(0) ® (poy @ p~ ' (m < (nya~" (p1)))))
= an,p,m((v(n) ®po)) ®m < ()& 1(P 1))

(

(ver)(n@m ! (p) o) @u "

(u(m)) < (nem(p))))
= (An,pm 0 CmNep)(p(m) @ (n® T (p)))
= (an,p,M © cM,NeP © AM,N,P)((M® 1) ®p).

Lastly, we prove the second hexagon axiom:

a;}M'N 0 CAI@N,P © d;},Nlp(m@) (n®p))
= (@phn © Cmen,p)(p (M) @ n) @ (p))
= a‘;lMN<n<n<p><o>>®<<y‘l®v—1><y‘1<m>®n><n<p><1>>>

(
Poy0) ® (1> (m) < a(poyn) ® v~ (n) <pq)))
7(p(oy0)) ® > (m) < (P ))®”<1P
7(p(o)) (1)) ®n < a(p)))
(V_l(m)®ﬂ(17(0)))®n<10¢(P(1)))
(lfl(m)@’N(P(O)))‘X’V(V_l(n)<1P(1)))

(r(

= Aphn (T2 (p0) ® (12 (m) <a(pay ® v (n) < alp))2))
(1 (
)

O

Together with Theorem and Theorem [3.5.4] Theorem (3.2.5) provides:
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Theorem 3.6.7 Let (H,a) be a monoidal Hom-Hopf algebra. Then the equivalences in
:
F=(H®—a®-): H(M) - BH(M,),

G = (=) HH(My) — H(My),
induce tensor equivalences between

1. the category of right (H, a)-Hom-modules and the category of left-covariant (H, a)-
Hom-bimodules,

2. the category of right-right (H, «)-Hom-Yetter-Drinfeld modules and the category of
bicovariant (H, «)-Hom-bimodules.

Proof: The right (H, @#)-Hom-module structure on (H® V,a ® ) for a right (H, a)-Hom-
module (V, u) is given in Proposition (3.3.3) and the right (H, a)-Hom-comodule struc-
ture on (H® W,a ® v) for a right (H, «)-Hom-comodule (W, v) is given in Proposition
(3.5.2). It remains only to prove that one of the inverse equivalences, say F together
with @, (V,W): (H®V)®y (H® W) - H®(V ® W) given by

P2V, W)((g®v)®p (how)) = ga(h) @ (™' (v) <hy @ w)
forallghe H,ve V,we W, is atensor functor in each case. Define
0, (VW)L HR(VOW) > (HRV)ey (HW), he (vew) — (a” (h)®v)®y (1 w),

which is an inverse of p,(V,W): Forh,ge H,ve Vandwe W,

P2V, W)(@a(V, W) (h®@(vew)) = @V, W)((a" (h®v)ey (1 @w))
= a 'MWl (m<lyew)
= he(vew),

P2V, W) oV, W)((g®v)® (hew)) = @o(V, W) (ga(h)®(p ' (v)<h, @w))
(@' (ga(hy)@pu " (v)<hy)®p (1 QW)
(@ (g)ep  (v)hey (1yew)

= (8®V)®H h(lg@v ' (w))

(g®v)®y (hew),



and one can also show that the relation (¢ ® (£®v)) o @2 (V, W) = @,(V, W) o ((a @ 4) 9y
(e ®v)) holds. We now verify that the coherence condition on F is fulfilled:

(P2(U, VO W)o (id®py(V,W))odg)(((g®@u)®y (h®v)) ®y (k@ w))

= (p2(U,VeW)o(id@py(V, W))(a(8)® p(u) @y (hev) @y (a” () @r ! (w))))
= (U, VoW)(a(g)®puu) ey (hky @ (v (v)<a (k)@ (w))))
= a(@a(hk;)®u<hk,® (v (v)<aa™ (kh)en (w)
= a(g)a(h)k;)® (u<hyky & (v (v) <k @n ' (w)))
a(g)(a(hy)ky) @ (1" (u) 9 (haky) @ v (v) <kyr) @ w))
a(g)(a(hy)ky) ® (2 (u )<1a‘1(h2))<1k21®v (v) <ky2)®@w))

(id®adgy)(a
( ( ®((

= (id ®HQ)(( a(hy))a(k)®((p 2 (u) <a ! (h) @ v (v)) <k, ®w))
((i /) )
( ')

1d®€lQ)

opa(UV, W))((ga(h)® (u' <h,®v)) @y (k@w))

(id®dg)op(UV,W)o(p,(U,V)®id))((§®u)®y (h®v)) ®y (k®w)).

For we verify that the k-isomorphism ¢,(V, W) is a morphism of left-covariant
(H,«)-Hom-bimodules, that is, we prove its left (H, «)-linearity, (H, «)-colinearity, and
right (H, a)-linearity, respectively:

P2V, W)(k(g®v) O (h8w)) = oV, W)(a ' (K)(g®v) @ (a(h)® v(w)))
= @2V, W)(a2(k)g® p(v)) &g (a(h) @ v(w)))
= (a 2(k)g)a’(h)® (v <a(hy) @ v(w))
= a (k) (ga(h) @ (ke V) (v) ah, ®w))
= k(ga(h)® (' (v) ah @ w))
= kpa(V, W)(g®v) @ (hew)),

90



(id @ p2(V,W))(%p((g @v) @y (h®W)))
= (id@@a(V,W))(a(g)a(h)® (g2®p ' (v) @y (hy®v ' (w))))
= a(g))a(h)®(gahy)® (p 2 (v)<hy v (w))
= a(g)a’(h1)®(ga(h)®(u @) <a ! (h)ev ! (w)))
= a((ga(h))®(ga(h),® (w (1 (v) <hy)v™ (w)))
= Yp(ga(h)® (" (v)<h,®w))
= Lp(pa(V, W)((g®v) By (how))),

P2(V, W)(((g®v)®y (h®W))k)
= @V, W)((a(g) ® u(v))
= @V, W)((a(g)®pu(v)) @y (ha™ (k) @w<a'(k,)))

v))®y (hew)a™ (k)

)
= alg Dk11)® (v < (hya™ (kpp))@w < (ky))

(

(u

1
1
)(a(h
= a(g)a(h)a" (k) ® (v <(hpa™" (ko) @w < kpy)
= a(@)a(h)a (k) ® (u(p~" (v) < (haa (kp1)) @ w < ko)
= (ga(h))ki ® (' (v) 9hy) <kyy ®w < kpy)

(hy)

= (ga

= ¢V, W)((g®v)®H (hew)k.

h
h))ki ® (u ! (v) <hy @ w)k,

For we need only to check that ¢,(V, W) is right (H, a)-colinear. Let us denote
by 02 and ¢? the right (H,a)-Hom-comodule structures on Q' = H® (V ® W) and
Q=(H®V)®y (H®W). Then
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o2 (2(V,W)((g®v) @y (h@w)))
= aQ’<ga<h1>®<w<v><rhz®w>>

= ((ga(h)1 ® (' (v) <hy)o) @ wiop) ® (gax(hy))2 (™" (v) < hy)jyywpn))

= (gra(h)® (' (v )<1h2)[0 ®wo)) ® a(ga2)(a(h)(a” ((,u‘l(v)<1h2)[1])a‘1(w[1])))
= (gra(h) @ (" (v) <h)o)®wo)) ® a(g2)((h12a (1 (v) <ha)p))wp))

= (e ey 1(v)<1a(h22))[0 ) ®a(g2)((hara™ (" (v) < a(h2))))wpy)
= (@h @ (W (v) <a(hy)y)j @ wo)) ®a(g)(a (a(ho)i (W (v) < a(ho)o)j1))wy))
= (g 1(V)[o] Ha(hy), )®@w(o])) ® a(g2) (1~ Yv V) Ya(hy), )w)

= (g l(v[01)<1h21®w[0]))®a(g2)((a 1(V[l])hzz) 1)

= (©1a(h11)® (5 (vjo) T B2 @ wio)) @ a(g)((a ™ (vpp)a ™ (ho))wpry)

= (g1a(h)®(p” 1(” 1) <hi2 ®@wo)) ® (£2v[1)) (hawpi])

= (p2(V, W)®idy)(((g1 ®v[o) ® (h1 ®w]g))) ® (g2v[17)(h2w[1}))

= (p2(V,W)®idy)(c2((g@v) 8 (hew))),

where we have used the twisted Yetter-Drinfeld condition in the seventh equality. O

Corollary 3.6.8 Let(H,a) be a monoidal Hom-Hopf algebra. The categories gﬁwk)g
and H( yp)g are equivalent as prebraided monoidal categories. The tensor equivalence
between them is braided whenever (H, «) has a bijective antipode.

Proof: It suffices to regard the case of bicovariant (H, a)-Hom-bimodules (M, y’) =
(HeV,a®pu) and (N,v’) = (H® W,a ® v) with (V,u) and (W,v) (H, a)-Hom-Yetter-
Drinfeld modules. Thus for he H, v € V and w € W we have
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(P2(W,V)ocprn 0 2V, W) ) (h® (v@w))
= (W, V)(eun((a " (hev)ey (15 ew))
= @2(W, V)(hi (1 @ wyo)op)S(a(wiop1)) ®n (S(ho1)(a ™ (ha2) ® 2 (v)))a(wyy))
= @a(W,V)(h(1g @ v~ (wio)S(a(wpiy1)) @ (@™ (S(hyr o) @ ' (v))a? (w1 2))
= (W, V)((h1e(h))(1g ® v (w)o))S(a(wpin)) ®u (1g @ 5 (v))a? (wpp))
= (W, V)((@2(h)(1g ® v (wio))S(a*(wpin)) ®n (1 ® p ' (v)a*(wyipa))
= (W, V)((a (W1 @v(v™ (wio))S(a®(wpp)) ®n (1ga (wip) @ ' (v) <a’(wpjp)2))
= (W, V)((a 2 (h) ®w(o))S(a*(wii1)) ®u (@ (wyip21) @ i~ (v) <@ (wpi)p2))
= (W, V)((a™ (W) ®@v(wje) @ S (wpip)) (@ (wija1) ® 2 (v) < a(wy1)22)))
= (W, V)((a ' (W @v(w) ®x (S(a(wy))a’(wpjar) @ p ' (v) < a’(wiip2))
= (Pz(W;V)((Of_l(h)@’v(w[o]))@H(S(QZ(W[l]ll))Of (win2)®p~ ' (v) <a(wpp)))
= @2(W,V)((a""(h) ® v(wio))) ®H (az(s(w[l]ll)w[1]12)®lfl(v) <a(wp))))
= (W, V)((a (W) ®v(wjo) @ (15 @ u~" (v) <a(e(wpyn)wii)))
= (W, V)((a” (W) ®v(wjo) @ (1 @ ™" (v) <wyy))
= a ' Wz (v(wp)) <lg@pu " (v)<wy))

= h®(v(wpe)®p  (v)<wp))
= (ldH ®CV,W)(h® ('U ®’W)),

which demonstrates that F is a (pre-)braided tensor equivalence. O
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Chapter 4

Hom-Entwining Structures And
Hom-Hopf-Type Modules

4.1 Introduction

Motivated by the study of symmetry properties of noncommutative principal bundles,
entwining structures (over a commutative ring k with unit) were introduced in [11] as
a triple (A, C),, consisting of a k-algebra A, a k-coalgebra C and a k-module map ¢ :
C®A - AQC satisfying, forall a,a’ € Aand ce C,

(aa’), ®c* :aKa’A@)cK’\, 1, ®c*=1®c,

4, Qc ¢, =a,,, ¢/ ® cz’\ , age(c’) =ae(c),

where the notation (c®a) = a,,®c* (summation over x is understood) is used. Given an
entwining structure (A, C)y, the notion of (A, C),-entwined module M was first defined
in [12] as a right A-module with action m®a — m-a and a right C-comodule with coac-
tion pM : m— my) ® m(p) (summation understood) such that the following compatibility
condition holds:

M

p m-a):m(o)-aK@)m(l)K, Yae A,me M.

Hopf-type modules are typically the objects with an action of an algebra and a coac-
tion of a coalgebra which satisfy some compatibility condition. The family of Hopf-type
modules includes well known examples such as Hopf modules of Sweedler [75], rela-
tive Hopf modules of Doi and Takeuchi [35], [77], Long dimodules [59], Yetter-Drinfeld
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modules [71], [95], Doi-Koppinen Hopf modules [36], [52] and alternative Doi-Koppinen
Hopf modules of Schauenburg [73]. All these modules except alternative Doi-Koppinen
modules are special cases of Doi-Koppinen modules. As newer special cases of them,
the family of Hopf-type modules also includes anti-Yetter-Drinfeld modules which were
obtained as coefficients for the cyclic cohomology of Hopf algebras [40], [41], [44],
and their generalizations termed («, g)-Yetter-Drinfeld modules [69] (also called («, )-
equivariant C-comodules in [50])). Basically, entwining structures and modules associ-
ated to them enable us to unify several categories of Hopf modules in the sense that the
compatibility conditions for all of them can be restated in the form of the above condition
required for entwined modules. One can refer to [14] and [20] for more information on
the relationship between entwining structures and Hopf-type modules.

Entwining structures have been generalized to weak entwining structures in [19]
to define Doi-Koppinen data for a weak Hopf algebra, motivated by [9]. Thereafter, it
has been proven in [13] that both entwined modules and weak entwined modules are
comodules of certain type of corings which built on a tensor product of an algebra and
a coalgebra, and shown that various properties of entwined modules can be obtained
from properties of comodules of a coring. Here we recall from [76] that for an associative
algebra A with unit, an A-coring is an A-bimodule C with A-bilinear maps A¢ : C —
C®,C, c—c1 ®c, called coproduct and ¢, : C — A called counit, such that

Ac(c1)®cy =1 ®Ac(ca), ec(cr)er = ¢ = crée(ca), Ve eC.

Given an A-coring C, a right C-comodule is a right A-module M with a right A-linear map
pM: M — M®C, m— mi ®m( called coaction, such that

pM(WI(Q))®m(1) = M) ®Ac(1ﬂ(1)), m= m(0)€c(1ﬂ(1)), Vm e M.

The main aim of the present chapter is to generalize the entwining structures, en-
twined modules and the associated corings within the framework of monoidal Hom-
structures and then to study Hopf-type modules in the Hom-setting. The idea is to
replace algebra and coalgebra in a classical entwining structure with a monoidal Hom-
algebra and a monoidal Hom-coalgebra to make a definition of Hom-entwining struc-
tures and associated entwined Hom-modules. Following [13], these entwined Hom-
modules are identified with Hom-comodules of the associated Hom-coring. The dual
algebra of this Hom-coring is proven to be the Koppinen smash. Furthermore, we
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give a construction regarding Hom-Doi-Kopinen datum and Doi-Koppinen Hom-Hopf
modules as special cases of Hom-entwining structures and associated entwined Hom-
modules. Besides, we introduce alternative Hom-Doi-Koppinen datum. By using these
constructions, we get Hom-versions of the aforementioned Hopf-type modules as spe-
cial cases of entwined Hom-modules, and give examples of Hom-corings in addition to
trivial Hom-coring and canonical Hom-coring.

4.2 Hom-corings and Hom-Entwining structures

Definition 4.2.1 1. Let (A,a) be a monoidal Hom-algebra. An (A, «)-Hom-coring
consists of an (A, a)-Hom-bimodule (C, x) together with (A, a)-bilinear maps A :
C—-C®4C, c—c1®cy andeg : C — A called comultiplication and counit such that

x e ®Ac(ca) = c11 ®(c1a®x 7 H(ca)); eclcr)er =c=crec(ca); ec(x(c)) = alec(c)).
(4.1)
For any c € C, the equality

Ac(x(c)) = x(c1)®x(c2) (4.2)
is a consequence of in a similar manner as in the Remark (3) of Chapter 3.

2. Aright (C, x)-Hom-comodule (M, u) is defined as a right (A, a)-Hom-module with
a right A-linear map p : M — M ®, C, m + myq) ® my) satisfying

o (m0) ® Ac(my1)) = mg)0) ® Moy ® X~ (my))); m=mgyec(mpy).  (4.3)

The equation
p(m) ) @ p(m) 1y = p(mg)) ® x(m(1)) (4.4)

can be obtained in the same way as Hom-comodule setting over a monoidal Hom-
coalgebra.

