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Resumo

Hom-conexões e formas integrais associadas foram introduzidas e estudadas por T.

Brzeziński como uma versão adjunta da noção usual de uma conexão em geometria

não-comutativa. Dada uma Hom-conexão plana num Cálculo Diferencial (Ω,d) sobre

uma álgebra A, obtém-se o complexo integral, que para diversas álgebras prova-se ser

isomorfo ao complexo de de Rham (que também é denominado cálculo diferencial no

contexto de Grupos Quânticos). Para uma álgebra A com uma Hom-conexão plana,

clarificamos quando é que os complexos de de Rham e integral são isomorfos. Espe-

cializamos o nosso estudo ao caso em que um cálculo diferencial de dimensão n possa

ser construído numa álgebra exterior quântica sobre um A-bimódulo. Alguns critérios

são fornecidos para bimódulos livres com estrutura de bimódulo diagonal ou triangular

superior. Ilustramos os resultados para cálculos diferenciais numa álgebra polinomial

quântica multivariada e num n-espaço quântico de Manin.

Hom-bimódulos covariantes são introduzidos e, nesse “Hom-cenário”, onde (co)ál-

gebras associadas com um certo endomorfismo satisfazem umas condições de (co)as-

sociatividade e de (co)unidade torcidas, a sua teoria de estrutura é estudada em de-

talhe. Esses resultados estruturais sobre Hom-bimódulos bicovariantes e covariantes à

esquerda são também representados em forma de coordenadas. Prova-se que a cat-

egoria dos Hom-bimódulos bicovariantes é uma categoria monoidal (pré-)trançada. A

noção de Hom-módulos de Yetter-Drinfel’d é apresentada e, em seguida, é provado que

a categoria dos Hom-módulos de Yetter-Drinfel’d é também uma categoria monoidal

(pré-)trançada. Por fim, sob certas condições, é provado que estas categorias monoidais

são equivalentes no sentido monoidal trançado.

As noções de Hom-coanel, estrutura Hom-entrelaçada e Hom-módulo entrelaçado

associado são introduzidas. Um teorema de extensão do anel de base de um Hom-

coanel é provado e, em seguida, é usado para adquirir uma versão “Hom” do coanel
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de Sweedler. Motivado por um resultado de Brzeziński, associado a uma estrutura

Hom-entrelaçada, é construído um Hom-coanel e uma identificação dos Hom-módulos

entrelaçados com os Hom-comódulos desse Hom-coanel é demonstrada. É provado,

então, que a álgebra dual desse Hom-coanel é uma álgebra de convolução ψ-torcida.

Por construção, mostra-se que um Hom-Doi-Koppinen datum é obtido a partir de uma

estrutura Hom-entrelaçada e que os Doi-Koppinen Hom-Hopf módulos são os mesmos

que os Hom-módulos entrelaçados associados. Uma construção semelhante, com re-

speito ao Hom-Doi-Koppinen datum, é também fornecida. Uma coleção de Hom-Hopf

módulos são apresentadas como exemplos especiais de estruturas Hom-entrelaçadas

e Hom-módulos entrelaçados correspondentes. E também são consideradas estru-

turas de todos os Hom-coanéis relevantes.

As definições de Cálculo Diferencial de Primeira Ordem (FODC) numa Hom-álgebra

monoidal e FODC à esquerda covariante sobre um espaço Hom-quântico à esquerda,

com respeito a uma Hom-Hopf álgebra monoidal, são dadas. Em seguida, a covariân-

cia à esquerda de um Hom-FODC é caracterizada. Também é descrita a extensão de

um FODC sobre uma Hom-álgebra monoidal para um cálculo Hom-diferencial univer-

sal. Introduz-se os conceitos de FODC covariante à esquerda e FODC bicovariante so-

bre uma Hom-Hopf álgebra monoidal e, após isso, os Hom-ideais e espaços quânticos

Hom-tangentes associados são estudados. A noção de Hom-Lie álgebra quântica (ou

generalizada) de um FODC bicovariante sobre uma Hom-Hopf álgebra monoidal, em

que versões generalizadas de relações de anti-simetria e identidades de Hom-Jacobi

são satisfeitas, é obtida.
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Abstract

Hom-connections or noncommutative connections of the second type and associated

integral forms have been introduced and studied by T.Brzeziński as an adjoint version of

the usual notion of a noncommutative connection in a right module over an associative

algebra. Given a flat hom-connection on a differential calculus (Ω,d) over an algebra A

yields the integral complex which for various algebras has been shown to be isomorphic

to the noncommutative de Rham complex (which is also termed the differential calculus

in the context of quantum groups). We shed further light on the question when the

integral and the de Rham complex are isomorphic for an algebra A with a flat hom-

connection. We specialize our study to the case where an n-dimensional differential

calculus can be constructed on a quantum exterior algebra over an A-bimodule. Criteria

are given for free bimodules with diagonal or upper triangular bimodule structure. Our

results are illustrated for a differential calculus on a multivariate quantum polynomial

algebra and for a differential calculus on Manin’s quantum n-space.

Covariant Hom-bimodules, as a generalization of Woronowicz’ covariant bimodules,

are introduced and the structure theory of them in the Hom-setting, where (co)algebras

have twisted (co)associativity and (co)unity conditions along with an associated endo-

morphism, is studied in a detailed way. These structural results about left-covariant

and bicovariant Hom-bimodules were also restated in coordinate form. The category

of bicovariant Hom-bimodules is proved to be a (pre-)braided monoidal category. The

notion of Yetter-Drinfel’d Hom-module is presented and it is shown that the category

of Yetter-Drinfel’d Hom-modules is a (pre-)braided tensor category as well. Finally, it

is verified that these tensor categories are braided monoidal equivalent under certain

conditions.

The notions of Hom-coring, Hom-entwining structure and associated entwined Hom-

module are introduced. A theorem regarding base ring extension of a Hom-coring is
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proven and then is used to acquire the Hom-version of Sweedler’s coring. Motivated

by a result of Brzeziński, a Hom-coring associated to an Hom-entwining structure is

constructed and an identification of entwined Hom-modules with Hom-comodules of

this Hom-coring is shown. The dual algebra of this Hom-coring is proven to be a ψ-

twisted convolution algebra. By a construction, it is shown that a Hom-Doi-Koppinen

datum comes from a Hom-entwining structure and that the Doi-Koppinen Hom-Hopf

modules are the same as the associated entwined Hom-modules. A similar construction

regarding an alternative Hom-Doi-Koppinen datum is also given. A collection of Hom-

Hopf-type modules are gathered as special examples of Hom-entwining structures and

corresponding entwined Hom-modules, and structures of all relevant Hom-corings are

also considered.

The definitions of first order differential calculus (FODC) on a monoidal Hom-algebra

and left-covariant FODC over a left Hom-quantum space with respect to a monoidal

Hom-Hopf algebra are given, and the left-covariance of a Hom-FODC is character-

ized. The extension of a FODC over a monoidal Hom-algebra to a universal Hom-

differential calculus is described. The concepts of left-covariant and bicovariant FODC

over monoidal Hom-Hopf algebras are introduced, and their associated right Hom-

ideals and quantum Hom-tangent spaces are studied. The notion of quantum (or gen-

eralized) Hom-Lie algebra of a bicovariant FODC over a monoidal Hom-Hopf algebra

is obtained, in which generalized versions of antisymmetry relation and Hom-Jacobi

identity are satisfied .
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Introduction

Hom-connections and associated integral forms have been introduced and studied by

T.Brzeziński, in [15], as an adjoint version of the usual notion of a connection in noncom-

mutative geometry. Given a flat hom-connection on a differential calculus (Ω,d) over

an algebra A yields the integral complex which for various algebras has been shown

to be isomorphic to the noncommutative de Rham complex (which is also termed the

differential calculus in the context of quantum groups). The purpose of Chapter 2 is

to provide further examples of algebras which contribute to the general study of al-

gebras with this property. Hereby, necessary and sufficient conditions to extend the

associated first order differential calculus (abbreviated, FODC) (Ω1,d) of a right twisted

multi-derivation (∂,σ ) on an algebra A to a full differential calculus (Ω,d) on the quan-

tum exterior algebra Ω of Ω1 is presented. A chain map between the de Rham complex

and the integral complex is defined and a criterion is given to assure an isomorphism

between the de Rham and the integral complexes for free right upper-triangular twisted

multi-derivations whose associated FODC can be extended to a full differential calculus

on the quantum exterior algebra. Easier criteria for FODCs with a diagonal bimodule

structure are established and are applied to show that a multivariate quantum poly-

nomial algebra satisfies the strong Poincaré duality in the sense of T.Brzeziński with

respect to some canonical FODC. Lastly, it is shown that for a certain two-parameter

n-dimensional (upper-triangular) calculus over Manin’s quantum n-space the de Rham

and integral complexes are isomorphic.

The first examples of Hom-type algebras arose in connection with quasi-deformations

of Lie algebras of vector fields, particularly q-deformations of Witt and Virasoro alge-

bras (see [1, 22, 23, 24, 25, 33, 34, 48, 43, 57]), which have a crucial role in conformal

field theory. These deformed algebras are obtained by replacing the derivation with

a twisted derivation (σ -derivation), and are no longer Lie algebras due to the fact that
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they satisfy a twisted Jacobi identity. Motivated by these examples and their generaliza-

tion, the notions of quasi-Lie algebras, quasi-Hom-Lie algebras and Hom-Lie algebras

were introduced by Hartwig, Larsson and Silvestrov in [42, 54, 55, 56] to deal with Lie

algebras, Lie superalgebras and color Lie algebras within the same framework. The

Hom-associative algebras generalizing associative algebras by introducing twisted as-

sociativity law along a linear endomorphism were suggested by Makhlouf and Silvestrov

in [62] to give rise to Hom-Lie algebras by means of commutator bracket defined using

the multiplication in Hom-associative algebras. For other features of Hom-associative

algebras regarding the unitality and twist property one should also see [37, 38]. The

construction of the free Hom-associative algebra and the enveloping algebra of a Hom-

Lie algebra was given [83], and the so-called twisting principle was introduced in [85]

to construct examples of Hom-type objects and related algebraic structures from clas-

sical structures. The concepts of Hom-coassociative coalgebras, Hom-bialgebras and

Hom-Hopf algebras and their properties were considered in [63, 64, 84]. Hence, repre-

sentation theory, cohomology and deformation theory of Hom-associative and Hom-Lie

algebras were studied, and Hom-analogues of many classical structures such as n-

ary Nambu algebras, alternative, Jordan, Malcev, Novikov, Rota-Baxter algebras were

considered in [2, 3, 4, 7, 8, 61, 65, 67, 74, 90, 91, 92]. Hom-type generalizations of

(co)quasitriangular bialgebras and (quantum) Yang-Baxter equation were also studied

by Yau in [86, 87, 88, 89, 93, 94].

For a given braided tensor(=monoidal) category C, a braided monoidal category

H̃(C) with non-trivial associativity and unity constraints was constructed by Caenepeel

and Goyvaerts in [21], and the counterparts of Hom-type structures are investigated in

the context of monoidal categories. They obtained the symmetric monoidal category

H̃(Mk) for the category of modules over a commutative ring k and introduced monoidal

Hom-(co)algebras, Hom-bialgebras and Hom-Hopf algebras as (co)algebras, bialge-

bras and Hopf algebras in this tensor category. Besides its appropriateness to highlight

the general structures systematically, the framework of monoidal categories provides a

way to see what additional requirements in the definitions of Hom-structures are needed

and convenient for certain kinds of applications. In the original definitions of Hom-type

structures in [62, 63, 64], the deforming linear endomorphism (structure map) was not

required to be either multiplicative or bijective; one should check the results in [21] and

[66], respectively, to see the necessity of the multiplicativity and bijectivity assumptions
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on the structure map in order to have monoidal structures on the categories of mod-

ules and Yetter-Drinfeld modules over (monoidal) Hom-biagebras, respectively. Further

properties of monoidal Hom-Hopf algebras and many structures on them have been

lately studied [26],[27],[28], [29], [39], [58].

Covariant bimodules were introduced by Woronowicz in [82] to construct differential

calculi on Hopf algebras, where bicovariant bimodules (or Hopf bimodules) are con-

sidered as Hopf algebraic analogue to the notion of vector bundles over a Lie group.

In Chapter 3, the notions of left(right)-covariant Hom-bimodules and bicovariant Hom-

bimodules are introduced to have twisted, generalized versions of the concepts of

left(right)-covariant bimodules and bicovariant bimodules. Afterwards, the structure the-

ory of covariant bimodules over monoidal Hom-Hopf algebras is studied in coordinate-

free setting and then the main results are restated in coordinate form. Furthermore,

it is shown that the categories of left(right)-covariant Hom-bimodules and bicovariant

Hom-bimodules are tensor categories equipped with a monoidal structure defined by

a coequalizer which is modified by a suitable insertion of a related nontrivial associa-

tor. Additionally, it is proven that the category of bicovariant bimodules over a monoidal

Hom-Hopf algebra forms a (pre-)braided monoidal category (with nontrivial associators

and unitors). In the meantime, (right-right) Hom-Yetter-Drinfeld modules are proposed

as a deformed version of the classical ones and it is demonstrated that the category

of Hom-Yetter-Drinfeld modules can be set as a (pre-)braided tensor category endowed

with a tensor product over a commutative ring k described by the diagonal Hom-action

and codiagonal Hom-coaction (together with nontrivial associators and unitors). As one

of the main consequences of the chapter, the fundamental theorem of Hom-Hopf mod-

ules, which is provided in [21], is extended to a (pre-)braided monoidal equivalence

between the category of bicovariant Hom-bimodules and the category of (right-right)

Hom-Yetter-Drinfeld modules.

Motivated by the study of symmetry properties of noncommutative principal bun-

dles, entwining structures (over a commutative ring k ) were introduced in [11] as

a triple (A,C)ψ consisting of a k-algebra A, a k-coalgebra C and a k-module map

ψ : C ⊗ A → A ⊗ C satisfying four conditions regarding the relationships between the

so-called entwining map and algebra and coalgebra structures. The main aim of Chap-

ter 4 is to generalize the entwining structures, entwined modules and the associated

corings within the framework of monoidal Hom-structures and then to study Hopf-type
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modules such as (relative) Hopf modules, (anti) Yetter-Drinfeld modules, Doi-Koppinen

Hopf modules, Long dimodules, etc., in the Hom-setting. The idea is to replace al-

gebra and coalgebra in a classical entwining structure with a monoidal Hom-algebra

and a monoidal Hom-coalgebra to make a definition of Hom-entwining structures and

associated entwined Hom-modules. Following [13], these entwined Hom-modules are

identified with Hom-comodules of the associated Hom-coring. The dual algebra of this

Hom-coring is proven to be the Koppinen smash. Furthermore, we give a construction

regarding Hom-Doi-Kopinen datum and Doi-Koppinen Hom-Hopf modules as special

cases of Hom-entwining structures and associated entwined Hom-modules. Besides,

we introduce alternative Hom-Doi-Koppinen datum. By using these constructions, we

get Hom-versions of the aforementioned Hopf-type modules as special cases of en-

twined Hom-modules, and give examples of Hom-corings in addition to trivial Hom-

coring and canonical Hom-coring.

The general theory of covariant differential calculus on quantum groups was pre-

sented in [82], [80], [81]. Following the work [82] of Woronowicz, in Chapter 5, after the

notions of first order differential calculus (FODC) on a monoidal Hom-algebra and left-

covariant FODC over a left Hom-quantum space with respect to a monoidal Hom-Hopf

algebra being introduced, the left-covariance of a Hom-FODC is characterized as well.

The extension of a FODC over a monoidal Hom-algebra to a universal Hom-differential

calculus is described (for the classical case, that is, for an introduction on the differen-

tial envelope of an algebra A one should refer to [32], [31]). In the rest of the chapter,

the concepts of left-covariant and bicovariant FODC over a monoidal Hom-Hopf alge-

bra (H,α) are studied in detail. A subobject of kerε, which is right Hom-ideal of (H,α),

and a quantum Hom-tangent space are associated to each left-covariant FODC over a

monoidal Hom-Hopf algebra: It is indicated that left-covariant Hom-FODCs are in one-

to one correspondence with these right Hom-ideals, and that the quantum Hom-tangent

space and the left coinvariant of the monoidal Hom-Hopf algebra on Hom-FODC form

a nondegenerate dual pair. The quantum Hom-tangent space associated to a bicovari-

ant Hom-FODC is equipped with an analogue of Lie bracket (or commutator) through

Woronowicz’ braiding and it is proven that this commutator satisfies quantum (or gener-

alized) versions of the antisymmetry relation and Hom-Jacobi identity, which is therefore

called the quantum (or generalized) Hom-Lie algebra of that bicovariant Hom-FODC.

The content of Chapter 2 consists of the results from a paper by the author and
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Christian Lomp in [47]. Much of the contents of Chapter 3 and Chapter 4 consists of

results from the preprints [45] and [46], respectively, by the author.
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Chapter 1

Preliminaries

This chapter contains some definitions and results regarding fundamental algebraic

structures such as (co)algebras, bialgebras, Hopf algebras and their (co)modules, which

are constructed in a (braided) tensor category. For a solid background on (braided)

monoidal categories one should refer to [60] and [49].

1.1 Monoidal Categories

Let C be a category and consider a functor ⊗ : C × C → C. An associativity constraint for

⊗ is a natural isomorphism

a : ⊗◦ (⊗× idC)→⊗◦ (idC ×⊗).

This means that for any triple (U,V ,W ) objects of C there exist an isomorphism

aU,V ,W : (U ⊗V )⊗W →U ⊗ (V ⊗W ),

such that the following diagram commutes:

(U ⊗V )⊗W
aU,V ,W−−−−−→ U ⊗ (V ⊗W )

(f ⊗g)⊗h
y yf ⊗(g⊗h)

(U ′ ⊗V ′)⊗W ′
aU ′ ,V ′ ,W ′−−−−−−−→ U ′ ⊗ (V ′ ⊗W ′)

whenever f :U →U ′, g : V → V ′ and h :W →W ′ are morphisms in the category.
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The associativity constraint a is said to satisfy the Pentagon Axiom if the following

diagram commutes:

(U ⊗ (V ⊗W ))⊗X

aU,V⊗W,X

��

((U ⊗V )⊗W )⊗X
aU,V ,W⊗idXoo

aU⊗V ,W ,X

��
(U ⊗V )⊗ (W ⊗X)

aU,V ,W⊗X
��

U ⊗ ((V ⊗W )⊗X)
idU⊗aV ,W ,X

// U ⊗ (V ⊗ (W ⊗X))

(Pentagon)

for all objects U,V ,W ,X of C. A left unit constraint (resp. a right unit constraint) with

respect to an object I is a natural isomorphism l (resp. r) between the functors I ⊗ −
(resp. − ⊗ I) and the identity functor of C. This means that there are natural isomor-

phisms lV : I ⊗ V → V and rV : V ⊗ I → V , for all object V ∈ C. The naturality means

that, for any f : V →U , the equations

f ◦ lV = lU ◦ (idI ⊗ f ) f ◦ rV = rU ◦ (f ⊗ idI )

hold.

The Triangle Axiom holds for a given associativity constraint a and left and right unit

constraints l, r with respect to an object I if the following diagram commutes:

(U ⊗ I)⊗V
aU,I,V //

rU⊗idV &&

U ⊗ (I ⊗V )

idU⊗lVxx
U ⊗V

(Triangle)

Definition 1.1.1 A monoidal category (C,⊗, I ,a, l, r) is a category C with a functor ⊗ :

C × C → C and an associativity constraints a, a left and right unit constraint l and r with

respect to I such that the Pentagon and Triangle Axioms hold. The monoidal category

is called strict if a, l and r are identities in C.

Let us denote by τ : C ×C → C ×C the flip functor defined by τ(U,V ) = (V ,U ) on any

pair of objects. A commutativity constraint c is a natural isomorphism c : ⊗→ ⊗◦ τ and
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we say that it satisfies the Hexagon Axiom if the hexagonal diagrams commute:

U ⊗ (V ⊗W )
cU,V⊗W // (V ⊗W )⊗U

aV ,W ,U

��
(U ⊗V )⊗W

aU,V ,W

OO

cU,V⊗idW
��

V ⊗ (W ⊗U )

(V ⊗U )⊗W
aV ,U,W // V ⊗ (U ⊗W )

idV⊗cU,V

OO

(U ⊗V )⊗W
cU⊗V ,W // W ⊗ (U ⊗V )

a−1W,U,V
��

U ⊗ (V ⊗W )

a−1U,V ,W

OO

idU⊗cV ,W
��

(W ⊗U )⊗V

U ⊗ (W ⊗V )
a−1U,W ,V // (U ⊗W )⊗V

cU,W⊗idV

OO

(Hex)

Definition 1.1.2 Let (C,⊗, I ,a, l, r) be a monoidal category. A commutativity constraint

satisfying the Hexagon Axiom is called a braiding in C. A braided tensor category

(C,⊗, I ,a, l, r, c) is a tensor category with a braiding. A monoidal category is said to

be symmetric if it is equipped with a braiding c such that cV ,U ◦ cU,V = idU⊗V for all

objects U,V in the category.

Convention: In order to ease notation we will drop the subscripts from the associator

aU,V ,W and unitors lV , rV . Moreover we will simply write 1 for the identity morphism of

an object.

1.2 Algebras and modules in monoidal categories

Definition 1.2.1 An algebra A in a monoidal category C is an object A with morphisms

m : A⊗A→ A and η : I → A in C such that the following diagrams commute:

(A⊗A)⊗A a //

m⊗1
��

A⊗ (A⊗A)

1⊗m
��

A⊗A

m
%%

A⊗A

m
yy

A

I ⊗A
η⊗1 //

l $$

A⊗A
m
��

A⊗ I
1⊗ηoo

r
zz

A

(Alg)

The first diagram corresponds to the associativity axiom and the second one is the

unity axiom. A homomorphism of algebras α : A→ B in C is a morphism in C such that

α ◦mA =mB ◦ (α ⊗α) and α ◦ ηA = ηB.

Definition 1.2.2 Given an algebra A in a monoidal category C, a left A-module is an

object M in C with a morphism ϕ : A⊗M →M such that the following diagrams com-
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mute:

(A⊗A)⊗M a //

m⊗1
��

A⊗ (A⊗M)

1⊗ϕ
��

A⊗M

ϕ
%%

A⊗M

ϕ
yy

M

I ⊗M
η⊗1 //

l %%

A⊗M
ϕ
��
M

(Mod)

The first of the above diagrams is the associativity condition and the second is the left

unity condition.

The subcategory of left A-modules in C shall be denoted by AC. Analogously one

defines right A-modules and the category of right A-modules shall be denoted by CA.

Definition 1.2.3 Let A be an algebra in a monoidal category C. For any object V of C
there exists so-called canonical left A-module structure on F(V ) = A⊗V defined by the

composition of morphisms

ϕ : A⊗F(V ) a−1 // (A⊗A)⊗V m⊗1 // A⊗V = F(V ) (1.1)

together with a morphism iV : V → F(V ) defined by

iV : V l−1 // I ⊗V
η⊗1 // F(V )

The morphism iV : V → F(V ) satisfies the following property:

ϕ ◦ (1⊗ iV ) = 1F(V ). (1.2)

To prove this we consider the diagram

F(V )

r−1⊗1 ((

1⊗l−1 // A⊗ (I ⊗V )

a−1

��

1⊗(η⊗1) // A⊗F(V )

a−1

��

ϕ // F(V )

(A⊗ I)⊗V
(1⊗η)⊗1

// (A⊗A)⊗V
m⊗1

66

The first triangle commutes since the Triangle Axiom holds, the naturality of a implies

the commutativity of the square and the triangle at the end is the definition of ϕ. The

upper line is the composition ϕ ◦ (1⊗ iV ) while the lower line is equal to the identity by

the right unity condition of the algebra A.
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Definition 1.2.4 Let A and B be algebras in C. A (A,B)-bimodule M in C is an object

in C with a left A-module structure ϕ : A ⊗M → M and a right B-module structure

φ :M ⊗B→M such that the following diagram commutes:

(A⊗M)⊗B a //

ϕ⊗1
��

A⊗ (M ⊗B)

1⊗φ
��

M ⊗B

φ %%

A⊗M

ϕ
yy

M

(Bimod)

We shall denote the category of (A,B)-bimodules by ACB.

The following theorem has been proven by Schauenburg for strict monoidal cate-

gories (see [72], Theorem 5.2). For the reader’s sake we include here a proof for an

arbitrary monoidal category.

Theorem 1.2.5 Let A and B be algebras in C. Let V be any object in C, F(V ) = A⊗V
be the canonical left A-module with module structure given by ϕ as in (1.1) and let iV :

V → F(V ) be the canonical morphism attached to F(V ). Then the following statements

are equivalent:

(a) F(V ) is a (A,B)-bimodule with the canonical left A-module structure;

(b) There exists a morphism f : V ⊗B→ F(V ) such that

f ◦ (1⊗mB) ◦ a = ϕ ◦ (1⊗ f ) ◦ a ◦ (f ⊗ 1) (Cond1)

f ◦ (1⊗ ηB) = iV ◦ rV (Cond2)

In this case, if φ : F(V )⊗B→ F(V ) denotes the right B-module structure on F(V ), then

the morphism f is defined by the composition of morphisms:

f : V ⊗B
iV⊗1 // F(V )⊗B

φ // F(V ) (1.3)

On the other hand if f is given satisfying (Cond1) and (Cond2), then the right B-module

structure on F(V ) is given by the composition of morphisms:

φ : F(V )⊗B a // A⊗ (V ⊗B)
1⊗f // A⊗F(V )

ϕ // F(V ) (1.4)

10



Proof: (a)⇒ (b): Suppose F(V ) is an (A,B)-bimodule with right B-module structure φ.

Let f as in (1.3), i.e. f = φ ◦ (iV ⊗ 1) and consider the following diagram:

f ⊗1

��

(V ⊗B)⊗B a //

(iV⊗1)⊗1
��

V ⊗ (B⊗B)
1⊗mB //

iV⊗(1⊗1)
��

V ⊗B

iV⊗1
��

f

��

(F(V )⊗B)⊗B a //

φ⊗1
��

F(V )⊗ (B⊗B)
1⊗mB // F(V )⊗B

φ
��

F(V )⊗B
φ // F(V )

The upper left square commutes because of the naturality of a, the upper right

square commutes for the functor ⊗ : C × C → C preserves the composition of the mor-

phisms, while the commutativity of the lower diagram corresponds to the associativity

condition for the right B-module structure on F(V ). In particular we get

f ◦ (1⊗mB) ◦ a = φ ◦ (f ⊗ 1) (1.5)

and we will show that φ = ϕ ◦ (1 ⊗ f ) ◦ a which is a consequence of the compatibility

condition (Bimod) and the identity (1.2). We have namely the following diagram:

1F(V )⊗1B

��

F(V )⊗B a //

(1⊗iV )⊗1
��

A⊗ (V ⊗B)

1⊗(iV⊗1)
��

1⊗f

��

(A⊗F(V ))⊗B a //

ϕ⊗1
��

A⊗ (F(V )⊗B)

1⊗φ
��

F(V )⊗B

φ &&

A⊗F(V )

ϕ
xx

F(V )

The commutativity of the square follows from the naturality of a and the pentagon is

the bimodule compatibility condition (Bimod). We then conclude that ϕ ◦ (1⊗ f ) ◦ a = φ
holds, which, when substituted in (1.5) yields (Cond1). (Cond2) indeed holds:

f ◦ (1⊗ ηB) = φ ◦ (iV ⊗ 1) ◦ (1⊗ ηB) = φ ◦ (1⊗ ηB) ◦ (iV ⊗ 1) = rF(V ) ◦ (iV ⊗ 1) = iV ◦ rV ,

where the penultimate equality results from the right unity condition for φ, which is

φ ◦ (1⊗ ηB) = rF(V ), the last equality is induced by the naturality of r.
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(b)⇒ (a) Let f : V ⊗B→ F(V ) be given satisfying (Cond1) and (Cond2). There are

three diagrams to check, namely the two diagrams in (Mod) and the compatibility dia-

gram (Bimod): Let us first check the compatibility condition by considering the following

diagram:

ϕ⊗1 //

(A⊗F(V ))⊗B

a
��

a−1⊗1 // ((A⊗A)⊗V )⊗B
(m⊗1)⊗1 //

a

��

(A⊗V )⊗B

a

��
φ

��

1⊗φ

��

A⊗ (F(V )⊗B)

1⊗a
��

A⊗ (A⊗ (V ⊗B))

1⊗(1⊗f )
��

a−1 // (A⊗A)⊗ (V ⊗B)

(1⊗1)⊗f
��

m⊗(1⊗1) // A⊗ (V ⊗B)

1⊗f
��

A⊗ (A⊗F(V )) a−1 //

1⊗ϕ
��

(A⊗A)⊗F(V ) m⊗1 // A⊗F(V )

ϕ
��

A⊗F(V ) ϕ
// F(V )

The upper left pentagon commutes by the Pentagon Axiom. The commutativity of the

upper right and the middle left squares results from the naturality of a. The middle right

square commute since the functor ⊗ preserves the composition of the morphisms. The

associativity condition for the canonical left A-module structure ϕ on F(V ) implies the

commutativity of the lower pentagon. Hence the compatibility condition (Bimod) follows.