Theorem 4.2.2 Let ¢ : (A, a) — (B, ) be a morphism of monoidal Hom-algebras. Then,
for an (A, a)-Hom-coring (C, x), (BC)B = ((B®4C)®4 B, (B® x)®p) is a (B, p)-Hom-coring,
called a base ring extension of the (A, «)-Hom-coring (C, x), with a comultiplication and
a counit,
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Apeyp((b®4c)@ab') = (B~ (b)®a c1)®4 1) ®p ((1p®4 c2)®4 B (D)), (4.5)

Bo)B((b®a ) @4 1) = (bp(ec(c)))b’. (4.6)
Proof: For b,b’,b” e Band ceC,

Ape)p((' @4 ¢) @4 5”)b)

= Awop((BD)®4 x(c) @4 b" B (b))
b’ @4 x(c)1)®a 15)®5 (1 ®4 x(c)2) ®4 B~ ("B (D))
b’ @4 x(c1))®4 15) ®p (1 ®4 x(c2) ®4 B (B”)p(b)
b’ ®4 x(c1)®4 1) @5 (B X)(15®4 c2)®4 B (B")B (B (D))
BRx)®P)(B' (b)) ®4c1)®a15)®p (15®4c2) @4 p (b)) (D)
= Apep((b’'®4c)®,b")b,

™~
||g I

((
((
((
((

which proves the right (B, §)-linearity of Agc)p. It can also be shown that Ageypo ¥ =
(X ® X) o Ageyp, Where ¥ = (B ® x) ® p. And as well, the left (B, g)-linearity of A(c)p and
the fact that it preserves the compatibility condition between the left and right (B, §)-
Home-actions on (BC)B can be checked similarly, that is,

Aeyp(b((b' @4 ¢) @4 b")) = bApe)p((b' ®4c)®4 1),

(bABe)B((0” ®4c)®41")B(b") = B(D)(Ape)p((b” ®4 €) @4 b))

Next we prove the Hom-coassociativity of Ape)p:
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(B @x @B )((b®ac)®4b)1)® Apeyp(((b®4 c) @4 b))

= ((B2(b)®ax " (c1))®4 15)®5 ((15®4 ¢21) ® 15)
®p((15®4 c22)®4 B (D))
(B2(b)®4 c11)®4 15)®5 ((15®4 ¢12) ®4 15)
Rp((1p®4 X~ (c2))®4 2(1)))
(B (b)®a c1)®4 1)1 ®5 (B (b) @4 ¢1) ®4 15),
®p((15®4 X' (c2))®4 72(V")))
= ((b®ac)®ab)11®p((b®4c)®41 )12

(B @x @B )(b®ac)@a b))

)

(
X
(
X

Now we demonstrate that ¢(pc)p is left (B, f)-linear:

ee)(b((b' ®4 ¢)®4 b))

= ¢ey((B2(b)b @4 x(c) ®4 B(b”))
(B~*(b)b")p(ec(x(c)B(b”) &2 (B2 (D)D) p(a(ec(c)B(b”)
(B )BT (Plalec(@))Bb”) = (B (B)(1 Plec()))B(b”)
b((b'p(ec(c))b”) = bepe)p((b' @4 c)®4 L"),

where ¢ o a = o ¢p was used in the fifth equality. Additionally, we have

(B(b)p(ec(x(c))B(b)
B(b(ec(c))b’) = (Boec)(b®4c)®4 D),

(eBeyB o X)((b @4 c)@4 1)

meaning ¢c)p € H(M,). In the same manner, one can show that €(pe) is right (B, B)-
linear and it preserves the compatibility condition between the left and right (B, f)-Hom-
actions on (BC)B, i.e.,

ee)B(((0' @4 c) @4 b”)b) = €(peyp((b'®4 ) ®4 b”)D,

(bepeyp((b” @4 ¢)®4b"))B(L) = B(b)(ereyp((b” ®a €) @4 b”)1).
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Below, we prove the counity condition:

(B (b)®a c1) ®4 1p)emoyp((15®4 2) @4 B (')
B (b)®a 1) ®a 15)((1pd(ec(c2))) B (b))
Bl (b)®a 1) @4 15)(B((ec(ca))B (V)
x(c1))®a (lec(ca)p (b))
x(c1))®4 plalec(c2)p (D)

(
(

b®
b®

@
1]
S

B 1( )@ ci)a(ec(cr))®@a b’

(
(
(b
(b
(
(b®aciec(cr))®ab’
(
(
(
(
(
(

b®AC)®Ab

H| W
W s o

b®A EC(Cl C2) X4 v

>
[l v
S

B (b)p(ec(cr)) @4 x(c2)) @4 Y’

B2 (b(aec(c1)))1p®a x(c2)) ®a BB (V)
bp(alec(cr))((15@4 c2) @4 B~ ()

(B (D) (ec(c1))1)(15®4 c2) @4 B~ (D))

= epep((BH(B)®act)®alp)(1p®4ca)®a (D)),

which completes the proof that given a morphism of monoidal Hom-algebras ¢ : (A, a) —
(B,B), (B®4C)®4 B,(®x)®p) Is a (B, f)-Hom-coring. O

Example 4.2.3 A monoidal Hom-algebra (A, «) has a natural (A, a)-Hom-bimodule struc-
ture with its Hom-multiplication. (A, «) is an (A, «)-Hom-coring by the canonical isomor-

phism A — A®, A, a — a~(a)® 1,4, in H(My), as a comultiplication and the identity

A — A as a counit. This Hom-coring is called a trivial (A, a)-Hom-coring.

Example 4.2.4 Let ¢ : (B,p) — (A, a) be a morphism of monoidal Hom-algebras. Then
(C,x)=(AQ®gA,a®a) is an (A, a)-Hom-coring with comultiplication

Ac(a®pa’)=(a ' (a)®p14)®4 (14®pa ' (d)) = (a ' (a)®p 14)®p 4’

and counit

ecla®ga’)=aa'.
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Proof: By Theorem (4.2.2), for ¢ : (B, B) — (A, @) and the trivial (B, B)-Hom-coring (B, )
with Ag(b) = B~1(b) ®g 15 and ep(b) = b, we have the base ring extension of the trivial
(B, p)-Hom-coring (B, ) to (A, a)-Hom-coring (AB)A = (A®p B) ®p A, (a ® f) ® a) with

Aupal(a®pb)@ga’) = ((a ' (a)@p B (b)) ®p 14)®4 (14 ®5 15)®pa~' (a)),

epal(a®pb)®pa’) = (ap(b))a’.

On the other hand we have the isomorphism ¢ : A — A®gB, a > a~'(a)®g 13, in H(My),
with the inverse p: AQg B — A, a®gb— a¢p(b): Forac Aand b e B,

Ple@) =a(@)Pp(lg)=a(a)l=a,
P(Pa®ph) = @ad(b))=a ' (ad(b))®g 15

aNa)a ™ (Pp(b)®p 15 =a ' (a)p(B " (b)) ®p 15
a®p L (b)lg=a®pb,

1
in addition one can check that oy = po(a®p) and (a®p)op = poa. Thus, (AB)A s

A®pA=Cand

Ac(a®pb) = (p@id)®(P®id))oAapc(p®id)(a®pb) = (o' (a)@p1a)@s(1la®pa~" (a)),

ec(a®pa’) = eapac(p®id)(a®pa’) =ad

(A®pA,a®a) is called the Sweedler or canonical (A, a)-Hom-coring associated to a
monoidal Hom-algebra extension ¢ : (B, ) — (A, a). O

For the monoidal Hom-algebra (A, «) and the (A, a)-Hom-coring (C, x), let us put *C =
AHom™(C, A), consisting of left (A, a)-linear morphisms f : (C, x) — (A, a), thatis, f(ac) =
af(c)foraeA,ceCand fox =aof. Similarly, C* = Hom{(C,A) and *C* = 4Hom{(C, A)
consist of right (A, )-Hom-module maps and (A, «)-Hom-bimodule maps, respectively.
Now we prove that these modules of (A, a)-linear morphisms C — A have ring struc-
tures.
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Proposition 4.2.5 1. *C is an associative algebra with unit e and multiplication
(f ' 8)(e) = f(c18(c2))
forf,ge *C andceC.
2. C" is an associative algebra with unit ¢ and multiplication
(f " g)(c) = g(f(c1)c2)
for f,geC"andceC.

3. *C* is an associative algebra with unit e and multiplication
(f *8)(c) = flcr)g(ca)
for f,ge *C* andceC.

Proof:

1. For f,g,he *Cand ceC,

f((erh(cz))18((c1h(c2))2)) = f(X(Cu)g(Cua_l(h(C2))))
= f(X(Cu)g(Clzh(X_l(Q)))) f(c18(ca1h(crr)))
(f < (g4 m)(c),

((f + g)+ h)(c)

where the second equality comes from the fact that A; is right (A, a)-linear, i.e.,
Ac(ca) = (ca); ®4 (ca), = Ac(c)a = (c; ®4 c2)a = x(c1)®a c2a7'(a), Ve €C, a € A.

(f #' ec)(c) = f(crec(ca)) = f (o),
(ec*' f)(c) = ec(c1f(c2)) = ecler)f(c2) = flec(er)ea) = f(c).

By similar computations one can prove (2) and (3).
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Definition 4.2.6 A (right-right) Hom-entwining structure is a triple [(A, «),(C,y)]y, con-
sisting of a monoidal Hom-algebra (A, «), a monoidal Hom-coalgebra (C,y) and a k-
linear map ¢ : C® A — A® C satisfying the following conditions for all a,a’ € A, c€ C:

(a) @ V()" = aya; @y (c™), (4.7)
a_l(a,() ®CK1 ®CK2 = a_l(a);(/\®c1/\ ®C2K; (48)
1,8c"=1®c¢, (4.9)

a.e(c’) =ae(c), (4.10)

where we have used the notation {(c®a) = a, ®c*, a € A, c € C, for the so-called
entwining map . It is said that (C,y) and (A, a) are entwined by . ¢ is in H(My), that
is, the relation holds:

a(a)®y(c)" =ala)®y(c), (4.11)

which follows from (4.7), and Hom-unity of (A, a):

a(ax)®7/(CK) = aK1®7(CK):aK1A®V(CKA)

(al)® V(C)K =a(a),® V(C)K'

It can also be obtained from and (4.10).

Definition 4.2.7 A [(A, @), (C, )]y -entwined Hom-module is an object (M, p) € H(My)
which is a right (A, «)-Hom-module with action ppy : M®A - M, m®a — ma and a
right (C,v)-Hom-comodule with coaction p™ : M — M ® C, m mo) ® my) fulfilling the
condition, forallme M, a € A,

M

p¥ (ma) = m(o)a_l(a)K ®)/(m(1)’<). (4.12)

By /\72(1[)), we denote the category of [(A, ), (C,y)]y-entwined Hom-modules to-
gether with the morphisms in which are both right (A, a)-linear and right (C, y)-colinear.

With the following theorem, we construct a Hom-coring associated to an entwin-
ing Hom-structure and show an identification of entwined Hom-modules with Hom-
comodules of this Hom-coring, pursuing the Proposition 2.2 in [13].
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Theorem 4.2.8 Let (A, ) be a monoidal Hom-algebra and (C,y) be a monoidal Hom-
coalgebra.

1. For a Hom-entwining structure [(A,«),(C,y)]ly, (A®C,a®y) is an (A, a)-Hom-
bimodule with a left Hom-module structure a(a’ ® ¢) = a~(a)a’ ® y(c) and a right
Hom-module structure (a’ ® c)a = a’a~(a), ® y(c¥), for all a,a’ € A, c € C. Further-
more, (C,x) =(A®C,a®y) is an (A, «)-Hom-coring with the comultiplication and
counit

Ae:C—C®,C, a®c> (a (a)®c;)®4 (1R0y), (4.13)

ec:C— A, a®cr ala)e(c). (4.14)

2. lfC=(A®C,a®y) is an (A, a)-Hom-coring with the comultiplication and counit
given above, then [(A, a),(C,p)], is @ Hom-entwining structure, where

P:COA—-ARC, c®ar (1®y‘1(c))a.

3. Let(C,x) = (A®C,a®y) be the (A, a)-Hom-coring associated to [(A, a),(C, )], as
in (1). Then the category of [(A, a),(C,y)]y-entwined Hom-modules is isomorphic
to the category of right (C, x)-Hom-comodules.

Proof:

1. We first show that the right Hom-action of (A, @) on (A®C, a®y) is Hom-associative
and Hom-unital, for all 4,d,e € A and c € C:

a(a)a™ (de) ® y(y(c)¥)
a(a)(a (d)a (e)) ® ¥ (¥(c)")
a(a)(a(d)ea (e)) @ (")
aa”!(d))a(a (e),) @ y(y(c*))
aa”!(d))ala™ () @ y(y(c))

(a(a)@y(c))(de)

=
||g I

[
I —
—



(a®c)l aa_l(l)K®y(CK):a1K®7/(cK)

aH(a(@)1, ®y(c*) = a(a) (1, ®c")

a(@)(l®c)=al®y(c)

(a®y)(a®c).

One can also show that the left Hom-action, too, satisfies the Hom-associativity
and Hom-unity. For any a,b,d € Aand ce C,

(bagcha(d) = (a ' (Blasy(e)a(d) = (@ (ba)a (@(d)®y(y()")
= (@ Da)aa (@) @y () = (@ B)a)ala (d)) 872 (c)
= baa M (d),) 8 72(cF) = a7 (@(b))(aa " (d)) ® y((c¥))
= a(b)(aa (d)®(c") = a(b)(a®c)d),

proves the compatibility condition between left and right (A, «)-Hom-actions.

First, it can easily be proven that the morphisms A® (C®,4C) - C®,C,

a® (@' ®c)®4 (a” ®c’)) > a™H(a)(d' ®c)®4 (a(a”)® y(c)) (4.15)

and (C®4C)®A - C®,C,

(@ ®c)®4 (a” ®c))ar (a(a')®y(c)®4 (a” & c')a (a) (4.16)

define a left Hom-action and a right Hom-action of (A,a) on (C®4C, x ® x), re-
spectively. Next it is shown that the comultiplication A; is (A, a)-bilinear, that is,
Ac preserves the left and right (A, a)-Hom-actions and the compatibility condition
between them as follows: Let a,a’,b,d € A and c € C, then we have the following
computations
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Ac(a(d’ ®c))

Ac((a’ ®c)a)

'S Y
wEl ugl oo

)
s N
&

=
||g I

(a(a M a)a)®@y(c)1)®a (1®7(c),)

(a(@a' (@)@ y(c1)®a (1®)(c2))
= a'(@a ' (@)®c) e (@(1)®y(c))
i

1=
L

a((a (@) ®c)®a (1®02))
alc(a’ ®c),

aa " (a),)®y(c*)1)®a (1®y(c"),)
NaHa T (a)) ® () ®a (1@ Y(c))

)2 (a) ) ®y(c) @4 (18 Y(c)))
d)®c))ala(a)) ®4 (1®7(c,F))

Q
— = =~ =
N
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a(b)(Ac(a®c)d)

i
T 1\ B TR
=

S
—_
<

i < !
(T VT 1" I TR 1 I T
= [\®)

Z
@

=
||g I

b(a®y(c1) ®a (@ (a*(d) ) ®*(c)}))

a” (b)a®y(cy)) ®4 a*(a2(d), ) (1@ ¥(c)))

a M a T (b)a) @ y(cr))a’(a 2 (d)) @4 (18 )*(c)Y))
(d))r®y(y(c1))®a (187%(c))
(d)e)®y(r(c/1) ®a (1877(c)"))
)e1)® 7% (crM) @4 (1872(c)))
d)) ®72 () ®4 (187°(c)))
d),) @ y2(c))®a (1®7%(c"y))
(a2 (b)a " (@)a ™ (d) ®y*(cY)) @4 (18 )7(cY))

2
2

R
2 &S L LS
& &2 & 2 & &2 &
]
_ e~~~
R
= =

One easily checks that the counit ¢, is both left and right (A, a)-linear. For any

a,b,d € A and c € C we have

ec((bla®c))a(d))

Il
™
Q
=
=
PN
Q
IS
L
P
[
=
A
T
®
~
N
Py
o
=
.
=

=
||g 1

Ea
=
S

Il
R

Il
Q

= = = A = A
5

I
8
Ny
™

aQ
AN
®
P
=
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This finishes the proof that ¢¢ is (A, a)-bilinear. Let us put
Ac(a®c)=(a®c); ®4(a®c)y = (a (a)®c1)®4 (1®¢,).

Then we get the following

(7' @y )(a®0))®4 Ac((a® 1))

(@ @@y (c1)®a ((1®c21)®4 (1®0))))

(@ (@) ®c11)®a (1®c12)®a (1077 (c2)))

= (aM@)@c)1®4((a (@) ®c1),®4 (1877 (c2)))
(2@ )11 @4 (a®c)12®4 (@™ @Y™ )((a®0)s)),

where in the second step the Hom-coassociativity of (C, y) is used.

ee((a®c))a®c), = ec((a(a)®cy))(1®c))
ala™Na)e(c))(1®cy) = a(1®&(cq)cy)

a1®y ) =a®c,

on the other hand we have

(a®c)iec((a®c)y) = (a ' (a)@cy)a(l)e(cy)
= (@ (a)®cie(c))l

faey (0N

= a®ec.

I
B
|

)@ y(c))®a(1®y(c)2)
)®y(c1))®a (a(1)@y(c2)
= ((a®@y)e(@@y))(Ac(a®c)),
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ec(a(@®y(c) = ala(a)e(y(c)

= alec(a®c))

hold, which completes the proof that (A® C,a ® y) is an (A, a)-Hom-coring.

2. Let us denote (c®a)=(1®y~'(c))a=a,®c . i is in H(My):

(@®@y)(W(c®a) = ala)®y(c)=(aey)(1ey ' (c)a)
= (a(1)®y(y ' (c)a(a) = (1@ c)a(a)
= 1oy ' (y(0)a(a) = a(a) @ y(c)*
= P(y(o)@ala),

where in the third equality the fact that the right Hom-action of (A,a) on (A®C,a®

y) is a morphism in H(My) was used. Now, let a,a’ € A and c € C, then

Y(c®aa’) =

In the above equality, if we replace c by y(c) we obtain (aa’),.®y(c)* = aKa3\®y(c’<A).
Next, by using the right (A, a)-linearity of A we prove the following
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a’l (@)1 ® Cl’\ ®c,"

= YPag®a
1@y ! (er)a
1@y (c1))a”

=
™
&

1®c))®4a”

1®C1)®A(

ldA®C®ldA®)/

= [
[$S) I3

el ||H I
S Y

idpgc ®1dy QY™
idpgc ®1dy QY™

(
(
(
(
(i
(
(idagc ®idp®y
(
(
(idagc ®idp®y
(idrgc ®ida®y
(idagc ®idp®y
(a”
(

a”!(a"!(a

Hae) ®ck) @4

a) @y~

Ya))®c)f

(a)K®CZK

Ha)e®a (1®77'(c)))
Ha)(1®y~%(c)))
@)@y ()

'(a))
(1®c)®a (1@ y ! (c2))a" (a))
(@ (eya)ea(ley (o
( He))®a (1®yH(c)2)a)
H(c))a)

He))a)

H(1®c))®ap(c,®a”
1

I ))a)
((

)

)

J(1®y”
b

)

)

)

HAc((1ey”

(Ac(a, ®c"))
(e Ha)®c)®a (1®CY))
(1®y71(cY))

HeDtey(r(cy)

(
(
(
(
(Ac(1®y~
(
(
((a

= ala)ececk.

We also find

P(e®l) =1, =10y}

()l =1®c.

Finally, the fact of ¢ being right (A, a)-linear gives

a(ag)e(c®) =

ecla, ®c) =

ec((1®@y™(c)a)

= ec(1@y ™ (e)a=a(le(y ™ (e))a=Lac(c)

= a(a)e(c),

which means that a,.¢(
structure.

c®) = ae(c). Therefore [(A,

a),(C, )]y is a Hom-entwining

. The essential point is that if (M, u) is a right (A, «)-Hom-module, then (M®C, u®y)

is a right (A, a)-Hom-module with the Hom-action pjygc :

MeC)®A > M®C,
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(mec)®at> (mec)a=ma ' (a),®y(cX). puec indeed satisfies Hom-associativity
and Hom-unity as follows. For all me M, a,a’ € A and c € C,

(um)®@y(c)(aa’) = p(mya™(aa’) @ y(y(c))

(m®c)l ma‘l(l)K®7/(c"):le®7/(c")

@9)
m1®y(c) = u(m)® y(c).
With respect to this Hom-action of (A, ) on (M®C, u®y), becoming an [(A, ), (C,y)]y-
entwined Hom-module is equivalent to the fact that the Hom-coaction of (C, y) on
(M, p) is right (A, a)-linear.

Let (M, 1) € MS () with the right (C, »)-Hom-comodule structure m > g ® my).
Then (M, u) € MC with the Hom-coaction pM : M — M ®, C, m > m®4 (1 ®
y~1(m(1))), which actually is

Mm) = mgy®s 1@y (m)=p (m)1@y(y " (mg)))

(0) ® 11(1),
where in the second equality we have used the canonical identification
$p: M@, (A®C)=M®C, m®,(a®c)— p~' (ma®y(c),

and pM is (A, a)-linear since



Conversely, if (M, p) is a right (A® C,a ® y)-Hom-comodule with the coaction
oMM — M®, (A®C), by using the canonical identification above, one gets the
(C,y)-Hom-comodule structure pM = ¢pop™ : M — M®&C on (M, u). One can also
check that ¢ is right (A, a)-linear once the following (A, «)-Hom-module structure
on M ®,C is given:

PMe,c (M®4C)®A—>M®,C, (M4 (a®c))®a’ > u(m) @4 (a®c)a (a'),

thus pM is (A, a)-linear since by definition p™ is (A, a)-linear. Therefore (M, ) has
an [(A, a),(C,y)]y-entwined Hom-module structure.

One should refer to both [20, Proposition 25] and [14], ltem 32.9] for the classical
version of the following theorem.

Theorem 4.2.9 Let [(A,a),(C,y)],be an entwining Hom-structure and (C,x) = (A ®
C,a®y) be the associated (A, a)-Hom-coring. Then the so-called Koppinen smash or -
twisted convolution algebra Hom’J(C,A) = (Hom™(C, A),+y, 114 0 £c), where (f %, g)(c) =
f(c2)g(c)*) for any f,g € Hom'™(C, A), is anti-isomorphic to the algebra (*C,+,ec) in

Proposition (4.2.5).

Proof: For f,g,h € Hom"(C,A) and c e C,

((f *p 8) *p B(c)

(f 5 8)(€2)ich(c)) = (f(c22)18(c21 (")
(f(€22)1x8(c, )Ry (1 (e1)*)) = (F(e22) 1821 o) (h(y~H (€1) )
a(f(e2)0)(8(er1)o (™ (e1)*) “2 Y a(F (ea0)en)(8(caf )iy~ (1))
a(f (7)) (8(c15)ehle1 1) = ala™ (F(c2)ea)(8(c15)o ey )
Fle2)il(gleyy)ohlc%)

flea)i(g*y B)(ci")

(f *yp (g h))(C),

proving that +, is associative. Now we show that ¢ is the unit for =,:

™~
||g I

N =y
wEl el
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ey O = nelea)ef(cf) = e(ex)l o f(e))
= 1070 B o)
- flo)
= fOr He)L = f(ea)e(er)l
= (o)) = flea)ereler”)
= (Fryne)0)

The map ¢ : *C = 42Hom" (A® C,A) — Hom’(C,A) given by

P(E) () =E1®Y(c)) (4.17)

forany & € *C and c € C, is a k-module isomorphism with the inverse ¢ : Hom™(C,A) —
*C given by ¢(f)(a®c) = af(c) for all f € Hom"(C,A) and a®c € A® C: Let a € A,
/®ce A®C and f €e Hom'(C,A). Then

p(fa@®c) = @(f)a (@' ®y(c)=(a""(a)a")f (y(c)
= (a7 (a)a')a(f(c) = a(a'f(c)) = ap(f)(a' ® )

and
P(f)a(@)®y(c)) = ala)f(y(c)) = alaf(c) = ale(f)a®c)),
showing that ¢(f) is (A, a)-linear. On the other hand,

P(P(EN@®C) = ad(&)(c) = ac(1®y ™ (c) = E(a(l®y ™' (c)) = £(a®0),

Ple(f)e) =L@y (e) = Lf(y™ () = f(c).

Now if we put (&) = f and ¢(&’) = f/, we have f(c) = E(1®@y ' (c)), f'(c) = &'(1@y 7' (c))
for c € C, and then
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(A ENa®e) = &((a®c)&((a®c),))

= (0 @@e)E (1@cy)

E(a @@c)f (y(e2) = (@ (@ @ c1)alf(c2))

E(a @ alf () ®y(e) = Ela @) (c2)e ® ()
(@ (@)f (c2)) f(7(e%) = (@ @) f (e2))alf(e%))

= a(f'(c2)ef(c%) = alf xyp)(0)

which induces the following

=

PEAENe) = (1 ENM@Y ) =1+ Ny
= al(f = NO7H) = (f % Ny (0))
= (f7xp f)le) = (P(E) +y P(E))(c).
Moreover, ¢(ec)(c) = ec(1®y71(c)) = a(l)e(y~(c)) = ne(c). Therefore ¢ is the anti-
isomorphism of the algebras *C and Homg(C,A). O

4.3 Entwinings and Hom-Hopf-type Modules

Definition 4.3.1 Let (B, ) be a monoidal Hom-bialgebra. A right (B, )-Hom-module
coalgebra (C,y) is a monoidal Hom-coalgebra and a right (B, p)-Hom-module with the
Hom-action pc : C® B — C, c®b — cb such that pc is a Hom-coalgebra morphism, that
is, foranyce C andbeB

(cb)1 ®(ch)y = c1b1 ®cyby, ec(ch) = ec(c)ep(b). (4.18)
The equality
pco(y®p)=yopc
is a consequence of and the properties of (B, ) and (C,y).
By the following construction, we show that a Hom-Doi-Koppinen datum comes from
a Hom-entwining structure and that the Doi-Koppinen Hom-Hopf modules are the same

as the associated entwined Hom-modules, and give the structure of Hom-coring corre-
sponding to the relevant Hom-entwining structure.
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Proposition 4.3.2 Let (B, f) be a monoidal Hom-bialgebra. Let (A,«) be a right (B, p)-
Hom-comodule algebra with Hom-coaction p* : A — A®B, a a)®a(1) and (C,y) be
a right (B, p)-Hom-module coalgebra with Hom-action pc : C®B — C, c®b + cb. Define
the morphism

P:CRA—->ARC, c®ar a(a(o))®7/’1(c)a(1) =a,®c". (4.19)
Then the following assertions hold.
1. [(A @), (C,y)]y is an Hom-entwining structure.

2. (M, p) is an [(A, «),(C,y)]y-entwined Hom-module if and only if it is a right (A, a)-
Hom-module with pp;: M® A — M, m®a +— ma and a right (C, y)-Hom-comodule
with pM :M > M®C, m mg ®m( such that

pM(ma) = m(g)d(0) ® M(1)4(1) (4.20)
foranyme M anda € A.

3. (C,x) =(A®C,a®y) is an (A, a)-Hom-coring with comultiplication and counit given

by (4.13) and (4.14), respectively, and it has the (A, a)-Hom-bimodule structure

a(a’®c)=a " (a)a’ ®y(c), (4’ ®c)a=d'ag ®ca) fora,a’ € A andceC.

4. Hom™(C,A) is an associative algebra with the unit ne and the multiplication *
defined by

(f *p 8)(c) = alf(c2)i0)8(¥ " (c1)f(c2)n)) = a(f(c2))oya " (glcra(f (c2)1))), (4.21)
forall f,g € Hom™(C,A) andce C.

Proof:

1. By (4.19) we have a, ® y(c)* = a(a()) ® ca(y), and thus
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(aa’), ®y(c)" a((aa’)o)) ® c((ad’) 1))

(3.18)

2 a(ag0)afo)) © clayafy) = alag)aalg) ® (' (Clag) B )
429 Ka(a(,())) ®5Kﬂ(a(,1))
= axa(aZ()))@V(y 1(CK)a(’1))

which shows that ¢ satisfies (4.7). To prove that ¢ fulfills (4.8) we have the com-
putation

aHa)®c ®ck aHala) @ (y (a1 ® (¥~ (0)aq)):
a0)® Y (€)1a11 ® Y (€)2a1)2

a0)® Y (c1)agn ® 7y (c2)an)

a(a)0) ® 7 (c1)aoyn ® 7y (c2)BHag))
a(0), ®¢1" ® y He2)B aq))

a(a™! (a0)c®c" ® Y Her)p™! (a))
ala™Ha)) @ @y (cr)a (a)

= a l(a) ®cf®c,.

To finish the proof of (1) we finally verify that i satisfies (4.9) and (4.10) as follows,

Le®c=a(lp)®y (o)l =a(ly)®y (c)lp=1®c,

= ala)e(y " (0)agn)) = alap)e(y " (cplan)))
l) (14.18)

alaq))e(epflany) = alaq)e(c)er(Bla)))
(3.9) -1
c) = a(a " (a)e(c)
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2. We see that the condition for entwined Hom-modules,i.e., pM(ma) = ma~"(a), ®
y(m(l)") and the condition in 1; are equivalent by the following, for m € M and
aeA,

mgya (a), ® y(my)) = mya(a~"(a)0) ® (¥ (ma))a~ (a)1))
= mya(a " (a) @ y(y~ (ma)p (ag)))
= mo)a)® y(y~ (myagn)))

= M0)4(0) @ M(1)a(1)-

3. We only prove that the right (A, «)-Hom-module structure holds as is given in the
assertion. The rest of the structure of the corresponding Hom-coring can be seen
at once from Theorem (4.2.8). Fora,a’ € A and c € C,

(@®c)a = dal(a)® y(c¥)

’

= da(aHa)) @Yy (c)a (a)u) =a'ap) @Yy (c)p an))

a'a(o) ®ca().

4. By the definition of product =, given in Theorem (4.2.9) and the definition of ¢
given in (4.19) we have, for f,g € Hom’(C,A) and c e C,

(f *p 8)(c) flca)g(ci®)
= a(f(c2)0)g(y e f(c2)n)) = alf(c2)0)g(y  (c1 B(f(c2)1))

Of(f(Cz)(O))Of_l(g(Clﬁ(f(Cz)(l)))) = Of(f(Cz))(O)Of_l(g(ClOf(f(Cz))(l)))-

Definition 4.3.3 A triple [(A, ), (B,B),(C,y)] is called a (right-right) Hom-Doi-Koppinen
datum if it satisfies the conditions of Proposition (4.3.2), that is, if (A, @) is a right (B, B)-
Hom-comodule algebra and (C, y) is a right (B, f)-Hom-module coalgebra for a monoidal
Hom-bialgebra (B, p).
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[(A,a),(C,y)]y in Proposition is called a Hom-entwining structure associated
to a Hom-Doi-Koppinen datum.
A Doi-Koppinen Hom-Hopf module or a unifying Hom-Hopf module is a Hom-module

satisfying the condition (4.20).

Now we give the following collection of examples. Each of them is a special case of
the construction given above.

Example 4.3.4 Hom-bialgebra entwinings and Hom-Hopf modules Let (B, ) be a
monoidal Hom-bialgebra with Hom-multiplication mp : B& B— B, b® b’ +— bb” and Hom-
comutiplication Ag: B— B®B, b+ b; ®b,.

1. [(B,B),(B, B)]y, with : BRB — B®B, b'®b > B(b1)®B~L(V)bs, is an Hom-entwining
structure.

2. (M, p) is an [(B, B), (B, B)]y-entwined Hom-module if and only if it is a right (B, B)-
Hom-module with py; : M® B — M, m®b +— mb and a right (B, p)-Hom-comodule
with pM : M — M ® B, m > m ) ® m(y) such that

for allm e M and b € B. Such Hom-modules are called Hom-Hopf modules (see
[21)]).