Now we check the unity condition of (Mod) for φ : F(V )⊗ B→ F(V ) by considering

the following diagram:

rF(V ) //

F(V )⊗ I a //

1⊗ηB
��

A⊗ (V ⊗ I)
1⊗rV //

1⊗(1⊗ηB)
��

F(V )

1A⊗iV
��

1

%%
F(V )⊗B a

// A⊗ (V ⊗B)
1⊗f

// A⊗F(V ) ϕ
// F(V )

φ
//

12



The triangle is the property (1.2), the square in the middle follows from the condition

(Cond2) and the left square is induced by the naturality of a. Lastly, we prove the

associativity condition of (Mod) for φ by the following diagram:

φ⊗1 //

(F(V )⊗B)⊗B a⊗1 //

a

��

(A⊗ (V ⊗B))⊗B
(1⊗f )⊗1//

a
��

(A⊗F(V ))⊗B
ϕ⊗1 //

a
��

F(V )⊗B

φ

��

A⊗ ((V ⊗B)⊗B)
1⊗(f ⊗1)//

1⊗a
��

A⊗ (F(V )⊗B)

1⊗φ

��

F(V )⊗ (B⊗B) a //

1⊗mB

��

A⊗ (V ⊗ (B⊗B))

1⊗(1⊗mB)
��

F(V )⊗B a
// A⊗ (V ⊗B)

1⊗f
// A⊗F(V ) ϕ

// F(V )

φ
//

where the lower middle pentagon is precisely the condition (Cond1) and the right pen-

tagon is the compatibility condition (Bimod), and the commutativity of the rest comes

from the Pentagon Axiom and the naturality of the associativity constraint a. �

1.3 Coalgebras and comodules in monoidal categories

Inverting the direction of arrows in the diagram that defines algebras and modules in a

monoidal category C we define colagebras and comodules in C. Hence

Definition 1.3.1 A coalgebra C over a monoidal category C is an object C with mor-

phisms ∆ : C→ C ⊗C and ε : C→ I in C such that the following diagrams commute:

(C ⊗C)⊗C
OO

∆⊗1

C ⊗ (C ⊗C)a−1oo
OO

1⊗∆

C ⊗Cee

∆

C ⊗C99

∆

C

I ⊗Cdd

l−1

C ⊗Cε⊗1oo
OO

∆

C ⊗ I//1⊗ε
::

r−1

C

(CoAlg)
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Definition 1.3.2 Given a coalgebra C in a monoidal category C, a left C-comodule is

an object M in C with a morphism ρ : M → C ⊗M such that the following diagrams

commute:

(C ⊗C)⊗M
OO

∆⊗1

C ⊗ (C ⊗M)a−1oo
OO
1⊗ρ

C ⊗Mff

ρ

C ⊗M99

ρ

M

I ⊗Mee

l−1

C ⊗Mε⊗1oo
OO
ρ

M

(CoMod)

The subcategory of left C-comodules in C shall be denoted by CC. Analogously one

defines right C-comodules and the category of right C-comodules shall be denoted by

CC .

Definition 1.3.3 Let C be a coalgebra in a monoidal category C. For any object V of

C there exists a canonical left C-comodule structure on F(V ) = C ⊗ V defined by the

composition of morphisms

ρ : F(V ) ∆⊗1 // (C ⊗C)⊗V a // C ⊗F(V ) (1.6)

together with a morphism jV : F(V )→ V defined by

jV : F(V ) ε⊗1 // I ⊗V l // V

The morphism jV : F(V )→ V satisfies the following property:

(1⊗ jV ) ◦ ρ = 1F(V ). (1.7)

Definition 1.3.4 Let C and D be coalgebras in C. A (C,D)-bicomodule M in C is an

object in C with a left C-comodule structure ρ : M → C ⊗M and a right B-comodule

structure φ :M→M ⊗D such that the following diagram commutes:

(C ⊗M)⊗D oo a−1

OO
ρ⊗1

C ⊗ (M ⊗D)
OO
1⊗φ

M ⊗Dff

φ

C ⊗M88

ρ

M

(BiComod)

We shall denote the category of (C,D)-bicomodules by CCD .
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1.4 Bialgebras and Hopf modules in braided monoidal cate-

gories

Let C be a braided monoidal category with commutativity constraint cU,V : U ⊗ V →
V ⊗U , for all objects U,V in C. To simplify notation we define the following isomorphism

τ23 for objects U,V ,W ,X in C:

(U ⊗V )⊗ (W ⊗X) b //

τ23
��

U ⊗ ((V ⊗W )⊗X)

1⊗cV ,W⊗1
��

(U ⊗W )⊗ (V ⊗X) U ⊗ ((W ⊗V )⊗X)b−1oo

(flip)

where

b : (U ⊗V )⊗ (W ⊗X) a // U ⊗ (V ⊗ (W ⊗X)) 1⊗a−1 // U ⊗ ((V ⊗W )⊗X)

Definition 1.4.1 Given two algebras (A,mA,ηA) and (B,mB,ηB) in a symmetric monoidal

category, their tensor product A⊗ B carries a canonical algebra structure in C with the

product:

mA⊗B : (A⊗B)⊗ (A⊗B)
τ23 // (A⊗A)⊗ (B⊗B)

mA⊗mB // A⊗B

and unit:

ηA⊗B : I
l−1 // I ⊗ I

ηA⊗ηB // A⊗B

Analogously for two coalgebras (C,∆C ,εC) and (D,∆D ,εD ) in C, their tensor product

C ⊗D carries a canonical coalgebra structure in C with the coproduct:

∆C⊗D : C ⊗D
∆C⊗∆D // (C ⊗C)⊗ (D ⊗D)

τ−123 // (C ⊗D)⊗ (C ⊗D)

and the counit:

εC⊗D : C ⊗D
εC⊗εD // I ⊗ I l // I

With these canonical algebra and coalgebra structures on the tensor product of two

algebras resp. coalgebras we can define bialgebras in a braided monoidal category.

Definition 1.4.2 A bialgebraH in C is an objectH that has an algebra structure (H,m,η)

in C and a coalgebra structure (H,∆,ε) in C, such that ∆ and ε are algebra homomor-

phisms with respect to the canonical algebra structure on H ⊗H respectively on I .
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Let H be a bialgebra in a braided monoidal category C. Then the categories of left

(resp. right) H-modules HC (resp. CH ) as well as the categories of left (resp. right)

H-comodules HC (resp. CH ) are braided monoidal subcategories of C. For example for

U,V ∈ HC the tensor product U ⊗V belongs to HC by the left diagonal action defined as

φU⊗V : H ⊗ (U ⊗V ) ∆⊗1⊗1// (H ⊗H)⊗ (U ⊗V )
τ23 // (H ⊗U )⊗ (H ⊗V )

φU⊗φV// U ⊗V .

Analogously the right diagonal action of a bialgebra H on tensor products is defined.

For any object V in C the trivial left H-action on V is defined as follows:

φV : H ⊗V ε⊗1 // I ⊗V l // V .

In particular the unit object I becomes a left H-module.

Definition 1.4.3 Let H be a bialgebra in a braided monoidal category C. Then H is

itself a coalgebra in HC, where tensor products carry the diagonal left H-module struc-

ture. Hence it makes sense to consider the category H (HC) of left H-comodules in this

category of left H-modules. Objects of this category are left H-modules and right H-

comodulesM in C such that the coaction ρM :M→H⊗M is left H-linear. This category

is denoted by H
HC and objects are termed left H-Hopf modules. Analogously the cate-

gories CHH , HCH and HCH of right, left-right and right-left H-Hopf modules are defined

respectively.

The tensor product of objects U,V ∈ HC carries a left diagonal coaction defined as

ρU⊗V : U ⊗V
ρU⊗ρV // (H ⊗U )⊗ (H ⊗V )

τ23 // (H ⊗H)⊗ (U ⊗V )m⊗1⊗1// H ⊗ (U ⊗V ) .

Analogously the right diagonal coaction of a bialgebra H on tensor products is defined.

For any object V in C the trivial left H-coaction on an object V is defined

ρV : V l−1 // I ⊗V
η⊗1 // H ⊗V .

In particular the identity object I becomes a left H-comodule. Note that if H is a bialge-

bra in C. Then the assignment F(V ) =H⊗V for any object V ∈ C is a functor F : C → H
HC.

Moreover if V is considered a trivial left H-module (resp. trivial left H-comodule), then

the map iV : V → F(V ) is a morphism in HC (resp. in HC).
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Definition 1.4.4 LetH be a bialgebra in a braided monoidal category C. ThenH is itself

an algebra in HC, where tensor products carry the diagonal left H-comodule structure.

Hence it makes sense to consider the category H (HC)H of H-bimodules in this category

of left H-comodules. Objects of this category are left and right H-modules and left H-

comodules M in C such that the left and right H-module actions are H-colinear and

the bimodule condition is satisfied. This category is denoted by H
HCH and objects are

termed left covariant H-bimodules. Analogously the category HCHH of right covariant

H-bimodules is defined.

Definition 1.4.5 A left-covariant (resp. right-covariant) H-bicomodule is a left-covariant

(resp. right-covariant) H-bimodule in the dual category Cop.

We denote by H
HC

H (resp. HCHH ) the category of left-covariant (resp. right-covariant)

H-bicomodules together with those morphisms in C that are left and right H-colinear

and left (resp. right) H-linear.

We now make use of the Theorem 1.2.5, which has been given in the general tensor

category framework, to prove the undermentioned theorem (see [72], Theorem 5.1):

Theorem 1.4.6 Let V ∈ C and let H ⊗ V ∈ H
HC with the canonical H-module and H-

comodule structures. Then there is a bijection between right H-module structures mak-

ing H ⊗V a left-covariant H-bimodule and right H-module structures on V .

Proof:By performing the previous theorem to the left H-module H ⊗V in the category

of left H-comodules, we obtain a bijection between right H-module structures making

H ⊗V an H-bimodule and left H-colinear morphisms f : V ⊗H →H ⊗V fulfilling

1. f ◦ (1V ⊗m) ◦ a = (m⊗ 1V ) ◦ a−1 ◦ (1H ⊗ f ) ◦ a ◦ (f ⊗ 1H ),

2. f ◦ (1V ⊗ η) = (η ⊗ 1V ) ◦ l−1V ◦ rV .

For any left H-comodule X with the coaction ρ : X → H ⊗ X, there is the bijective

mapping

FX : HHom(X,H ⊗V )→Hom(X,V ), f 7→ lV ◦ (ε⊗ 1V ) ◦ f

with the inverse given by g 7→ (1H ⊗ g) ◦ ρ. Let us take f : V ⊗H →H ⊗V and put

ψ = lV ◦ (ε⊗ 1V ) ◦ f : V ⊗H → V .
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Then we prove that f satisfies the above equations if and only if ψ defines a right H-

module structure on V .

F(V⊗H)⊗H ((m⊗ 1V ) ◦ a−1 ◦ (1H ⊗ f ) ◦ a ◦ (f ⊗ 1H ))

= lV ◦ (ε⊗ 1V ) ◦ (m⊗ 1V ) ◦ a−1 ◦ (1H ⊗ f ) ◦ a ◦ (f ⊗ 1H )

= ψ ◦ (ψ ⊗ 1).

Indeed, we first show that the equality

(ε⊗ 1V ) ◦ (m⊗ 1V ) ◦ a−1 ◦ (1H ⊗ f ) ◦ a = (1⊗ψ) ◦ a ◦ ((ε⊗ 1V )⊗ 1H )

holds by the diagram

(H ⊗V )⊗H
(ε⊗1)⊗1//

a
��

(I ⊗V )⊗H a // I ⊗ (V ⊗H)
1⊗ψ

''
H ⊗ (V ⊗H)

1⊗ψ
//

1⊗f
��

ε⊗(1⊗1)

33

H ⊗V ε⊗1 // I ⊗V

1⊗l−1

��

H ⊗ (H ⊗V )
1⊗(ε⊗1) //

a−1

��

H ⊗ (I ⊗V )

1⊗l

OO

a−1

��

ε⊗(1⊗1)

''
(H ⊗ I)⊗V

(ε⊗1)⊗1
��

I ⊗ (I ⊗V )

a−1ww
(I ⊗ I)⊗V

l⊗1

��(H ⊗H)⊗V

(1⊗ε)⊗1

77

(ε⊗ε)⊗1

33

m⊗1
// H ⊗V

ε⊗1
//

where the fact of ε being an algebra map implies the commutativity of the lower square,

the middle left square is the definition of ψ and the commutativity of the rest follows from

the naturality of a and the fact that ⊗ preserves the composition of the morphisms. To

get the above equality we also used the the Triangle Axiom, which implies a−1◦(1⊗l−1V ) =
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r−1I ⊗ 1V , and the fact that rI = lI . Thus

lV ◦ (ε⊗ 1V ) ◦ (m⊗ 1V ) ◦ a−1 ◦ (1H ⊗ f ) ◦ a ◦ (f ⊗ 1H )

= lV (1⊗ψ) ◦ a ◦ ((ε⊗ 1V )⊗ 1H ) ◦ (f ⊗ 1H )

= ψ ◦ lV⊗H ◦ a ◦ ((ε⊗ 1V ) ◦ f ⊗ 1H )

= ψ ◦ (lV ⊗ 1) ◦ (l−1V ◦ lV ◦ (ε⊗ 1V ) ◦ f ⊗ 1H )

= ψ ◦ (lV ⊗ 1) ◦ (l−1V ⊗ 1)(ψ ⊗ 1H )

= ψ ◦ (ψ ⊗ 1)

where the second equality results from the naturality of l and the third one is obtained

by the Lemma XI.2.2 in ([49]). We also have

F(V⊗H)⊗H (f ◦ (1V ⊗m) ◦ a) = lV ◦ (ε⊗ 1V ) ◦ f ◦ (1V ⊗m) ◦ a

= ψ ◦ (1V ⊗m) ◦ a.

Therefore, the associativity of ψ holds if and only if F(V⊗H)⊗H (f ◦(1V⊗m)◦a) = F(V⊗H)⊗H ((m⊗
1V )◦a−1◦(1H ⊗f )◦a◦(f ⊗1H )), which is equivalent to the relation (1) due to the fact that

F(V⊗H)⊗H is a bijective map. By a similar argument, we get the equivalence between

the unity condition of ψ and the relation (2) since FV⊗I (f ◦ (1V ⊗ η)) = ψ ◦ (1V ⊗ η) and

FV⊗I ((η ⊗ 1V ) ◦ l−1V ◦ rV ) = rV and FV⊗I is a bijection. �

Definition 1.4.7 M ∈ C is called bicovariant H-bimodule if it is an H-bimodule and an

H-bicomodule such that M ∈ CHH , HCH , HCH , CHH .

We denote by H
HC

H
H the category of bicovariant H-bimodules together with those mor-

phisms in C that are H-linear and H-colinear on both sides. By applying the Theorem

(1.4.6) in the opposite category we get

Corollary 1.4.8 Let V ∈ C) and let H ⊗ V ∈ H
HC with the canonical H-module and H-

comodule structures. There is a one-to-one correspondence between rightH-comodule

structures on H ⊗V making it a left-covariant H-bicomodule and the right H-comodule

structures on V .

Definition 1.4.9 A right-right Yetter-Drinfel’d module V in C is a right H-module with an

action ψ : V ⊗H → V and a right H-comodule with a coaction ρ : V → V ⊗H such that

the following condition
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v(0) C h1 ⊗ v(1)h2 = (v C h2)(0) ⊗ h1(v C h2)(1) (1.8)

holds, for h ∈H and v ∈ V , if we write ψ(v ⊗ h) = v C h and ρ(v) = v(0) ⊗ v(1).

The category of right-right Yetter-Drinfel’d modules together with those morphisms

in C that are both H-linear and H-colinear is indicated by YDHH .

In what follows we prove ([72], Theorem 5.4) in an arbitrary category, where the

notion of generalized elements of objects in a category C is used, refer to ([70]). We use

the notations, ∆(c) = c1 ⊗ c2 for a generalized element c of a coalgebra C and ρM(m) =

m(0) ⊗m(1) for a generalized element m of a right C-comodule M with the structure

morphism ρM : M → M ⊗C; and for the left comodules we use Mρ(m) = m(−1) ⊗m(0),

which is the Sweedler’s notation where the summation is dropped, and that notation is

used throughout the thesis.

Theorem 1.4.10 Let V ∈ C and let H ⊗ V ∈ H
HC with the canonical H-module and H-

comodule structures. Then there is a one-to-one correspondence between

1. right H-module structures and right H-comodule structures making H ⊗ V bico-

variant H-bimodule,

2. right-right Yetter-Drinfel’d module structures on V .

Proof: The right H-module structure v ⊗ h 7→ v C h and the right H-comodule structure

v 7→ v(0) ⊗ v(1) on V are induced by the correspondences in (1.4.6) and (1.4.8). What is

left to finish the proof is to show the equivalence of the right H-Hopf module condition

on H ⊗V to the compatibility condition (1.8) on V . Let’s write φ′ : (H ⊗V )⊗H →H ⊗V
for the diagonal right action on H ⊗ V , φ′′ : ((H ⊗ V ) ⊗H) ⊗H → (H ⊗ V ) ⊗H for the

diagonal right action on (H ⊗ V )⊗H and σ ′ : H ⊗ V → (H ⊗ V )⊗H for the codiagonal

right coaction on H ⊗V . So we have, for g,h ∈H and v ∈ V ,

σ ′(φ′((g ⊗ v)⊗ h)) = σ ′(gh1 ⊗ v C h2)

= ((gh1)1 ⊗ (v C h2)(0))⊗ (gh1)2(v C h2)(1)
= (g1h11 ⊗ (v C h2)(0))⊗ (g2h12)(v C h2)(1)
= (g1h1 ⊗ (v C h22)(0))⊗ (g2h21)(v C h22)(1)
= (g1h1 ⊗ (v C h22)(0))⊗ g2(h21(v C h22)(1)), (1.9)
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φ′′((σ ′ ⊗ idH )((g ⊗ v)⊗ h))

= φ′′(((g1 ⊗ v(0))⊗ g2v(1))⊗ h)

= (g1 ⊗ v(0)) · h1 ⊗ (g2v(1))h2
= (g1h11 ⊗ v(0) C h12)⊗ g2(v(1)h2)

= (g1h1 ⊗ v(0) C h21)⊗ g2(v(1)h22). (1.10)

Thereby if the condition (1.8) on V holds then the right hand sides of (1.9) and

(1.10) are equal, and thus the left hand sides of (1.9) and (1.10) are equal, that is, the

requirement that H ⊗ V be a right Hopf module is fulfilled. Conversely, if we assume

that H ⊗V is a right H̃-Hopf module, then by applying (ε⊗ (1V ⊗1H ))◦ a to the equation

(σ ′ ◦φ′)((1⊗ v)⊗ h) = (φ′′ ◦ (σ ′ ⊗ idH ))((1⊗ v)⊗ h) we obtain the condition (1.8) on V . �
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Chapter 2

Integral Calculus On Quantum

Exterior Algebras

2.1 Introduction

Let A be an algebra over a field K . A derivation d : A → Ω1 of a K-algebra A into

an A-bimodule is a K-linear map satisfying the Leibniz rule d(ab) = ad(b) + d(a)b for all

a,b ∈ A. The pair (Ω1,d) is called a first order differential calculus (FODC) on A. More

generally a differential graded algebra Ω =
⊕

n≥0Ω
n is an N-graded algebra with a

linear mapping d :Ω→Ω of degree 1 that satisfies d2 = 0 and the graded Leibinz rule.

This means that d(Ωn) ⊆ Ωn+1, d2 = 0 and for all homogeneous elements a,b ∈ Ω the

graded Leibniz rule:

d(ab) = d(a)b+ (−1)|a|ad(b) (2.1)

holds, where |a| denotes the degree of a, i.e. a ∈ Ω|a| (see for example [30]). We

shall call (Ω,d) an n-dimensional differential calculus on A if Ωm = 0 for all m ≥ n.

The zero component A = Ω0 is a subring of Ω and hence Ωn are A-bimodule for all

n > 0. In particular d : A → Ω1 is a bimodule derivation and (Ω1,d) is a FODC over

A. The elements of Ωn are then called n-forms and the product of Ω is denoted by ∧.

Given an FODC (Ω1,d) over A, a connection in a right A-module M is a K-linear map

∇0 :M→M ⊗AΩ1 satisfying

∇0(ma) = ∇0(m)a+m⊗A d(a) ∀a ∈ A,m ∈M. (2.2)
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In [15] T.Brzezinski introduced an adjoint version of a connection by defining the notion

of a right hom-connection as a pair (M,∇0), where M is a right A-module and ∇0 :

HomA(Ω1,M)→M is a K-linear map such that

∇0(f a) = ∇0(f )a+ f (d(a)) ∀a ∈ A,f ∈HomA(Ω
1,M) (2.3)

Here the multiplication (f a)(ω) := f (aω), for all ω ∈ Ω1, makes HomA(Ω1,M) a right

A-module. In case the FODC stems from a differential calculus (Ω,d), then a hom-

connection ∇0 on M can be extended to maps ∇m : HomA(Ωm+1,M) −→HomA(Ωm,M)

with

∇m(f )(v) = ∇(f v) + (−1)m+1f (dv), ∀f ∈HomA(Ω
m+1,M),v ∈Ωm. (2.4)

If ∇0∇1 = 0, the hom-connection ∇0 is called flat. In this paper we will be mostly inter-

ested in the case M = A. Set Ω∗m := HomA(Ωm,A) as well as Ω∗ =
⊕

mΩ∗m and define

∇ :Ω∗→Ω∗ by ∇(f ) = ∇m(f ) for all f ∈Ω∗m+1.

If ∇0 is flat, then (Ω∗,∇) builds up the integral complex:

· · ·
∇3−−−−−→ Ω∗3

∇2−−−−−→ Ω∗2
∇1−−−−−→ Ω∗1

∇0−−−−−→ A

It had been shown in [16, 18] that for some finite dimensional differential calculi the

integral complex is isomorphic to the de Rham complex given by (Ω,d):

A
d−−−−−→ Ω1

d−−−−−→ Ω2
d−−−−−→ Ω3

d−−−−−→ ·· ·

i.e. for certain algebras A and n-dimensional differential calculi Ω =
⊕n

m=0Ω
m it had

been proven that there is a commutative diagram

Ω∗n
∇n−1−−−−−→ Ω∗n−1

∇n−2−−−−−→ ·· ·
∇1−−−−−→ Ω∗1

∇0−−−−−→ A

Θ0

x Θ1

x Θn−1

x Θ

x
A

d−−−−−→ Ω1 d−−−−−→ ·· · d−−−−−→ Ωn−1 d−−−−−→ Ωn

in which vertical maps are right A-module isomorphisms: In this case, we say that A

satisfies the strong Poincaré duality with respect to (Ω,d) and ∇, following T.Brzezinski

[16].

The purpose of this chapter is to provide further examples of algebras whose cor-

responding de Rham and integral complexes are isomorphic with respect to some dif-

ferential calculi which contributes to the general study of algebras with this property. It

should be noticed that the Poincaré duality in the sense of M.Van den Bergh [79] (see

also the work of U.Krähmer [53]) is different.
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2.2 Twisted multi-derivations and hom-connections

From Woronowicz’ paper [80] it follows that any covariant differential calculus on a quan-

tum group is determined by a certain family of maps which had been termed twisted

multi-derivations in [18].

We recall from [18] that by a right twisted multi-derivation in an algebra A we mean

a pair (∂,σ ), where σ : A→Mn(A) is an algebra homomorphism (Mn(A) is the algebra

of n× n matrices with entries from A) and ∂ : A→ An is a k-linear map such that, for all

a ∈ A, b ∈ B,

∂(ab) = ∂(a)σ (b) + a∂(b). (2.5)

Here An is understood as an (A-Mn(A))-bimodule. We write σ (a) = (σij(a))
n
i,j=1 and

∂(a) = (∂i(a))
n
i=1 for an element a ∈ A. Then (2.5) is equivalent to the following n equa-

tions

∂i(ab) =
∑
j

∂j(a)σji(b) + a∂i(b), i = 1,2, . . . ,n. (2.6)

Given a right twisted multi-derivation (∂,σ ) on A we construct a FODC on the free left

A-module

Ω1 = An =
n⊕
i=1

Aωi (2.7)

with basis ω1, . . . ,ωn which becomes an A-bimodule by ωia =
∑n
j=1σij(a)ωj for all 1 ≤

i ≤ n. The map

d : A→Ω1, a 7→
n∑
i=1

∂i(a)ωi (2.8)

is a derivation and makes (Ω1,d) a first order differential calculus on A.

A map σ : A→Mn(A) can be equivalently understood as an element ofMn(Endk(A)).

Write • for the product in Mn(Endk(A)), I for the unit in Mn(Endk(A)) and σT for the

transpose of σ .

Definition 2.2.1 Let (∂,σ ) be a right twisted multi-derivation. We say that (∂,σ ) is free,

provided there exist algebra maps σ̄ : A→Mn(A) and σ̂ : A→Mn(A) such that

σ̄ • σT = I, σT • σ̄ = I , (2.9)

σ̂ • σ̄T = I, σ̄T • σ̂ = I . (2.10)
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Theorem [18, Theorem 3.4] showed that for any free right twisted multi-derivation

(∂,σ ; σ̄ , σ̂ ) on A, and associated first order differential calculus (Ω1,d) with generators

ωi , the map

∇ : HomA(Ω
1,A)→ A, f 7→

∑
i

∂σi (f (ωi)) . (2.11)

is a hom-conection, where ∂σi :=
∑
j,k σ̄kj◦∂j◦σ̂ki , for each i = 1,2, . . . ,n. Moreover ∇ had

been shown to be unique with respect to the property that ∇(ξi) = 0, for all i = 1,2, . . . ,n,

where ξi :Ω1→ A are right A-linear maps defined by ξi(ωj ) = δij , i, j = 1,2, . . . ,n.

We shall be mostly interested in right twisted multi-derivation (∂,σ ) that are upper

triangular, for which σij = 0 for all i > j holds. It had been shown in [18, Proposition 3.3]

that an upper triangular right twisted multi-derivation is free if and only if σ11, . . . ,σnn are

automorphisms of A.

2.3 Differential calculi on quantum exterior algebras

Let A be a unital associative algebra over a field K . Given an A-bimodule M which is

free as left and right A-module with basis {ω1, . . . ,ωn} one defines the tensor algebra of

M over A as

TA(M) = A⊕M ⊕ (M ⊗M)⊕M⊗3 ⊕ · · · =
∞⊕
n=0

M⊗n (2.12)

which is a graded algebra whose product is the concatenation of tensors and whose

zero component is A. Following [10, I.2.1] we call an n × n-matrix Q = (qij ) over K a

multiplicatively antisymmetric matrix if qijqji = qii = 1 for all i, j. The quantum exterior

algebra of M over A with respect to a multiplicatively antisymmetric matrix Q is defined

as ∧
Q(M) := TA(M)/〈ωi ⊗ωj + qijωj ⊗ωi ,ωi ⊗ωi | i, j = 1, . . . ,n〉.

This construction for a vector space M = V and a field A = K appears in [68, 78]. The

product of
∧Q(M) is written as ∧. The quantum exterior algebra is a free left and right

A-module of rank 2n with basis

{1} ∪ {ωi1 ∧ωi2 · · · ∧ωik | i1 < i2 < · · · < ik , 1 ≤ k ≤ n}.

Write sup(ωi1 ∧ ωi2 · · · ∧ ωik ) = {i1, i2 · · · , ik} for any basis element. Given a bimodule

derivation d : A→M, we will examine when d can be extended to an exterior derivation
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of
∧Q(M), i.e. to a graded map d :

∧Q(M)→
∧Q(M) of degree 1 such that d2 = 0 and

such that the graded Leibniz rule is satisfied.

aωi =
n∑
j=1

ωj σ̄ji(a) ∀a ∈ A,i = 1, . . . ,n. (2.13)

Proposition 2.3.1 Let (∂,σ ) be a right twisted multi-derivation of rank n on a K-algebra

A with associated FODC (Ω1,d). Let Q be an n×n multiplicatively antisymmetric matrix

over k. Then d : A → Ω1 can be extended to make Ω =
∧Q(Ω1) an n-dimensional

differential calculus on A with d(ωi) = 0 for all i = 1, . . . ,n if and only if

∂i∂j = qji∂j∂i , and ∂iσkj − qji∂jσki = qjiσkj∂i − σki∂j ∀i < j, ∀k. (2.14)

Proof: Suppose d extends to make Ω a differential calculus on A with d(ωi) = 0. Then

for all a ∈ A and k = 1, . . . ,n the following equations hold:

d(ωka) = d(ωk)a−ωk ∧ d(a) =
n∑
j=1

−ωk ∧∂j(a)ωj =
n∑

i,j=1

−σki(∂j(a))ωi ∧ωj (2.15)

d

 n∑
j=1

σkj(a)ωj

 = n∑
i,j=1

∂i(σkj(a))ωi ∧ωj +
n∑
j=1

σkj(a)d(ωj ) =
n∑

i,j=1

∂i(σkj(a))ωi ∧ωj (2.16)

Hence, as ωka =
∑n
j=1σkj(a)ωj and ωj ∧ωi = −qjiωi ∧ωj for i < j, we have

− σki∂j + qjiσkj∂i = ∂iσkj − qji∂jσki ∀i < j (2.17)

Furthermore d2 = 0 implies for all a ∈ A:

0 = d2(a) =
n∑

i,j=1

∂i∂j(a)ωi ∧ωj =
∑
i<j

(∂i∂j − qji∂j∂i)(a)ωi ∧ωj , (2.18)

which shows ∂i∂j = qji∂j∂i , for i < j.