3. (C,x) = (B®B,p®p) is a (B, p)-Hom-coring with comultiplication Ac(b ® b’) =
(B~L(b)®b])®p(15®b)) and counit ec(b®b’) = B(b)ep(b’), and (B, B)-Hom-bimodule
structure

b’ ®b”) =) @B(V), (b'®b")b=b'b; @b"b,

for allb,b’,b” € B.

Proof:Since Ay is a Hom-algebra morphism, (B, ) is a right (B, f)-Hom-comodule alge-
bra with Hom-coaction

pB:ABIB—>B®B, bl—)b(0)®b(1):b1®b2,

and since mp is a Hom-coalgebra morphism, (B, ) is a right (B, f)-Hom-module coal-
gebra with Hom-action py = mp : B B — B, b® b’ — bb’. So, we have the triple
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[(B,B),(B,B),(B,B)] as Hom-Doi-Koppinen datum, and the associated Hom-entwining
structure is [(B, B), (B, B)]y, where (b’ ®b) = ﬂ(b(o))®ﬁ‘1(b’)b(1) = B(by)® B~ (b')b,. The
rest of the assertions are immediately obtained by the above proposition.

O

Example 4.3.5 Relative entwinings and relative Hom-Hopf modules Let (B, ) be
a monoidal Hom-bialgebra and let (A, «) be a (B, f)-Hom-comodule algebra with Hom-
coaction p* : A — A®B,a — a) ®a().

1. [(A,@),(B,B)]y, withp : B®A - A®B, b®a — ala)) ®ﬁ_1(b)a(1), is an Hom-
entwining structure.

2. (M,p) is an [(A, a),(B, B)]y -entwined Hom-module if and only if it is a right (A, a)-
Hom-module with p); : M® A — M, m®a — ma and a right (B, )-Hom-comodule
with pM : M — M ® B, m > mjq; ® my1] such that

M

[ ma) = mM[0]4(0) ® m(1)4a1) (423)

for all m e M and a € A. Hom-modules fulfilling the above condition are called
relative Hom-Hopf modules (see [39]).

3. (C,x) = (A®B,a®p) is a (A, a)-Hom-coring with comultiplication A¢(a ® b) =
(@~ (a)®b,)®4 (14®by) and counit ec(a®b) = a(a)eg(b), and (A, a)-Hom-bimodule
structure

a(@’ ®b)=a ' (a)a’ ®B(b), (4’ ®b)a = a’ai) ®bag)

for all a,a’ € A and b € B.

Proof:The relevant Hom-Doi-Koppinen datum is [(4, «), (B, B), (B, B)], where the first ob-
ject (A, a) is assumed to be a right (B, f)-Hom-comodule algebra with the Hom-coaction
pdam a(0)®a(1) and the third object (B, §) is a right (B, )-Hom-module coalgebra with
Hom-action given by its Hom-multiplication. Hence, [(A,a),(B,B)], is the associated
Hom-entwining structure, where (b ®a) = a(a(o))®ﬁ‘1(b)a(1). Assertions (2) and (3)

can be seen at once from Proposition (4.3.2). O

Remark 6 (A, a) itself is a relative Hom-Hopf-module by its Hom-multiplication and the
(B, B)-Hom-coaction p*.
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Example 4.3.6 Dual-relative entwinings and [(C, ), (A, a)|-Hom-Hopf modules Let
(A, a) be a monoidal Hom-bialgebra and let (C,y) be a right (A, «)-Hom-module coalge-
bra with Hom-action pc : C® A — C,c®a > ca.

1. [(Aa),(C, )]y, with : CRA — A®C, c®a — a(a1)®B ! (c)ay, is an Hom-entwining
structure.

2. (M, p)is an [(A, a),(C,y)]y-entwined Hom-module if and only if it is a right (A, a)-
Hom-module with ppy : M® A — M, m®a +— ma and a right (C, y)-Hom-comodule
with oM : M — M ®B, m mg) ® mqy such that

pM(ma) = mp)a; ® M(1)a; (4.24)

for allm e M and a € A. Such a Hom-module is called [(C, ), (A, a)]-Hom-Hopf
module.

3. (Cx)=(AC,a®y) is a (A,a)-Hom-coring with comultiplication A¢(a ® c) =
(@ (a)®c;)®4 (14 ®cy) and counit eq(a®b) = a(a)ec(c), and (A, a)-Hom-bimodule
structure

a(@ ®b)=a Ya)a ®y(c), (d’®c)a=da; ®cay

foralla,a’ € A andceC.

Proof: (A, «) is a right (A, a)-Hom-comodule algebra with Hom-coaction given by the
Hom-comultiplication

pA =Ap:A>ARA, a a)®ag) =a; ®ay,

since A4 is a Hom-algebra morphism. Besides (C,y) is assumed to be a right (A, a)-
Hom-module coalgebra with Hom-action pc(c ® a) = ca. Thus, the related Hom-Doi-
Koppinen datum is [(A,a),(A,a),(C,y)]. Then [(A,a),(C,y)], is the Hom-entwining
structure associated to the datum, where

P(c®a) = alap)®y ' (c)aq) = ala)) @y~ (c)a,.
The assertions (2) and (3) are also immediate by Proposition (4.3.2). O
Remark 7 (C,y) itself is a [(C,y),(A, a)]-Hom-Hopf-module by the (A, a)-Hom-action
pc and its Hom-comultiplication.
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The following example gives a Hom-generalization of the so-called (a, )-Yetter-Drinfeld
modules introduced in [69] as an entwined Hom-module:

Example 4.3.7 Generalized Yetter-Drinfeld entwinings and (¢, ¢)-Hom-Yetter-Drinfeld
modules Let (H,a) be a monoidal Hom-Hopf algebra and let ¢, : H — H be two
monoidal Hom-Hopf algebra automorphisms. Define the map, for allh,g € H

Y HOH - HQH, g@h> a’(hy) @ p(S(h))(a 2(8)p(ha)), (4.25)
where S is the antipode of H.
1. [(H,a),(H, a)]y is an Hom-entwining structure.

2. (M,p)is an[(H,a),(H,a)],-entwined Hom-module if and only if it is a right (H, a)-
Hom-module with py; : M®H — M, m@h — mh and a right (H, a)-Hom-comodule
with pM : M — M ®H, m > m(g) ® m(1) such that

pM (mh) = mgya(hy) ® p(S(hy) (@ (m1)P(h22)) (4.26)

for allme M and h € H. A Hom-module (M, p) satisfying this condition is called
(¢, ¢)-Hom-Yetter-Drinfeld module .

3. (C,x)=(H®H,a®a) is an (H,«)-Hom-coring with comultiplication A;(h® h’) =
(a7l (h)® h})®y (1g ® b)) and counit ec(h @ h') = a(h)ey(h'), and (H,a)-Hom-
bimodule structure

gheh)=a " (ghea(l'), (heh')g=ha(g:)®p(S(g))(a™ (h)(g2))
forallh,h’,g € H.
Proof: In the first place, we prove that the map
p":H—->H®HP®H), h hioy®h(y) := a(hy)® (e (@(S(hy)) ®hyy)

defines a (H°? ® H, a« ® a)-Hom-comodule algebra structure on (H, «). Let us put (H? ®
H,a®a)=(H,d). Then
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)0 ® (hoy1) @& (A1)
= a(a(hy)a) @ (@ (@(S(a(ha)) @ alhar)2) ®(a *(p(S(h)) ®@a™ (hy)))
= a’(h121)® (@ (@(S(a(hn) @ a(hy122) ® (@ *(@(S(hy)) @ a™ ()
= a’(h121) @ ((@(S(ha11)) @ a(h2122)) ® (@ *(@(S(h)) @™ ()
= hy ®((a " (@(S(h12) @ hpo1) ® (@~ (9(S(h11))) ® h222))
= hy ®((a  (@(S(h)1 ® 1) @ (@ (¢(S(h1)))2 @ 222))
a(ho)) ® Aghy),

where in the fourth step we used
a(hy)@a (hy)®@a 2 (hy)®a ™ (hy1) @ a(hyy) = hy @y ® hy121 ®hy12 ®hyo,

which can be obtained by applying the Hom-coassociativity of Ay three times. We also
have

hoyeg(ho) = a(hy)e(a (@(S(hy))))e(haa)
= a(hye(ha))e(@ (@(S(hy)) = a(a™ (hy))e(hy)
= a'(h),

where in the third equality we used the relations coa™' = ¢, eogp=cand eoS =¢. One
can easily check that the relations p oa = (a® @) o pf and p(1y) = 15 ® 15 hold. For
g, heH,

2e(9) = (alg)® (@ (p(S(g1)) ®g2))(@lhn) ® (@™ (@(S(h)) ® hz2)

= a(g)alhy)® (@ (p(S(h)a (¢(S(g1)) ® g22h22)

= a(g1h1)® (@ (@(S(h1)S(81))) ® g22h22)

= a((gh)2)®(a (@(S((ghh)) @ (gh)22)

= p'(gh),
which completes the proof of the statement that o makes (H, a) an (H, @)-Hom-comodule
algebra. We next consider the map, for all g,h,k € H

pr:H®H — H, g- (h®k):= (ha ' (g))p(a(k))
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and we claim that it defines an (H, @)-Hom-module coalgebra structure on (H,a): In-
deed,

(g (h®k))-(a(h)®a(k) =

a 1(( h)g)a($(k)))
Wh)g)a(p(k)a (¢
h'h)g)P(a((kk)) = (
a(g)- (Wh®kk') = a(g)-

=
=
Q
.
Q
=
ﬁ
;
»

(h@k)(h ® k")),

h-(lg®1y) = (1ga™ (h)$(a(ly)) = a(h),

(g-(h®k)) ©(g-(hek)), = ((ha_l(g)ﬁP( (k)))1®((ha—1(g))¢(a(k)))z
= “H@ip(ak) @ (ha™ (g))2p(a(k)),
= (ha” (31))4)( (kl)) (hpa™ (gz))¢(a(k2))
= &1 (h®k)®g - (h®ky)
= &1 (h®k)®g - (h®k),,

e(g-(h®k)) = e((ha™ (g)p(a(k))) = e(h)e(a™ (g)e(Pp(a(k))) = e(h)e(g)e(k) = e(h)ef(g®k),

proving that (H, «) is an (H, @)-Hom-module coalgebra with the Hom-action pn- Hence,
the Hom-Doi-Koppinen datum is given by [(H,«),(H? ® H,a ® «),(H, «a)] to which the
Hom-entwining structure [(H, a),(H,a)], is associated, where we have the entwining
mapp: HH —- H®H as

a(hg))a(g) - hay = ala(hy)®@a™(g)- (a™ (@(S(hy)) ® hyy)
a’(hy1)® (@™ (@(S(hy)a2(g)P(a(ha2))
a’(hy) @ @(S(hy))(a %(g)P(ha2))-

P(g®h)
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For me M and h € H, we have the condition (4.26)

pM(mh) = mo)hio) @ mq - I
= mgalhy)@may-(a  (@(S(hy)) ®hy,)
= mya(ha)®a " (9(S(hy)m))p(alhyy))
= mgya(hy)® @(S(hy))(a " (m))P(har)).

By the above proposition, the (H, a)-Hom-coring structure of (H®H, a®«) is immediate.
Here we only write down the right Hom-module condition

(h®@h)g hgo)®h - gn)
ha(gy) @ - (a (@(S(g1))) ® g22)

ha(g21)® @(S(g1) (@ () p(822))s

completing the proof. O

Remark 8 1. By putting ¢ = idy = ¢ in the compatibility condition we get the
usual condition for (right-right) Hom-Yetter-Drinfeld modules, which is

pM (mh) = mgya(hy) ® S(hy)(a™  (m1))hay). (4.27)

2. If the antipode S of (H, ) is a bijection , then by taking ¢ = idy and ¢ = S™2 , we
have the compatibility condition for (right-right) anti-Hom-Yetter-Drinfeld modules
as follows

pM (mh) = mgya(hy) @ S~ (hy ) (@™t (m1))hya). (4.28)

We get an equivalent condition for the generalized Hom-Yetter-Drinfeld modules by
the following

Proposition 4.3.8 The compatibility condition for (¢, ¢)-Hom-Yetter-Drinfeld mod-
ules is equivalent to the equation

mya" (hy) @ meyp(a (ha)) = (mhy) o)y ® a™ ' (@(hy)(mha)1)) (4.29)
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Proof:Assume that (4.29) holds, then

mgya(ha1) ® (S (hy)) (@ (m))p(h2))
= mpa (@’ (h)) @ @(S(hy))(a ™  (ma))a > (Pp(a’(ha2)))

m(O)Of_l(sz(hz)l)®@(S(hl))01_1(m(l)a_1(¢(az(h2)2)))
(ma®(h)2)0)® (S () (@ (p(a?(ho)1))a > ((ma? (hy)2)(1))
(maz(hzz)) (0) ®(p(S(h1))((p(h21)a‘z((maz(hn))(l)))
(ma(h2))i0)® (S(a(h))(p(h12)a*((ma(hy)))))
(ma(h2))i0)® @(S(hy1)hiz)a ((ma(ha))))
(ma(h2))i0)® @(e(h)1g)a” (ma(hy))a)))

)

)

=
M| 1
e

S
||g I

= e(m)(ma(hy)))® (ma(hz))a)
= e(h)pM(ma(hy)) = p™ (mh),

which gives us (4.26). One can easily show that by applying the Hom-coassociativity
condition (3.5) twice we have

a”H(h) ®hy @ a(hany) ®a(hay) = hyy ® 1y ®hy @ hyy, (4.30)
which is used in the below computation. Thus, if we suppose that (4.26) holds, then

(mhy)i0)® @™ (@(hy)(mhy) 1))
S mgalinn) @a () (@(S (o)) a ()¢ (122)
m O)a(h221)®a‘l((a_l((p(hl))(p(S(h21)))(m<1)a(¢(h222))))
m(O)h21 ®0€_1((@(hu)@(S(hlz)))(m(1)¢(h22)))
mo)h21 ®(5(’71)1H)01_1(m(1)¢(h22))
moyha1 ® e(hy)m 1) (ha)
m(O)hlzg(hll)®m(1)¢(a_1(h2))
mya (hy) @ meypla~ (hy)),

(4.30)

=
||g I

finishing the proof. O

Remark 9 The above result implies that the equations and are equivalent
to
m(O)Of_l(hl)@m(l)a_l(hz) (mhy)o)®a 1(]11(777}12)(1))
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and
mgya " (hy) @ meyya ™ (hy) = (mhy) oy ® a™ (S72(hy)(mhy) 1)),

respectively.

Example 4.3.9 The flip and Hom-Long dimodule Let (H,a) be a monoidal Hom-
bialgebra. Then:

1. [(H,a),(H,&)],, where p : H®H — H®H, g®h — h®g, is an Hom-entwining
structure.

2. (M, p) is an[(H,a),(H, a)],-entwined Hom-module if and only if it is a right (H, a)-
Hom-module with ppy : M®H — M, m®h +— mh and a right (H, a)-Hom-comodule
with pM : M — M ®H, m > m(g) ® m(1) such that

pM(mh) = m(o)a_l(h) ® a(m)) (4.31)

for all me M and h € H. Such Hom-modules (M, ) are called (right-right) (H, «)-
Hom-Long dimodules (see [27]).

3. (C,x)=(H®H,a®a) is an (H,a)-Hom-coring with comultiplication A¢(h® h’) =
(@~ (h) ® hi) ®y (1y ® b)) and counit ec(h® h’) = a(h)ey(h’), and (H,a)-Hom-
bimodule structure

gh@h)=a " (Qhoa(h), (h@h)g =ha ' (g)®a(k)
forallh,h’,g € H.