On the other hand if (2.14) holds, then set for any homogeneous element aω ∈Ωm

with a ∈ A and ω =ωj1 ∧ωj2 ∧ · · · ∧ωjm , with j1 < j2 < · · · < jm, a basis element of Ωm:

d(aω) := d(a)∧ω =
n∑
i=1

∂i(a)ωi ∧ωj1 ∧ωj2 ∧ · · · ∧ωjm . (2.19)

We will show that d :Ω→Ω in that way, will satisfy d2 = 0 and the graded Leibniz rule.

For any aω ∈Ωm as above:

d2(aω) =
n∑

i,j=1

∂i∂j(a)ωi ∧ωj ∧ω =
n∑
i<j

(∂i∂j − qji∂j∂i)(a)ωi ∧ωj ∧ω = 0 (2.20)
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Since (2.6) implies that ∂i(1) =
∑
j ∂j(1)σji(1) + ∂i(1) = 2∂i(1), as σji(1) = 0 if i , j, we

have ∂i(1) = 0 and henced(ωi) = d(1)∧ωi = 0 for all i.

We prove the graded Leibniz rule

d(aω∧ bν) = d(aω)∧ bν + (−1)maω∧ d(bν) (2.21)

inductively on the grade of ω, where ω = ωj1 ∧ · · · ∧ωjm and ν = ωi1 ∧ · · · ∧ωik are basis

elements of Ω and a,b ∈ A. For a m = 0, ie. aω = a, equation (2.21) follows from the

definition and d(ν) = 0. Let m > 0 and suppose that (2.21) has been proven for all

basis elements ω of grade |ω| ≤m− 1. Let ω be a basis element with |ω| =m and write

ω =ω′ ∧ωk.

d(aω∧ bν) = d(aω′ ∧ωk ∧ bν)

=
n∑
j=1

d
(
aω′ ∧ σkj(b)ωj ∧ ν

)
=

n∑
j=1

d(aω′)∧ σkj(b)ωj ∧ ν + (−1)m−1
n∑
j=1

aω′ ∧ d
(
σkj(b)ωj ∧ ν

)
= d(aω′)∧ωk ∧ bν + (−1)m−1aω′ ∧

n∑
i,j=1

∂i(σkj(b))ωi ∧ωj ∧ ν

= d(aω)∧ bν − (−1)maω′ ∧
∑
i<j

[
∂i(σkj(b))− qji∂j(σki(b))

]
ωi ∧ωj ∧ ν

= d(aω)∧ bν + (−1)maω′ ∧
∑
i<j

[
σki(∂j(b))− qjiσkj(∂i(b))

]
ωi ∧ωj ∧ ν

= d(aω)∧ bν + (−1)maω′ ∧
n∑

i,j=1

σki(∂j(b))ωi ∧ωj ∧ ν

= d(aω)∧ bν + (−1)maω′ ∧ωk ∧
n∑
j=1

∂j(b)ωj ∧ ν

= d(aω)∧ bν + (−1)maω∧ d(bν)

which shows the graded Leibniz rule, where the induction hypothesis has been used in

the third line and where (2.14) has been used in the sixth line . �

Suppose that (∂,σ ) is a free right twisted multi-derivation satisfying the equations

(2.14) and that (Ω,d) is the associated n-dimensional differential calculus over A for

some n × n matrix Q. Then, as mentioned above, ∇ : HomA(Ω1,A) → A with ∇(f ) =
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∑n
i=1∂

σ
i (f (ωi)) for all f ∈ HomA(Ω1,A) is hom-connection. For each 1 ≤ m < n one

defines also ∇m : HomA(Ωm+1,A) −→HomA(Ωm,A) with

∇m(f )(u) = ∇(f u) + (−1)m+1f (d(u)), ∀f ∈HomA(Ω
m+1,A),u ∈Ωm, (2.22)

where f u ∈HomA(Ω1,A) is defined by f u(v) = f (u∧v) for all v ∈Ω1. As every element

u ∈ Ωm can be uniquely written as a right A-linear combination of basis elements ω =

ωi1 ∧ · · · ∧ωim and since ∇m(f ) is right A-linear and furthermore by Proposition 2.3.1

d(ω) = 0 is satisfied, we conclude that for u =ωa:

∇m(f )(ωa) = ∇m(f )(ω)a = ∇(f ω)a+ (−1)m+1f (d(ω))a = ∇(f ω)a (2.23)

holds. If ∂σi (1) = 0 for all i, the hom-connection is flat, because for any dual basis

element f = βs,t ∈HomA(Ω2,A) with s < t, i.e. βs,t(ωi ∧ωj ) = δs,iδt,j one has

∇(∇1(f )) =
n∑
i=1

∂σi (∇1(f )(ωi)) =
n∑
i=1

∂σi (∇(f ωi))

=
n∑
i=1

n∑
j=1

∂σi (∂
σ
j (f (ωi ∧ωj ))) = ∂

σ
s (∂

σ
t (1)) = 0.

Set Ω∗ = HomA(Ω,A) =
⊕n

m=0HomA(Ωm,A) and note that ∇ induces a map of

degree −1 on Ω∗. We want to establish an isomorphism between the de Rham complex

given by d :Ω→Ω and the integral complex given by ∇ :Ω∗→Ω∗. More precisely we

are looking for a bijective chain map Θ : (Ω,d)→ (Ω∗,∇) such that the following diagram

commutes:

A
d−−−−−→ Ω1 d−−−−−→ ·· · d−−−−−→ Ωn−1 d−−−−−→ Ωn

Θ0

y Θ1

y Θn−1

y Θn

y
HomA(Ωn,A) −−−−−→

∇n−1
HomA(Ωn−1,A) −−−−−→

∇n−2
· · · −−−−−→

∇1
HomA(Ω1,A) −−−−−→

∇
A

One attempt is to define the maps Θm via the dual basis element of Ωn. Define

ω =ω1 ∧ · · · ∧ωn ∈Ωn

for the base element of Ωn. Let β ∈Ωn∗ be the dual basis of Ωn as a right A-module, i.e.

β(ωa) = a for all a ∈ A. For any 0 ≤ m < n define Θm : Ωm −→ HomA(Ωn−m,A) through
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Θm(v) = (−1)m(n−1)βv for all v ∈Ωm. Note that Θn = β. Moreover the maps Θm are right

A-linear taking into account the right A-module structure of HomA(Ωn−m,A), namely for

a ∈ A,v ∈Ωm and w ∈Ωn−m:

Θm(va)(w) = (−1)m(n−1)β(va∧w) = (−1)m(n−1)β(v ∧ aw) =Θm(v)(aw) = (Θm(v)a)(w).

Hence Θm(va) =Θm(v)a.

For a certain class of twisted multi-derivations, extended to a quantum exterior al-

gebra, we will show that the maps Θm are always isomorphisms. We say that a twisted

multi-derivation (∂,σ ) on an algebra A is upper triangular if σij = 0 for all i > j. By [18,

Proposition 3.3] any upper triangular twisted multi-derivation is free if and only if σii are

automorphisms of A for all i. The corresponding maps σ̄ and σ̂ are defined inductively

by σ̄ii = σ
−1
ii for all i, σ̄ij = −

∑i−1
k=j σ

−1
ii σki σ̄kj for all i > j and σ̄ij = 0 for i < j. The map σ̂ is

defined analogously using σ̄ .

Theorem 2.3.2 Let (∂,σ ) be a free upper triangular twisted multi-derivation on A with

associated FODC (Ω1,d). Suppose that d : A→Ω1 can be extended to an n-dimensional

differential calculus (Ω,d) where Ω =
∧Q(Ω1) is the quantum exterior algebra of Ω1 for

some matrix Q. Then the following hold:

1. ωa = det(σ )(a)ω, for all a ∈ A, where det(σ ) = σ11 ◦ · · · ◦ σnn.

2. The maps Θm : Ωm → HomA(Ωn−m,A) given by Θm(v) = (−1)m(n−1)βv for all v ∈
Ωm are isomorphisms of right A-modules.

3. Moreover if

∂σi =

∏
j

qij

 det(σ )−1∂i det(σ ) ∀i = 1, . . . ,n (2.24)

holds, then Θ = (Θm)
n
m=0 is a chain map, that is, A satisfies the strong Poincaré

duality with respect to (Ω,d) in the sense of T.Brzezinski.

Proof: (1) By the definition of the bimodule structure of
∧Q(Ω1) and by the fact that σ̄

is lower triangular we have

aω =
∑
jn≥n
· · ·

∑
j1≥1

ωj1 ∧ · · · ∧ωjn σ̄njn ◦ · · · ◦ σ̄1j1(a).
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By the definition of the quantum exterior algebra the non-zero terms ωj1 ∧ · · ·∧ωjn must

have distinct indices, i.e. jk , jl for all k , l. In particular jn = n and hence inductively

we can conclude that ji = i for all i. This shows that aω =ω det(σ )−1(a).

(2) For every basis element of ω = ωi1 ∧ · · · ∧ωin−m of Ωn−m, there exists a unique

complement basis element ω′ = ω′j1 ∧ · · · ∧ω
′
jm

of Ωm such that ω′ ∧ω , 0. Let Cω be

the non-zero scalar such that ω′ ∧ω = Cωω Let f ∈ HomA(Ωn−m,A) be any non-zero

element and set

aω = (−1)m(n−1)C−1ω det(σ )(f (ω))

for any basis element ω ∈Ωn−m. Set v =
∑
aωω

′. Then

Θm(v)(ω) = (−1)m(n−1)β(aωω
′∧ω) = (−1)m(n−1)β(aωCωω) = det(σ )−1(det(σ )(f (ω)) = f (ω).

Hence Θm(v) = f , which shows that Θm is surjective. To prove injectivity, assume that

v =
∑
aωω

′ ∈Ωm is an element such that Θm(v) is the zero function. Then for any basis

element ω ∈Ωn−m, one has

Θm(v)(ω) = (−1)m(n−1)β(aωω
′ ∧ω) = (−1)m(n−1)Cω det(σ )−1(aω) = 0

which implies aω to be zero. Thus v = 0 and Θm is an isomorphism.

(3) We will show that (Θm)m is a chain map, i.e. that Θm+1 ◦ d = ∇n−m−1 ◦Θm. Let

ω = ωj1 ∧ · · · ∧ ωjm be a basis element of Ωm and let a ∈ A. For any basis element

ν =ωk1 ∧ · · · ∧ωkn−m−1 ∈Ω
n−m−1 we have

Θm+1(d(aω))(ν) = (−1)(m+1)(n−1)
n∑
i=1

β(∂i(a)ωi ∧ω∧ ν).

On the other hand

∇n−m−1(Θm(aω))(ν) = (−1)m(n−1)∇(β(aω∧ ν) = (−1)m(n−1)
n∑
i=1

∂i(β(aω∧ ν ∧ωi)),

as d(ν) = 0. Note that Θm+1(d(aω))(ν) = 0 and ∇n−m−1(Θm(aω))(ν) = 0 if sup(ω) ∩
sup(ν) , ∅. Hence suppose that ω and ν have disjoint support. Then there exists a

unique index i that does not belong to sup(ω)∪ sup(ν). Let C be the constant such that

ω∧ ν ∧ωi = Cω.

Recall also that by the definition of the quantum exterior algebra we have:

ωi ∧ω∧ ν =

∏
j,i

−qij

ω∧ ν ∧ωi = (−1)n−1C

∏
j

qij

ω.
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Note that hypothesis (2.24) is moreover equivalent to

∂σi ◦ det(σ )
−1 =

∏
j

qij

 det(σ )−1 ◦∂i (2.25)

These equations yield now the following:

Θm+1(d(aω))(ν) = (−1)(m+1)(n−1)β(∂i(a)ωi ∧ω∧ ν)

= (−1)m(n−1)C

∏
j

qij

β(∂i(a)ω)
= (−1)m(n−1)C

∏
j

qij

 det(σ )−1(∂i(a))
= (−1)m(n−1)C ∂σi

(
det(σ )−1(a)

)
= ∂σi

(
(−1)m(n−1)C β(aω)

)
= ∂σi

(
(−1)m(n−1)β(aω∧ ν ∧ωi)

)
= ∇n−m−1 (Θm(aω)(ν))

Thus Θm+1 ◦ d = ∇n−m−1 ◦Θm. Hence Θ is a chain map between the de Rham and the

integral complexes of right A-modules.

�

Remark 1 Let (∂,σ ) be an upper-triangular twisted multi-derivation of rank n on A and

letQ be an n×nmatrix with qijqji = qii = 1. The conditions to extend the multi-derivations

to the quantum exterior algebra Ω =
∧Q(Ω1) such that the complex of integral forms on

A and the de Rham complex are isomorphic with respect to (Ω,d) are:

1. σii is an automorphism of A for all i;

2. ∂i∂j = qji∂j∂i for all i < j;

3. ∂iσkj − qjiσkj∂i = qji∂jσki − σki∂j for all i < j and all k;

4. ∂σi =
(∏

j qij
)
det(σ )−1∂i det(σ ) for all i.

2.4 Differential calculi from skew derivations

The simplest bimodule structure on Ω1 = An is a diagonal one, i.e. if σij = δijσi for all

i, j where σ1, . . . ,σn are endomorphisms of A. Moreover if σ is diagonal and (∂,σ ) is a
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right twisted multi-derivation on A, then the maps ∂i are right σi-derivations, i.e. for all

a,b ∈ A and i:

∂i(ab) = ∂i(a)σi(b) + a∂i(b). (2.26)

Conversely, given any right σi-derivations ∂i on A, for i = 1, . . . ,n one can form a corre-

sponding diagonal twisted multi-derivation (∂,σ ) on A. Such diagonal twisted multi-

derivation (∂,σ ) is free if and only if the maps σ1, . . . ,σn are automorphisms. The

associated A-bimodule structure on Ω1 = An with left A-basis ω1, . . . ,ωn is given by

ωia = σi(a)ωi for all i and a ∈ A. From Proposition 2.3.1 we obtain the following corol-

lary for diagonal bimodule structures.

Corollary 2.4.1 Let A be an algebra over a field K , σi automorphisms and ∂i right

σi-skew derivations on A, for i = 1, . . . ,n and let (Ω1,d) be the associated first order

differential calculus on A.

1. The derivation d : A→Ω1 extends to an n-dimensional differential calculus (Ω,d)

where Ω =
∧Q(Ω1) is the quantum exterior algebra with respect to some Q such

that d(ωi) = 0 for all i = 1, . . . ,n if and only if

∂iσj = qjiσj∂i and ∂i∂j = qji∂j∂i ∀i < j (2.27)

2. If ∂iσj = qjiσj∂i for all i, j and ∂i∂j = qji∂j∂i for all i < j, then the de Rham and the

integral complexes on A are isomorphic relative to (Ω,d).

Proof: (1) Since σki = 0 for all k , i, equation (2.14) reduces to equation (2.27).

(2) Note that ∂σi = σ−1i ∂iσi = ∂i . On the other hand by hypothesis ∂i det(σ ) =(∏
j qji

)
det(σ )∂i . Hence ∏

j

qij

 det(σ )−1∂i det(σ ) = ∂i = ∂σi .
Thus by Theorem 2.3.2, A satisfies the strong Poincaré duality with respect to (Ω,d) in

the sense of T.Brzeziński. �
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2.5 Multivariate quantum polynomials

Let K be a field, n > 1, and Q = (qij ) a n×n multiplicatively antisymmetric matrix over K .

The multivariate quantum polynomial algebra with respect to Q is defined as:

A = OQ(Kn) := K〈x1, . . . ,xn〉/〈xixj − qijxjxi | 1 ≤ i, j ≤ n〉.

This means that xi and xj commute up to the scalar qij in A. Moreover every element

is a linear combination of ordered monomials xα = xα1
1 · · ·x

αn
n with α = (α1, . . . ,αn) ∈Nn.

The set of n-tuples N
n is a submonoid of Z

n by componentwise addition. For any

α ∈ Z we set xα = 0 if there exists i = 1, . . . ,n such that αi < 0. Furthermore N
n is

partially ordered as follows: α ≤ β if and only if αi ≤ βi ,i = 1, · · · ,n for α,β ∈Nn. If α ≤ β,

then β −α ∈Nn and xβ−α , 0.

For two generic monomials xα and xβ with α,β ∈Nn one has

xαxβ =

 ∏
1≤j<i≤n

q
αiβj
ij

xα+β = µ(α,β)xα+β , (2.28)

where µ(α,β) =
∏

1≤j<i≤n q
αiβj
ij . The algebra A has been well-studied by Artamonov

[5, 6] as well by Goodearl and Brown [10] and others. The Manin’s quantum n-space is

obtained in case there exists q ∈ K with qij = q for all i < j. In particular for n = 2 one

obtains the quantum plane.

We define automorphisms σ1, . . . ,σn and right σi-derivations of A as follows: For a

generic monomial xα with α ∈Nn one sets

σi(x
α) := λi(α)x

α and ∂i(x
α) := αiδi(α)x

α−εi (2.29)

where λi(α) =
∏n
j=1 q

αj
ij , δi(α) =

∏
i<j q

αj
ij and εi ∈ N

n such that εij = δij . Let δi(α) =∏
i>j q

αj
ij and note that λi(α) = δi(α)δi(α). Since µ(α,β) = µ(α − εi ,β)δi(β) if αi , 0 and

µ(α,β) = µ(α,β − εi)δi(α)−1 if βi , 0, we have:

∂i(x
αxβ) = (αi + βi)µ(α,β)δi(α + β)xα+β−ε

i

= αiµ(α − εi ,β)δi(β)δi(α)δi(β)xα−ε
i+β + βiµ(α,β − εi)δi(α)−1δi(α)δi(β)xα+β−ε

i

= αiδi(α)x
α−εiλi(β)x

β + xαβiδi(β)x
β−εi

= ∂i(x
α)σi(x

β) + xα∂i(x
β)
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Let i < j and α ∈Nn. Then δj(α − εi) = δj(α), while δi(α − εj ) = δi(α)qji . Hence

∂j(∂i(x
α)) = αiαjδi(α)δj(α − εi)xα−ε

i−εj = αiαjqijδi(α − εj )δj(α)xα−ε
i−εj = qij∂i(∂j(x

α))

(2.30)

Thus ∂j∂i = qij∂i∂j for all i < j.

Let i ≤ j and α ∈Nn. Then

σi(∂j(x
α)) = αjδj(α)λi(α−εj )xα−ε

j
= αjδj(α)λi(α)qjix

α−εj = qjiλi(α)∂j(x
α) = qji∂j(σi(x

α)).

(2.31)

Hence σi∂j = qji∂jσi for all i ≤ j. By Corollary 2.4.1 we can conclude:

Corollary 2.5.1 Let A = OQ(Kn) be the multivariate quantum polynomial algebra and

let Ω =
∧Q(Ω1) be the associated quantum exterior algebra. Then the derivation d :

A→Ω1 with d(xα) =
∑n
i=1∂i(x

α)ωi makes Ω into a differential calculus such that the de

Rham complex and the integral complex are isomorphic.

2.6 Manin’s quantum n-space

In this section we will show that for a special case of the multivariate quantum poly-

nomial algebra there exists a differential calculus whose bimodule structure is not di-

agonal, but upper triangular and nevertheless the de Rham complex and the integral

complex are isomorphic.

Let q ∈ K \ {0}. For the matrix Q = (qij ) with qij = q and qji = q−1 for all i < j and

qii = 1, the algebra OQ(Kn) is called the coordinate ring of quantum n-space or Manin’s

quantum n-space and will be denoted by A = Kq[x1, . . . ,xn]. We have the following

defining relations of the algebra A

xixj = qxjxi , i < j. (2.32)

Note that for α ∈Nn and 1 ≤ i ≤ n we have:

λi(α)x
αxi = xα+ε

i
= λi(α)xix

α ,

where

λi(α) =
∏
i<j

qαj and λi(α) =
∏
j<i

q−αj .
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More generally

xα+β =

n−1∏
j=1

λj(α)
βj

xαxβ = ∏
1≤s<j≤n

qαsβjxαxβ

Let µ(α,β) be the scalar such that xαxβ = µ(α,β)xα+β .

We take the following two-parameter first order differential calculus Ω1 (see [51,

p.468] for the case p = q2 and [18, Example 3.9] for the case n = 2), which is freely

generated by {ω1, . . .ωn} over A subject to the relations

ωixj = qxjωi + (p − 1)xiωj , i < j, (2.33)

ωixi = pxiωi , (2.34)

ωjxi = pq
−1xiωj , i < j, (2.35)

There exists an algebra map σ : A → Mn(A) whose associated matrix of endomor-

phisms σ = (σij ) is upper triangular and such that ωixα =
∑
i≤j σij(x

α)ωj . The next

lemma will characterize the algebra map σ . For any α ∈Nn and i = 1, . . . ,n set πi(α) =∏
s<i p

αs .

Lemma 2.6.1 For α ∈Nn the entries of the matrix σ (xα) are as follows σij(xα) = 0 for

i > j and

σij(x
α) = ηij(α)x

α+εi−εj where ηij(α) =


πj(α)λi(α)λj(α)(p

αj − 1) for i < j,

πi(α)λi(α)λi(α)pαi for i = j

Proof: Fix a number i between 1 and n. We prove the relations for σij by induction on

the length of α, which by length we mean |α| = α1 + · · · + αn. For |α| = 0 the relation is

clear, because αj = 0 for all j, i.e. xα = 1. Hence ωixα = ωi , i.e. σij(xα) = δij . Since

pαj − 1 = 0 for all j and pαi = 1 the relation holds.

Now suppose that m ≥ 0 and that the relations (2.6.1) hold for all α ∈Nn of length

m. Let β ∈Nn be an element of length m+ 1 and let k be the largest index j such that

βj , 0. Set α = β − εk, i.e. β = α + εk. We have to discuss the three cases k < i, k = i

and k > i.

If k < i, then for all i < j, αj = 0, i.e. σij(xα) = 0. Hence

ωix
β =ωix

αxk = σii(x
α)ωixk = pq

−1σii(x
α)xkωi = pπi(α)q

−1λi(α)x
αxkωi = πi(β)λi(β)x

βωi ,
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since λi(α) = pαi = 1, πi(α + εk) = pπi(α) and λi(α + εk) = q−1λi(α) for any k < i and

α ∈Nn. Thus σii(xβ) = πi(β)λi(β)λi(β)pβixβ .

If k = i, then again σij(xα) = 0 for all j > i. Moreover λj(α) = 1 for all j > i. Thus

ωix
β = σii(x

α)ωixi = σii(x
α)pxiωi = πi(α)λi(α)p

αi+1xαxiωi = πi(β)λi(β)p
βixβωi ,

since αs = βs for all s < i, i.e. πi(β) = πi(α) and λi(β) = λi(α).

If i < k, then note that σij(xα) = 0 for all k < j, because pαj = 1. Thus

ωix
β = σii(x

α)ωixk +
∑
i<j<k

σij(x
α)ωjxk + σik(x

α)ωkxk

= σii(x
α)[qxkωi + (p − 1)xiωk] +

∑
i<j<k

σij(x
α)[qxkωj + (p − 1)xjωk] + σik(xα)pxkωk

= qσii(x
α)xkωi +

∑
i<j<k

qσij(x
α)xkωj

+

(p − 1)σii(xα)xi + ∑
i<j<k

(p − 1)σij(xα)xj + pσik(xα)xk

︸                                                               ︷︷                                                               ︸
(∗)

ωk

Note that for any j < k we have qλj(α) = λj(β). Hence qσij(xα)xk = σij(xβ) for all j < k.

It is left to show that the expression (∗) equals σik(xβ). Recall that λl(α)xαxl = xα+ε
l
.

Hence λj(α)xα+ε
i−εjxj = xα+ε

i
. Note also that pαjπj(α) = πj+1(α).

(∗) = (p − 1)λi(α)

πi(α)λi(α)pαixαxi + ∑
i<j<k

πj(α)λj(α)(p
αj − 1)xα+ε

i−εjxj

+ pσik(xα)xk
= (p − 1)λi(α)

pαiπi(α) + ∑
i<j<k

πj(α)(p
αj − 1)

xα+εi + pσik(xα)xk
= (p − 1)λi(α)

πi+1(α) + ∑
i<j<k

(πj+1(α)−πj(α))

xα+εi + pπk(α)λi(α)(pαk − 1)xα+εi
= (p − 1)λi(α) [πi+1(α) +πk(α)−πi+1(α)]xα+ε

i
+ pπk(α)λi(α)(p

αk − 1)xα+ε
i

= λi(α) [(p − 1)πk(α) + pπk(α)(pαk − 1)]xα+ε
i

= λi(α)(p
αk+1 − 1)πk(α)xα+ε

i

= πk(β)λi(β)λk(β)(p
βk − 1)xβ+ε

i−εk = σik(x
β),

since λk(β) = 1 = λk(α) and πk(α) = πk(β) as α and β differ only in the kth position. �
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We will define a derivation d : Kq[x1, . . . ,xn]→ Ω1 such that d(xi) = ωi for all i. For

any α ∈Nn we set d(xα) =
∑n
i=1∂i(x

α)ωi where

∂i(x
α) = δi(α)x

α−εi and δi(α) = πi(α)λi(α)
pαi − 1
p − 1

. (2.36)

for all i = 1, . . . ,n. Note that for i,k we have:

δi(α) = q
∓1δi(α ± εk), if i < k and δi(α) = p

∓1δi(α ± εk), if i > k.

Lemma 2.6.2 The pair (∂,σ ) is a right twisted multi-derivation of Kq[x1, . . . ,xn] satisfying

the equations (2.14) with respect to the multiplicatively antisymmetric matrix Q′ whose

entries are Q′ij = p
−1q for i < j. In particular

∂i∂j = pq
−1∂j∂i , ∀i < j (2.37)

holds as well as for all i,k, j:

∂iσkj = pq−1σkj∂i , i < k ≤ j

∂iσkj = pq−1∂jσki , k < i < j

σki∂j = pq−1σkj∂i , k < i < j

∂iσij − pq−1∂jσii = pq−1σij∂i − σii∂j , i < j

Proof: Let α,β ∈Nn. To prove that the pair (∂,σ ) is a right twisted multi-derivation, we

show the following n equations hold

∂l(x
αxβ) =

∑
k

∂k(x
α)σkl(x

β) + xα∂l(x
β), l = 1, ...,n. (2.38)

Since xixj = q−1xjxi for i > j, we have xαii x
βj
j = q−αiβjx

βj
j x

αi
i for i > j, and hence xαxβ =

µ(α,β)xα+β , where µ(α,β) =
∏

1≤r<s≤n q
−αsβr . We then obtain

∂l(x
αxβ) = µ(α,β)δl(α + β)xα+β−ε

l
= πl(α + β)λl(α + β)

pαl+βl − 1
p − 1

µ(α,β)xα+β−ε
l
.
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On the other hand, we compute

n∑
k=1

∂k(x
α)σkl(x

β)

=
l−1∑
k=1

∂k(x
α)σkl(x

β) +∂l(x
α)σll(x

β)

=
l−1∑
k=1

δk(α)πl(β)λk(β)λl(β)(p
βl − 1)xα−ε

k
xβ+ε

k−εl + pβlδl(α)πl(β)λl(β)λl(β)x
α−εlxβ

=

πl(β)pβl − 1p − 1

l−1∑
k=1

πk(α)(p
αk − 1) + pβlπl(α + β)

pαl − 1
p − 1

λl(α + β)µ(α,β)xα+β−ε
l

=
[
πl(β)

pβl − 1
p − 1

(πl(α)− 1) + pβlπl(α + β)
pαl − 1
p − 1

]
λl(α + β)µ(α,β)xα+β−ε

l

=
[
πl(α + β)

pαl+βl − 1
p − 1

−πl(β)
pβl − 1
p − 1

]
λl(α + β)µ(α,β)xα+β−ε

l
(2.39)

where the third equality holds because

λk(α)λk(β)x
α−εkxβ+ε

k−εl = λl(α)µ(α,β)x
α+β−εl and xα−ε

l
xβ = λl(β)µ(α,β)x

α+β−εl .

The fourth equation follows since πk(α)pαk = πk+1(α). As we also have

xα∂l(x
β) = δl(β)x

αxβ−ε
l
= πl(β)λl(α + β)

pβl − 1
p − 1

µ(α,β)xα+β−ε
l
. (2.40)

We can conclude, combining (2.39) and (2.40) that (2.38) holds:

n∑
k=1

∂k(x
α)σkl(x

β) + xα∂l(x
β) = πl(α + β)λl(α + β)

pαl+βl − 1
p − 1

µ(α,β)xα+β−ε
l
= ∂l(x

αxβ).