Proof: (H,a) itself is a right (H, «)-Hom-comodule algebra with Hom-coaction pf = Ay :
H —> H®H, h hg ®h)=h; ®hy. Inaddition, (H,a) becomes a right (H, a)-Hom-
module coalgebra with the trivial Hom-action py: H® H — H, g®h +— g-h = a(g)e(h).
Hence we have [(H,«),(H,a),(H,«)] as Hom-Doi-Koppinen datum with the associated
Hom-entwining structure [(H, ), (H, a)],, where (W'®h) = a(h))®a~* (K')-hy) = a(h))®
a V(W) -hy=a(h)@ala™ (W))e(h,) =h®h. O

Definition 4.3.10 Let (B, f) be a monoidal Hom-bialgebra. A left (B, )-Hom-comodule
coalgebra (C,y) is a monoidal Hom-coalgebra and a left (B, p)-Hom-comodule with a
Hom-coaction p: C — B®C, ¢ ¢(_1)®c(g) Such that, for any c € C

C(=1) ® €(0)1 ® €(0)2 = C1(=1)C2(~1) ® €1(0) ® €2(0), C(=1)€c(€(0)) = 1pec(c). (4.32)
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The equation
poy=(B®y)op
follows from and the properties of (B, g) and (C,y).

We lastly introduce the below construction regarding the Hom-version of the so-
called alternative Doi-Koppinen datum given in [73].

Proposition 4.3.11 Let (B, ) be a monoidal Hom-bialgebra. Let (A, «a) be a left (B, p)-
Hom-module algebra with Hom-action ,p : B A - A, b®a — b-a and (C,y) be a
left (B, B)-Hom-comodule coalgebra with Hom-coaction €p : C — B®&C, ¢ > (1) ®¢(0)-
Define the map

v,b:C®A—>A®C,c®a|—>c(,1)-a_1(a)®y(c(o)) (4.33)

Then the following statements hold.
1. [(A @), (C,y)]y is an Hom-entwining structure.

2. (M, p)isan[(A, a),(C,y)]y-entwined Hom-module iff it is a right (A, a)-Hom-module
with pj; : M®A — M, m®a +— ma and a right (C, y)-Hom-comodule with pM : M —
MeC, m— m[o] ® M) such that

pM(ma) = (ma)[o)® (ma)y) = myoy(my1y-1) - a~>(a)) ® ¥ (mp)0)) (4.34)
foranyme M andae€ A.

3. (C,x) =(A®C,a®y) is an (A, a)-Hom-coring with comultiplication and counit given

by (4.13) and (4.14), respectively, and the (A, a)-Hom-bimodule structure a(a’®c) =

aYa)a'®y(c), (@ ®c)a=a'(c1)-a?(a)® yz(c(o)) fora,a’ e A andceC.

Atriple [(A, a), (B, B),(C,y)] satisfying the above assumptions of the proposition is called
an alternative Hom-Doi-Koppinen datum.

Proof:The first two conditions for Hom-entwining structures will be checked and the
rest of the proof can be completed by performing similar computations as in Proposition

(4.3.2). Fora,a’e Aand ceC,
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¢)1y-a Haa) @ y(y(c))
cn)- (@ (@a (@) ® 2 (co))
(Ble-it 'a_l(ﬂ))(ﬁ(c(—l))z : 04—1(0'))@’7/2(‘3(0))
(Ble1)1)- a! (a)(B(c-1)2) - a’l(d)® VZ(C(O))
= (BB (cren)) - a @) (Blcioy-1) - @ (@) @ Y2 (¥(c(o)0))
(
(

(aa’), ®y(c) =

=

c-1y @ @)y (co) -1y - a” @) ® ¥ (¥ (o))
cny-a (@)ay ® y(r(co)’)

= a.ay®y(c™),

R
L
B
A
T
®
S
A
®
S
N
|

c-1)- @ (@) ® ¥ (c0)1 ® ¥ (c(0))2

a
= BN (cr) a2 ()@ p(ciop) ® Y (o))
B (c1(-1)e2(-1)) - @ 2 (@) ® Y (c1(0) ® ¥ (€2(0)
1
= i1y (B (ean) - a3 (a) @ p(c1(0) @ Y (c20))
= Cy(-1)" a’! (ca(-1) - a *(a)® v(c1(0)) ® ¥ (c20))
= (Cz(—l)'Of_l(a_l(ﬂ)))x‘gclx®7/(C2(0))

= a ) ®cf®c,.
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Chapter 5

Covariant Hom-Differential
Calculus

The general theory of covariant differential calculi on quantum groups was introduced
by S. L. Woronowicz in [80], [81],[82]. Many results obtained in this chapter in the Hom-
setting follow from the classical results appear in the fundamental reference [82]. In
Section 5.1, after the notions of first order differential calculus (FODC) on a monoidal
Hom-algebra and left-covariant FODC over a left Hom-quantum space with respect to
a monoidal Hom-Hopf algebra are presented, the left-covariance of a Hom-FODC is
characterized. The extension of the universal FODC over a monoidal Hom-algebra to
a universal Hom-differential calculus (Hom-DC) is described as well (for the classical
case, that is, for the extension of a FODC over an algebra A to the differential envelope
of A one should refer to [32], [31]). In the rest of the chapter, the concepts of left-
covariant and bicovariant FODC over a monoidal Hom-Hopf algebra (H, a) are studied
in detail. A subobject R of kere, which is a right Hom-ideal of (H, a), and a quantum
Hom-tangent space are associated to each left-covariant (H, a)-Hom-FODC: It is in-
dicated that left-covariant Hom-FODCs are in one-to one correspondence with these
right Hom-ideals R, and that the quantum Hom-tangent space and the left coinvari-
ant of the monoidal Hom-Hopf algebra on Hom-FODC form a nondegenerate dual pair.
The quantum Hom-tangent space associated to a bicovariant Hom-FODC is equipped
with an analogue of Lie bracket (or commutator) through Woronowicz’ braiding and it
is proven that this commutator satisfies quantum (or generalized) versions of the anti-
symmetry relation and Hom-Jacobi identity, which is therefore called the quantum (or
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generalized) Hom-Lie algebra of that bicovariant Hom-FODC. Throughout the chapter,
we work with vector spaces over a field k.

5.1 Left-Covariant FODC over Hom-quantum spaces

Definition 5.1.1 A first order differential calculus over a monoidal Hom-algebra (A, «)
is an (A, a)-Hom-bimodule (I, y) with a linear map d : A — T such that

1. d satisfies the Leibniz rule, i.e., d(ab) =a-db+da-b,Ya,b e A,
2. doa =y od, which means that d is in H(My),
3. T is linearly spanned by the elements of the form (a-db)-c with a,b,c € A.

We call (T, ) an (A, a)-Hom-FODC for short.
Remark 10 7. In the above definition, the second condition, i.e. doa = yod, is

equivalent to the equality d1 = 0.

2. By the compatibility condition for Hom-bimodule structure of (I',y), we have (a -
db)-c = a(a) - (db - a~1(c)), which implies that T is also linearly spanned by the
elements a-(db-c) foralla,b,c € A. Thus we denotel’ =(A-dA)-A=A-(dA-A).

3. By using the Leibniz rule and the fact that d(a(a)) = y(da) for any a € A, we get
(a-db)-c = (d(ab)—da-b)-c=d(ab)-c—(da-b)-c
= d(ab)-c—y(d(a)- (ba~(c)) = d(ab)- c — d(a(a)) - (ba~'(c)),
and
a(a)-(db-a”'(c)) = a(a)-(d(ba"'(c)-b-d(a"'(c)))
a(a)-d(ba™"(c) - a(a)- (b-d(a”(c)))
a(a)-d(ba”"(c)) - (ab) - d(c).

Hence, T = A-dA=dA-A.

Definition 5.1.2 Let (H,) be a monoidal Hom-bialgebra and (A,«a) be a left Hom-
quantum space for (H, p) (i.e. a left (H, p)-Hom-comodule algebra) with the left Hom-
coaction ¢ : A > H®A, a = a1y ®a(. An (A a)-Hom-FODC (T,y) is called left-
covariant with respect to (H,p) if there is a left Hom-coaction ¢ : T - H®T, w —
w(-1)® w(y) of (H, ) on (T, y) such that
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1. ¢(a(a)-(w-b)) = p(a@))(P(w)p(b), Ya,be A, weT,

2. ¢(da)=(id®d)p(a),Vac A

Condition (1) can equivalently be written as ¢((a-w)-a(b)) = (p(a)p(w))p(a(b)) by using
the Hom-bimodule compatibility conditions for (I', ) and (H® T, ® y), where left and
right (H ® A, B ® a)-Hom-module structures of (H®T, f ® y) are respectively given by

(h®a)(W®w)=hh'®a-w,

(Wew)(h®a)=hh'®w-a

for hhe H, a e A and w € I'. Condition (2) means thatd : A — T is left (H, §)-colineatr,
since the equality d o @ = y o d holds too.

One can see that for a given (A4, a)-Hom-FODC (T, y) there exists at most one mor-
phism ¢ : T — H®T in H(M,) which makes (T,y) left-covariant: Indeed, if there is
one such ¢, then by the conditions (1) and (2) in Definition we do the following
computation

¢[Zai-dbi] = ) o a-db) 1) = qu a7 (db) - 1)

= Z(@(a*(ai»w‘l<dbz-)>>qo< A)
Y (B @a @)™ @y ) d(db)) 1y ©14)

Z[(ﬁ’l ®y ") (@) p(db))(1y ®14)

i

) _ola Zw Nid ®d)(p(bi)),

1

showing that ¢ and d describe ¢ uniquely.

Proposition 5.1.3 Let (I',y) be an (A, a)-Hom-FODC. Then the following statements
are equivalent:

1. (T, y) is left-covariant.

2. There is a morphism ¢ :T — H®T in H(My) such that ¢(a-db) = ¢(a)(id®d)(¢(b))
for all a,b € A.
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3. Y, a;-db; =0 inT implies that Y, ¢(a;)(id ® d)(q(b;)) = 0 in H®T.

Proof:(1) = (2) and (2) = (3) are trivial.
(3)=(1): Let ¢ : I > H®T be defined by the equation

$() ai-db)=) pla)id@d)(p(b))

i i

as was obtained in the above computation. By using hypothesis (3) it is immediate
to see that ¢ is well-defined. If we write p(a) = a_1)®a(y for any a € A and ¢(w) =
w(-1)®w(g) forall w €T, then for w =} ;a;-db; € T we have

(@) = 0 @wo) = )_ai(1bi(1) @i dbi o)
i
where we have used the notation ¢(a;) = a; _1)®a; o). Now we prove that ¢ is a left
Hom-coaction of (H, g) on (I, y):

Zﬁ_l (@i,(-1)bi(-1)) ® P(ai(0) - dbi ()

i

Zﬁ_l (@i (-1))B 1 (bi-1)) ® i (0)(-1)bi (0)(-1) ® @i (0)(0) - ADi(0)(0)

B (w(-1)) ® P(wp))
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PO()_ai-db) = ¢()_ala) d(a(b)

Y plala))id @ d)(@a(b))

(Boa)(pla ))(id@d)((ﬁ®a)( (b:)))
Zﬁ ai,- 1) ®a(a; ) -d(a(bi o)

= </3®y>(q><z j-db;).

i

Letw=) ;a;-db; €T, and a,b € A. Then we have

p(a(a)- (w-b)
= Plafa)-()_(a;-db;)-b))
= ¢<a<a>-<i<a<ai>-d(bia—%b))—(aibi)-db)))
= qb(Z[(aa;ai))-d(a(b»b)—(a(aibm-d(a(b))])
_ Z;x a(a;)(id ®d)(¢ Zcp (a;b;))(id @ d)(¢(a(b)))
= i<¢<a>¢<a<ai>>><ld®d><¢< <b1>b>>—2<<p< )p(a;by)(id @ d)((a(b)))

= Dp(a(a))(qo( (a;))(id ® d)(¢p 2@ Nid @ d)(p(b)))
- Z(P a(a)id®d)(g Z(pab J(id ®d)(@(b)))
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which is the first condition of Definition Forany ae A, we get

G(1a-y " (da) = p(14-d(a""(a)))
P(1a)(id®d)(p(a™ ()

= (1g®1y)[((ided)o (' @a™))(¢p(a))]

e l)(B @y ™) o(ided)(p(a)] = (id®d)(p(a),

P(da)

which is the second condition of Definition O

5.2 Universal Differential Calculus of a Monoidal Hom-Hopf
Algebra

In the theory of quantum groups, a differential calculus is a substitute of the de Rham
complex of a smooth manifold for arbitrary algebras. In this section, the definition of dif-
ferential calculus over a monoidal Hom-algebra (abbreviated, Hom-DC) is given and the
construction of the universal differential calculus of a monoidal Hom-algebra (universal
Hom-DC) is outlined.

Definition 5.2.1 A graded monoidal Hom-algebra is a monoidal Hom-algebra (A, «)
together with subobjects A,,n > 0 (that is, for each k-submodule A, C A, (A, ala,) €

H(My)) such that
A=,

n>0

leAy, and AA, CA,, foralln,m>0.

Definition 5.2.2 A differential calculus over a monoidal Hom-algebra (A, a) is a graded
monoidal Hom-algebra (I = @nzo I",y) with a linear map d : T — T, in H(My), of
degree one (i.e., d : T — I'"*1) such that

1. d* =0,
2. dlww)=d(w)w"+ (-1)"wd(w’) forw eT",w” €T (graded Leibniz rule),
3. T0=4, yIro = a, andT" is a linear span of the elements of the form

ag(daq(---(day_day)---)) with ag,---,a, € A, n > 0.
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A differential Hom-ideal of (I, y) is a Hom-ideal Z of the monoidal Hom-algebra (T, y)
(that is, T is a subobject of (T, y) such that (TZ)I = T(ZT) c Z) such that Z NnT° = {0} and
T is invariant under the differentiation d.

Let us write " for y|r» for all n > 0. Then, the map d € H(M,) means that d o y" =
y"lod forall n > 0. Let T be a differential Hom-ideal of a (A, «)-Hom-DC (T,y). Then,
y induces an automorphism y of I :=T/Z and (T, y) is a monoidal Hom-algebra. Since
the condition Z NT? = {0} holds, T® =T% = A. On the other hand, let 7 : T — T be the
canonical surjective map and define d : T — T by d(n(w)) := n(d(w)) for any w € T.
Thus, (T,7) is again a Hom-DC on (A, a) with differentiation d.

In the rest of the section, the construction of the universal differential calculus on a
monoidal Hom-algebra (A, «) is discussed. Let (A, @) be a monoidal Hom-algebra with
Hom-multiplication m4 : A® A — A. The linear map d : A - A® A, in H(Mj), given by

da:=1®aY(a)-a Y (a)®1, Yac A

satisfies the Leibniz rule: For a,b € A,

a-db+da-b a-(1oa'(b)—a b)) +(1®a (@) —a (a)®1) b
atal@aa(b)-ata)at(b)®1

+ 1®a Ya)a ' (b)-ala ™ (a)@1a"! (D)

= a@b-alab)®l1+1®a (ab)-a@b=1®a (ab)-a (ab)®1
= d(ab).

For any a € A, we get

(doa)a) = d(a(a)=1®a—-ax1

(x@a)(1 ®a’1(a) - a’l(a)® 1)=(a®a)(da),

meaning d is in H(M;). Let Q'(A) be the (A, a)-Hom-subbimodule of (A® A,a ® a)
generated by elements of the form a - db for a,b € A. Then we have

QYA) = ker m,.
Indeed, if a-db e Q' (A), then

my(a-db)=mp(a®b—a(ab)®1)=ab-a ' (ab)1 = 0.
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On the other hand, if } ;a;®b; € ker my, (}_; denotes a finite sum), then } ;a;b; = 0, thus

we write

Zai®bi = Z(ai@)bi —a Ya;b)®1) = Zai (1®@al(b)—at(b)®1) = Zal- -db;.

i i i i
The left and right (A, a)-Hom-module structures of (' (A), B) = (Q1(A), (a®a)lker m,,)
are respectively given by

a-(b-dc)=(a Y (a)b)-d(a(c)  (a-db)-c=al(a) d(ba"'(c)) - (ab)-dc,

for any a,b,c € A. (Q'(A),p) is called the universal first order differential calculus of
monoidal Hom-algebra (A, «).

Let A := A/k -1 be the quotient space of A by the scalar multiples of the Hom-unit
and let @ denote the equivalence class a+k-1 for any a € A. a induces an automorphism
a:A— A, i a(d)=ala)and (A,a) e H(M;). Let A® A = Q!(A) by the identification
ap ® a; — apday. This identification is well-defined since d1 = 0, and one can easily
show that it is an (A, a)-Hom-bimodule isomorphism once the Hom-bimodule structure
of (A®A,a®a) is given by, for b € A,

b(ag®ar) =a ' (b)ag®a(ay), (ag®ay)b = a(ag)®aja~t(b)—aga; ®b.

Now, we set

Above, ®(:)(Q1(A)) has been put for

THQYA)) =&, (Q(A),--, QY (A)) = Q1 A) @4 (Q1(A) @4 (- (Q' (A) ®4 QL (A)) ),

where t" is a fixed element in the set T,, of planar binary trees with n leaves and one
root, which corresponds to the parenthesized monomial x; (x,(---(x,-1x,)---)) in n non-
commuting variables (see [83] e.g.). One should also refer to [21], Section 6] for the
construction of tensor Hom-algebra applied to an object (M, u) € H(My)). So, we have,
forany n >0,

2

Q"A) = A0 (@A) = ARAR AR (- (A®A)--+)))



by the correspondence (AQ A)®, (A ® (" 1(A))) = A®(®X”(A)), in H(My),

(@) ®4 (a2 ® (@ V(@3,-++,871)) > alag)®(®"(a (aya,), a3, Gpr1))

—apay ® (®n(E; AN PP | ))'

where we have used the notation ®"(ay,---,a,) for a; ® (a; ® (- (@,_; ®dy,)---)). To
®

1
the object A ® (®(")(A)) we associate the automorphism a ® (8 (a)) : A® (®"(A)) -

A®(®"™(A)) given by

ay® (®")(ay, -, a@,)) > al(ag) ® (@ (a(ay), -+, a(ay,))),

forapeAanda €A, i=1,---,n.
On ;7 ,Q"(A), we define the differential by the linear mapping d : A® (®\")(A)) —
A®(®"1(A)) of degree one by

d(ay® (@ @ (- (a,.1 ®ay,)--+)) =1®(a ag) @ (- (aH(a,_1) ®a(a,))--+)). (5.1)

We immediately obtain 4 = 0 from the fact that 1 = 0. If we start with a,, € A, multiplying
on the left and applying d repeatedly gives us the following

ag® (a1 ® (- (ay-1 ®ay)---)) = ao(day (day(---(day_,day)---))),

where ag(day(day(---(day_1day)--+))) = ag @4 (day @4 (da, @4 (- (day_ ®4 day)--+))).
We make @:’ZOQ”(A) an (A, a)-Hom-bimodule as follows. The left (A, a)-Hom-
module structure is given by, for b € A and a¢(da;(da,(---(da,_1da,)---))) € Q"(A), n > 1,

blag(da,(day(---(dayday)---))))
= (a7 (b)ag)(d(a(ar)(d(a(a))(---(d(a(ay1))d(a(a,))--))).

We now get the right (A, «)-Hom-module structure: One can show that, for b € A,
apda; € QY(A), ag(daday) € Q*(A) and ag(da,(daydas)) € Q3(A), the following equa-
tions hold:

(agdar)b = a(ag)d(aa™" (b))~ (aga)db,
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(ag(daydar))b = a(ag)(d(a(ar))d(aza (b))~ a(ag)(d(araz)d(a” (b))
+ (aga(ay))(d(a(az))d(a™" (b)),

(ap(day(daydaz)))b

By induction, one can also prove that the equation

(ao(day(day(---(day_rday)---))))b
= (=1)"(agar(ay))(d(a*(ag))(d(a?(as))(--- d(a*(a,_1))(d(@(ay,))d(a" "V (D))
3

- a

(a”(
+ a(ag)
(ao)
+ afap)

holds for ag(day(day(---(da,_1day)---))) € Q"(A), n > 4.
Next, we define the Hom-multiplication between any two parenthesized monomials,
by using the right Hom-module structure given above, as

[ao(day(---(day_yday)---)[anc1(dan(- (daykrdani) )]
= [(a(ag)(d(a™" (ar))(---(d(a™" (ay1))d(a " (a,))-- )]
[d(a(an2))(--- (d(a(ank-1))d (@ (ank)) )], (5.2)

for w, = ap(da,(---(da,_1da,)---)) € Q"(A) and wi_1 = ap1(dayo(---(dayk—1dayx) )
e Qk1(A). For any n > 4, we explicitly write the above multiplication:
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Wy Wi-1
= [ao( dﬂl (day_1day) - N[ans1(dayer (- (day—1dan i) ---))]
d(a (ar)(-+(d(a ™ (@_1)d (@ (ap) )]
d((an2)) (- (d(a(@npk1))d(@(@nar)) )]
= [(-1)" ao>a1><d<a<a2>><d<a<a3>><---d(a(an_n)(d(an)d(a—(" Nan))-))

n—

+ (=1)"ag(d(ay)(---d(a;_1)(d(a " (a;)az)(d(@ (@) (-

[(a
[

UJ

“api)))-)))

+
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ap2)) (- (d(a(anik-1))d(a(anik)) )]
~1)"(aga(ay))(d(a?(a2))(---d(a?(ay-1))(d(a(ay)(d(a"Nay)(- -

d(a " N a, e 1)d(@ " (@) ) +)
n-3

+ Z(—l)”’ia(ao)(d(a(al))(---d(a(ﬂifl))(d(aia(ﬂm))(d(az(ai+z))(---d(az(anfl))

+ a(a >< (a(ay))(-+-d(a <an ) d(ay_ra (@, 1) (d(a(@))d(a" " (ayq))(-

(d(a " Day))d (@ " Nagw))--))-+)

— al(ap)(d(a(ay))---d(a (an 2> )d (a1 ay-1)(d(a@ "D (@)

(d(a™ " Va1 (@ "D (apg))-))-)

+ ala >< (a(ay))(--d(a(@m_a))(d(a(a,_1)d(a " (ay)a ™ @) d(@" D a,,)(-
(

(d(a™ " D@y 1))d(@ " agep))--)))--))

On the other hand, we have the following computations for w,, and wy_; given above:
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dwnwk 1

= [dao da1 (dayaday) - )ape1 (dayo (- (day -1 dayg) )]

= [(d )(d(a ™ (ar)(-+(d(a ™ (@_1)d (@ (ay)) ) ans1]
[d( <an+2 e (d(a(@yag1))d(@(@neg)) )]

= (-1)"a(ag)(d(ar(ay)(- (d(a(ay_1))(day(d(a " (@y.1))(-
(d(@™(@npk-1))d(@ ™ (@nk)) ) -++))

+ (=1)"d(agar(ay))(d(a?(az))(-+(d(a® (ay-1)(d(a(@n)(d(@ "D (ap1))(--
(d(a " D@y (@™ " Dayi))-))-+)

n-2

+ Z( "™ d(a(ag)) (- (d(@ (@i 2))(d @iy a(a;)(d(a*(a;))(--- (d(a*(a,1))

=2
(d(a(an))(d(a" Nay))( ([@d(a " Nayp))d(@ " ayp) ) -))) )
+ d(a(ag))(-+- (d(a(ay_s))(d(ay_ra(a,_1)(d(a(a,)(d(a " (ay))(-
(d(a " a1 (@™ " Nayi)) - ))-++)
— d(a(ag))(-(d(e(ay-2))(d(ay_1a,)(d(a@ " ay))(- -
(d(a™ " Day1))d (@ " Naup))-))-+)
+ d(a(ag))(-+(d(a(ay_)(d(a (ap)a " (@) (d(@ " (@)
(d(a™ " Va1 (@ "D (ap)-))- )

and

wydwy-q
= lag(day(---(day_rday)--))][day.1 (- (day,g-rday)---)]
= a(ag)([day (---(da,yday)--)][d(a (ay41))(- (d(@ apx-1)d (@ (@nk))-)])
= a(ag)(d(a(ar))(-(d(a(ay-1))(d(ay)(d(a"(an1))(- -
(d(a™(ansk-1))d(a™ (ansr))) ) -+)).

Thus, the equation below holds:
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dwnwk—l + (_1)nwndwk—l
= (-1)"d(aga(ay))(d(a®(az))(-- (d(a@®(a,_1))(d(a(a))(d(a "D (a,,1))(--
(d(a™ " D(a, g 1))d @ " a, 1)) +)
2

n—

+ Z(—l)”+1’id(a(ao))(---(d(a(ai_z))(d(ai-1a(ai))(d(az(am))(~--(d(az(an-l))

=2
(d(a(a,))(d(a " Nay))( (@d(a " Nayp)d(@ " app)--))-))- )
+ d(a(ag))(-- (d(a(ay_3))(d(ay_ra(ay_1))(d(a(a,))(d(a " (a,))(
(d(a™ " Day1))d (@ " Naui)) - )+
— d(a(ag))(- (d(a(ay-2))(d(ay_1a,)(d(a@ "))
(d(a™ " Va1 (@ "D (@) ) -)
+ d(a(ag))(-+(d(a(@y-1)(d(a (ap)a " (@) (d(@ " (@)
(d(a " D@y (@™ " Nayp))-))-+)
= (-1)"d(aga(a)))(d(a®(a2)) (- (d(a®(@y_1))(d(a(a))(d(a~ " V(ay)) (-
d(a " Nayo1)d(a " Napgp)-+)))-++))
3

+ Z(—l)”*"d(a(ao))(---(d(a(ﬂifl))(d(ﬂia(ﬂm))(d(az(ai+z))(---(d(az(ﬂnfl))

i=1
(d(a(a,))(d(a " Nan))( (@d(a " VNayp)d(@ " ayp)--))-)))-+)
+ d(a(ag))(-+-(d(a(ay_3))(d(ay_ra(ay_1))(d(a(a,))(d(a " (a,))(
(d(a™ " Day1))d (@ " Naui)) )+
— d(a(ag))(-+ (d(a(ay-))(d(@y_1a,)(d(a " (a,))( -
(d(a™ " Va1 (@ "D (ap)-))- )
+ d(a(ag))(-+(d(a(an-1)(d(a (ap)a " (@) (d(@ " (@)
(d(a™ " D@y (@™ " Nayp))-))-+)

= d(wnwk—l)r

which the graded Leibniz rule. Next, we verify by induction that the following identity
holds:

d(ao(da;(---(dayday)---))) = dao(da, (---(da,_day)---)) (5.3)
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using the graded Leibniz rule and the equation d> =d od = 0. For agda, € Q'(A),
d(agday) = dagday, +(-1)°ayd(d(ay)) = dagda;.
Suppose now that the identity
d(ag(day(---(day_pday,_1)--+))) = dag(day(---(day_rda, 1))

holds for ag(da,(---(da,_,da,_;)---)) € Q"1 (A), that is, if we replace a; with a;,; for
i=0,---,n—1, we have d(a(day(---(da,_1da,)---))) = day(da,(---(da,_1day)---)). Thus,
forag(day(---(day_1day)---)) € Q"(A),

d(ag(day(---(day_rday)---)))
= dag(day(day(---(da,day)---))) +(=1)°apd(da, (day(--- (da,_yday)--)))
= dag(day(day(---(da,da,)---)) + (=1)°agd(d(ay (day(--- (da,_1da,)--)))
= dag(da,(day(---(day_day)---))).

Let (T,y) be another Hom-DC on (A, a) with differential d and let the morphism ¢ :
Q(A) - T, in H(M,), be given by

P(a) =aand P(ag(da,(---(da,_1da,)--+))) = ao(jal("'(jan—ldan)”'))’ nx1

for a € A, ag(day(---(da,_1da,)---)) € Q"(A). Clearly, @ is surjective by its definition.
Now, let A := keryp be the kernel of 1. From the equations and it is concluded
that V is a differential Hom-ideal of QQ(A). Thus, T is identified with Q(A)/N showing
the universality of (Q(A).

5.3 Left-Covariant FODC over Monoidal Hom-Hopf Algebras

5.3.1 Left-Covariant Hom-FODC and Their Right Hom-ideals

Let (H, ) be a monoidal Hom-Hopf algebra with a bijective antipode throughout the sec-
tion. (H, «) is a left Hom-quantum space for itself with respect to the Hom-comultiplication
A:H — H®H,h— h;®h,. Thus, by applying Definition[5.1.2]to the monoidal Hom-Hopf
algebra (H, ) we obtain the following
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Definition 5.3.1 A FODC (T, y) over the monoidal Hom-Hopf algebra (H, «) is said to
be left-covariant if (I',y) is a left-covariant FODC over the left Hom-quantum space
(H, a) with left Hom-coaction ¢ = A in Definition[5.1.2

Remark 11 According to Proposition|5.1.3, an (H, «)-Hom-FODC (T, y) is left-covariant
if and only if there exists a morphism ¢ : T — H®T in H(My) such that, for h,g € H,

P(h-dg) = A(h)(id @ d)(A(g)). (5.4)

In the proof of Proposition|5.1.3, it has been shown that if there is such a morphism
¢, it defines a left Hom-comodule structure of (I', ) on (H,«) and satisfies

Pla(h)-(w-g)) = Ala(h)(Pp(w)A(g))

forh,g € H and w € I'. From this it follows that (', y) is a left-covariant (H, «)-Hom-
bimodule.

Let (I',y) be a left-covariant (H,«)-Hom-FODC with derivation d : H — I'. By the
above remark (I, y) is a left-covariant (H, a)-Hom-bimodule, and then by adapting the
structure theory of left-covariant Hom-bimodules, which is discussed in Lemma
and Proposition , to (I', ) we summarize the following results. We have the
unique projection P; : (T,y) — (“HT, y|wnr) given by Pr(p) = S(0(-1))0(0), for all p € T,
such that

Py(h-p)=e(h)y(PL(o),  0=0¢-1)FLlo0)
and
PL(p-h) = adr(h)(PL(0)) =: PL(0) < h

forany he H and p € I'. Let us now define a linear mapping wr : H 4, r kA coHT py
wr(h) = Pr(dh), Yh € H.

Obviously, it is in H(My), that is, wpoa = y o wr. Since ¢(dh) = (dh)_1) ® (dh)g) =
(id ® d)(A(h)) = hy ® dh, by the above remark, we obtain

wr(h) = P (dh) = S(hy) - dhy, Vh € H. (5.5)

On the other hand, we can write dh = (dh)_y)- Pr((dh)0)) = hy - P.(dh,), that is,
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dh = hy - wp(hy), Yh e H. (5.6)

We will drop the subscript T from wr(-). By definition, for any h € H, w(h) € “HT.
Conversely, let p =Y ; h; -dg; € “°HT for h;,g; € H. Then

0=Pup)=) eh)y(Pldg)) =) e(h)y((@) =) elh)o(a(g)),
i i i
showing that p € w(H). Thus, we get w(H) = “HT which implies that T = H - w(H) =
w(H)-H and hence any k-linear basis of w(H) is a left (H, a)-Hom-module basis and a
right (H, «)-Hom-module basis for (I, y).
For h,g € H, we get

w(h)<g

P(w(h)-g) = PL((S(hy) - dhy)-g)

= Pi(S(a(ly))-(dhy-a”(g))) = e(S(a(h))y (P (dhy - a7 (g)))
= e(hy)y(Pdhy-a™"(g) = y(Pe(d(a™" (h)-a™'(g)))
(PL(d(a” ! (hg)) - a™" (h)-d(a”"())))

= y(w(a ' (hg) - y(e(a™ (M) y(P(d(a(g))

= w(hg)-e(h)y*(w(a™(g) = w(hg) - e(hw(a(g))

= w(hg-e(ha(g)) = w((h-e(h)1)g).

Il
<

Thus, by setting the notation & := h —(h)1, we have

w(h) < g = adp(g)(w(h)) = w(hg), (5.7)

and we rewrite the (H, «)-Hom-bimodule structure as
g+ (g-w(h) = (a7'(g)g)- w(a(h), (5.8)

(g w(h)-g=(g'g1) (w(h)<g)=(g's1) w(hgy), (5.9)

forg,¢’,he H.
In the following example we introduce the universal FODC over monoidal Hom-Hopf-
algebra (H, a).

Example 5.3.2 We define (Q!(H),p) := (H @ kere,a ® '), where a’ = ali.r.. Let us

denote the element1®a~'(3) = 1®a~1(g), for g € H, by w(g). Thus we identify g®h €
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Q'(H), where g,h € H, with g - w(h). We then introduce the Hom-bimodule structure of
Q! (H) asin (5.8) and (5.9), for all g,g’,h € H,

g (g w(h):=(a(g)g) w(a(h)),

(g - w(h)-g:=(g's1) w(hgy),

and a linear mapping
d:H—QYH), h—h ®hy =hy - w(hy).