(2.41)

For any i < j we have:

∂i∂j(x
α) = δi(α − εj )δj(α)xα−ε

i−εj = q−1δi(α)pδj(α − εi)xα−ε
i−εj = pq−1∂j∂i(x

α) (2.42)

For i < k < j, we have ηkj(α) = pq−1ηkj(α − εi). Hence

σkj∂i(x
α) = δi(α)ηkj(α − εi)xα−ε

i+εk−εj = p−1qηkj(α)δi(α)x
α−εi+εk−εj = p−1q∂i(σkj(x

α))

(2.43)

which shows that ∂iσkj = pq−1σkj∂i for all i < k < j.
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For i < k = j, we have ηjj(α) = pq−1ηjj(α − εi). Thus

∂iσjj(x
α) = ηjj(α)δi(α)x

α−εi = pq−1δi(α)ηjj(α − εi)xα−ε
i
= pq−1σjj(∂i(x

α)), (2.44)

showing ∂iσjj = pq−1σjj∂i for i < j.

For k < i < j using ηkj(α)δi(α) = ηki(α)δj(α) we get:

∂iσkj(x
α) = ηkj(α)δi(α + εk − εj )xα−ε

i+εk−εj (2.45)

= pq−1ηkj(α)δi(α)x
α−εi+εk−εj

= pq−1ηki(α)δj(α)x
α−εi+εk−εj

= pq−1ηki(α)δj(α + εk − εi)xα−ε
i+εk−εj = pq−1∂jσki(x

α)

showing ∂iσkj(xα)− pq−1∂jσki(xα) = 0. In a similar way, the relation

pq−1σkj∂i(x
α)− σki∂j(xα) = 0

holds for k < i < j. Lastly, we show that the equations

∂iσij(x
α)− pq−1∂jσii(xα) = pq−1σij∂i(xα)− σii∂j(xα), i < j

are satisfied, because of the following equations for i < j

σii∂j(x
α) =

q−1pαi

p − 1
ηij(α)πi(α)λi(α)x

α−εj = q−1∂jσii(x
α)

∂iσij(x
α) =

q−1

p − 1
ηij(α)πi(α)λi(α)(p

αi+1 − 1)xα−ε
j
,

σij∂i(x
α) =

p−1(pαi − 1)
p − 1

ηij(α)πi(α)λi(α)x
α−εj ,

By using these equations we attain the equation:

∂iσij(x
α)− pq−1∂jσii(xα) = −

q−1

p − 1
ηij(α)πi(α)λi(α)x

α−εj

and

pq−1σij∂i(x
α)− σii∂j(xα) = −

q−1

p − 1
ηij(α)πi(α)λi(α)x

α−εj ,

which completes the proof the lemma. �

Denote by Ω =
∧p−1q(Ω1) the quantum exterior algebra of Ω1 over Kq[x1, . . . ,xn] with

respect to the matrix Q′.
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Theorem 2.6.3 The derivation d : Kq[x1, . . . ,xn]→Ω1 extends to a differential calculus∧p−1q(Ω1) on Kq[x1, . . . ,xn]. Furthermore the de Rham and the integral complex associ-

ated to the differential calculus (
∧p−1q(Ω1),d) are isomorphic.

Proof: The first statement follows from Proposition 2.3.1 and Lemma 2.6.2. We have an

upper-triangular σ = (σij ) matrix by Lemma 2.6.1, of which the diagonal entries σii , i =

1, . . . ,n are automorphisms. Hence we construct the corresponding lower-triangular ma-

trix σ̄ according to [18, Proposition 3.3]. The entries of σ̄ are σ̄ij = 0 for i < j and

σ̄ii = σ
−1
ii while

σ̄ij(x
α) = qπi(α)

−1λj(α)
−1λi(α)

−1(p−αi − 1)qαj−αixα+ε
j−εi , (2.46)

for α ∈Nn and i > j. Applying [18, Proposition 3.3] again yields the map σ̂ . The entries

of σ̂ are σ̂ij = 0 for i > j and σ̂ii = σii while σ̂ij = pj−iσij for i < j.

By using these formulas for the entries of the matrices σ̄ (xα) and σ̂ (xα), we obtain

an explicit expression for

∂σi (x
α) =

∑
1≤j≤k≤i

σ̄kj ◦∂j ◦ σ̂ki(xα).

for any fixed i = 1, . . . ,n. For j < k < i we get:

σ̄kj ◦∂j ◦ σ̂ki(xα) = −pi−kπj(α)πk(α)−1(p − p−αk )(pαj − 1)∂i(xα)

while for j = k < i we have:

σ̄kk ◦∂k ◦ σ̂ki(xα) = pi−k(p − p−αk )∂i(xα)

Thus for any k < i we get the partial sum:

Λk =
k∑
j=1

σ̄kj ◦∂j ◦ σ̂ki(xα)

=
k−1∑
j=1

−pi−kπj(α)πk(α)−1(p − p−αk )(pαj − 1)∂i(xα) + pi−k(p − p−αk )∂i(xα)

=

1− k−1∑
j=1

πj(α)(p
αj − 1)πk(α)−1

pi−k(p − p−αk )∂i(xα)
= [πk(α)−πk(α) + 1]πk(α)

−1pi−k(p − p−αk )∂i(xα) = πk(α)−1pi−k(p − p−αk )∂i(xα)
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Similarly, for k = i we have for j < k = i: σ̄ij◦∂j◦σ̂ji(xα) = −pπj(α)(pαj−1)πi(α)−1∂i(xα)
and for j = k = i we have σ̄ii ◦∂i ◦ σ̂ii(xα) = p∂i(xα). This gives

Λi =
i∑
j=1

σ̄ij ◦∂j ◦ σ̂ii(xα) = pπi(α)−1∂i(xα).

The sum of these partial sums Λk yields:

∂σi (x
α) =

i∑
k=1

Λk =
i−1∑
k=1

πk(α)
−1pi−k(p − p−αk )∂i(xα) + pπi(α)−1∂i(xα)

=

 i−1∑
k=1

πk(α)
−1pi−k(p − p−αk ) + pπi(α)−1

∂i(xα)
= pλi(α)

pαi − 1
p − 1

1+ pi−1 i−1∑
k=1

p−k(pαk+1 − 1)

 ∏
k<s<i

pαs


xα−εi

= pλi(α)
pαi − 1
p − 1

1+ pi−1 i−1∑
k=1

(p−(k−1)
 ∏
k−1<s<i

pαs

− p−k
 ∏
k<s<i

pαs



xα−εi

= pλi(α)
pαi − 1
p − 1

[
1+ pi−1

(
πi(α)− p−(i−1)

)]
xα−ε

i

= pi∂i(x
α)

In order to apply Theorem 2.3.2, we need to calculate det(σ ) as well as
∏
j q
′
ij

where Q′ = (q′ij ) is the corresponding multiplicatively antisymmetric matrix with q′ij =

p−1q for i < j. Let α ∈ N
n. By Theorem 2.3.2 it is enough to show that ∂σi (x

α) =(∏
j q
′
ij

)
det(σ )−1(∂i( det(σ )(xα))) holds, i.e.

pi∂i(x
α) =

∏
j

q′ijηjj(α)ηjj(α − ε
i)−1

∂i(xα).
By the definition of ηij we obtain p−1qηjj(α)ηjj(α−εi)−1 = 1 for i < j and pq−1ηjj(α)ηjj(α−
εi)−1 = p for i > j, while ηii(α)ηii(α − εi)−1 = p. Hence the product of the q′ijηjj(α)ηjj(α −
εi)−1 equals pi and by Theorem 2.3.2 Kq[x1, . . . ,xn] satisfies the strong Poincaré duality

with respect to the differential calculus (
∧p−1q(Ω1),d).

�
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Chapter 3

Covariant Bimodules Over

Monoidal Hom-Hopf Algebras

3.1 Introduction

Covariant bimodules have been studied in [82] to construct differential calculi on Hopf

algebras over a field k. The concept of bicovariant bimodule (or Hopf bimodule) in [82]

is considered as Hopf algebraic analogue to the notion of vector bundle over a Lie group

equipped with the left and right actions of the group, that is, it replaces the the module

of differential 1-forms of a Lie group, which is a H-bimodule and a H-bicomodule sat-

isfying Hopf module compatibility condition between each of the H-actions and each of

H-coactions. The structure theory of covariant bimodules in a coordinate-free setting

was introduced in [72], where bicovariant bimodules are termed two-sided two-cosided

Hopf modules; see also [51] for a detailed discussion of the theory both in coordinate-

free setting and in coordinate form. With regard to knot theory and solutions of the

quantum Yang-Baxter equation, the notion of a Yetter Drinfeld module over a bialgebra

H has been investigated profoundly in [95, 71], where it is defined as an H-module and

an H-comodule with a compatibility condition different than the one describing a Hopf

module. One of the most essential features in [95, 71] is the fact that Yetter-Drinfel’d

modules over a bialgebra H constitute a prebraided monoidal category which is braided

monoidal one if H is a Hopf algebra with an invertible antipode. For a symmetric tensor

category admitting (co-)equalizers the main result (Thm. 5.7) in [72] expresses that the

structure theorem of Hopf modules extends to an equivalence between the category of
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bicovariant bimodules and the category of Yetter-Drinfeld modules over an Hopf algebra

H . If the category of Hopf bimodules is equipped with a monoidal structure over H and

the category of Yetter-Drinfeld modules is endowed with a tensor product over k with

the diagonal action and codiagonal coaction, then the aforementioned equivalence is

braided monoidal as well, in case H has a bijective antipode.

In the present chapter, we introduce the notions of left(right)-covariant Hom-bimodules

and bicovariant Hom-bimodules to have twisted, generalized versions of the concepts

of left(right)-covariant bimodules and bicovariant bimodules. Afterwards, we study the

structure theory of covariant bimodules over monoidal Hom-Hopf algebras in coordinate-

free setting and then we summarize the main results in coordinate form. Moreover, we

show that the categories of left(right)-covariant Hom-bimodules and bicovariant Hom-

bimodules are tensor categories equipped with a monoidal structure defined by a co-

equalizer which is modified by a suitable insertion of a related nontrivial associator. In

addition, we prove that the category of bicovariant bimodules over a monoidal Hom-

Hopf algebra forms a (pre-)braided monoidal category (with nontrivial associators and

unitors). Meanwhile, we propose (right-right) Hom-Yetter-Drinfeld modules as a de-

formed version of the classical ones and we attest that the category of Hom-Yetter-

Drinfeld modules can be set as a (pre-)braided tensor category endowed with a tensor

product over a commutative ring k described by the diagonal Hom-action and codiag-

onal Hom-coaction (together with nontrivial associators and unitors). As one of the

main consequences of the chapter, we prove that the fundamental theorem of Hom-

Hopf modules, which is provided in [21], can be extended to a (pre-)braided monoidal

equivalence between the category of bicovariant Hom-bimodules and the category of

(right-right) Hom-Yetter-Drinfeld modules.

3.2 Monoidal Hom-structures

Let Mk = (Mk ,⊗, k,a, l, r) be the monoidal category of k-modules, where k is a com-

mutative ring throughout the chapter. We associate to Mk a new monoidal category

H(Mk) whose objects are ordered pairs (M,µ), with M ∈ Mk and µ ∈ Autk(M), and

morphisms f : (M,µ)→ (N,ν) are morphisms f : A→ B inMk satisfying ν ◦ f = f ◦ µ.
The monoidal structure is given by (M,µ) ⊗ (N,ν) = (M ⊗ N,µ ⊗ ν) and (k,1). If we

speak briefly, all monoidal Hom-structures are objects in the tensor category H̃(Mk) =
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(H(Mk),⊗, (k, id), ã, l̃, r̃) introduced in ([21]), with the associativity constraint ã defined by

ãA,B,C = aA,B,C ◦ ((α ⊗ id)⊗γ−1) = (α ⊗ (id ⊗γ−1)) ◦ aA,B,C , (3.1)

for (A,α), (B,β), (C,γ) ∈ H(Mk), and the right and left unit constraints r̃, l̃ given by

r̃A = α ◦ rA = rA ◦ (α ⊗ id); l̃A = α ◦ lA = lA ◦ (id ⊗α), (3.2)

which we write elementwise:

ãA,B,C((a⊗ b)⊗ c) = α(a)⊗ (b⊗γ−1(c)),

l̃A(x⊗ a) = xα(a) = r̃A(a⊗ x).

The category H̃(Mk) is termed Hom-category associated toMk, where a k-submodule

N ⊂M is called a subobject of (M,µ) if (N,µ|N ) ∈ H̃(Mk), that is µ restricts to an auto-

morphism of N . We now recall some definitions of monoidal Hom-structures.

Definition 3.2.1 [21] An algebra in H̃(Mk) is called a monoidal Hom-algebra and a

coalgebra in H̃(Mk) is termed a monoidal Hom-coalgebra, that is, respectively,

1. A monoidal Hom-algebra is an object (A,α) ∈ H̃(Mk) together with a k-linear map

m : A⊗A→ A, a⊗ b 7→ ab and an element 1A ∈ A such that

α(a)(bc) = (ab)α(c) ; a1A = α(a) = 1Aa ; α(1A) = 1A (3.3)

for all a,b,c ∈ A.

Remark 2 The so-called multiplicativity , that is, the equality, for a,b ∈ A,

α(ab) = α(a)α(b) (3.4)

follows from the equations in (3.3):

α(a)α(b) = (1Aa)α(b) = α(1A)(ab) = 1A(ab) = α(ab),

which is in fact the requirement for m : A⊗A→ A to be a morphism in H̃(Mk).
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2. A monoidal Hom-coalgebra is an object (C,γ) ∈ H̃(Mk) together with k-linear

maps ∆ : C→ C ⊗C, ∆(c) = c1 ⊗ c2 and ε : C→ k such that

γ−1(c1)⊗c21⊗c22 = c11⊗c12⊗γ−1(c2); c1ε(c2) = γ−1(c) = ε(c1)c2; ε(γ(c)) = ε(c) (3.5)

for all c ∈ C.

Remark 3 The so-called comultiplicativity, that is, the equality, for c ∈ C,

∆(γ(c)) = γ(c1)⊗γ(c2) (3.6)

is a consequence of the equalities in (3.5):

∆(γ−1(c)) = ∆(c1ε(c2)) = c11 ⊗ c12ε(c2)

= γ−1(c1)⊗ c21ε(c22) = γ−1(c1)⊗γ−1(c2),

which is actually the condition for ∆ : C→ C ⊗C to be a morphism in H̃(Mk).

Definition 3.2.2 [21] Now we consider modules and comodules over a Hom-algebra

and a Hom-coalgebra, respectively.

1. A right (A,α)-Hom-module consists of an object (M,µ) ∈ H̃(Mk) together with a

k-linear map ψ :M ⊗A→M, ψ(m⊗ a) =ma satisfying the following

µ(m)(ab) = (ma)α(b) ; m1A = µ(m), (3.7)

for all m ∈M and a,b ∈ A. The equation , for a ∈ A and m ∈M,

µ(ma) = µ(m)α(a), (3.8)

follows from (3.7) and (3.3) as in the Remark (2). ψ is termed a right Hom-action

of (A,α) on (M,µ). Let (M,µ) and (N,ν) be two right (A,α)-Hom-modules. We

call a morphism f : M → N right (A,α)-linear if it preserves Hom-action, that is,

f (ma) = f (m)a for all m ∈M and a ∈ A. Since we have, for any m ∈M, f (µ(m)) =

f (m1A) = f (m)1A = ν(f (m)), the equality f ◦µ = ν ◦ f holds.
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2. A right (C,γ)-Hom-comodule consists of an object (M,µ) ∈ H̃(Mk) together with a

k-linear map ρ :M→M ⊗C, ρ(m) =m[0] ⊗m[1] such that

µ−1(m[0])⊗m[1]1 ⊗m[1]2 =m[0][0] ⊗m[0][1] ⊗γ−1(m[1]) ; m[0]ε(m[1]) = µ
−1(m) (3.9)

for all m ∈M. The equality, for m ∈M,

µ(m)[0] ⊗µ(m)[1] = µ(m[0])⊗γ(m[1]) (3.10)

is a consequence of (3.9) and (3.5) in a similar manner as in Remark (3). ρ is

called a right Hom-coaction of (C,γ) on (M,µ). Let (M,µ) and (N,ν) be two right

(C,γ)-Hom-comodules, then we call a morphism f :M → N right (C,γ)-colinear

if it preserves Hom-coaction, i.e., f (m[0])⊗m[1] = f (m)[0] ⊗ f (m)[1] for all m ∈M.

The equation f ◦µ = ν ◦ f follows from (3.9) and (C,γ)-colinearity: For m ∈M,

f (µ−1(m)) = f (m[0])ε(m[1]) = f (m)[0]ε(f (m)[1]) = ν
−1(f (m)).

Definition 3.2.3 [21] A bialgebra in H̃(Mk) is called a monoidal Hom-bialgebra and a

Hopf algebra in H̃(Mk) is called a monoidal Hom-Hopf algebra, in other words

1. A monoidal Hom-bialgebra (H,α) is a sextuple (H,α,m,η,∆, ε) where (H,α,m,η)

is a monoidal Hom-algebra and (H,α,∆, ε) is a monoidal Hom-coalgebra such that

∆(hh′) = ∆(h)∆(h′) ; ∆(1H ) = 1H ⊗ 1H , (3.11)

ε(hh′) = ε(h)ε(h′) ; ε(1H ) = 1, (3.12)

for any h,h′ ∈H .

2. A monoidal Hom-Hopf algebra (H,α) is a septuple (H,α,m,η,∆, ε,S) where (H,α,m,η,∆, ε)

is a monoidal Hom-bialgebra and S : H → H is a morphism in H̃(Mk) such that

S ∗ idH = idH ∗ S = η ◦ ε.

S is called antipode and it has the following properties

S(gh) = S(h)S(g) ; S(1H ) = 1H ;

∆(S(h)) = S(h2)⊗ S(h1) ; ε ◦ S = ε,

for any elements g,h of the monoidal Hom-Hopf algebra H .
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Definition 3.2.4 ([21]) Let (H,α) be a monoidal Hom-Hopf algebra. Then an object

(M,µ) in H̃(Mk) is called a left (H,α)-Hom-Hopf module if (M,µ) is both a left (H,α)-

Hom-module and a left (H,α)-Hom-comodule such that the compatibility relation

ρ(hm) = h1m(−1) ⊗ h2m(0) (3.13)

holds for h ∈H andm ∈M, where ρ :M→H⊗M is a left H-coaction onM. A morphism

of two (H,α)-Hom-Hopf modules is a k-linear map which is both left (H,α)-linear and

left (H,α)-colinear. The category of left (H,α)-Hom-Hopf modules and the morphisms

between them is denoted by H
HH̃(Mk).

We also have the fundamental theorem of Hopf modules in the Hom-setting as follows.

Theorem 3.2.5 ([21]) (F,G) is a pair of inverse equivalences, where the functors F and

G are defined by

F = (H ⊗−,α ⊗−) : H̃(Mk)→ H
HH̃(Mk), (3.14)

G = coH (−) : HHH̃(Mk)→ H̃(Mk). (3.15)

Above, we get coHM = {m ∈M |ρ(m) = 1H ⊗ µ−1(m)} for a left (H,α)-Hom-Hopf module

(M,µ), which is called the left coinvariant of (H,α) on (M,µ), and (coHM,µ|coHM ) is in

H̃(Mk).

In the following, we introduce the concepts of Hom-bimodules, Hom-(co)module

algebras and left (right) adjoint Hom-actions of a monoidal Hom-Hopf algebra on itself.

Definition 3.2.6 Let (A,α) and (B,β) be two monoidal Hom-algebras. A left (A,α), right

(B,β) Hom-bimodule consists of an object (M,µ) ∈ H̃(Mk) together with a left (A,α)-

Hom-action φ : A⊗M→M, φ(a⊗m) = am and a right (B,β)-Hom-action ϕ :M⊗B→M,

ϕ(m⊗ b) =mb fulfilling the compatibility condition, for all a ∈ A, b ∈ B and m ∈M,

(am)β(b) = α(a)(mb). (3.16)

We call a left (A,α), right (B,β) Hom-bimodule a [(A,α), (B,β)]-Hom-bimodule. Let (M,µ)

and (N,ν) be two [(A,α), (B,β)]-Hom-bimodules. A morphism f : M → N is called a

morphism of [(A,α), (B,β)]-Hom-bimodules if it is both left (A,α)-linear and right (B,β)-

linear. f satisfies the following, for all a ∈ A, b ∈ B and m ∈M,

(af (m))β(b) = α(a)(f (m)b), (3.17)

directly from (3.16).
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Lemma 3.2.7 Let (H,α) be a monoidal Hom-Hopf algebra and (M,µ) a (H,α)-Hom-

bimodule. For h ∈H and m ∈M,

1. the linear map

M ⊗H →M, m⊗ h 7→ ãdR(h)(m) = (S(h1)µ
−1(m))α(h2)

defines a right (H,α)-Hom-module structure on (M,µ), and

2. the linear mapping

H ⊗M→M, h⊗m 7→ ãdL(h)(m) = α(h1)(µ
−1(m)S(h2))

gives (M,µ) a left (H,α)-Hom-module structure.

Proof:

1. We first set mC h = ãdR(h)(m) for h ∈H and m ∈M. Let g also be in H , then

µ(m)C (hg) = (S((hg)1)µ
−1(µ(m)))α((hg)2)

= (S(g1)S(h1)m)(α(h2)α(g2))

= (α(S(g1))(S(h1)µ
−1(m)))(α(h2)α(g2))

= α2(S(g1))((S(h1)µ
−1(m))(h2g2))

= α2(S(g1))(((α
−1(S(h1))µ

−2(m))h2)α(g2))

= (α(S(g1))((α
−1(S(h1))µ

−2(m))h2))α
2(g2))

= (S(α(g1))α
−1((S(h1)µ

−1(m))α(h2)))α
2(g2))

= (S(α(g1))α
−1(mC h))α(α(g2))

= (mC h)Cα(g).

mC 1H = (S(1H )µ−1(m))α(1H ) = (1Hµ−1(m))1H = m1H = µ(m), which finishes the

proof.

2. The proof is carried out as in (1).

�

Remark 4 Since a monoidal Hom-Hopf algebra (H,α) is a (H,α)-Hom bimodule, by

taking (M,µ) as (H,α) in the above lemma, the mappings ãdR and ãdL give us the

so-called right and left adjoint Hom-action of (H,α) on itself, respectively.
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Definition 3.2.8 Let (B,β) be a monoidal Hom-bialgebra. A right (B,β)-Hom-comodule

algebra (or Hom-quantum space) (A,α) is a monoidal Hom-algebra and a right (B,β)-

Hom-comodule with a Hom-coaction ρA : A → A ⊗ B, a 7→ a(0) ⊗ a(1) such that ρA is a

Hom-algebra morphism, i.e., for any a,a′ ∈ A

(aa′)(0) ⊗ (aa′)(1) = a(0)a′(0) ⊗ a(1)a
′
(1), ρ

A(1A) = 1A ⊗ 1B. (3.18)

By using the properties of (A,α) and (B,β) as monoidal Hom-algebras and the equalities

in (3.18), we get

ρA ◦α = (α ⊗ β) ◦ ρA.

Definition 3.2.9 Let (B,β) be a monoidal Hom-bialgebra. A right (B,β)-Hom-module

algebra (A,α) is a monoidal Hom-algebra and a right (B,β)-Hom-module with a Hom-

action ρA : A⊗B→ A, a⊗ b 7→ a · b such that, for any a,a′ ∈ A and b ∈ B

(aa′) · b = (a · b1)(a′ · b2), 1A · b = ε(b)1A. (3.19)

The equation

ρA ◦ (α ⊗ β) = α ◦ ρA

follows from the defining relations of Hom-module algebra in (3.19), Hom-counity of

(B,β) and Hom-unity of (A,α).

Proposition 3.2.10 The right adjoint Hom-action ãdR (resp. the left adjoint Hom-action

ãdL ) turns the monoidal Hom-Hopf algebra (H,α) into a right (H,α)-Hom-module alge-

bra (resp. a left (H,α)-Hom-module algebra).

Proof: We prove only the case of ãdR. Since we have already verified in the Lemma

(3.2.7) that ãdR determines a right (H,α)-Hom-module structure on itself, we are left to

prove that the conditions in (3.19) are accomplished: In fact,
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(g C k1)(hC k2) = ((S(k11)α
−1(g))α(k12))((S(k21)α

−1(h))α(k22))

= ((S(k11)α
−1(g))α(k12))(α(S(k21))(α

−1(h)k22))

= (S(α(k11))g)(α(k12)(S(k21)(α
−2(h)α−1(k22))))

= (S(α(k11))g)((k12S(k21))(α
−1(h)k22))

= (S(k1)g)((α(k211)S(α(k212)))(α
−1(h)k22))

= (S(k1)g)(α(ε(k21)1H )(α
−1(h)k22))

= (S(k1)g)(1H (α
−1(h)α−1(k2)))

= (S(k1)g)(hk2)

= α(S(k1))((α
−1(g)α−1(h))k2)

= (S(k1)α
−1(gh))α(k2)

= (gh)C k,

where the fifth line is a consequence of the equality

h1 ⊗ h211 ⊗ h212 ⊗ h22 = α(h11)⊗α−1(h12)⊗α−1(h21)⊗ h22, (3.20)

which follows from the relation

(id ⊗ (∆⊗ id))◦ (id ⊗∆)◦∆ = (id ⊗ ã−1H,H,H )◦ ãH,H,H⊗H ◦ (idH⊗H ⊗∆)◦ (∆⊗ id)◦∆, (3.21)

and

1H C h = (S(h1)α
−1(1H ))α(h2) = α(S(h1))α(h2)

= α(ε(h)1) = ε(h)1H .

In the case of ãdL, similar computations are performed. �

Definition 3.2.11 Let (M,µ) be a right (A,α)-Hom-module and (N,ν) be a left (A,α)-

Hom-module. The tensor product (M ⊗AN,µ⊗ ν) of (M,µ) and (N,ν) over (A,α) is the

coequalizer of ρ ⊗ idN , (idM ⊗ ρ̄) ◦ ãM,A,N : (M ⊗A)⊗N → M ⊗N , where ρ : M ⊗A→
M, m⊗ a 7→ma and ρ̄ : A⊗N →N, a⊗n 7→ an, for a ∈ A, m ∈M and n ∈N , are the right

and left Hom-actions of (A,α) on (M,µ) and (N,ν) respectively. That is,

m⊗A n = {m⊗n ∈M ⊗N |ma⊗n = µ(m)⊗ aν−1(n),∀a ∈ A}. (3.22)

50



3.3 Left-Covariant Hom-Bimodules

Definition 3.3.1 A left-covariant (H,α)-Hom-bimodule is an (H,α)-Hom-bimodule (M,µ) ∈
H̃(Mk) which is a left (H,α)-Hom-comodule, with Hom-coaction ρ :M → H ⊗M, m 7→
m(−1) ⊗m(0), in H̃(Mk) such that

ρ((hm)α(g)) = ∆(α(h))(ρ(m)∆(g)). (3.23)

We here recall the left coinvariant of (H,α) on (M,µ) for a left (H,α)-Hom-Hopf

module (M,µ), coHM = {m ∈M |ρ(m) = 1H ⊗µ−1(m)}, which is in H̃(Mk).

Lemma 3.3.2 Let (M,µ) be a left-covariant (H,α)-Hom-bimodule. There exists a unique

k-linear projection PL :M −→ coHM, m 7→ S(m(−1))m(0), in H̃(Mk), such that, for all h ∈H
and m ∈M,

PL(hm) = ε(h)µ(PL(m)). (3.24)

We also have the following relations

m =m(−1)PL(m(0)), (3.25)

PL(mh) = ãdR(h)(PL(m)). (3.26)

Proof: We show that PL(m) is in coHM : Indeed,

ρ(PL(m)) = ρ(S(m(−1))m(0)) = (S(m(−1))m(0))(−1) ⊗ (S(m(−1))m(0))(0)

= S(m(−1))1m(0)(−1) ⊗ S(m(−1))2m(0)(0)

= S(m(−1)2)m(0)(−1) ⊗ S(m(−1)1)m(0)(0)

= S(α(m(0)(−1)1))α(m(0)(−1)2)⊗ S(α−1(m(−1)))m(0)(0)

= α(S(m(0)(−1)1)m(0)(−1)2)⊗α−1(S(m(−1)))m(0)(0)

= α(ε(m(0)(−1))1H )⊗α−1(S(m(−1)))m(0)(0)

= 1H ⊗α−1(S(m(−1)))ε(m(0)(−1))m(0)(0)

= 1H ⊗α−1(S(m(−1)))µ
−1(m(0))

= 1H ⊗µ−1(S(m(−1)m(0))) = 1H ⊗µ−1(PL(m)),

where in the fifth equality we have used

m(−1)1⊗m(−1)2⊗m(0)(−1)⊗m(0)(0) = α
−1(m(−1))⊗α(m(0)(−1)1)⊗α(m(0)(−1)2)⊗m(0)(0), (3.27)
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which results from the fact that the following relation holds:

(∆⊗ id) ◦ (id ⊗ ρ) ◦ ρ = ã−1H,H,H⊗M ◦ (id ⊗ ãH,H,M ) ◦ (id ⊗ (∆⊗ id)) ◦ (id ⊗ ρ) ◦ ρ. (3.28)

Now we prove that M =H · coHM

m(−1)PL(m(0)) = m(−1)(S(m(0)(−1))m(0)(0))

= (α−1(m(−1))S(m(0)(−1)))µ(m(0)(0))

= (m(−1)1S(m(−1)2))m(0)

= ε(m(−1))1Hm(0)

= µ(ε(m(−1))m(0))

= µ(µ−1(m)) =m,

where we have used the Hom-coassociativity condition for the left Hom-comodules in

the third equation.

PL(hm) = S(h1m(−1))(h2m(0))

= (S(m(−1))S(h1))(h2m(0))

= α(S(m(−1)))(S(h1)(α
−1(h2)µ

−1(m(0))))

= α(S(m(−1)))((α
−1(S(h1))α

−1(h2))m(0))

= α(S(m(−1)))(α
−1(S(h1)h2)m(0))

= ε(h)α(S(m(−1)))µ(m0)

= ε(h)µ(S(m(−1)m0)) = ε(h)µ(PL(m)).

PL(mh) = S(m(−1)h1)(m(0)h2)

= (S(h1)S(m(−1)))(m(0)h2)

= [(α−1(S(h1))α
−1(S(m(−1))))m(0)]α(h2)

= [S(h1)(α
−1(S(m(−1)))µ

−1(m(0)))]α(h2)

= (S(h1)µ
−1(S(m(−1))m(0)))α(h2)

= ãdR(h)(PL(m)).

If m belongs to coHM, then

PL(m) = S(1H )µ
−1(m) =m
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proving that PL is a k-projection of M onto coHM. Let P ′L : M −→coH M be another

k-projection, in H̃(Mk), such that P ′L(hm) = ε(h)µ(P ′L(m)), then, by the fact that P ′L is a

morphism in H̃(Mk), we have for all m ∈M

P ′L(m) = P ′L(m(−1)PL(m(0))) = ε(m(−1))µ(P
′
L(PL(m(0)))

= ε(m(−1))µ(PL(m(0))) = PL(µ(ε(m(−1))m(0)))

= PL(µ(µ
−1(m))) = PL(m),

which shows the uniqueness of PL. �

Proposition 3.3.3 Let (N,ν) ∈ H̃(Mk) be a right (H,α)-Hom-module by the Hom-action

N ⊗H →N, n⊗ h 7→ nC h. The following morphisms

H ⊗ (H ⊗N )→H ⊗N, h⊗ (g ⊗n) 7→ α−1(h)g ⊗ ν(n), (3.29)

(H ⊗N )⊗H →H ⊗N, (h⊗n)⊗ g 7→ hg1 ⊗nC g2, (3.30)

ρ :H ⊗N →H ⊗ (H ⊗N ), h⊗n 7→ α(h1)⊗ (h2 ⊗ ν−1(n)), (3.31)

in H̃(Mk), define a left-covariant (H,α)-Hom-bimodule structure on (H ⊗N,α ⊗ ν).

Proof: We verify the Hom-associativity and Hom-unity conditions for the left and the

right Hom-multiplications of (H,α) on (H ⊗N,α⊗ν) , respectively: For all h,k,g ∈H and

n ∈N , we get

α(k)(h(g ⊗n)) = α(k)(α−1(h)g ⊗ ν(n)) = k((α−1(h)g)⊗ ν2(n)

= α−1(kh)α(g)⊗ ν2(n) = (kh)((α ⊗ ν)(g ⊗n)),

1H (g ⊗n) = α−1(1H )g ⊗ ν(n) = α(g)⊗ ν(n) = (α ⊗ ν)(g ⊗n),

((α ⊗ ν)(h⊗n))(gk) = α(h)(g1k1)⊗ ν(n)C (g2k2) = (hg1)α(k1)⊗ (nC g2)Cα(k2)

= (hg1 ⊗nC g2)α(k) = ((h⊗n)g)α(k),

(h⊗n)1H = h1H ⊗nC 1H = (α ⊗ ν)(h⊗n).

We now show that the compatibility condition is satisfied:

(g(h⊗n))α(k) = (α−1(g)h⊗ ν(n))α(k) = (α−1(g)h)α(k1)⊗ ν(n)Cα(k2)

= g(hk1)⊗ ν(n)Cα(k2) = α−1(α(g))(hk1)⊗ ν(nC k2)

= α(g)(hk1 ⊗nC k2) = α(g)((h⊗n)k).
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ρ satisfies the Hom-coassociativity and Hom-counity condition: Indeed, on one hand

we have

∆((h⊗n)(−1))⊗ (α−1 ⊗ ν−1)((h⊗n)(0)) = ∆(α(h1))⊗ (α−1 ⊗ ν−1)(h2 ⊗ ν−1(n))

= (α(h11)⊗α(h12))⊗ (α−1(h2)⊗ ν−2(n))

= (h1 ⊗α(h21))⊗ (h22 ⊗ ν−2(n))

= (α−1((h⊗n)(−1))⊗ (h⊗n)(0)(−1))⊗ (h⊗n)(0)(0),

where in the first equality we have used ρ(h⊗ n) = (h⊗ n)(−1) ⊗ (h⊗ n)(0) = α(h1)⊗ (h2 ⊗
ν−1(n)), the third equality has resulted from the relation

α(h11)⊗α(h12)⊗ h2 ⊗ ν−1(n) = h1 ⊗α(h21)⊗α(h22)⊗ ν−1(n), (3.32)

which follows from

(∆⊗ id) ◦ ρ = ã−1H,H,H⊗N ◦ (id ⊗ ãH,H,N ) ◦ (id ⊗ (∆⊗ id)) ◦ ρ,

and in the last line we have used ρ((h⊗n)(0)) = (h⊗n)(0)(−1)⊗ (h⊗n)(0)(0) = α(h21)⊗ (h22⊗
ν−2(n)). On the other hand,

ε((h⊗n)(−1))(h⊗n)(0) = ε(α(h1))(h2 ⊗ ν−1(n))

= ε(h1)h2 ⊗ ν−1(n) = (α−1 ⊗ ν−1)(h⊗n).

To finish the proof of the fact that the above Hom-actions and Hom-coaction of (H,α) on

H ⊗N define a left-covariant (H,α)-Hom-bimodule structure on (H ⊗N,α⊗ν) we show
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that the following relation holds:

∆(α(g))(ρ(h⊗n)∆(k)) = (α(g1)⊗α(g2))((α(h1)⊗ (h2 ⊗ ν−1(n)))(k1 ⊗ k2))

= (α(g1)⊗α(g2))(α(h1)k1 ⊗ (h2 ⊗ ν−1(n))k2)

= α(g1)(α(h1)k1)⊗α(g2)((h2 ⊗ ν−1(n))k2)

= α(g1)(α(h1)k1)⊗ (α−1(α(g2))(h2k21)⊗ ν(ν−1(n)C k22))

= α(g1)(α(h1)k1)⊗ (g2(h2k21)⊗nCα(k22))

= α(g1)(α(h1)α(k11))⊗ (g2(h2k12)⊗nC k2)

= (g1α(h1))α
2(k11)⊗ ((α−1(g2)h2)α(k12)⊗ ν−1(ν(n)Cα(k2)))

= α(((α−1(g)h)α(k1))1)⊗ (((α−1(g)h)α(k1))2 ⊗ ν−1(ν(n)Cα(k2)))

= ρ((α−1(g)h)α(k1)⊗ ν(n)Cα(k2))

= ρ((α−1(g)h⊗ ν(n))α(k))

= ρ((g(h⊗n))α(k)),

where the sixth equality has resulted from Hom-coassociativity of ∆ for k ∈H . �

Proposition 3.3.4 If (M,µ) ∈ H̃(Mk) is a left-covariant (H,α)-Hom-bimodule, the k-

linear map

θ :H ⊗ coHM −→M, h⊗m 7→ hm, (3.33)

in H̃(Mk), is an isomorphism of left-covariant (H,α)-Hom-bimodules, where the right

(H,α)-Hom-module structure on (coHM,µ|coHM ) is defined, by using (3.26), as follows

mC h := PL(mh) = ãdR(h)(m), (3.34)

for h ∈H and m ∈ coHM.

Proof: Define ϑ :M→H ⊗ coHM as follows: For any m ∈M

ϑ(m) =m(−1) ⊗ PL(m(0)),

which is shown that ϑ is the inverse of θ:

θ(ϑ(m)) = θ(m(−1) ⊗ PL(m(0)))

= =m(−1)PL(m(0)) =m,
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where in the last equality the equation (3.25) has been used. On the other hand, for

m ∈ coHM and h ∈H we obtain

ϑ(θ(h⊗m)) = ϑ(hm)

= (hm)(−1) ⊗ PL((hm)(0))

= h1m(−1) ⊗ PL(h2m(0))

= h11H ⊗ PL(h2µ−1(m))

= α(h1)⊗ ε(h2)µ(PL(µ−1(m)))

= α(h1ε(h2))⊗ PL(m)

= α(α−1(h))⊗m = h⊗m,

where in the fourth equality the fact that the Hom-coaction of (H,α) on (M,µ) is a mor-

phism in H̃(Mk) has been used. Now we show that θ is both (H,α)-bilinear and left

(H,α)-colinear:

θ(g(h⊗m)) = θ(α−1(g)h⊗µ(m)) = (α−1(g)h)µ(m)) = g(hm) = gθ(h⊗m),

θ((h⊗m)k) = θ(hk1 ⊗mC k2) = (hk1)(ãdR(k2)m)

= (hk1)((S(k21)µ
−1(m))α(k22))

= (hk1)(α(S(k21))(µ
−1(m)k22))

= ((α−1(h)α−1(k1))α(S(k21)))(mα(k22))

= (h(α−1(k1)S(k21)))(mα(k22))

= (h(k11S(k12)))(mk2)

= α(h)(mα−1(k)) = θ(h⊗m)k,

where the penultimate line follows from the first relation of (3.5). Lastly, put Mρ :M →
H ⊗M and H⊗ coHMρ : H ⊗ coHM → H ⊗ (H ⊗ coHM) for the left Hom-coaction of (H,α)

on (M,µ) and (H ⊗ coHM,α ⊗µ|coHM ), resp., thus

Mρ(θ(h⊗m)) = Mρ(hm)

= h11H ⊗ h2µ−1(m)

= α(h1)⊗ h2µ−1(m)

= (id ⊗θ)(α(h1)⊗ (h2 ⊗µ−1(m)))

= (id ⊗θ)(H⊗
coHMρ(h⊗m)).
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�

By Propositions (3.3.3) and (3.3.4), we have the following

Theorem 3.3.5 There is a bijection, given by (3.29)-(3.31) and (3.34), between left-

covariant (H,α)-Hom-bimodules (M,µ) and the right (H,α)-Hom-module structures on

(coHM,µ|coHM ).

If the antipode S of the monoidal Hom-Hopf algebra (H,α) is invertible, we have, for

m ∈ coHM and h ∈H
hm = (µ−1(m)C S−1(h2))α(h1). (3.35)

Indeed;

(mC S−1(h2))α(h1) = (1Hµ
−1(mC S−1(h2)))α(h1)

= (1H (µ
−1(m)Cα−1(S−1(h2))))α(h1)

= (1Hα(h11))((µ
−1(m)Cα−1(S−1(h2)))Cα(h12)

= α2(h11)(µ(µ
−1(m))C (α−1(S−1(h2))α

−1(α(h12))))

= α(h1)(mC (α
−1(S−1(α(h22)))h21)

= α(h1)(mC (S
−1(h22)h21)

= α(h1)(mC ε(h2)1H ) = hµ(m),

which implies that M = coHM ·H .

We indicate by H
HH̃(Mk)H the category of left-covariant (H,α)-Hom-bimodules; the

objects are the left-covariant Hom-bimodules and the morphisms are the ones in H̃(Mk)

that are (H,α)-linear on both sides and left (H,α)-colinear.

We next show that the category H
HH̃(Mk)H of left-covariant (H,α)-Hom-bimodules

forms a monoidal category.

Proposition 3.3.6 Let (H,α) be a monoidal Hom-Hopf algebra and (M,µ), (N,ν) be

two left-covariant (H,α)-Hom-bimodules. Define the k-linear maps

H ⊗ (M ⊗H N )→M ⊗H N, h⊗ (m⊗H n) = α−1(h)m⊗H ν(n), (3.36)

(M ⊗H N )⊗H →M ⊗H N, (m⊗H n)⊗ h = µ(m)⊗H nα−1(h), (3.37)

ρ :M ⊗H N →H ⊗ (M ⊗H N ), m⊗H n =m(−1)n(−1) ⊗ (m(0) ⊗H n(0)), (3.38)

Then (M ⊗H N,µ⊗H ν) becomes a left-covariant (H,α)-Hom-bimodule with these struc-

tures.
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Proof: We first prove that the map (3.36) gives M ⊗H N a left (H,α)-Hom-module

structure:

α(g)(h(m⊗H n)) = α(g)(α−1(h)m⊗H ν(n)) = g(α−1(h)m)⊗H ν2(n)

= α−1(gh)µ(m)⊗H ν(ν(n)) = (gh)(µ⊗H ν)(m⊗H n),

1H (m⊗H n) = α−1(1H )m⊗H ν(n) = µ(m)⊗H ν(n).

Similarly, one can also show that the map (3.37) makes M ⊗H N a right Hom-module.

We now prove that the compatibility condition is satisfied:

(g(m⊗H n))α(h) = (α−1(g)m⊗H ν(n))α(h) = µ(α−1(g)m)⊗H ν(n)h

= gµ(m)⊗H ν(n)h = α−1(α(g))µ(m)⊗H ν(nα−1(h))

= α(g)(µ(m)⊗H nα−1(h)) = α(g)((m⊗H n)h).

We next demonstrate thatM⊗HN possesses a left (H,α)-Hom-comodule structure with

ρ which is given by ρ(m⊗H n) =m(−1)n(−1) ⊗ (m(0) ⊗H n(0)).

∆((m⊗H n)(−1))⊗ (µ−1 ⊗H ν−1)((m⊗H n)(0))

= ∆(m(−1))∆(n(−1))⊗ (µ−1(m(0))⊗H ν−1(n(0)))

= (α−1(m(−1))α
−1(n(−1))⊗m(0)(−1)n(0)(−1))⊗ (m(0)(0) ⊗H n(0)(0))

= (α−1((m⊗H n)(−1))⊗ (m⊗H n)(0)(−1))⊗ (m⊗H n)(0)(0),

ε((m⊗H n)(−1))(m⊗H n)(0) = ε(m(−1)n(−1))m(0) ⊗H n(0)
= ε(m(−1))m(0) ⊗H ε(n(−1))n(0)
= µ−1(m)⊗H ν−1(n),

which prove the Hom-coassociativity and Hom-counity of ρ, respectively. We then finish

the proof by the below computation:
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∆(α(g))(ρ(m⊗H n)∆(h)) = (α(g1)⊗α(g2))((m(−1)n(−1) ⊗ (m(0) ⊗H n(0)))(h1 ⊗ h2))

= α(g1)((m(−1)n(−1))h1)⊗α(g2)((m(0) ⊗H n(0))h2)

= α(g1)(α(m(−1))(n(−1)α
−1(h1)))⊗α(g2)(µ(m(0))⊗H n(0)α−1(h2))

= (g1α(m(−1)))(α(n(−1))h1)⊗ (g2µ(m(0))⊗H ν(n(0)α−1(h2)))

= (g1µ(m)(−1))(ν(n)(−1)h1)⊗ (g2µ(m)(0) ⊗H ν(n)(0)h2)

= (gµ(m))(−1)(ν(n)h)(−1) ⊗ ((gµ(m))(0) ⊗H (ν(n)h)(0))

= ρ(gµ(m)⊗H ν(n)h)

= ρ((α−1(g)m⊗H ν(n))α(h))

= ρ((g(m⊗H n))α(h)).

�

Proposition 3.3.7 Let (H,α) be a monoidal Hom-Hopf algebra and (M,µ), (N,ν), (P ,π)

be left-covariant (H,α)-Hom-bimodules. Then the linear map

ãM,N,P : (M⊗HN )⊗H P →M⊗H (N ⊗H P ), ãM,N,P ((m⊗H n)⊗H p) = µ(m)⊗H (n⊗H π−1(p)),
(3.39)

is an isomorphism of (H,α)-Hom-bimodules and left (H,α)-Hom-comodules.

Proof: It is clear that ãM,N,P is bijective and fulfills the relation ãM,N,P ◦ (µ ⊗ ν ⊗ π) =
(µ⊗ ν ⊗π) ◦ ãM,N,P . In what follows we prove the left and right (H,α)-linearity, and left

(H,α)-colinearity of ãM,N,P : The calculation

ãM,N,P (h((m⊗H n)⊗H p)) = ãM,N,P (α
−1(h)(m⊗H n)⊗H π(p))

= ãM,N,P ((α
−2(h)m⊗H ν(n))⊗H π(p))

= µ(α−2(h)m)⊗H (ν(n)⊗H p)

= α−1(h)µ(m)⊗H ((ν ⊗H π)(n⊗H π−1(p)))

= h(µ(m)⊗H (n⊗H π−1(p)))

= hãM,N,P ((m⊗H n)⊗H p)

59



shows that ãM,N,P is left (H,α)-linear. By performing a similar computation, one can

also affirm that ãM,N,P (((m ⊗H n) ⊗H p)h) = ãM,N,P ((m ⊗H n) ⊗H p)h, i.e., ãM,N,P is right

(H,α)-linear too.

Now we verify the left (H,α)-colinearity of ãM,N,P :

Qρ(ãM,N,P ((m⊗H n)⊗H p))

= Qρ(µ(m)⊗H (n⊗H π−1(p)))

= µ(m)(−1)(n⊗H π−1(p))(−1) ⊗ (µ(m)(0) ⊗H (n⊗H π−1(p))(0))

= µ(m)(−1)(n(−1) ⊗H π−1(p)(−1))⊗ (µ(m)(0) ⊗H (n(0) ⊗H π−1(p)(0))

= α(m(−1))(n(−1)α
−1(p(−1)))⊗ (µ(m(0))⊗H (n(0) ⊗H π−1(p(0)))

= (m(−1)n(−1))p(−1) ⊗ ãM,N,P ((m(0) ⊗H n(0))⊗H p(0))

= (m⊗H n)(−1)p(−1) ⊗ ãM,N,P ((m(0) ⊗H n(0))⊗H p(0))

= (id ⊗ ãM,N,P )((m⊗H n)(−1)p(−1) ⊗ ((m⊗H n)(0) ⊗H p(0)))

= (id ⊗ ãM,N,P )(Q
′
ρ((m⊗H n)⊗H p)),

where Qρ and Q′ρ are the left codiagonal Hom-coactions of (H,α) on the objects Q =

M ⊗H (N ⊗H P ) and Q′ = (M ⊗H N )⊗H P resp. �

Proposition 3.3.8 Let (H,α) be a monoidal Hom-Hopf algebra and (M,µ) be a left-

covariant (H,α)-Hom-bimodule. Then the following linear maps

l̃M :H ⊗HM→M, h⊗H m 7→ hm, (3.40)

r̃M :M ⊗H H →M, m⊗H h 7→mh. (3.41)

are isomorphisms of (H,α)-Hom-bimodules and left (H,α)-Hom-comodules.

Proof: With the left and right (H,α)-Hom-module structures given by Hom-multiplication

H ⊗H → H, h⊗ g 7→ mH (h⊗ g) = hg and the left (H,α)-Hom-comodule structure given

by Hom-multiplication H → H ⊗H, h 7→ h1 ⊗ h2, (H,α) is a left-covariant (H,α)-Hom-

bimodule. We show only that l̃M is (H,α)-linear on both sides and left (H,α)-colinear.

For r̃M the argument is analogous. Obviously, l̃M is a k-isomorphism with the inverse

l̃−1M :M→H⊗HM,m 7→ 1⊗µ−1(m) and the relation µ◦ l̃M = l̃M ◦(idH ⊗µ) is satisfied. We

show now left and right (H,α)-linearity, and (H,α)-colinearity of l̃M , respectively: For

any h,g ∈H and m ∈M,
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l̃M(h(g ⊗H m)) = l̃M(α−1(h)g ⊗H µ(m)) = (α−1(h)g)µ(m)

= h(gm) = hl̃M(g ⊗H m),

l̃M((g ⊗H m)h) = l̃M(α(g)⊗H mα−1(h))

= α(g)(mα−1(h)) = (gm)h = l̃M(g ⊗H m)h,

(idH ⊗ l̃M )(H⊗HMρ(h⊗H m)) = (idH ⊗ l̃M )(h(−1)m(−1) ⊗ (h(0) ⊗H m(0)))

= (idH ⊗ l̃M )(h1m(−1) ⊗ (h2 ⊗H m(0)))

= h1m(−1) ⊗ h2m(0) = h
Mρ(m)

= Mρ(hm) = Mρ(l̃M(h⊗H m)),

where H⊗HMρ and Mρ are the left Hom-coactions of (H,α) on the objects H ⊗H M and

M, respectively. �

Theorem 3.3.9 Let (H,α) be a monoidal Hom-Hopf algebra. Then the category HHH̃(Mk)H
of left-covariant (H,α)-Hom-bimodules forms a monoidal category, with tensor product

⊗H , associativity constraints ã, and left and right unity constraints l̃ and r̃, defined in

Propositions 3.3.6, 3.3.7 and 3.3.8, respectively.

Proof: The naturality of ã and the fact that ã satisfies the Pentagon Axiom follow from

Proposition 1.1 in [21]. Let f :M→M ′ be a morphism in H
HH̃(Mk)H and let (M,µ) be a

left-covariant (H,α)-Hom-bimodule. Then, for m ∈M and h ∈H , we have

(f ◦ l̃M )(h⊗H m) = f (hm) = hf (m) = l̃M ′ (h⊗H f (m)),

showing that l̃ is natural. The naturality of r̃ can be proven similarly. We finally verify

that the Triangle Axiom is satisfied: For h ∈H , m ∈M and n ∈N ,

((idM ⊗H l̃N ) ◦ ãM,H,N )((m⊗H h)⊗H n) = (idM ⊗H l̃N )(µ(m)⊗H (h⊗H ν−1(n)))

= µ(m)⊗H hν−1(n) =mh⊗H n

= r̃M(m⊗H h)⊗H n = (r̃M ⊗ idN )((m⊗H h)⊗H n).
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In the rest of the section, we study the structure theory of left-covariant Hom-

bimodules.

Let (H,α) be a monoidal Hom-coalgebra with Hom-comultiplication ∆ : H → H ⊗
H, h 7→ h1 ⊗ h2 and Hom-counit ε : H → k. Then the dual (H ′ = Hom(H,k), ᾱ) is a

monoidal Hom-algebra with the convolution product (f f ′)(h) = f (h1)f ′(h2) for function-

als f , f ′ ∈H ′ and h ∈H , as Hom-multiplication, and ε as Hom-unit, where ᾱ(f ) = f ◦α−1

for any f ∈H ′: For f ,g,k ∈H ′ and h ∈H ,

(ᾱ(f )(gk))(h) = ᾱ(f )(h1)(gk)(h2) = f (α
−1(h1))g(a21)k(a22)

= f (h11))g(a12)k(α
−1(a2)) = (f g)(h1)ᾱ(k)(h2)

= ((f g)ᾱ(k))(h),

which is the Hom-coassociativity, and

(εf )(h) = ε(h1)f (h2) = f (α
−1(h)) = ᾱ(f )(h) = (f ε)(h),

which is the Hom-unity. Then we have the following

Lemma 3.3.10 1. The linear mapH ′⊗H →H, f ⊗h 7→ f •h := α2(h1)f (α(h2)) defines

a left Hom-action of (H ′ , ᾱ) on (H,α).

2. The linear map H ⊗H ′ → H, h⊗ f 7→ h • f := f (α(h1))α2(h2) defines a right Hom-

action of (H ′ , ᾱ) on (H,α).

Proof: We prove only the item (1). Let f , f ′ ∈H ′ and h ∈H . Then,

ᾱ(f ) • (f ′ • h) = (f ◦α−1) • (α2(h1)f
′(α(h2)))

= α2(α2(h1)1)(f ◦α−1)(α(α2(h1)2))f
′(α(h2))

= α4(h11)f (α
2(h12))f

′(α(h2)) = α
4(α−1(h1))f (α

2(h21))f
′(α(α(h22)))

= α3(h1)f (α
2(h21))f

′(α2(h22)) = α
3(h1)f (α

2(h2)1)f
′(α2(h2)2)

= α3(h1)(f f
′)(α2(h2)) = α

2(α(h)1)(f f
′)(α(α(h)2))

= (f f ′) •α(h),

ε • h = α2(h1)ε(α(h2)) = α
2(h1)ε(h2) = α

2(α−1(h)) = α(h),

62



which are the Hom-associativity and Hom-unity properties, respectively. We also have

ᾱ(f ) • α(h) = (f ◦ α−1) • α(h) = α3(h1)f (α(h2)) = α(f • h), which finishes the proof that

(H,α) is a left (H ′ , ᾱ)-Hom-module with the given map. �

For the discussion below we assume k as a field. Suppose that I is an index set.

The matrix (vij )i,j∈I with entries vij ∈ H is said to be pointwise finite if for any i ∈ I , only

a finite number of terms vij do not vanish. The matrix (f ij )i,j∈I of functionals f ij ∈ H
′ is

called pointwise finite if for arbitrary i ∈ I and h ∈ H , all but finitely many terms f ij (h)

vanish. If (M,µ) be a left-covariant (H,α)-Hom-bimodule and {mi}i∈I is a linear ba-

sis of coHM, then there exist uniquely determined coefficients µij , µ̄
i
j ∈ k, which are

the entries of pointwise fine matrices (µij )i,j∈I and (µ̄ij )i,j∈I , such that µ|coHM(mi) = µ
i
jmj ,

(µ|coHM )−1(mi) = µ̄
i
jmj (Einstein summation convention is used, i.e., there is a summa-

tion over repeating indices) satisfying µij µ̄
j
k = δik = µ̄ijµ

j
k. Thus, by using the above

lemma, we express some of the results obtained about left-covariant Hom-bimodules in

coordinate form as follows

Theorem 3.3.11 Let (M,µ) be a left-covariant (H,α)-Hom-bimodule and {mi}i∈I be a

linear basis of coHM. Then {mi}i∈I is a free left (H,α)-Hom-module basis of M and

there exists a pointwise finite matrix (f ij )i,j∈I of linear functionals f ij ∈ H
′ satisfying, for

any h,g ∈H and i, j ∈ I ,

µijf
j
k (hg) = f

i
j (h)f

j
k (α(g)), f

i
j (1) = µ

i
j , (3.42)

mih = (µ̄ijf
j
k •α

−1(h))mk . (3.43)

Moreover, {mi}i∈I is a free right (H,α)-Hom-module basis of M and we have

hmi =mj((µ̄
i
kf

k
j ◦ S

−1) •α−1(h)). (3.44)

Proof: By the equation (3.25) and the fact that PL(m) ∈ coHM for any m ∈M, we write

any element m ∈M in the form m =
∑
i himi , where hi ∈H, i ∈ I . Then, applying the left

Hom-coaction to the both sides of m =
∑
i himi , we get ρ(m) =

∑
i∆(hi)(1⊗µ−1(mi)), and

hence by the equations (3.24) and PL(mi) =mi , i ∈ I , we have

(id ⊗ PL)(ρ(m)) =
∑
i

hi,11⊗ PL(hi,2µ−1(mi)) =
∑
i

α(hi,1)⊗ ε(hi,2)µ(PL(µ−1(mi)))

=
∑
i

α(hi,1ε(hi,2))⊗ PL(mi) =
∑
i

hi ⊗mi ,
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where we put ∆(hi) = hi,1⊗hi,2. By the linear independence of {mi}i∈I , we conclude that

hi ∈H are uniquely determined.

Since, for any h ∈ H , mi C h = ãdR(h)(mi) ∈ coHM, there exist f ij (h) ∈ C, i, j ∈ I such

that

mi C h = f
i
j (h)mj , (3.45)

where only a finite number of f ij (h) do not vanish. For any h,g ∈H , we have

µijf
j
k (hg)mk = µ(mi)C (hg) = (mi C h)Cα(g)

= (f ij (h)mj )Cα(g) = f
i
j (h)f

j
k (α(g))mk ,

which implies µijf
j
k (hg) = f

i
j (h)f

j
k (α(g)), and

f ij (1)mj =mi C 1 = µ(mi) = µ
i
jmj

concludes that f ij (1) = µ
i
j . By using the identification of hmi with h ⊗mi and the right

Hom-action of H on H ⊗ coHM we obtain

mih = (1⊗µ−1(mi))h = 1h1 ⊗µ−1(mi)C h2
= α(h1)⊗ (µ̄ijmj )C h2 = α(h1)⊗ µ̄

i
jf
j
k (h2)mk

= α(h1)(µ̄
i
jf
j
k )(h2)mk = α

2(α−1(h)1)(µ̄
i
jf
j
k )(α(α

−1(h)2))mk

= (µ̄ijf
j
k •α

−1(h))mk .