Forany g,h e H,

g-dh+dg-h = g-(h-w(hy))+(g1-w(g))-h

(@™ (@)hy) w(a(hy)+(81h) - w(Z2hy)

= (a7' () w(a(hy)) +(g1h1) - w(g2h2) — (g1 1) w((e(82)1)h2)
(@™ (g)h1)- w(a(hy)) +(81h) - w(g2h2) — (& (g)h) - w(a(hy))
(81h11) - w(g2h2) = (gh)1w((gh)2)

= d(gh),

a

showing that d satisfies the Leibniz rule.

d(a(h)) = a(hy)- w(a(hy)) = a(hy) - f(w(hz)) = p(hy - @(hy)) = B(dh),

which means that d € H(M,).

w(h) w(a(e(hy)hy)) = e(hy)w(a(hy))

= ¢(h)B(w(hy)) = (e(hy)1) - w(hy)

= (S(h11)h12) - w(hy) = (S(a™ (hy))ha1) - w(a(hay))
= a(S(a () (ha1 - B~ (w(a(hy2)))

= S(hy)-(hy1 - w(hyy)) = S(hy)-d(hy),

which proves that Q' (H) = H - dH. Therefore, (Q'(H), B) is an (H,a)-Hom-FODC.
For another (H,«)-Hom-FODC (T, y) with differentiation d : H — T, let us define the
linear map ¢ : Q' (H) — T by ¢(h-dg) = h-dg, where g,h € H. Itis well-defined: Suppose
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thaty ;h;-dg; = 0 in Q' (H), where h;,g; € H. Then we have

Y hi-dg = Z (8,1 ®8i2) = za 1)8i1 © @(gi2)
i

Z H(h)gi1 @ alg Xa 1831 ® (a(32) — e(a(gi2)1)

Z[a 81 ®a(gi2) —a” (hi)gie(gi2) ®1)]

Z[a )81 ®a(gin)—a” (hig)®1)] = 0.

So, by applying (m®id)od ' o (id®S®id)o(id®A) to

) hi-dgi=) [a7 (h)gii®@a(gio)—a (hig)®1)] =0,

we acquire the equality Y .(h; ® g; —a ' (h;g;))®1) = 0. Thus Y h;-dg; =0 inT
concluding that i is well-defined. On the other hand we prove that | € H(My):

P(B(h-dg)) = tla(h)-p(dg)) =(a(h)-d(a(g)))
= a(h)-d(a(g) =a(h)-y(d(g) = y(h-dg) = y(p(h-dg)).

The subobject (ker, Blxery) = (N, ') is an (H, a)-Hom-subbimodule of (QY(H),p):
Indeed, forh’ e H andh-dg e N,

P((a” (W)h)-d(a(g))) = (@™ (h)h) - d(a(g))
We(h-dg)=h-p(h-dg)=

p(h’- (h-dg))

O((h-dg)-I') = P(a(h)-d(ga™" (b)) -(hg)-dh’)
= a(h)-d(ga”" (W) - (hg)-dh’" = a(h)-d(ga™" (W) - a(h)- (g -d(a”" (1))
= a(h)-(dg-a”' (W)= (h-dg)- I =0.
Hence we have the quotient object (Q'(H)/N, ) as (H,a)-Hom-bimodule, where the
automorphism f is induced by B and define the (H,a)-bilinear map i : Q' (H)/N —
T, h-dgw h-dg, which is surjective by definition. Since kerip) = N, ¢ is 1-1, showing
that T is isomorphic to the quotient Q'(H)/N. Therefore (Q'(H),p) is the universal
Hom-FODC over (H, «).
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We define the subobject

Rr = {h € kere| wp(h) = 0) (5.10)

of (kere, alk.re) for a given left-covariant (H, «)-Hom-FODC (T, y), which is clearly a
Hom-ideal of (H, ). We now prove that there is a one-to-one correspondence between
left-covariant (H, a)-Hom-FODC and right Hom-ideals of (kere, a’), where a’ = a|iere-

Proposition 5.3.3 1. Let (R,a”) be a right Hom-ideal of (H,«) which is a subob-
ject of (kere,a’), where a” = algr. Then N := H - wqiy)(R) is an (H,a)-Hom-
subbimodule of (O (H), p). Furthermore, (T,y):= (QY(H)/N,p) is a left-covariant
Hom-FODC over (H,«) such that R = R.

2. For a given left-covariant (H,a)-Hom-FODC (I,y), Rr is a right Hom-ideal of
(H,a) andT is isomorphic to Q' (H)/H - wqy (1) (Rr).

Proof:

1. Forany heR and g € H, we have

w(h)-g

(1g1)- (B Hw(h) < g2) = alg)) (w(a™(h) < g,)
a(g) wla(h)g) = a(g) wl@(h)g),

whichis in H-wq1()(R), and hence N = H-wq1(#)(R) is an (H, a)-Hom-subbimodule
of Q'(H) = H-wq1my(H). So, (I = Q' (H)/N, B) is a (H, )-Hom-FODC with differ-
entiationd : H — T, h > dh = rt(dh) = h; - w(hy)+ N, where 7t : Q' (H) — Q' (H)/N

is the natural projection.

Let p: QY (H) - H®Q(H), h-w(g) = a(h;)®h, - w(a~!(g)) be the Hom-coaction
for the left-covariant Hom-FODC (Q!(H), 8). Since, for h-w(r) € N we have

d(h-w(r) = ah)®h,-wla(r) eHON,

that is, p(N) C H® N, ¢ passes to a left Hom-action of (H,a) on (T, 3) as ¢(h -
w(g)+N)=a(h))®(h,-w(at(g))+N). For g,h € H, we get
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A(g)(id ®d)(A(h))
= (1®8)(h ®dhy)
= g1l ®g - (hy - w(hyy) + N)=g1h ®(82- (ha1 - w(hyz)) + N)
= gl e ((a ' (g)ha)- w(a(hy))+N)
= gia(h)® (@™ (g)h2) wlhy)+ N) = d(a™ (9h - w(a(hy)) + N)
= P(g-(h-w(hy)+ N) = P(g-dh),

proving the left-covariance of (T, 3) with respect to (H,a). Thus, we have the
projection P; : T — “HT given by

Pr(h-w(g)+N) = e(hw(a(g)) + N
for h-w(g) € Q' (H).
ForheR,
wp(h) = Py(dh) = Py(hy - w(hy) + N) = e(h)o(a(hy) + N = w(h)+ N = N =0,

implying that R € Rr. On the contrary, if wr(h) = Op for some h € kere, then
w(h)e N =H-w(R), thatis, he R, i.e., Rpr CR. Therefore, R = Rr.

. Since (I, y) is a left-covariant Hom-FODC, ZER(g)(a)(h)) = w(hg) holds for g,h € H.
Hence, for h € Ry and g € kere, we have wr(hg) = wr(hg) = adg(g)(wr(h)) = 0
since wr(h) = 0. Therefore, Ry is a right Hom-ideal of kere. Thus, T ~ Q' (H)/H -

w1 m)(Rr) by (1).

5.3.2 Quantum Hom-Tangent Space

In the theory of Lie groups, if A = C*(G) is the algebra of smooth functions on a Lie

group G and R is the ideal of A consisting of all functions vanishing with first deriva-

tives at the neutral element of G, then the vector space of all linear functionals on A is

identified with the tangent space at the neutral element, i.e., with the Lie algebra of G.

In the theory of quantum groups, this consideration gives rise to the notion of quantum
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tangent space associated to a left-covariant FODC T’ on a Hopf algebra A, which is
defined as the vector space

Tr={Xe€eA'|X(1)=0, X(a) =0,Ya € Rr},

where Rr = {a € kere,| P (da) = 0}. In what follows, we study the Hom-version of the
quantum tangent space.

We recall that the dual monoidal Hom-algebra (H’, @) of (H, «) consists of function-
als X : H — k and is equipped with the convolution product (XY)(h) = X(hy)Y (h,), for
X,Y € H and h € H, as Hom-multiplication and with the Hom-unit ¢ : H — k, where
automorphism @ : H — H’ is given by @(X) = X o a~!. The morphism

H' ®@H—>H,X®h+— X eoh:=a*(h))X(a(hy)),
in H(My), makes (H,a) a left (H’, @)-Hom-module.
Definition 5.3.4 Let (T, y) be a left-covariant (H, «)-Hom-FODC. Then the subobject
Tr ={X € H|X(1)=0, X(h) = 0,Yh € Ry} (5.11)
of (H',a), in H(M,), is said to be the quantum Hom-tangent space to (L, y).

Proposition 5.3.5 Let (I',y) be a left-covariant (H, «)-Hom-FODC and (7r,a’) be the
quantum Hom-tangent space to it, where &’ = a|r.. Then, there is a unique bilinear
form <-,->: Tp xT — k in H(My) such that

<X,h-dg>=e(h)X(g), Vg, he H, X € Tr. (5.12)

With respect to this bilinear form, (7r,&’) and (°°HT,y’) = (w(H),y’) form a nonde-
generate dual pairing, where v’ = y|.ur. Moreover, we have

<X, w(h)>=X(a ' (h)),Yhe H,X € Tt. (5.13)

Proof: We define < X,p>:=X () ;e(h;)gi) =Y ;e(h;)X(g;) for Xe H and p=) ;h;-dg; €

148



I'. Suppose thatp =) ;h;-dg; =0. Then

0 = P p)=) Pla(h)d(a ()

) _ela )y (Puld(a™ (30))
= ) elhy(w(a(g))

i

w[zf(hi)gi]:

i

hence w(}_; e(h;)g;) = 0, which implies that ) ; e(h;)g; € Rr. Thus, by the definition of 7t
we get

<X,p> = X

X

Zg(hi)ﬁ) + Ze(hi)g(gi)xu) =0,

i i
which proves that the bilinear form < -,- > is well-defined. Uniqueness comes immedi-

ately from the fact that I'= H-dH. Since

<a(X)y(p)> = <Xoa—1>[Ze<a<hi>>a<gi>]=Ze(a(k»)(Xoa—l)(a(gi))

i

ZE(hi)gi

i

i

= X :<X,p>,

the bilinear form < -,- > is in H(M,). For any h € H, < X, w(h) >=< X,S(h;) - dh, >=
e(hy)X(hy) = X(e(hy)hy) = X(a~'(h)), which is the formula . For any h € kere,
if <X,w(h)>= X(a"'(h)) =0, VX € T, then a~'(h) € Rr: Suppose that the element
0 = a~!(h) € kere is not contained in Rr. Then we can extend a~!(h) to a basis of
kere and find a functional X € 7r such that X(a~'(h)) = 0, which contradicts with the
hypothesis of the statement. So we have h € Ry since woa~! =y~ o w. On the other
hand < X, w(h) >= X(a~'(h)) = @(X)(h) = 0 for all w(h) € w(H) implies a(X) = 0, that is,
X = 0. Hence, (Tr,&’) and (°HT,y’) = (w(H),y’) form a nondegenerate dual pairing
with respectto <-,- >. O
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Let {X;};c; be a linear basis of 7r and {w;};c; be the dual basis of ©HT, that is,
< Xj,wj >=¢;; fori,j € I. Also, from Theorem (3.3.11), recall the family of functionals
{fj"}i,jel in the definition of theb Home-action “HT @ H — “HT, 0, @ h > w; <h = f].i(h)w
where all but finitely many f/(h) vanish and Einstein summation convention is used.
These functionals satisfy, for all h,g e H and i,j €I,

fi(hg) = A f (@), fi (1) =7},
where y’(w;) = y}wj and vy Hw;) = Vi w such that y; yk =0jk = )7}7/,{.
Proposition 5.3.6 Forh,g e H, we have
dh = (X; e a™%(h)) - w;, (5.14)
X;(hg) = e(h)(y!X;)(g) + Xe (W (! FF)( (5.15)
where f = pkf!.

Proof: By the formula[5.13, we have < X;, w(h) >= X;(a~'(h)) implying w(h) = X;(a~ (h))w;.
Thus, dh = hy - w(hy) = hy - (Xj (@' (h)w;)) = (X; e a~2(h)) - w; which is the formula[5.14]
By using this formula and the Leibniz rule, we obtain
(Xjea 2(hg)-w; = d(hg)=dh-g+h-dg

= ((Xj ea?(h) wj)-g+h-((X;ea?(g))- w;)

= a(Xjea(h)-(wj-a (g)+(a " (M)(X; e a7%(g)) - ¥ (w;)

= a(Xjea(h)-( fk-a 2(8) - wp) + (@ ()(X; e a%(9))) - (yiwi)
= ((Xje ( N ea (g >>>-<y{<wz>+<a*1<h><xi-a*2<g>>>-<y;'wz>
= (X0 a 2W)(f ) e a2g) +a (i Xs) e a2(g))] - wi,

hence, by replacing a~2(h) and a~2(g) by h and g, respectively, we get
Xy o (hg) = a(h)(7X;) )+ (X; o h)(yf ) e g) 1 € .
By applying ¢ to the both sides of this equation we acquire
Xi(hg) = e(h)(y; X;)(g) + X; (M) (y,f)(g)

since, forany h € H and f € H’, the equality e(f eh) = e(a?(hy))f (a(hy)) = e(hy) f (a(hy)) =
f(a(e(hy)hy)) = f(h) holds. O

150



Let (A,«) be a monoidal Hom-algebra. Then we consider A’ ® A’, where A" =
Hom(A, k), as a linear subspace of (A® A)’ by identifying f ® g € A’® A’ with the linear
functional on A® A specified by (f ® g)(a®a’) := f(a)g(a’) for a,a’ € A. For f € H’, let us
define A(f) e (AQA) by A(f)(a®b) := f(ab) for a,b € A. We now denote, by A°, the set
of all functionals f € A’ such that A(f) e A’® A’, i.e., it is written as a finite sum

p
= pr ®8&p
p=1

for some functionals f,,g, € A’, p = 1,..., P, where P is a natural number so that we
have f(ab) =}, fp(a)g,(b). Then (A° a°) is a monoidal Hom-coalgebra with Hom-
comultiplication given above and the Hom-counit is defined by e(f) = f(1,4), where
a°(f)=foa"' forany f € A°: Let f € A° and A(f) = 1, f, ® g, such that the function-
als {fp}i,’:1 are chosen to be linearly independent. So, one can find a, € A such that
fplag) = 6p4- Thus we get

gq(ab) Zéqup (ab) = pr 1)8p(ab) = f(ag(ab))

f((oc (ag)a)a(b)) = pr (a7 (ag)a)gy(a (D)),
p

showing that g, € A°, and analogously f, € A°, and hence A(f) € A°® A°. Let f € A°
and a,b,c € A. Then we have the Hom-coassociativity of A:

(@ @A A(f)a@b®c) = f(ala)(be) = f((ab)a(c) = (A@a™" J(A(f)(a®b®c).

On the other hand,

(id @ &)(A(f))(h) = [Zd(fp>gp<1A>]<h> =Y fpla ™ ()gy(14) = F(B)
p

p

shows that Hom-counity is satisfied.

Suppose that (A, a) is a monoidal Hom-bialgebra, then the monoidal Hom-coalgebra
(A°,a°) endowed with the convolution product, as in the argument before Lemma (3.3.10),
is as well a monoidal Hom-bialgebra with the Hom-unit given by the Hom-counit ¢ of the
monoidal Hom-coalgebra (A, «): One can easily check the compatibility condition be-
tween Hom-comultiplication and Hom-multiplication of (A°, a°) from that of (A4, a). So, it
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suffices to verify that for any f,g € A°, fgis alsoin A°: If we put A(f) =}, f,®g, and
A(g) =2 gy ®kgy, then we get

(fg)(ab) = A(fg)a®@b) = ) fohy(a)g,ky(b) = [prhq ® gk, [(a®D),
pAq

P9

so that fg € A°.
If (A, «) is @ monoidal Hom-Hopf algebra, then so is (A°, a°) with antipode defined
by S(f)(a) = f(S(a)) for f € A° and a € A: Set A(f) = ), f, ®gp, and then we obtain

A(S(f)a®Db) = S(f)(ab) = f(S(ab)) = Zs(fp)(b)s(gp)(a) = [Zs(gp) ®S(fp)](a®b),
P p
implying S(f) € A°. Lastly, for a € A, we have

(m(S®@id)A)(f))(a) = Z(S(fp)gp)(a) =e(a)f (1) = 1xe(a)e=(f) = (17 0 €)(f))(a),

p
similarly we get ((m(id ® S)A)(f))(a) = ((n 0 €)(f))(a).