The equation (3.35) yields

hmi = (µ−1(mi)C S
−1(h2))α(h1) = ((µ̄ijmj )C S

−1(h2))α(h1)

= (µ̄ijf
j
k )(S

−1(h2))mkα(h1) =mkα(h1)(µ̄
i
jf
j
k )(S

−1(h2))

= mkα(h1)(µ̄
i
jf
j
k ◦ S

−1)(h2) =mk((µ̄
i
jf
j
k ◦ S

−1) •α−1(h)).

Since, for any p,s ∈ I , f ps ◦α = µ̄pqf
q
r µrs and (µ̄lsf

p
l )(hg) = (µ̄pr f rl )(h)(µ̄

l
qf

q
s )(g) for h,g ∈ H ,

we have
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((µ̄jl f
l
i )(µ̄

k
pf

p
j ◦ S

−1))(S(h)) = (µ̄jl f
l
i )(S(h)1)(µ̄

k
pf

p
j ◦ S

−1)(S(h)2)

= (µ̄jl f
l
i )(S(h2))(µ̄

k
pf

p
j )(h1) = (µ̄kpµ̄

j
l f
p
j )(h1)f

l
i (S(h2))

= (µ̄kpµ̄
p
r f

r
l ◦α

−1)(h1)(µ
q
i µ̄
l
sf
s
q ◦α−1)(S(h2))

= µ̄kpµ
q
i (µ̄

p
r f

r
l )(α

−1(h)1)(µ̄
l
sf
s
q )(S(α

−1(h)2))

= µ̄kpµ
q
i (µ̄

l
qf

p
l )(α

−1(h)1S(α
−1(h)2))

= µ̄kpµ
q
i µ̄
l
qf

p
l (1)ε(α

−1(h)) = µ̄kpµ
q
i µ̄
l
qµ
p
l (1)ε(h)

= δlkδliε(S(h)) = δkiε(S(h)),

that is, we have shown that

(µ̄jl f
l
i )(µ̄

k
pf

p
j ◦ S

−1) = δikε. (3.46)

In a similar way, one can also prove that

(µ̄jl f
l
k ◦ S

−1)(µ̄ipf
p
j ) = δkiε. (3.47)

Since {mi}i∈I is a free left (H,α)-Hom-module basis of M and the equation (3.44) holds,

any element m ∈M is also of the form m =
∑
imihi for some hi ∈H . Let us assume that∑

imihi = 0 (all but finitely many hi vanishes, i ∈ I). So, by the equation (3.43), we get∑
i(µ̄

i
jf
j
k •α

−1(hi))mk = 0 which implies that

∑
i

(µ̄ijf
j
k •α

−1(hi)) = 0, ∀k ∈ I.

If we apply ᾱ(µ̄kl f
l
p ◦ S−1) from left to the both sides and use the equation (3.47), we

obtain

0 =
∑
i

ᾱ(µ̄kl f
l
p ◦ S−1) • (µ̄ijf

j
k •α

−1(hi))

=
∑
i

((µ̄kl f
l
p ◦ S−1)(µ̄ijf

j
k )) •α(α

−1(hi))

=
∑
i

δpiε • hi =
∑
i

δpiα(hi) = α(bp),

for all p ∈ I , that is bp = 0,∀p ∈ I . This finishes the proof that {mi}i∈I is a free right

(H,α)-Hom-module basis of M. �
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3.4 Right-Covariant Hom-Bimodules

Definition 3.4.1 A right-covariant (H,α)-Hom-bimodule is an (H,α)-Hom-bimodule (M,µ) ∈
H̃(Mk) which is a right (H,α)-Hom-comodule, with Hom-coaction σ : M → M ⊗ H ,

m 7→m[0] ⊗m[1], in H̃(Mk) such that

σ ((hm)α(g)) = ∆(α(h))(σ (m)∆(g)). (3.48)

The set McoH = {m ∈M |ρ(m) = µ−1(m)⊗ 1H } of M is called right coinvariant of (H,α) on

(M,µ).

Without performing details, we can develop a similar theory for the right-covariant

(H,α)-Hom-bimodules as in the previous section by making the necessary changes.

We define the projection by

PR :M→ McoH , m 7→m[0]S(m[1]), (3.49)

which is unique with the property

PR(mh) = ε(h)µ(PR(m)), f or all h ∈H,m ∈M. (3.50)

Since the relation

(id ⊗∆) ◦ (σ ⊗ id) ◦ σ = ãM⊗H,H,H ◦ (ã−1M,H,H ⊗ id) ◦ ((id ⊗∆)⊗ id) ◦ (σ ⊗ id) ◦ σ (3.51)

holds, that is, for any m ∈M, the following equality

m[0][0] ⊗m[0][1] ⊗m[1]1 ⊗m[1]2 =m[0][0] ⊗α(m[0][1]1)⊗α(m[0][1]2)⊗α−1(m[1]) (3.52)

is fulfilled, one can prove that

σ (PR(m)) = µ−1(PR(m))⊗ 1H .

One can also show that

m = PR(m[0])m[1] (3.53)

is acquired by using the Hom-coassociativity property for the right Hom-comodules,

which specifies that M =McoH ·H . PR also satisfies

PR(hm) = α(h1)(µ
−1(PR(m))S(h2)) ≡ ãdL(h)PR(m). (3.54)
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Since (M,µ) is an (H,α)-Hom-bimodule, McoH has a left (H,α)-Hom-module structure

by the formula

hBm := PR(hm) = ãdL(h)m. (3.55)

ãdL is in fact a left Hom-action of (H,α) on McoH :

ãdL(1H )m = 1H Bm = α(1H )(µ
−1(m)S(1H )) = 1Hm = µ(m),

(gh)Bµ(m) = α(g1h1)(µ
−1(µ(m))S(g2h2))

= (α(g1)α(h1))(m(S(h2)S(g2)))

= (α(g1)α(h1))((µ
−1(m)S(h2))S(α(g2)))

= ((g1h1)(µ
−1(m)S(h2)))α(S(α(g2)))

= (α(g1)(h1µ
−1(µ−1(m)S(h2))))α(S(α(g2)))

= (α(g1)µ
−1((α(h1)µ

−1(µ−1(m)S(h2)))))α(S(α(g2)))

= α(α(g1))(µ
−1(hBm)S(α(g2)))

= α(g)B (hBm),

for all m ∈McoH and g,h ∈ H . Once this left Hom-module structure has been given to

McoH , it can be proven, in a similar way as in the proof of the Proposition (3.3.3) and

the Theorem (3.3.4), that the right-covariant (H,α)-Hom-bimodule (M,µ) is isomorphic,

by the morphism in H̃(Mk)

θ′ :McoH ⊗H →M, m⊗ h 7→mh, (3.56)

to the right-covariant (H,α)-Hom-bimodule McoH ⊗H with Hom-(co)module structures

defined by the following maps in H̃(Mk)

(McoH ⊗H)⊗H →McoH ⊗H, (m⊗ h)⊗ g 7→ µ(m)⊗ hα−1(g), (3.57)

H ⊗ (McoH ⊗H)→McoH ⊗H, g ⊗ (m⊗ h) 7→ g1 Bm⊗ g2h, (3.58)

McoH ⊗H → (McoH ⊗H)⊗H, m⊗ h 7→ (µ−1(m)⊗ h1)⊗α(h2). (3.59)

Thus we have the following

Theorem 3.4.2 There is a one-to-one correspondence, given by (3.55) and (3.57)-

(3.59), between the right-covariant (H,α)-Hom-bimodules (M,µ) and the left (H,α)-

Hom-module structures on (McoH ,µ|McoH ).
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We denote by HH̃(Mk)
H
H the category of right-covariant (H,α)-Hom-bimodules whose

objects are the right-covariant (H,α)-Hom-bimodules with those morphisms that are left

and right (H,α)-linear and right (H,α)-colinear.

Proposition 3.4.3 Let (H,α) be a monoidal Hom-Hopf algebra and (M,µ), (N,ν) be

two right-covariant (H,α)-Hom-bimodules. Along with (3.36) and (3.37), define the mor-

phism in H̃(Mk)

σ :M ⊗H N → (M ⊗H N )⊗H, m⊗H n 7→ (m[0] ⊗H n[0])⊗m[1]n[1], (3.60)

which is the right codiagonal Hom-coaction of (H,α) on M⊗HN . Then (M⊗HN,µ⊗H ν)
is a right-covariant (H,α)-Hom-bimodule .

Proof: It is sufficient to prove first that M ⊗H N becomes a right (H,α)-Hom-comodule

with σ and then to assert that the right covariance is held.

(µ−1 ⊗H ν−1)((m⊗H n)[0])⊗∆((m⊗H n)[1])

= (µ−1(m[0])⊗H ν−1(n[0]))⊗∆(m[1])∆(n[1])

= (m[0][0] ⊗H n[0][0])⊗ (m[0][1]n[0][1] ⊗α−1(m[1])α
−1(n[1]))

= (m⊗H n)[0][0] ⊗ ((m⊗H n)[0][1] ⊗ (m⊗H n)[1]),

where in the second equality the Hom-coassociativity condition for right (H,α)-Hom-

comodules has been used, and we also have

(m⊗H n)[0]ε((m⊗H n)[1]) =m[0]ε(m[1])⊗H n[0]ε(n[1]) = µ−1(m)⊗H ν−1(n),

that is, σ satisfies the Hom-coassociativity and Hom-counity, respectively.

And with the next calculation we end the proof:

σ ((g(m⊗H n))α(h)) = σ (gµ(m)⊗H ν(n)h)

= ((gµ(m))[0] ⊗H ((ν(n)h)[0])⊗ (gµ(m))[1](ν(n)h)[1]

= (g1µ(m[0])⊗H ν(n[0])h1)⊗ (g2α(m[1]))(α(n[1])h2)

= α(g1)(µ(m[0])⊗H n[0]α−1(h1))⊗α(g2)((m[1]n[1])h2)

= ∆(α(g))((m[0] ⊗H n[0])h1 ⊗ (m[1]n[1])h2)

= ∆(α(g))(σ (m⊗H n)∆(h)).
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Theorem 3.4.4 Let (H,α) be a monoidal Hom-Hopf algebra. Then HH̃(Mk)
H
H is a ten-

sor category, with tensor product ⊗H is defined in Proposition (3.4.3), and associativity

constraint ã, left unit constraint l̃ and right unit constraint r̃ are given by (3.39), (3.40)

and (3.41), respectively.

Proof: What is left to be proven is that the associator ãM,N,P , left unitor l̃M and right

unitor r̃M are all right (H,α)-colinear.

(σQ
′
◦ ãM,N,P )((m⊗H n)⊗H p) = σQ

′
(µ(m)⊗H (n⊗H π−1(p)))

= (µ(m)[0] ⊗H (n⊗H π−1(p))[0])⊗µ(m)[1](n⊗H π−1(p))[0]
= (µ(m[0])⊗H (n[0] ⊗H π−1(p[0])))⊗α(m[1])(n[1]α

−1(p[1]))

= ãM,N,P ((m[0] ⊗H n[0])⊗H p[0])⊗ (m[1]n[1])p[1]

= (ãM,N,P ⊗ id)(((m⊗H n)[0] ⊗H p[0])⊗ (m⊗H n)[1]p[1])

= ((ãM,N,P ⊗ id) ◦ σQ)((m⊗H n)⊗H p)

which stands for the right (H,α)-colinearity of ãM,N,P , where σQ
′

and σQ are the right

Hom-coactions of (H,α) on Q′ =M ⊗H (N ⊗H P ) and Q = (M ⊗H N )⊗H P .

By considering the fact that (H,α) is a right-covariant (H,α)-Hom-bimodule with

Hom-actions given by its Hom-multiplication and Hom-coaction by its Hom-comultiplication,

we do the computation

(l̃M ⊗ idH )(σH⊗HM(h⊗H m)) = (l̃M ⊗ idH )((h[0] ⊗H m[0])⊗ h[1]m[1])

= (l̃M ⊗ idH )((h1 ⊗H m[0])⊗ h2m[1])

= hσM(m) = σM(hm)

= σM(l̃M(h⊗H m)),

concluding l̃M is right (H,α)-colinear. By a similar argument, r̃M as well is right (H,α)-

colinear . �
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3.5 Bicovariant Hom-Bimodules

Definition 3.5.1 A bicovariant (H,α)-Hom-bimodule is an (H,α)-Hom-bimodule (M,µ)

together with k-linear mappings

ρ :M→H ⊗M, m 7→m(−1) ⊗m(0),

σ :M→M ⊗H, m 7→m[0] ⊗m[1],

in H̃(Mk), such that

1. (M,µ) is a left-covariant (H,α)-Hom-bimodule with left (H,α)-Hom-coaction ρ,

2. (M,µ) is a right-covariant (H,α)-Hom-bimodule with right (H,α)-Hom-coaction σ ,

3. the following relation holds:

ãH,M,H ◦ (ρ⊗ id) ◦ σ = (id ⊗ σ ) ◦ ρ. (3.61)

The condition (3.61) is called the Hom-commutativity of the Hom-coactions ρ and σ on

M and can be expressed by Sweedler’s notation as follows

m(−1) ⊗ (m(0)[0] ⊗m(0)[1]) = α(m[0](−1))⊗ (m[0](0) ⊗α−1(m[1])), m ∈M.

Proposition 3.5.2 Let (N,ν) ∈ H̃(Mk) be a right (H,α)-Hom-module by the map N ⊗
H → N, n⊗ h 7→ nC h and a right (H,α)-Hom-comodule by N → N ⊗H, n 7→ n(0) ⊗ n(1)
such that the compatibility condition, which is called Hom-Yetter-Drinfeld condition,

n(0) Cα
−1(h1)⊗n(1)α−1(h2) = (nC h2)(0) ⊗α−1(h1(nC h2)(1)) (3.62)

holds for h ∈H and n ∈N . The morphisms (3.29)-(3.31) and

σ :H ⊗N → (H ⊗N )⊗H, h⊗n 7→ (h1 ⊗n(0))⊗ h2n(1), (3.63)

in H̃(Mk), define a bicovariant (H,α)-Hom-bimodule structure on (H ⊗N,α ⊗ ν).

Proof: As has been proven in Proposition 3.3.3, the left-covariant (H,α)-Hom-bimodule

structure on (H ⊗N,α ⊗ ν) is deduced from the right (H,α)-Hom-action on (N,ν) by
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the morphisms (3.29)-(3.31). The morphism (3.63) fulfills the Hom-coassociativity and

Hom-counity:

(α−1 ⊗ ν−1)((h⊗n)[0])⊗∆((h⊗n)[1]) = (α−1(h1)⊗ ν−1(n(0)))⊗∆(h2n(1))

= (α−1(h1)⊗ ν−1(n(0)))⊗ (h21n(1)1 ⊗ h22n(1)2)

= (h11 ⊗n(0)(0))⊗ (h12n(0)(1) ⊗α−1(h2)α−1(n(1)))

= (h⊗n)[0][0] ⊗ ((h⊗n)[0][1] ⊗α−1((h⊗n)[1])),

where the fact that (N,ν) is a right (H,α)-Hom-comodule and the relation (3.32) have

been used in the third equation, and we besides obtain

(h⊗n)[0]ε((h⊗n)[1]) = (h1 ⊗n(0))ε(h2n(1)) = h1ε(h2)⊗n(0)ε(n(1)) = (α−1 ⊗ ν−1)(h⊗n).

By again using the relation (3.32) and the fact that the right (H,α)-Hom-coaction on

(N,ν) is a morphism in H̃(Mk), we prove the Hom-commutativity condition:

α(m[0](−1))⊗ (m[0](0) ⊗α−1(m[1])) = α2(h11)⊗ ((h12 ⊗ ν−1(n(0)))⊗α−1(h2)α−1(n(1)))

= α(h1)⊗ ((h21 ⊗ ν−1(n(0)))⊗ h22α−1(n(1)))

= α(h1)⊗ ((h21 ⊗ ν−1(n)(0))⊗ h22ν−1(n)(1))

= m(−1) ⊗ (m(0)[0] ⊗m(0)[1]).

For g,h,k ∈H and n ∈N , we have

σ ((g(h⊗n))α(k))

= σ ((α−1(g)h⊗ ν(n))α(k))

= σ ((α−1(g)h)α(k1)⊗ ν(n)Cα(k2))

= (((α−1(g)h)α(k1))1 ⊗ (ν(n)Cα(k2))(0))⊗ ((α−1(g)h)α(k1))2(ν(n)Cα(k2))(1)
= (g1(h1k11)⊗ ν((nC k2)(0)))⊗ (g2(h2k12))α((nC k2)(1))

= (α−1(α(g1))(h1k11)⊗ ν((nC k2)(0)))⊗α(g2)((h2k12)(nC k2)(1))

= (α−1(α(g1))(h1α
−1(k1))⊗ ν((nCα(k22))(0)))⊗α(g2)(α(h2)(k21α−1((nCα(k22)(1)))

= α(g1)(h1α
−1(k1)⊗ (nCα(k22))(0))⊗α(g2)(α(h2)(k21α−1((nCα(k22)(1))), (3.64)
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and

∆(α(g))(σ (h⊗n)∆(k)) = (α(g1)⊗α(g2))(((h1 ⊗n(0))⊗ h2n(1))(k1 ⊗ k2))

= (α(g1)⊗α(g2))((h1 ⊗n(0))k1 ⊗ (h2n(1))k2)

= (α(g1)⊗α(g2))((h1k11 ⊗n(0) C k12)⊗α(h2)(n(1)α−1(k2))

= α(g1)(h1α
−1(k1)⊗n(0) C k21)⊗α(g2)(α(h2)(n(1)k22)). (3.65)

The right-hand sides of (3.64) and (3.65) are equal by the compatibility condition (3.62):

To see this, it is enough to set h = α(k2) in (3.62) to obtain the following

n(0) Cα
−1(α(k2)1)⊗n(1)α−1(α(k2)2) = (nCα(k2)2)(0) ⊗α−1(α(k2)1(nCα(k2)2)(1))

⇒ n(0) Cα
−1(α(k21))⊗n(1)α−1(α(k22)) = (nCα(k22))(0) ⊗α−1(α(k21))α−1((nCα(k22))(1))

⇒ n(0) C k21 ⊗n(1)k22 = (nCα(k22))(0) ⊗ k21α−1((nCα(k22))(1)).

Thus we proved that (H ⊗N,α ⊗ ν) is a bicovariant Hom-bimodule over (H,α). �

Proposition 3.5.3 If (M,µ) ∈ H̃(Mk) is a bicovariant (H,α)-Hom-bimodule, the k-linear

map (3.33) in H̃(Mk) is an isomorphism of bicovariant (H,α)-Hom-bimodules, where

the right (H,α)-Hom-module structure on (coHM,µ|coHM ) is defined by mC h := PL(mh) =

ãdR(h)(m), for h ∈ H and m ∈ coHM and the right (H,α)-Hom-comodule structure is

obtained by the restriction of right (H,α)-Hom-coaction on (M,µ) fulfilling the condition

(3.62).

Proof: Let (M,µ) be a bicovariant (H,α)-Hom-bimodule with left (H,α)-Hom-coaction

ρ :M → h⊗M, m 7→ m(−1) ⊗m(0) and right (H,α)-Hom-coaction σ :M →M ⊗H, m 7→
m[0] ⊗m[1]. By Hom-commutativity condition (3.61) we get,

σ (coHM) ⊆ coHM ⊗H,

which implies that the restriction of ϕ to coHM can be taken as the right Hom-coaction

of (H,α) on (coHM,µ|coHM ) : In fact, for m ∈ coHM,

(id ⊗ σ )(ρ(m)) = 1⊗ (µ−1(m[0])⊗α−1(m[1]))

= ãH,M,H ((ρ⊗ id)(σ (m)))

= α(m[0](−1))⊗ (m[0](0) ⊗α−1(m[1])),
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which purports that ρ(m[0]) = 1⊗µ−1(m[0]).

Since it has been proven in Proposition (3.3.4) that the morphism θ : H ⊗ coHM →
M, h ⊗m 7→ hm in (3.33) is an isomorphism of left-covariant (H,α)-Hom-bimodules,

we next show that it is right (H,α)-colinear to conclude that it is an isomorphism of

bicovariant (H,α)-Hom-bimodules:

σ (θ(h⊗m)) = h1m(0) ⊗ h2m(1) = (θ ⊗ id)((h1 ⊗m[0])⊗ h2m[1]) = (θ ⊗ id)(σH⊗
coHM(h⊗m)),

where σH⊗
coHM :H ⊗ coHM→ (H ⊗ coHM)⊗H, h⊗m 7→ (h1⊗m[0])⊗h2m[1], for h ∈H

and m ∈ coHM, by the equation (3.63).

Due to the fact that (M,µ) is a bicovariant (H,α)-Hom-bimodule, the left-hand sides

of (3.64) and (3.65) are equal: Thus, by applying (ε⊗ idN⊗H ) ◦ ãH,N,H to the right-hand

sides of (3.64) and (3.65), we acquire the compatibility condition (3.62). �

Hence, by Propositions (3.5.2) and (3.5.3), we acquire

Theorem 3.5.4 There is a one-to-one correspondence, given by (3.29)-(3.31), (3.63)

and (3.34) , between bicovariant (H,α)-Hom-bimodules (M,µ) and pairs of a right

(H,α)-Hom-module and a right (H,α)-Hom-comodule structures on (coHM,µ|coHM ) ful-

filling the compatibility condition (3.62).

We indicate by HHH̃(Mk)
H
H the category of bicovariant (H,α)-Hom-bimodules; the objects

are the bicovariant Hom-bimodules with those morphisms that are (H,α)-linear and

(H,α)-colinear on both sides.

Proposition 3.5.5 Let (H,α) be a monoidal Hom-Hopf algebra and (M,µ), (N,ν) be

two bicovariant (H,α)-Hom-bimodules. Then, with the Hom-module and Hom-comodule

structures given by (3.36), (3.37), (3.38) and (3.60), (M ⊗H N,µ⊗H ν) becomes a bico-

variant Hom-bimodule over (H,α).
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Proof: The only condition left to be proven to finish the proof of the statement is the

Hom-commutativity of ρ and σ :

(ãH,M⊗HN,H ◦ (ρ⊗ id))(σ (m⊗H n))

= ã((ρ⊗ id)((m[0] ⊗H n[0])⊗m[1]n[1]))

= ã((m[0](−1)n[0](−1) ⊗ (m[0](0) ⊗H n[0](0)))⊗m[1]n[1])

= α(m[0](−1))α(n[0](−1))⊗ ((m[0](0) ⊗H n[0](0))⊗α−1(m[1])α
−1(m[1]))

= m(−1)n(−1) ⊗ ((m(0)[0] ⊗H n(0)[0])⊗m(0)[1]n(0)[1])

= (id ⊗ σ )(m(−1)n(−1) ⊗ (m(0) ⊗H n(0)))

= ((id ⊗ σ ) ◦ ρ)(m⊗H n),

where the fourth equality follows from the Hom-commutativity of the Hom-coactions of

(H,α) on (M,µ) and (N,ν). �

Lemma 3.5.6 Let (H,α) be a monoidal Hom-Hopf algebra.Then the k-linear map cM,N :

M ⊗H N →N ⊗HM given by, for m ∈M and n ∈N ,

cM,N (m⊗H n) = m(−1)PR(n[0])⊗H PL(m(0))n[1] (3.66)

= m(−1)(n[0][0]S(n[0][1]))⊗H (S(m(0)(−1))m(0)(0))n[1] (3.67)

is a morphism in H
HH̃(Mk)

H
H .

Proof: Let (M,µ) and (N,ν) be bicovariant (H,α)-Hom-bimodules. Since M ⊗H N is

linearly spanned by each of the sets {hu ⊗H v}, {w ⊗H zh}, {hu ⊗H z}, where h ∈ H , u ∈
coHM, v ∈ coHN , w ∈McoH and z ∈N coH , we prove the statement of the lemma for such

elements: Since Mρ(hu) = ∆(h)Mρ(u) = h · Mρ(u) = h11H ⊗ h2µ−1(u) = α(h1)⊗ h2µ−1(u)
and thus

(id ⊗ Mρ)(Mρ(hu)) = α(h1)⊗ (α(h21)⊗ h22µ−2(u)),

we have
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cM,N (hu ⊗H v) = α(h1)(v[0][0]S(v[0][1]))⊗H (S(α(h21))(h22µ
−2(u)))v[1]

= α(h1)(v[0][0]S(v[0][1]))⊗H ((α−1(S(α(h21)))h22)µ
−1(u))v[1]

= α(h1)(v[0][0]S(v[0][1]))⊗H ((ε(h2)1H )µ
−1(u))v[1]

= α(h1ε(h2))(v[0][0]S(v[0][1]))⊗H (1Hµ
−1(u))v[1]

= h(v[0][0]S(v[0][1]))⊗H uv[1]
= h(ν−1(v[0])S(v[1]1))⊗H uα(v[1]2)

= (α−1(h)ν−1(v[0]))α(S(v[1]1))⊗H uα(v[1]2)

= ν(α−1(h)ν−1(v[0]))⊗H α(S(v[1]1))µ−1(uα(v[1]2))

= hv[0] ⊗H α(S(v[1]1))(µ−1(u)v[1]2)

= hv[0] ⊗H (S(v[1]1)µ
−1(u))α(v[1]2)

= hv[0] ⊗H ãdR(v[1])u

= hv[0] ⊗H u C v[1]. (3.68)

Similarly, we obtain the following equations

cM,N (w⊗H zh) = w(−1) B z⊗H w(0)h, (3.69)

cM,N (hu ⊗H z) = hν−1(z)⊗H µ(u). (3.70)

By using the formula (3.69), we now prove the right (H,α)-linearity and then in the

sequel the right (H,α)-colinearity of cM,N :

cM,N ((w⊗H zh)g) = cM,N (µ(w)⊗H (zh)α−1(g))

= cM,N (µ(w)⊗H ν(z)(hα−2(g)))

= µ(w)(−1) B ν(z)⊗H µ(w)(0)(hα−2(g))

= α(w(−1))B ν(z)⊗H µ(w(0))(hα
−2(g))

= ν(w(−1) B z)⊗H (w(0)h)α
−1(g))

= cM,N (w⊗H zh)g,
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(cM,N ⊗ idH )(σM⊗HN (w⊗H zh)) = (cM,N ⊗ idH )((w[0] ⊗H (zh)[0])⊗w[1](zh)[1])

= cM,N (w[0] ⊗H z[0]h1)⊗w[1](z[1]h2)

= cM,N (µ
−1(w)⊗H ν−1(z)h1)⊗ 1H (1Hh2)

= (α−1(w(−1))B ν
−1(z)⊗H µ−1(w(0))h1)⊗ 1H (1Hh2)

= (ν−1(w(−1) B z)⊗H µ−1(w(0))h1)⊗ 1H (1Hh2)

= (ν−1(w(−1) B z)⊗H w(0)[0]h1)⊗ 1H (w(0)[1]h2)

= ((w(−1) B z)[0] ⊗H (w(0)h)[0])⊗ (w(−1) B z)[1](w(0)h)[1]

= σN⊗HM(w(−1) B z⊗H w(0)h)

= σN⊗HM(cM,N (w⊗H zh)),

where the sixth equality follows from the fact that Mρ(w) ∈ H ⊗McoH and the seventh

one results from w(−1)B z ∈N coH . Analogously, one can also show that cM,N is both left

(H,α)-linear and left (H,α)-colinear, which finishes the proof. �

Proposition 3.5.7 Let (H,α) be a monoidal Hom-Hopf algebra with a bijective an-

tipode. Then the k-linear map cM,N :M ⊗H N → N ⊗H M given by (3.66) in the above

lemma is an isomorphism in H
HH̃(Mk)

H
H .

Proof: In the above lemma, it has already been proven that cM,N , where (M,µ) and

(N,ν) are bicovariant (H,α)-Hom-bimodules, is a morphism in H
HH̃(Mk)

H
H . Hereby we

prove that it is an invertible linear map to finish the proof of the proposition: Define the

k-linear map c−1N,M :N ⊗HM→M ⊗H N by

c−1N,M(n⊗H m) = n[1](m(0)(0)S
−1(m(0)(−1)))⊗H (S−1(n[0][1])n[0][0])m(−1). (3.71)
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For h ∈H , u ∈ coHM, v ∈ coHN , we get

c−1M,N (hv ⊗H u) = (h2v[1])(µ
−2(u)S−1(1H ))⊗H (S−1(h12v[0][1])(h11v[0][0]))1H

= (h2v[1])µ
−1(u)⊗H (S−1(v[0][1])S

−1(h12))(h11v[0][0]))1H

= α(h2)(v[1]µ
−2(u))⊗H ((α−1(S−1(v[0][1])S

−1(h12))h11)ν(v[0][0]))1H

= α(h2)(v[1]µ
−2(u))⊗H ((S−1(v[0][1])α

−1(S−1(h12)h11))ν(v[0][0]))1H

= α(ε(h1)h2)(v[1]µ
−2(u))⊗H ((S−1(v[0][1])1H )ν(v[0][0]))1H

= h(α(v[1]2)µ
−2(u))⊗H (α(S−1(v[1]1))v[0])1H

= h(α(v[1]2)µ
−2(u))⊗H α2(S−1(v[1]1))ν(v[0])

= (α−1(h)(v[1]2µ
−3(u)))α2(S−1(v[1]1))⊗H ν2(v[0])

= h((S(S−1(v[1])1)µ
−1(µ−2(u)))α(S−1(v[1])2))⊗H ν2(v[0])

= h((v[1]2µ
−3(u))α(S−1(v[1]1)))⊗H ν2(v[0])

= h(ãdR(S
−1(v[1]))µ

−2(u))⊗H ν2(v[0])

= h(µ−2(u)C S−1(v[1]))⊗H ν2(v[0]), (3.72)

and we now verify that c−1M,N is the inverse of cM,N in this case;

c−1M,N (cM,N (hu ⊗H v)) = c−1M,N (hv[0] ⊗H u C v[1])

= h(µ−2(u C v[1])C S
−1(v[0][1]))⊗H ν2(v[0][0])

= h((µ−2(u)Cα−2(v[1]))C S
−1(v[0][1]))⊗H ν2(v[0][0])

= h(µ−1(u)Cα−1(α−1(v[1])S
−1(v[0][1])))⊗H ν2(v[0][0])

= h(µ−1(u)Cα−1(v[1]2S
−1(v[1]1)))⊗H ν(v[0])

= h(µ−1(u)C 1H )⊗H ν(v[0]ε(v[1]))

= hu ⊗H v,
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and

cM,N (c
−1
M,N (hv ⊗H u)) = cM,N (h(µ

−2(u)C S−1(v[1]))⊗H ν2(v[0]))

= hν2(v[0][0])⊗H (µ−2(u)C S−1(v[1]))Cα
2(v[0][1])

= hν2(v[0][0])⊗H µ−1(u)C (S−1(v[1])α(v[0][1]))

= hν(v[0])⊗H µ−1(u)Cα(S−1(v[1]2)v[1]1)

= hν(v[0]ε(v[1]))⊗H µ−1(u)C 1H
= hv ⊗H u.

By a similar reasoning we obtain, for h ∈ H , w ∈ McoH , z ∈ N coH and u ∈ coHM, the

following formulas:

c−1M,N (z⊗H wh) = µ
2(w(0))⊗H (S−1(w(−1))B ν

−2(z))h, (3.73)

c−1M,N (hz⊗H u) = hµ
−1(u)⊗H ν(z), (3.74)

and thus for each of the sets {w⊗H zh}, {hu⊗H z} linearly spanning M⊗H N , we also get

c−1M,N (cM,N (w ⊗H zh)) = w ⊗H zh, cM,N (c
−1
M,N (z ⊗H wh)) = z ⊗H wh, c−1M,N (cM,N (hu ⊗H z)) =

hu ⊗H z and cM,N (c
−1
M,N (hz⊗H u)) = hz⊗H u. �

Theorem 3.5.8 H
HH̃(Mk)

H
H is a prebraided tensor category. It is a braided monoidal

category if (H,α) has an invertible antipode.

Proof: We have already verified that HHH̃(Mk)
H
H is a tensor category, with tensor product

⊗H is defined in Proposition (3.5.5), and associativity constraint ã, left unit constraint l̃

and right unit constraint r̃ are given by (3.39), (3.40) and (3.41), respectively. Thereby,

together with the Proposition (3.5.7), to demonstrate that the Hexagon Axioms for cM,N
hold finishes the proof the statement. Since (M⊗HN )⊗H P is generated as a left (H,α)-

Hom-module by the elements (u ⊗H z)⊗H p where u ∈ coHM, z ∈ N coH and p ∈ P coH , it

is sufficient to prove the hexagonal relations for such elements. One can first note that

cM,N (u ⊗H z) = z⊗H u and thus
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(ãN,P ,M ◦ cM,N⊗HP ◦ ãM,N,P )((u ⊗H z)⊗H p)

= ν(z)⊗H (π−1(p)⊗H u)

= (idN ⊗ cM,P )(ν(z)⊗H (u ⊗H π−1(p))

= (idN ⊗H cM,P ◦ ãN,M,P )((z⊗H u)⊗H p)

= (idN ⊗H cM,P ◦ ãN,M,P ◦ (cM,N ⊗H idP ))((u ⊗H z)⊗H p),

which asserts the first hexagon axiom and the second one is obtained by a similar

reasoning. �

Remark 5 The (pre)braiding cM,N defined by (3.66) is called Woronowicz’ (pre)braiding.

Lemma 3.5.9 Let (H,α) be a monoidal Hom-Hopf algebra with bijective antipode and

(M,µ) be a bicovariant Hom-bimodule with left Hom-coaction m 7→m(−1)⊗m(0) and right

Hom-coaction m 7→m[0] ⊗m[1]. Then the morphism Φ :M→M, in H̃(Mk), given by

Φ(m) = (S(m[0](−1))m[0](0))S(m[1]) = S(m(−1))(m(0)[0]S(m(0)[1]))

is bijective. Furthermore, it restricts to an isomorphism of the subobjects coHM and

McoH .

Proof:Let us set Ψ (m) = (S−1(m(0)[1])m(0)[0])S−1(m(−1)). Since the following equality

holds:

Φ(m)(−1) ⊗Φ(m)(0)[0] ⊗Φ(m)(0)[1]

= S(α(m[1]2))⊗ (S(α−1(m[0](−1)2))µ
−2(m[0](0)))S(α

−1(m[1]1))⊗ S(α(m[0](−1)1)),
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we compute

Ψ (Φ(m))

= (S−1(Φ(m)(0)[1])Φ(m)(0)[0])S
−1(Φ(m)(−1))

= (S−1(S(α(m[0](−1)1)))[(S(α
−1(m[0](−1)2))µ

−2(m[0](0)))S(α
−1(m[1]1))])S

−1(S(α(m[1]2)))

= (α(m[0](−1)1)[(S(α
−1(m[0](−1)2))µ

−2(m[0](0)))S(α
−1(m[1]1))])α(m[1]2)

= ([m[0](−1)1(S(α
−1(m[0](−1)2))µ

−2(m[0](0)))]S(m[1]1))α(m[1]2)

= ([(α−1(m[0](−1)1)S(α
−1(m[0](−1)2)))µ

−1(m[0](0))]S(m[1]1))α(m[1]2)

= ([α−1(m[0](−1)1S(m[0](−1)2))µ
−1(m[0](0))]S(m[1]1))α(m[1]2)

= (ε(m[0](−1))m[0](0)S(m[1]1))α(m[1]2)

= (µ−1(m[0])S(m[1]1))α(m[1]2)

= m[0](S(m[1]1)m[1]2) =m.

In a similar way, one can easily get Φ(Ψ (m)) =m for any m ∈M meaning Φ is bijective

with inverse Ψ . It can also be shown that µ ◦Φ = Φ ◦µ and µ ◦Ψ = Ψ ◦µ. To prove the

second statement in the lemma, we next show that Φ : coHM→McoH and Ψ :McoH →
coHM: For any m ∈ coHM, we obtain

Φ(m) = S(m(−1))(m(0)[0]S(m(0)[1]))

= S(1)(µ−1(m[0])S(α
−1(m[1]))) =m[0]S(m[1]) = PR(m),

that is, Φ(m) ∈McoH , and for any n ∈McoH , we have

Ψ (n) = (S−1(n(0)[1])n(0)[0])S
−1(n(−1))

= S−1(n[1])(n[0](0)S
−1(n[0](−1))) = S

−1(1)(µ−1(n(0))S
−1(α−1(n(−1))))

= n(0)S
−1(n(−1)) = (n(0)(−1)PL(n(0)(0)))S

−1(n(−1))

= (n(0)(−1)S
−1(n(−1))1)(PL(n(0)(0))C S

−1(n(−1))2)

= (n(−1)2S
−1(α(n(−1)1))1)(PL(µ

−1(n(0)))C S
−1(α(n(−1)1))2)

= (n(−1)2S
−1(α(n(−1)12)))(PL(µ

−1(n(0)))C S
−1(α(n(−1)11)))

= (α(n(−1)22)S
−1(α(n(−1)21)))(PL(µ

−1(n(0)))C S
−1(n(−1)1))

= α(ε(n(−1)2)1)(PL(µ
−1(n(0)))C S

−1(n(−1)1))

= 1(PL(µ
−1(n(0)))C S

−1(α−1(n(−1)))) = PL(n(0))C S
−1(n(−1)),

i.e., Ψ (n) ∈ coHM for all n ∈McoH . �

80



We now restate the structure theory of bicovariant Hom-bimodules in the coordinate

form as follows, here we assume that the scalars belong to a field k,

Theorem 3.5.10 Let (M,µ) be a bicovariant (H,α)-Hom-bimodule with right (H,α)-Hom-

coaction ϕ :M →M ⊗H, m 7→ m[0] ⊗m[1] and {mi}i∈I be a linear basis of coHM. Then

there exist a pointwise finite matrices (f ij )i,j∈I and (vij )i,j∈I of linear functionals f ij ∈ H
′

and elements vij ∈H such that for any h,g ∈H and i, j,k ∈ I we have

1. µijf
j
k (hg) = f

i
j (h)f

j
k (α(g)), f

i
j (1) = µ

i
j ; mih = (µ̄ijf

j
k •α

−1(h))mk ,

2. ϕ(mi) =mj ⊗ v
j
i , where vij ∈H, i, j ∈ I , satisfy the relations

∆(vli ) = µ
j
lv
j
k ⊗α

−1(vki ), ε(v
k
i ) = µ̄

i
k ,

3. the equality

vki (h • (f
k
j ◦α)) = ((f ik ◦α

2) • h)α−1(vjk) (3.75)

holds. Moreover, {ni :=mjS(v
j
i )}i∈I is a linear basis ofMcoH . {mi}i∈I and {ni}i∈I are

both free left (H,α)-Hom-module bases and free right (H,α)-Hom-module bases

of M.

Proof: (1) had already been proven in Theorem (3.3.11). Since ϕ(coHM) ⊆ coHM ⊗H ,

there exists a pointwise finite matrix (vij )i,j∈I of elements vij ∈ H such that ϕ(mi) =mk ⊗
vki . Let us write ϕ(mi) =mi,[0] ⊗mi,[1]. Then, by the Hom-coassociativity and Hom-unity

of ϕ we have

(µ̄kjmj )⊗∆(v
k
i ) = µ−1(mk)⊗∆(vki ) = µ

−1(mi,[0])⊗∆(mi,[1])

= mi,[0][0] ⊗mi,[0][1] ⊗α−1(mi,[1])

= mj ⊗ v
j
k ⊗α

−1(vki ),

which implies ∆(vli ) = µ
j
lv
j
k ⊗α

−1(vki ) by the relation µ
j
l µ̄
k
j = δlk, and

µ̄ikmk = µ
−1(mi) =mi,[0]ε(mi,[1]) =mkε(v

k
i ),
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which finishes the proof of item (2). To prove (3), let i ∈ I and h ∈H . Then

mi,[0] Cα
−1(h1)⊗mi,[1]α−1(h2) = mk Cα

−1(h1)⊗ vki α
−1(h2)

= f kj (α
−1(h1))mj ⊗ vki α

−1(h2)

= mj ⊗ vki (f
k
j (α

−1(h1))α
−1(h2))

= mj ⊗ vki α
−1(f kj (α

−1(h1))h2)

= mj ⊗ vki α
−1(α−2(h) • f kj ),

(mi C h2)[0] ⊗α−1(h1)α−1((mi C h2)[1]) = mk ⊗α−1(h1)f ij (h2)α
−1(vkj )

= mk ⊗α−1(h1f ij (h2))α
−1(vkj )

= mk ⊗α−1((f ij ◦α) •α
−2(h))α−1(vkj ).

Thus, by Hom-Yetter-Drinfeld condition (3.62), we acquire

vki α
−1(α−2(h) • f kj ) = α

−1((f ik ◦α) •α
−2(h))α−1(vjk),

that is, vki (α
−3(h)• (f kj ◦α)) = ((f ik ◦α

2)•α−3(h))α−1(vjk) holds. If we replace α−3(h) by h,

we get the required equality vki (h•(f
k
j ◦α)) = ((f ik ◦α

2)•h)α−1(vjk). By the above Lemma,

we obtain ni = Φ(mi) = mi,[0]S(mi,[1]) = mkS(v
k
i ) for all i ∈ I . In Theorem (3.3.11), we

have shown that {mi}i∈I is both free left (H,α)-Hom-module basis and free right (H,α)-

Hom-module basis of M. Similarly, one can prove that this statement also holds for

{ni}i∈I . �

3.6 Yetter-Drinfeld Modules over Monoidal Hom-Hopf Alge-

bras

In this section, we present and study the category of Yetter-Drinfeld modules over a

monoidal Hom-bialgebra (H,α), and then demonstrate that if (H,α) is a monoidal Hom-

Hopf algebra with an invertible antipode it is a braided monoidal category.

Definition 3.6.1 Let (H,α) be a monoidal Hom-bialgebra, (N,ν) be a right (H,α)-Hom-

module with Hom-action N ⊗H → N, n⊗ h 7→ nC h and a right (H,α)-Hom-comodule
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with Hom-coaction N →N ⊗H, n 7→ n(0)⊗n(1). Then (N,ν) is called a right-right (H,α)-

Hom-Yetter-Drinfeld module if the condition (3.62 ) holds, that is,

n(0) Cα
−1(h1)⊗n(1)α−1(h2) = (nC h2)(0) ⊗α−1(h1(nC h2)(1)),

for all h ∈H and n ∈N .

We denote by H̃(YD)HH the category of (H,α)-Hom-Yetter-Drinfeld modules whose

objects are Yetter-Drinfeld modules over (H,α) and morphisms are the ones that are

right (H,α)-linear and right (H,α)-colinear.

Proposition 3.6.2 Let (H,α) be a monoidal Hom-bialgebra and (M,µ),(N,ν) be two

(H,α)-Hom-Yetter-Drinfeld modules. Then (M⊗N,µ⊗ν) becomes a (H,α)-Hom-Yetter-

Drinfeld module with the following structure maps

(M ⊗N )⊗H →M ⊗N, (m⊗n)⊗ h 7→mC h1 ⊗nC h2 = (m⊗n)C h, (3.76)

M ⊗N → (M ⊗N )⊗H, m⊗n 7→ (m(0) ⊗n(0))⊗m(1)n(1). (3.77)

Proof: (M⊗N,µ⊗ν) is both right (H,α)-Hom-module and a right (H,α)-Hom-comodule;

to verify this one can see Propositions 2.6 and 2.8 in [21] for the left case. We only prove

that the Hom-Yetter-Drinfeld condition is fulfilled for (M ⊗N,µ ⊗ ν): For h ∈ H , m ∈ M
and n ∈N ,

((m⊗n)C h2)(0) ⊗α−1(h1)α−1(((m⊗n)C h2)(1))

= (mC h21 ⊗nC h22)(0) ⊗α−1(h1)α−1((mC h21 ⊗nC h22)(1))

= (mC h12 ⊗nCα−1(h2))(0) ⊗ h11α−1((mC h12 ⊗nCα−1(h2))(1))

= (mC h12)(0) ⊗ (nCα−1(h2))(0) ⊗ h11α−1((mC h12)(1)(nCα−1(h2))(1))

= (mC h12)(0) ⊗ (nCα−1(h2))(0) ⊗ h11α−1((mC h12)(1))α−1((nCα−1(h2))(1))

= (mC h12)(0) ⊗ (nCα−1(h2))(0) ⊗ (α−1(h11)α−1((mC h12)(1)))(nCα−1(h2))(1)
= m(0) Cα

−1(h11)⊗ (nCα−1(h2))(0) ⊗ (m(1) Cα
−1(h12))(nCα

−1(h2))(1)

= m(0) Cα
−2(h1)⊗ (nC h22)(0) ⊗α(m(1))(α

−1(h21)α
−1((nC h22)(1)))

= m(0) Cα
−2(h1)⊗n(0) Cα−1(h21)⊗α(m(1)(n(1)α

−1(h22))

= m(0) Cα
−1(h11)⊗n(0) Cα−1(h12)⊗ (m(1)n(1))α

−1(h2)

= (m(0) ⊗n(0))Cα−1(h1)⊗ (m(1)n(1))α
−1(h2)

= (m⊗n)(0) Cα−1(h1)⊗ (m⊗n)(1) Cα−1(h2).
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Proposition 3.6.3 Let (H,α) be a monoidal Hom-bialgebra and (M,µ), (N,ν), (P ,π)

be (H,α)-Hom-Yetter-Drinfeld modules. Then the k-linear map ãM,N,P : (M ⊗N )⊗ P →
M ⊗ (N ⊗ P ), ãM,N,P ((m⊗ n)⊗ p) = (µ(m)⊗ (n⊗π−1(p))) is a right (H,α)-linear and right

(H,α)-colinear isomorphism.

Proof: The bijectivity of ãM,N,P is obvious with the inverse ã−1M,N,P (m⊗(n⊗p)) = ((µ−1(m)⊗
n)⊗π(p)).

ãM,N,P (((m⊗n)⊗ p)C h) = ãM,N,P ((mC h11 ⊗nC h12)⊗ pC h2)

= µ(mC h11)⊗ (nC h12 ⊗π−1(pC h2))

= µ(m)Cα(h11)⊗ (nC h12 ⊗π−1(p)Cα−1(h2))

= µ(m)C h1 ⊗ (nC h21 ⊗π−1(p)C h22)

= µ(m)C h1 ⊗ ((n⊗π−1(p))C h2)

= (µ(m)⊗ (n⊗π−1(p)))C h = ãM,N,P ((m⊗n)⊗ p)C h,

which proves the (H,α)-linearity. Below we show the (H,α)-colinearity:

ρM⊗(N⊗P )(ãM,N,P ((m⊗n)⊗ p)) = ρM⊗(N⊗P )(µ(m)⊗ (n⊗π−1(p)))

= (µ(m)(0) ⊗ (n⊗π−1(p))(0))⊗µ(m)(1)(n⊗π−1(p))(1)
= (µ(m(0))⊗ (n(0) ⊗π−1(p(0))))⊗α(m(1))(n(1)α

−1(p(1)))

= (µ(m(0))⊗ (n(0) ⊗π−1(p(0))))⊗ (m(1)n(1))p(1),

(ãM,N,P ⊗ idH )(ρ(M⊗N )⊗P ((m⊗n)⊗ p))

= (ãM,N,P ⊗ idH )(((m⊗n)(0) ⊗ p(0))⊗ (m⊗n)(1)p(1))

= (ãM,N,P ⊗ idH )(((m(0) ⊗n(0))⊗ p(0))⊗ (m(1)n(1))p(1))

= (µ(m(0))⊗ (n(0) ⊗π−1(p(0))))⊗ (m(1)n(1))p(1),

where ρQ denotes the right (H,α)-Hom-comodule structure of a Hom-Yetter-Drinfeld

module Q. �
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Proposition 3.6.4 Let (H,α) be a monoidal Hom-bialgebra. Then the unit constraints

in H̃(YD)HH are given by the k-linear maps

l̃M : k ⊗M→M, x⊗m 7→ xµ(m), (3.78)

r̃M :M ⊗ k→M, m⊗ x 7→ xµ(m) (3.79)

with respect to (k, idk).

Proof: In the category Mk of k-modules, k itself is the unit object; so one can easily

show that (k, idk) is the unit object in H̃(YD)HH with the trivial right Hom-action k ⊗H →
k,x⊗h 7→ ε(h)x and the right Hom-coaction k→ k⊗H,x 7→ x⊗1H for any x in k and h inH .

It is obvious that l̃M is a k-isomorphism with the inverse l̃−1M :M→ k⊗M,m 7→ 1⊗µ−1(m).

It can easily be shown that the relation µ ◦ l̃M = l̃M ◦ (idk ⊗ µ) holds. Now we prove the

right (H,α)-linearity and right (H,α)-colinearity of l̃M : For all x ∈ k, h ∈H and m ∈M,

l̃M((x⊗m)C h) = l̃M(ε(h1)x⊗mC h2) = ε(h1)xµ(mC h2)

= xµ(m)Cα(ε(h1)h2) = xµ(m)Cα(α−1(h))

= l̃M(x⊗m)C h,

((l̃M ⊗ idH ) ◦ ρk⊗M )(x⊗m) = (l̃M ⊗ idH )((x⊗m(0))⊗ 1Hm(1))

= xµ(m(0))⊗α(m(1))

= x((µ⊗α) ◦ ρM )(m)

= ρM(xµ(m))

= (ρM ◦ l̃M )(x⊗m).

The same argument holds for r̃. �

Proposition 3.6.5 Let (H,α) be a monoidal Hom-bialgebra and (M,µ), (N,ν) be (H,α)-

Hom-Yetter-Drinfeld modules. Then the k-linear map

cM,N :M ⊗N →N ⊗M, m⊗n 7→ ν(n(0))⊗µ−1(m)Cn(1) (3.80)

is a right (H,α)-linear and right (H,α)-colinear morphism. In case (H,α) is a monoidal

Hom-Hopf-algebra with an invertible antipode it is also a bijection.
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Proof: We have the relation (ν ⊗µ) ◦ cM,N = cM,N ◦ (µ⊗ ν) by the computation

(ν ⊗µ)(cM,N (m⊗n)) = (ν ⊗µ)(ν(n(0))⊗µ−1(m)Cn(1))

= ν(ν(n)(0))⊗mCα(n(1))

= ν(ν(n)(0))⊗µ−1(µ(m))C ν(n)(1)

= cM,N (µ(m)⊗ ν(n)).

The (H,α)-linearity holds as follows

cM,N ((m⊗n)C h) = cM,N (mC h1 ⊗nC h2)

= ν((nC h2)(0))⊗µ−1(mC h1)C (nC h2)(1)
= ν((nC h2)(0))⊗ (µ−1(m)Cα−1(h1))C (nC h2)(1)

= ν((nC h2)(0))⊗mC (α−1(h1)α−1((nC h2)(1)))

= ν(n(0) Cα
−1(h1))⊗mC (n(1)α−1(h2))

= ν(n(0) C h1 ⊗ (µ−1(m)Cn(1))C h2

= (ν(n(0))⊗µ−1(m)Cn(1))C h

= cM,N (m⊗n)C h,

where in the fifth equality the twisted Yetter-Drinfeld condition has been used. We now

show that cM,N is (H,α)-colinear: In fact,

(ρN⊗M ◦ cM,N )(m⊗n) = ρN⊗M(ν(n(0))⊗µ−1(m)Cn(1))

= (ν(n(0))(0) ⊗ (µ−1(m)Cn(1))(0))⊗ ν(n(0))(1)(µ−1(m)Cn(1))(1)

= (ν(n(0)(0))⊗µ−1((mCα(n(1)))(0)))⊗α(n(0)(1))α−1((mCα(n(1)))(1))

= (n(0) ⊗µ−1((mCα2(n(1)2))(0)))⊗α(n(1)1)α−1((mCα2(n(1)2))(1))

= (n(0) ⊗µ−1(m(0) Cα
−1(α2(n(1)1))))⊗m(1)α

−1(α2(n(1)2))

= (ν(n(0)(0))⊗µ−1(m(0) Cα(n(0)(1))))⊗m(1)n(1)

= (cM,N ⊗ idH )((m(0) ⊗n(0))⊗m(1)n(1))

= (cM,N ⊗ idH )(ρM⊗N (m⊗n)).
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Let us define

c−1M,N :N ⊗M→M ⊗N, n⊗m 7→ µ−1(m)C S−1(n(1))⊗ ν(n(0)).

We verify that c−1M,N is the inverse of cM,N :

c−1M,N (cM,N (m⊗n)) = c−1M,N (ν(n(0))⊗µ
−1(m)Cn(1))

= µ−1(µ−1(m)Cn(1))C S
−1(ν(n(0))(1))⊗ ν(ν(n(0))(0))

= (µ−2(m)Cα−1(n(1)))C S
−1(α(n(0)(1)))⊗ ν2(n(0)(0))

= µ−1(m)C (α−1(n(1))S
−1(n(0)(1)))⊗ ν2(n(0)(0))

= µ−1(m)C (n(1)2S
−1(n(1)1))⊗ ν(n(0))

= µ−1(m)C 1H ⊗ ν(n(0)ε(n(1)))

= m⊗n,

and on the other hand we have

cM,N (c
−1
M,N (n⊗m)) = cM,N (µ

−1(m)C S−1(n(1))⊗ ν(n(0)))

= ν(ν(n(0))(0))⊗µ−1(µ−1(m)C S−1(n(1)))C ν(n(0))(1)

= ν2(n(0)(0))⊗ (µ−2(m)Cα−1(S−1(n(1))))Cα(n(0)(1))

= ν(n(0))⊗µ−1(m)C (S−1(n(1)2)n(1)1)

= n⊗m.

�

Theorem 3.6.6 Let (H,α) be a monoidal Hom-bialgebra. Then H̃(YD)HH is a prebraided

monoidal category. It is a braided monoidal one under the requirement (H,α) be a

monoidal Hom-Hopf algebra with a bijective antipode.

Proof:The definition of tensor product is given in Proposition (3.6.2), the associativity

constraint is given in Proposition (3.6.3) and the (pre-)braiding is defined in Proposition

(3.6.5). The Hexagon Axiom for c are left to be verified to finish the proof.

Let (M,µ),(N,ν), (P ,π) be in H̃(YD)HH ; we show that the first hexagon axiom holds

for c:
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((idN ⊗ cM,P ) ◦ ãN,M,P ◦ (cM,N ⊗ idP ))((m⊗n)⊗ p)

= ((idN ⊗ cM,P ) ◦ ãN,M,P )((ν(n(0))⊗µ−1(m)Cn(1))⊗ p)

= (idN ⊗ cM,P )(ν2(n(0))⊗ (µ−1(m)Cn(1) ⊗π−1(p)))

= ν2(n(0))⊗ (π(π−1(p)(0))⊗µ−1(µ−1(m)Cn(1))Cπ
−1(p)(1))

= ν2(n(0))⊗ (p(0) ⊗ (µ−2(m)Cα−1(n(1)))Cα
−1(p(1)))

= ν2(n(0))⊗ (p(0) ⊗µ−1(m)C (α−1(n(1))α
−2(p(1))))

= ν2(n(0))⊗ (p(0) ⊗µ−1(mC (n(1)α−1(p(1)))))

= ãN,P ,M((ν(n(0))⊗ p(0))⊗mC (n(1)α−1(p(1))))

= ãN,P ,M((ν ⊗π)((n⊗π−1(p))(0))⊗µ−1(µ(m))C (n⊗π−1(p))(1))

= (ãN,P ,M ◦ cM,N⊗P )(µ(m)⊗ (n⊗π−1(p)))

= (ãN,P ,M ◦ cM,N⊗P ◦ ãM,N,P )((m⊗n)⊗ p).

Lastly, we prove the second hexagon axiom:

ã−1P ,M,N ◦ cM⊗N,P ◦ ã
−1
M,N,P (m⊗ (n⊗ p))

= (ã−1P ,M,N ◦ cM⊗N,P )((µ
−1(m)⊗n)⊗π(p))

= ã−1P ,M,N (π(π(p)(0))⊗ ((µ
−1 ⊗ ν−1)(µ−1(m)⊗n)Cπ(p)(1)))

= ã−1P ,M,N (π
2(p(0))⊗ (µ−2(m)⊗ ν−1(n))Cα(p(1)))

= ã−1P ,M,N (π
2(p(0))⊗ (µ−2(m)Cα(p(1))1 ⊗ ν−1(n)Cα(p(1))2))

= ã−1P ,M,N (π
3(p(0)(0))⊗ (µ−2(m)Cα(p(0)(1))⊗ ν−1(n)C p(1)))

= (π2(p(0)(0))⊗µ−2(m)Cα(p(0)(1)))⊗nC p(1)
= (π(π(p(0))(0))⊗µ−1(µ−1(m))Cπ(p(0))(1))⊗nCα(p(1)))

= (cM,P ⊗ idN )((µ−1(m)⊗π(p(0)))⊗nCα(p(1)))

= (cM,P ⊗ idN )((µ−1(m)⊗π(p(0)))⊗ ν(ν−1(n)C p(1)))

= ((cM,P ⊗ idN ) ◦ ã−1M,P ,N )(m⊗ (π(p(0))⊗ ν
−1(n)C p(1)))

= ((cM,P ⊗ idN ) ◦ ã−1M,P ,N ◦ (idM ⊗ cN,P ))(m⊗ (n⊗ p)).

�

Together with Theorem 3.3.5 and Theorem 3.5.4, Theorem (3.2.5) provides:
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Theorem 3.6.7 Let (H,α) be a monoidal Hom-Hopf algebra. Then the equivalences in

(3.2.5):

F = (H ⊗−,α ⊗−) : H̃(Mk)→ H
HH̃(Mk),

G = coH (−) : HHH̃(Mk)→ H̃(Mk),

induce tensor equivalences between

1. the category of right (H,α)-Hom-modules and the category of left-covariant (H,α)-

Hom-bimodules,

2. the category of right-right (H,α)-Hom-Yetter-Drinfeld modules and the category of

bicovariant (H,α)-Hom-bimodules.