We then call the monoidal Hom-coalgebra (respectively, Hom-bialgebra, Hom-Hopf
algebra) A° above the dual monoidal Hom-coalgebra (respectively, Hom-bialgebra,Hom-
Hopf algebra). Suppose now that the vector space 7t is finite dimensional. Then assert
from 1; and that the functionals f/ and X; are in the dual monoidal Hom-
Hopf algebra H° and we have the following equations, where there is summation over
repeating indices,

A(f].i):ﬁiepfjloa, (5.16)
AX) =Xy fl + eyl (5.17)
in He.

5.4 Bicovariant FODC over Monoidal Hom-Hopf Algebras

5.4.1 Right-Covariant Hom-FODC

Definition 5.4.1 Let (H, ) be a monoidal Hom-bialgebra. A FODC (T, y) over a right
Hom-quantum space (A, «) with right Hom-coaction ¢ : A - A® H, a — ajg®ayq) Is
called right-covariant with respect to (H, p) if there exists a right Hom-coaction ¢ : I —
I'®H, w— wj®wy) of (H,p) on (T, y) such that
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1. ¢(a(a) - (w- b)) = p(a(@)(P(w)p(b))[= (p(a)Pp(w))p(a(b)) = ¢p(a-w)-b], Ya,b € A,

werT,

2. ¢(da) = (d®id)(¢(a)), Yac A

Let (H, @) be a monoidal Hom-Hopf algebra with an invertible antipode S. Since (H, «)
a right Hom-quantum space for itself with respect to the Hom-comultiplication A : H —
H®H,h+— h; ®h,, the above definition induces

Definition 5.4.2 A (H,a)-Hom-FODC (T, y) is said to be right-covariant if (I',y) is a
right-covariant FODC over the right Hom-quantum space (H, «) with right Hom-action
¢ = A in the above definition, or in an equivalent way if there is a morphism ¢ : T — I'®H
in H(My) such that, forh, g € H,

P(h-dg) = A(h)(d ®id)(A(g)). (5.18)

If we modify the Proposition [5.1.3]to the right-covariant case, we conclude that the
right-covariant (H, a)-Hom-FODC (T, ) is a right-covariant (H, «)-Hom-bimodule. Thus,
by using the unique projection Py : (T, ) — (F°H, y|reon), Pr(p) = wig - S(wy1]) we define
the linear mapping

nr s H = T 5(h) := Pr(dh),

for any h € H,in H(M,), for which n(H)T°°H . Since ¢(dh) = dh; ® h,, we have, for
he H

n(h) = dhy - S(hy) and dh = n(hy) - hy.

5.4.2 Bicovariant Hom-FODC

Definition 5.4.3 A (H,a)-Hom-FODC (T, y) is said to be bicovariant if it is both left-
covariant and right-covariant FODC.

Remark 12 By the Remark 11 and the Definition a (H,a)-Hom-FODC (T, y) is
bicovariant if and only if there exist morphisms ¢; : T — H®TI and ¢ : I - T ®H in
ﬁ(Mk), satisfying the equations and respectively. So, if (I',y) is a bicovariant
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(H,a)-Hom-FODC with Hom-coactions ¢, and ¢y satisfying [5.4 and[5.18 we get, for
h,g € H,

(id®@Pr)(pr(h-dg)) = (id@Pr)(h1g1 ®hy-dgy) =hi1g1 ® (hy1 - dgr1 ®h2282)),

(@o(Ppr®id))(Ppr(h-dg))

(@o(pr®))(hy-dg ®hy8)
a(hy1g11)® (hyp-dg, ®@a ' (hag2))
= h1g1®(hy-dgy ®hy,82).

Thus, (I',y) is a bicovariant (H,a)-Hom-bimodule and the whole structure theory of
bicovariant bimodules can be applied to it.

Lemma 5.4.4 Let (H,a) be a monoidal Hom-Hopf algebra. Then
1. The linear mapping Adg : H — H® H given by
Adg(h) = alhiz) @ S(h)a (hy) = a(ho) @S (@ (h)ha
is a right Hom-coaction of (H, «) on itself.
2. The linear mapping Ad; : H — H® H given by
Adp(h) = a(l1)S(a” (h))®@a(hz) = a” ' (h)S (h) @ a(hyy)

is a left Hom-coaction of (H,«) on itself. Ad r and Ad 1 are called adjoint right
Hom-coaction and adjoint left Hom-coaction, respectively

Proof:
1. If we write Adg(h) = hjo)®hy1) for h € H, then the Hom-coassociativity follows from

a M ho)®A(hpy) = a N (a(h2) @ A(S(hyy)a (hy))
= h1p®S(hy12)a”" (ha1) @ S(hyyy)a (hay)
= a’(h1212) @ S(a(h1211))h122® S(a ™! (hyy))a ()
= a’(h212) @ S(a(h1211)h12 @@ (S(hyy)a ™" (hy2))
= hjojgo) ® hpoyny @ (),

where in the third step we have used
hi1®@a(hyp11)®hi212®a  (hy2y)®hy = a(hyy1)®hy12)@a 2 (hiy)®@a % (hy)®a(hy),
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which results from
((idg ®dy,p,p)®idy) o ((idy ® (A®idy))®idy)
o((idy ® A)@idy) o (A®ids) o A

= (Ay,u,HeH ®1dy) o (A®idyey) ®idy) o (Ay,H,H ®idy)

odrjgn 11 © (idHen ® A) o (A®idy) o A.
Hom-unity condition: For any h € H,
hoje(hpy) = a(h)e(S(hiy)a™ (hy)) = alhiz)e(h)e(hy)
= a(e(hiy)hip)e(hy) = he(hy) = a_l(h);

and one can also easily show that Adg o @ = (@ ® @) 0 Adg. Thus Ady is a right
Hom-action of (H, «) onto itself.

2. In a similar manner, it can be proven that XElL is a left Hom-action of (H, a) onto
itself.

|

With the next lemma we describe the right coaction ¢ on a left-invariant form wr(h)
and the left coaction ¢, on a right-invariant form #(h) by means of Adg and Adj,
respectively.

Lemma 5.4.5 Forh € H, we have the formulas
1. prlw(h) = (0 ®@id)(Adg(h),
2. r(n(h) = (id ® n)(Ady(h)).
Proof:
1. Forhe H,
Pr(w(h)) = A(S(h))(d®id)(A(hy))
= (S(h12)®S(h11))(dhy1 ® hoy) = S(hy2) - dhoy ® S(hy1)ho)
= S(a(hy))-d(a(hy2)®S(hi)a" (hy)

= w(a(hy)®S(hy)a ™ (hy) = (w@id)(a(h2)®S(hyy)a™ (hy))
= (w®id)(Adg(h)).
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2. Similarly, one can show that the equality ¢ (1(h)) = (id®17)(;fZZL(h)) holds.

Proposition 5.4.6 Suppose that (I',y) is a left-covariant (H, a)-Hom-FODC with asso-
ciated right Hom-ideal Ry. Then (T, y) is a bicovariant (H, «)-Hom-FODC if and only if
Adp(R)CR®H, thatis, R is Adg-invariant.

Proof: If (I, y) is a bicovariant Hom-FODC, then the equation obtained in Lemma
holds. It implies that Adg(R) € R® H since R = (h € kere| w(h) = 0). On the
contrary, suppose that XEIR(R) C R®H. We know that the universal Hom-FODC Q! (H)
is bicovariant. So, by applying Lemma to the bicovariant Hom-FODC Q! (H) and
using the Adg-invariance of R, we conclude that theright Hom-action of Q!(H) passes
to the quotient Q!(H)/N, where N := Hwq1(g)((R)), which is right-covariant. Hence,
from Proposition (5.3.3), (I, y) is right-covariant as well. O

5.4.3 Quantum Monoidal Hom-Lie Algebra

Let (I',y) be a bicovariant (H,a)-Hom-FODC with associated right Hom-ideal R and
finite dimensional quantum Hom-tangent space (7, t), where © = a|7.
We define a linear mapping [-,—]: 7 ® 7 — 7 by setting, for X,Y € 7,

[X,Y](h) = (X® Y)(Adg(h)), Yh € H. (5.19)

[X,Y] € T: Indeed, since XZZR(R) C R ® H by the previous proposition and any
element of 7 annihilates R by the definition of quantum Hom-tangent space, (X ®
Y)(/TZZR(h)) =0forall heR,ie., [X,Y](h)=0, Vhe R. We also obtain [X,Y](1)=0
since X(1)=0=Y(1). Thus [X,Y] € 7. Besides, we have

[1(X), 7(V)](h) = (Xoa'®Yoa ')(Adg(h))
= X(h1p)Y(S(a™(hy1))a%(hy))
= (X®Y)(Adg(a™ (b)) = [X,Y](a " (h))
= 7([X, Y])(h),

for any h € H, which means [-,-]: 7 ® 7 — 7 is a morphism in H(My).
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We now fix some notation. Suppose that <-,- >: 7 x “HT — k is the bilinear form in
the Proposition There exists a unique bilinear form < -,- >,: (T®7T )x " (T'eyT) —
k defined by

< XY, u®v>,=<X,u><Y,v> (5.20)

for X,Y € 7 and u,v € “HT, which is nondegenerate as the bilinear form < -,- > is. If
we put B:T'®y I' - I'®y I' for the Woronowicz’ braiding, then, for h, g € H, we compute

Blw(h) @y w(g)) = y(w(@(g2) @y (w(h)<(S(gi)a " (g2))
(a®( h) <(S(a(g11))82))
= w(a®(g12))®n ¥ (@(h(S(a(811))%2)))
= w(a’(g12) @ w(a 1(h)(S(g11)a " (82))). (5.21)

= w(a®(g12))®y y Hw

(
(

With respect to the nondegenerate bilinear form < -,- >,, we define the transpose B! of
B as a linear map acting on 7 ® 7 such that

<B(X®Y),u®v>,=<XQ®Y,B(u®v)>,.

We now recall that the dual monoidal Hom-Hopf algebra (H*®, a°) of (H, «) consists
of functionals f € H’ for which Ag-(f) = fi ® f, € H' ® H” and the Hom-counit is given
by eno(f) = f(1y). Since, also A(f)(h®g):= f(hg) for A(f)e (H®H) and h,g € H, we
have f(hg) = fi(h)f2(g). a° is given by a°(f) = f oa! for f € H°. Hom-multiplication
my. is the convolution, i.e., my-(f ® f')(h) = (f f')(h) = f(hy)f'(hy) for f,f € H',he H
and the Hom-unit is ey. The antipode is given by S(f)(h) = f(S(h)) for f e H° and h e H.
Since we assumed that 7 is finite dimensional, 7t is contained in H°. Thus we have
the following theorem in (H°.

Theorem 5.4.7 Forany X,Y,Z € 7r we have
1. [X,Y] = adg(Y)(X) = XY — mp.(B (X ®Y)).
2 Letx=Y;X;®Y; forX;,Y; € T suchthatB'(x)= x, then) ;[X;,Y;] = 0.
3. [t(X),[Y,t YD) = [[X, Y], Z] - X, ([X, T Y(Z:)], ©(Y;)], where Y;,Z; € T such that

B(Y®Z)=Y,Z;®Y;.
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Proof:
1. ForheH,
adp(Y)(X)(h) = ((S(Y1)r 1 (X))r(Y2))(h)
= (S(Y)T X)) (hy)T(Y2))(ha) = S(Y1)(hy1)TH (X)(h12)T(Y2))(h2)
= Y1(S(h11))X(a(h12)Ya(a " (hy)) = X(a(h12))Y1(S(h11))Ya(a ™" (hy))

= X(a(hp)Y(S(hy)a (hy)) = (X @ Y)(a(h2) ® S(hyy)a~ ()
= (X®Y)(Adg(h) =[X,Y](h)

which gives us the first equality. If we set the finite sum for B{(X®Y)=),Y; ® X;
with X;,Y; € T, then, forany h,g € H,

Bi(X®Y)(h®g) ZY Zq Y:), w(h) >< tH(X;), w(g) >

= <ZT_1(Y1')®T_1(X1')7 (h) ®n w(g) >2

(
= <t (X)@T(Y), w(a®(812)) ®y w(a L (h)(S(g11)a " (82)) >2
(X), w(a?(12)) >< TH(Y), (@~ (h)(S(g11)a ' (32)) >
12))Y (@ (h)(S(g11)a ™" (g2)))
12))Y1(a~1 (1) Y2(S(g11)a " (82))
= Yi(a~t(h)X(a®(g12)Ya1(S(g11) Yaz(a ' (g2))
()S(Y21)(g11)X (@ (g12) Yaz(a ' (82))
= (Y1)(h)(S(Ya1)T *(X))(g1)T(Y22)(82)
= (V) (W)[(S(Yar)T 2 (X)T(V22)](g)
= (t(Yy)®adp(Yy)(r ' (X)(h®g),

oge]

oq

where in the sixth equality we have used the equation So, we have B (X ®
Y) = 7(Y;)®adg(Y,)(r"1(X)). Hence, we make the following computation
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mp (B (X®Y)) = t(Yadr(Yo)(r™ (X))
= (1(Y)) = epe(T(Y1)) Lo )ad g (V) (t71 (X))
= T(Y)[(S(Ya1)T (X))t (Ya2)] = (e (Y1) L) [(S(Yar) T (X)) T(YV32)]
= T(Y])[S(T(Yar))(t2(X)Ya2)] = (e (Y1) Lo (S (Yar )T (X)) 7(Y2))
= (V1S(t(Yo)T(t=2(X)Yp2) = (e (Y1) 1) (S (Y1)t 2 (X))T(Y22))
= (t(Y1)S(t(Yp))(r H(X)Y2) = 1o ([S(epe(Y11) Yio) T2 (X)]Y2)
= (ep(Y) 1) (T (X)Y2) = (S(Y) T (X)) 7(Y)
= 1pe(v7H(XY)) ~adg(Y)(X)
= XY —adr(Y)(X),

that is, we get adg(Y)(X) = XY — my (B (X ®Y)).

2. It immediately follows from (1) that Y ,[X;, Y;] = X; X;Y; — my(B'(x)) = X; X;Y; —
2 X;Y;i=0.

3. Let us first set [X, Y] = adg(Y)(X) = X < Y. Then,
[X,Y],Z]=[X,Y]<Z=(X<Y)<Z=1(X)<(YT }(2)) = [t(X), YT} (2)].

Since, by (1), YZ =[Y,Z]+)Y ;Z;Y; for B(Y®Z) =) ,Z; ® Y;, we have

(X,Y}Z] = [eX), YT @)= [x(X)[¥, 7 (2)]+ ) T Z)V]

I
=)
ksl
~
S

N
N
+
=
>
I

AN
N
~

= [ [V, 7 @)+ ) (1% (2] (V)]

i

thatis, [(X),[Y,71(Z)]] = [[X, Y], Z] - S[[X, 1 (Z:)], T(Y;)] holds.

Remark 13 /f we take the braiding B as the flip operator, then B! is the flip on T ® T by
its definition. In this case, we obtain

[X,Y]=XY-YX, [X,Y]+[YV,X]=0,VX,YeT
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and

[7(X),[Y, " (2)]]

[X,Y]Z]-[[X, 7" (2)] t(Y)] = -[Z,[X, Y]]+ [t(Y), [X, T }(Z)]]
-[Z,[X, Y]] - [x(Y),[tr"1(Z), X]].

Then, by replacing Z with t(Z) in the above equality, we get
[t(X),[Y, Z]]+ [¢(Y),[Z, X]] + [t(Z),[X, Y]] = O,

which is the Hom-Jacobi identity. In the above theorem, items (2) and (3) are the quan-
tum versions of the antisymmetry and the Hom-Jacobi identity. Therefore, (1r,t) is
called the quantum Hom-Lie algebra of the bicovariant (H, «)-Hom-FODC.
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