Proof: The right (H,α)-Hom-module structure on (H ⊗V ,α ⊗ µ) for a right (H,α)-Hom-

module (V ,µ) is given in Proposition (3.3.3) and the right (H,α)-Hom-comodule struc-

ture on (H ⊗W,α ⊗ ν) for a right (H,α)-Hom-comodule (W,ν) is given in Proposition

(3.5.2). It remains only to prove that one of the inverse equivalences, say F together

with ϕ2(V ,W ) : (H ⊗V )⊗H (H ⊗W )→H ⊗ (V ⊗W ) given by

ϕ2(V ,W )((g ⊗ v)⊗H (h⊗w)) = gα(h1)⊗ (µ−1(v)C h2 ⊗w)

for all g,h ∈H , v ∈ V , w ∈W , is a tensor functor in each case. Define

ϕ2(V ,W )−1 :H ⊗ (V ⊗W )→ (H ⊗V )⊗H (H ⊗W ), h⊗ (v ⊗w) 7→ (α−1(h)⊗ v)⊗H (1H ⊗w),

which is an inverse of ϕ2(V ,W ): For h,g ∈H , v ∈ V and w ∈W ,

ϕ2(V ,W )(ϕ2(V ,W )−1(h⊗ (v ⊗w))) = ϕ2(V ,W )((α−1(h)⊗ v)⊗H (1H ⊗w))

= α−1(h)1H ⊗ (µ−1(m)C 1H ⊗w)

= h⊗ (v ⊗w),

ϕ2(V ,W )−1(ϕ2(V ,W )((g ⊗ v)⊗H (h⊗w))) = ϕ2(V ,W )−1(gα(h1)⊗ (µ−1(v)C h2 ⊗w))

= (α−1(gα(h1))⊗µ−1(v)C h2)⊗H (1H ⊗w)

= (α−1(g)⊗µ−1(v))h⊗H (1H ⊗w)

= (g ⊗ v)⊗H h(1H ⊗ ν−1(w))

= (g ⊗ v)⊗H (h⊗w),
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and one can also show that the relation (α⊗ (µ⊗ν))◦ϕ2(V ,W ) = ϕ2(V ,W )◦ ((α⊗µ)⊗H
(α ⊗ ν)) holds. We now verify that the coherence condition on F is fulfilled:

(ϕ2(U,V ⊗W ) ◦ (id ⊗ϕ2(V ,W )) ◦ ãQ)(((g ⊗u)⊗H (h⊗ v))⊗H (k ⊗w))

= (ϕ2(U,V ⊗W ) ◦ (id ⊗ϕ2(V ,W )))((α(g)⊗µ(u))⊗H ((h⊗ v)⊗H (α−1(k)⊗π−1(w))))

= ϕ2(U,V ⊗W )((α(g)⊗µ(u))⊗H (hk1 ⊗ (ν−1(v)Cα−1(k2)⊗π−1(w))))

= α(g)α(h1k11)⊗ (u C h2k12 ⊗ (ν−1(v)Cα−1(k2)⊗π−1(w)))

= α(g)(α(h1)k1)⊗ (u C h2k21 ⊗ (ν−1(v)C k22 ⊗π−1(w)))

= (id ⊗ ãQ′ )(α(g)(α(h1)k1)⊗ ((µ−1(u)Cα−1(h2k21)⊗ ν−1(v)C k22)⊗w))

= (id ⊗ ãQ′ )(α(g)(α(h1)k1)⊗ (((µ−2(u)Cα−1(h2))C k21 ⊗ ν−1(v)C k22)⊗w))

= (id ⊗ ãQ′ )((gα(h1))α(k1)⊗ ((µ−2(u)Cα−1(h2)⊗ ν−1(v))C k2 ⊗w))

= ((id ⊗ ãQ′ ) ◦ϕ2(U ⊗V ,W ))((gα(h1)⊗ (µ−1 C h2 ⊗ v))⊗H (k ⊗w))

= ((id ⊗ ãQ′ ) ◦ϕ2(U ⊗V ,W ) ◦ (ϕ2(U,V )⊗ id))(((g ⊗u)⊗H (h⊗ v))⊗H (k ⊗w)).

For (1) we verify that the k-isomorphism ϕ2(V ,W ) is a morphism of left-covariant

(H,α)-Hom-bimodules, that is, we prove its left (H,α)-linearity, (H,α)-colinearity, and

right (H,α)-linearity, respectively:

ϕ2(V ,W )(k((g ⊗ v)⊗H (h⊗w))) = ϕ2(V ,W )(α−1(k)(g ⊗ v)⊗H (α(h)⊗ ν(w))))

= ϕ2(V ,W )((α−2(k)g ⊗µ(v))⊗H (α(h)⊗ ν(w)))

= (α−2(k)g)α2(h1)⊗ (v Cα(h2)⊗ ν(w))

= α−1(k)(gα(h1))⊗ ((µ⊗ ν)(µ−1(v)C h2 ⊗w))

= k(gα(h1)⊗ (µ−1(v)C h2 ⊗w))

= kϕ2(V ,W )((g ⊗ v)⊗H (h⊗w)),
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(id ⊗ϕ2(V ,W ))(Qρ((g ⊗ v)⊗H (h⊗w)))

= (id ⊗ϕ2(V ,W ))(α(g1)α(h1)⊗ ((g2 ⊗µ−1(v))⊗H (h2 ⊗ ν−1(w))))

= α(g1)α(h1)⊗ (g2α(h21)⊗ (µ−2(v)C h22 ⊗ ν−1(w)))

= α(g1)α
2(h11)⊗ (g2α(h12)⊗ (µ−2(v)Cα−1(h2)⊗ ν−1(w)))

= α((gα(h1))1)⊗ ((gα(h1))2 ⊗ (µ−1(µ−1(v)C h2)ν−1(w)))

= Q′ρ(gα(h1)⊗ (µ−1(v)C h2 ⊗w))

= Q′ρ(ϕ2(V ,W )((g ⊗ v)⊗H (h⊗w))),

ϕ2(V ,W )(((g ⊗ v)⊗H (h⊗w))k)

= ϕ2(V ,W )((α(g)⊗µ(v))⊗H (h⊗w)α−1(k))

= ϕ2(V ,W )((α(g)⊗µ(v))⊗H (hα−1(k1)⊗wCα−1(k2)))

= α(g)(α(h1)k11)⊗ (v C (h2α−1(k12))⊗wCα−1(k2))

= α(g)(α(h1)α
−1(k1))⊗ (v C (h2α−1(k21))⊗wC k22)

= α(g)(α(h1)α
−1(k1))⊗ (µ(µ−1(v))C (h2α−1(k21))⊗wC k22)

= (gα(h1))k1 ⊗ ((µ−1(v)C h2)C k21 ⊗wC k22)

= (gα(h1))k1 ⊗ (µ−1(v)C h2 ⊗w)k2
= ϕ2(V ,W )((g ⊗ v)⊗H (h⊗w))k.

For (2) we need only to check that ϕ2(V ,W ) is right (H,α)-colinear. Let us denote

by σQ
′

and σQ the right (H,α)-Hom-comodule structures on Q′ = H ⊗ (V ⊗W ) and

Q = (H ⊗V )⊗H (H ⊗W ). Then
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σQ
′
(ϕ2(V ,W )((g ⊗ v)⊗H (h⊗w)))

= σQ
′
(gα(h1)⊗ (µ−1(v)C h2 ⊗w))

= ((gα(h1))1 ⊗ ((µ−1(v)C h2)[0] ⊗w[0]))⊗ (gα(h1))2((µ−1(v)C h2)[1]w[1])

= (g1α(h11)⊗ ((µ−1(v)C h2)[0] ⊗w[0]))⊗α(g2)(α(h12)(α−1((µ−1(v)C h2)[1])α−1(w[1])))

= (g1α(h11)⊗ ((µ−1(v)C h2)[0] ⊗w[0]))⊗α(g2)((h12α−1((µ−1(v)C h2)[1]))w[1])

= (g1h1 ⊗ ((µ−1(v)Cα(h22))[0] ⊗w[0]))⊗α(g2)((h21α−1((µ−1(v)Cα(h22))[1]))w[1])

= (g1h1 ⊗ ((µ−1(v)Cα(h2)2)[0] ⊗w[0]))⊗α(g2)(α−1(α(h2)1(µ−1(v)Cα(h2)2)[1])w[1])

= (g1h1 ⊗ (µ−1(v)[0] Cα−1(α(h2)1)⊗w[0]))⊗α(g2)((µ−1(v)[1]α−1(α(h2)2))w[1])

= (g1h1 ⊗ (µ−1(v[0])C h21 ⊗w[0]))⊗α(g2)((α−1(v[1])h22)w[1])

= (g1α(h11)⊗ (µ−1(v[0])C h12 ⊗w[0]))⊗α(g2)((α−1(v[1])α−1(h2))w[1])

= (g1α(h11)⊗ (µ−1(v[0])C h12 ⊗w[0]))⊗ (g2v[1])(h2w[1])

= (ϕ2(V ,W )⊗ idH )(((g1 ⊗ v[0])⊗H (h1 ⊗w[0]))⊗ (g2v[1])(h2w[1]))

= (ϕ2(V ,W )⊗ idH )(σQ((g ⊗ v)⊗H (h⊗w))),

where we have used the twisted Yetter-Drinfeld condition in the seventh equality. �

Corollary 3.6.8 Let (H,α) be a monoidal Hom-Hopf algebra. The categories H
HH̃(Mk)

H
H

and H̃(YD)HH are equivalent as prebraided monoidal categories. The tensor equivalence

between them is braided whenever (H,α) has a bijective antipode.

Proof: It suffices to regard the case of bicovariant (H,α)-Hom-bimodules (M,µ′) =

(H ⊗ V ,α ⊗ µ) and (N,ν′) = (H ⊗W,α ⊗ ν) with (V ,µ) and (W,ν) (H,α)-Hom-Yetter-

Drinfeld modules. Thus for h ∈H , v ∈ V and w ∈W we have
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(ϕ2(W,V ) ◦ cM,N ◦ϕ2(V ,W )−1)(h⊗ (v ⊗w))

= ϕ2(W,V )(cM,N ((α
−1(h)⊗ v)⊗H (1H ⊗w)))

= ϕ2(W,V )(h1((1H ⊗w[0][0])S(α(w[0][1])))⊗H (S(h21)(α
−1(h22)⊗µ−2(v)))α(w[1]))

= ϕ2(W,V )(h1((1H ⊗ ν−1(w[0]))S(α(w[1]1)))⊗H (α−1(S(h21)h22)⊗µ−1(v))α2(w[1]2))

= ϕ2(W,V )((h1ε(h2))((1H ⊗ ν−1(w[0]))S(α(w[1]1)))⊗H (1H ⊗µ−1(v))α2(w[1]2))

= ϕ2(W,V )((α−2(h)(1H ⊗ ν−1(w[0])))S(α
2(w[1]1))⊗H (1H ⊗µ−1(v))α2(w[1]2))

= ϕ2(W,V )((α−3(h)1H ⊗ ν(ν−1(w[0])))S(α
2(w[1]1))⊗H (1Hα

2(w[1]2)1 ⊗µ−1(v)Cα2(w[1]2)2))

= ϕ2(W,V )((α−2(h)⊗w[0])S(α
2(w[1]1))⊗H (α3(w[1]21)⊗µ−1(v)Cα2(w[1]22)))

= ϕ2(W,V )((α−1(h)⊗ ν(w[0]))⊗H S(α2(w[1]1))(α
2(w[1]21)⊗µ−2(v)Cα(w[1]22)))

= ϕ2(W,V )((α−1(h)⊗ ν(w[0]))⊗H (S(α(w[1]1))α
2(w[1]21)⊗µ−1(v)Cα2(w[1]22)))

= ϕ2(W,V )((α−1(h)⊗ ν(w[0]))⊗H (S(α2(w[1]11))α
2(w[1]12)⊗µ−1(v)Cα(w[1]2)))

= ϕ2(W,V )((α−1(h)⊗ ν(w[0]))⊗H (α2(S(w[1]11)w[1]12)⊗µ−1(v)Cα(w[1]2)))

= ϕ2(W,V )((α−1(h)⊗ ν(w[0]))⊗H (1H ⊗µ−1(v)Cα(ε(w[1]1)w[1]2)))

= ϕ2(W,V )((α−1(h)⊗ ν(w[0]))⊗H (1H ⊗µ−1(v)Cw[1]))

= α−1(h)1H ⊗ (ν−1(ν(w[0]))C 1H ⊗µ−1(v)Cw[1])

= h⊗ (ν(w[0])⊗µ−1(v)Cw[1])

= (idH ⊗ cV ,W )(h⊗ (v ⊗w)),

which demonstrates that F is a (pre-)braided tensor equivalence. �
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Chapter 4

Hom-Entwining Structures And

Hom-Hopf-Type Modules

4.1 Introduction

Motivated by the study of symmetry properties of noncommutative principal bundles,

entwining structures (over a commutative ring k with unit) were introduced in [11] as

a triple (A,C)ψ consisting of a k-algebra A, a k-coalgebra C and a k-module map ψ :

C ⊗A→ A⊗C satisfying, for all a,a′ ∈ A and c ∈ C,

(aa′)κ ⊗ cκ = aκa′λ ⊗ c
κλ , 1κ ⊗ cκ = 1⊗ c,

aκ ⊗ cκ1 ⊗ c
κ
2 = aλκ ⊗ c

κ
1 ⊗ c

λ
2 , aκε(c

κ) = aε(c),

where the notation ψ(c⊗a) = aκ⊗cκ (summation over κ is understood) is used. Given an

entwining structure (A,C)ψ, the notion of (A,C)ψ-entwined module M was first defined

in [12] as a right A-module with action m⊗ a 7→m · a and a right C-comodule with coac-

tion ρM : m 7→ m(0) ⊗m(1) (summation understood) such that the following compatibility

condition holds:

ρM(m · a) =m(0) · aκ ⊗m κ
(1) , ∀a ∈ A,m ∈M.

Hopf-type modules are typically the objects with an action of an algebra and a coac-

tion of a coalgebra which satisfy some compatibility condition. The family of Hopf-type

modules includes well known examples such as Hopf modules of Sweedler [75], rela-

tive Hopf modules of Doi and Takeuchi [35], [77], Long dimodules [59], Yetter-Drinfeld
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modules [71], [95], Doi-Koppinen Hopf modules [36], [52] and alternative Doi-Koppinen

Hopf modules of Schauenburg [73]. All these modules except alternative Doi-Koppinen

modules are special cases of Doi-Koppinen modules. As newer special cases of them,

the family of Hopf-type modules also includes anti-Yetter-Drinfeld modules which were

obtained as coefficients for the cyclic cohomology of Hopf algebras [40], [41], [44],

and their generalizations termed (α,β)-Yetter-Drinfeld modules [69] (also called (α,β)-

equivariant C-comodules in [50]). Basically, entwining structures and modules associ-

ated to them enable us to unify several categories of Hopf modules in the sense that the

compatibility conditions for all of them can be restated in the form of the above condition

required for entwined modules. One can refer to [14] and [20] for more information on

the relationship between entwining structures and Hopf-type modules.

Entwining structures have been generalized to weak entwining structures in [19]

to define Doi-Koppinen data for a weak Hopf algebra, motivated by [9]. Thereafter, it

has been proven in [13] that both entwined modules and weak entwined modules are

comodules of certain type of corings which built on a tensor product of an algebra and

a coalgebra, and shown that various properties of entwined modules can be obtained

from properties of comodules of a coring. Here we recall from [76] that for an associative

algebra A with unit, an A-coring is an A-bimodule C with A-bilinear maps ∆C : C →
C ⊗A C, c 7→ c1 ⊗ c2 called coproduct and εC : C → A called counit, such that

∆C(c1)⊗ c2 = c1 ⊗∆C(c2), εC(c1)c2 = c = c1εC(c2), ∀c ∈ C.

Given an A-coring C, a right C-comodule is a right A-moduleM with a right A-linear map

ρM :M→M ⊗C, m 7→m(0) ⊗m(1) called coaction, such that

ρM(m(0))⊗m(1) =m(0) ⊗∆C(m(1)), m =m(0)εC(m(1)), ∀m ∈M.

The main aim of the present chapter is to generalize the entwining structures, en-

twined modules and the associated corings within the framework of monoidal Hom-

structures and then to study Hopf-type modules in the Hom-setting. The idea is to

replace algebra and coalgebra in a classical entwining structure with a monoidal Hom-

algebra and a monoidal Hom-coalgebra to make a definition of Hom-entwining struc-

tures and associated entwined Hom-modules. Following [13], these entwined Hom-

modules are identified with Hom-comodules of the associated Hom-coring. The dual

algebra of this Hom-coring is proven to be the Koppinen smash. Furthermore, we
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give a construction regarding Hom-Doi-Kopinen datum and Doi-Koppinen Hom-Hopf

modules as special cases of Hom-entwining structures and associated entwined Hom-

modules. Besides, we introduce alternative Hom-Doi-Koppinen datum. By using these

constructions, we get Hom-versions of the aforementioned Hopf-type modules as spe-

cial cases of entwined Hom-modules, and give examples of Hom-corings in addition to

trivial Hom-coring and canonical Hom-coring.

4.2 Hom-corings and Hom-Entwining structures

Definition 4.2.1 1. Let (A,α) be a monoidal Hom-algebra. An (A,α)-Hom-coring

consists of an (A,α)-Hom-bimodule (C,χ) together with (A,α)-bilinear maps ∆C :

C → C⊗A C, c 7→ c1⊗ c2 and εC : C → A called comultiplication and counit such that

χ−1(c1)⊗∆C(c2) = c11 ⊗ (c12 ⊗χ−1(c2)); εC(c1)c2 = c = c1εC(c2); εC(χ(c)) = α(εC(c)).
(4.1)

For any c ∈ C, the equality

∆C(χ(c)) = χ(c1)⊗χ(c2) (4.2)

is a consequence of (4.1) in a similar manner as in the Remark (3) of Chapter 3.

2. A right (C,χ)-Hom-comodule (M,µ) is defined as a right (A,α)-Hom-module with

a right A-linear map ρ :M→M ⊗A C, m 7→m(0) ⊗m(1) satisfying

µ−1(m(0))⊗∆C(m(1)) =m(0)(0) ⊗ (m(0)(1) ⊗χ−1(m(1))); m =m(0)εC(m(1)). (4.3)

The equation

µ(m)(0) ⊗µ(m)(1) = µ(m(0))⊗χ(m(1)) (4.4)

can be obtained in the same way as Hom-comodule setting over a monoidal Hom-

coalgebra.

Theorem 4.2.2 Let φ : (A,α)→ (B,β) be a morphism of monoidal Hom-algebras. Then,

for an (A,α)-Hom-coring (C,χ), (BC)B = ((B⊗AC)⊗AB, (β⊗χ)⊗β) is a (B,β)-Hom-coring,

called a base ring extension of the (A,α)-Hom-coring (C,χ), with a comultiplication and

a counit,
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∆(BC)B((b⊗A c)⊗A b′) = ((β−1(b)⊗A c1)⊗A 1B)⊗B ((1B ⊗A c2)⊗A β−1(b′)), (4.5)

ε(BC)B((b⊗A c)⊗A b′) = (bφ(εC(c)))b
′ . (4.6)

Proof: For b,b′ ,b′′ ∈ B and c ∈ C,

∆(BC)B(((b
′ ⊗A c)⊗A b′′)b)

= ∆(BC)B((β(b
′)⊗A χ(c))⊗A b′′β−1(b))

= ((b′ ⊗A χ(c)1)⊗A 1B)⊗B ((1B ⊗A χ(c)2)⊗A β−1(b′′β−1(b)))
(4.2)
= ((b′ ⊗A χ(c1))⊗A 1B)⊗B ((1B ⊗A χ(c2))⊗A β−1(b′′)β−2(b))

= ((b′ ⊗A χ(c1))⊗A 1B)⊗B ((β ⊗χ)(1B ⊗A c2)⊗A β−1(b′′)β−1(β−1(b)))

= ((β ⊗χ)⊗ β)((β−1(b′)⊗A c1)⊗A 1B)⊗B ((1B ⊗A c2)⊗A β−1(b′′))β−1(b)

= ∆(BC)B((b
′ ⊗A c)⊗A b′′)b,

which proves the right (B,β)-linearity of ∆(BC)B. It can also be shown that ∆(BC)B ◦ χ̄ =

(χ̄⊗ χ̄) ◦∆(BC)B, where χ̄ = (β ⊗χ)⊗ β. And as well, the left (B,β)-linearity of ∆(BC)B and

the fact that it preserves the compatibility condition between the left and right (B,β)-

Hom-actions on (BC)B can be checked similarly, that is,

∆(BC)B(b((b
′ ⊗A c)⊗A b′′)) = b∆(BC)B((b

′ ⊗A c)⊗A b′′),

(b∆(BC)B((b
′′ ⊗A c)⊗A b′′′))β(b′) = β(b)(∆(BC)B((b

′′ ⊗A c)⊗A b′′′)b′).

Next we prove the Hom-coassociativity of ∆(BC)B:
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((β−1 ⊗χ−1)⊗ β−1)(((b⊗A c)⊗A b′)1)⊗B ∆(BC)B(((b⊗A c)⊗A b′)2)

= ((β−2(b)⊗A χ−1(c1))⊗A 1B)⊗B (((1B ⊗A c21)⊗A 1B)

⊗B((1B ⊗A c22)⊗A β−2(b′)))
(4.1)
= ((β−2(b)⊗A c11)⊗A 1B)⊗B (((1B ⊗A c12)⊗A 1B)

⊗B((1B ⊗A χ−1(c2))⊗A β−2(b′)))

= ((β−1(b)⊗A c1)⊗A 1B)1 ⊗B (((β−1(b)⊗A c1)⊗A 1B)2
⊗B((1B ⊗A χ−1(c2))⊗A β−2(b′)))

= ((b⊗A c)⊗A b′)11 ⊗B (((b⊗A c)⊗A b′)12
⊗B((β−1 ⊗χ−1)⊗ β−1)((b⊗A c)⊗A b′)2).

Now we demonstrate that ε(BC)B is left (B,β)-linear:

ε(BC)B(b((b
′ ⊗A c)⊗A b′′))

= ε(BC)B((β
−2(b)b′ ⊗A χ(c))⊗A β(b′′))

= ((β−2(b)b′)φ(εC(χ(c))))β(b
′′)

(4.2)
= ((β−2(b)b′)φ(α(εC(c))))β(b

′′)

= (β−1(b)(b′β−1(φ(α(εC(c))))))β(b
′′) = (β−1(b)(b′φ(εC(c))))β(b

′′)

= b((b′φ(εC(c)))b
′′) = bε(BC)B((b

′ ⊗A c)⊗A b′′),

where φ ◦α = β ◦φ was used in the fifth equality. Additionally, we have

(ε(BC)B ◦ χ̄)((b⊗A c)⊗A b′) = (β(b)φ(εC(χ(c))))β(b
′)

= β((bφ(εC(c)))b
′) = (β ◦ εC)((b⊗A c)⊗A b′),

meaning ε(BC)B ∈ H̃(Mk). In the same manner, one can show that ε(BC)B is right (B,β)-

linear and it preserves the compatibility condition between the left and right (B,β)-Hom-

actions on (BC)B, i.e.,

ε(BC)B(((b
′ ⊗A c)⊗A b′′)b) = ε(BC)B((b′ ⊗A c)⊗A b′′)b,

(bε(BC)B((b
′′ ⊗A c)⊗A b′′′))β(b′) = β(b)(ε(BC)B((b′′ ⊗A c)⊗A b′′′)b′).
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Below, we prove the counity condition:

((β−1(b)⊗A c1)⊗A 1B)ε(BC)B((1B ⊗A c2)⊗A β−1(b′))

= ((β−1(b)⊗A c1)⊗A 1B)((1Bφ(εC(c2)))β−1(b′))

= ((β−1(b)⊗A c1)⊗A 1B)(β(φ(εC(c2)))β−1(b′))

= (b⊗A χ(c1))⊗A β(φ(εC(c2)))β−1(b′)

= (b⊗A χ(c1))⊗A φ(α(εC(c2)))β−1(b′)
(3.22)
= (β−1(b)⊗ c1)α(εC(c2))⊗A b′

= (b⊗A c1εC(c2))⊗A b′
(4.2)
= (b⊗A c)⊗A b′

(4.2)
= (b⊗A εC(c1)c2)⊗A b′

(3.22)
= (β−1(b)φ(εC(c1))⊗A χ(c2))⊗A b′

= (β−2(bφ(α(εC(c1))))1B ⊗A χ(c2))⊗A β(β−1(b′))

= (bφ(α(εC(c1))))((1B ⊗A c2)⊗A β−1(b′))

= ((β−1(b)φ(εC(c1)))1B)((1B ⊗A c2)⊗A β−1(b′))

= ε(BC)B((β
−1(b)⊗A c1)⊗A 1B)((1B ⊗A c2)⊗A β−1(b′)),

which completes the proof that given a morphism of monoidal Hom-algebras φ : (A,α)→
(B,β), ((B⊗A C)⊗A B, (β ⊗χ)⊗ β) is a (B,β)-Hom-coring. �

Example 4.2.3 A monoidal Hom-algebra (A,α) has a natural (A,α)-Hom-bimodule struc-

ture with its Hom-multiplication. (A,α) is an (A,α)-Hom-coring by the canonical isomor-

phism A → A ⊗A A, a 7→ α−1(a) ⊗ 1A, in H̃(Mk), as a comultiplication and the identity

A→ A as a counit. This Hom-coring is called a trivial (A,α)-Hom-coring.

Example 4.2.4 Let φ : (B,β)→ (A,α) be a morphism of monoidal Hom-algebras. Then

(C,χ) = (A⊗BA,α ⊗α) is an (A,α)-Hom-coring with comultiplication

∆C(a⊗B a′) = (α−1(a)⊗B 1A)⊗A (1A ⊗B α−1(a′)) = (α−1(a)⊗B 1A)⊗B a′

and counit

εC(a⊗B a′) = aa′ .
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Proof: By Theorem (4.2.2), for φ : (B,β)→ (A,α) and the trivial (B,β)-Hom-coring (B,β)

with ∆B(b) = β−1(b)⊗B 1B and εB(b) = b, we have the base ring extension of the trivial

(B,β)-Hom-coring (B,β) to (A,α)-Hom-coring (AB)A = ((A⊗B B)⊗BA, (α ⊗ β)⊗α) with

∆(AB)A((a⊗B b)⊗B a′) = ((α−1(a)⊗B β−1(b))⊗B 1A)⊗A ((1A ⊗B 1B)⊗B α−1(a′)),

ε(AB)A((a⊗B b)⊗B a′) = (aφ(b))a′ .

On the other hand we have the isomorphism ϕ : A→ A⊗BB, a 7→ α−1(a)⊗B1B, in H̃(Mk),

with the inverse ψ : A⊗B B→ A, a⊗B b 7→ aφ(b): For a ∈ A and b ∈ B,

ψ(ϕ(a)) = α−1(a)φ(1B) = α
−1(a)1A = a,

ϕ(ψ(a⊗B b)) = ϕ(aφ(b)) = α−1(aφ(b))⊗B 1B
= α−1(a)α−1(φ(b))⊗B 1B = α−1(a)φ(β−1(b))⊗B 1B
= a⊗B β−1(b)1B = a⊗B b,

in addition one can check that α◦ψ = ψ◦(α⊗β) and (α⊗β)◦ϕ = ϕ◦α. Thus, (AB)A
ψ⊗1
'

A⊗BA = C and

∆C(a⊗Bb) = ((ψ⊗id)⊗(ψ⊗id))◦∆(AB)A◦(ϕ⊗id)(a⊗Bb) = (α−1(a)⊗B1A)⊗A (1A⊗Bα−1(a′)),

εC(a⊗B a′) = ε(AB)A ◦ (ϕ ⊗ id)(a⊗B a′) = aa′ .

(A ⊗B A,α ⊗ α) is called the Sweedler or canonical (A,α)-Hom-coring associated to a

monoidal Hom-algebra extension φ : (B,β)→ (A,α). �

For the monoidal Hom-algebra (A,α) and the (A,α)-Hom-coring (C,χ), let us put ∗C =

AHom
H(C,A), consisting of left (A,α)-linear morphisms f : (C,χ)→ (A,α), that is, f (ac) =

af (c) for a ∈ A, c ∈ C and f ◦χ = α◦f . Similarly, C∗ =HomHA (C,A) and ∗C∗ = AHom
H
A (C,A)

consist of right (A,α)-Hom-module maps and (A,α)-Hom-bimodule maps, respectively.

Now we prove that these modules of (A,α)-linear morphisms C → A have ring struc-

tures.
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Proposition 4.2.5 1. ∗C is an associative algebra with unit εC and multiplication

(f ∗l g)(c) = f (c1g(c2))

for f ,g ∈ ∗C and c ∈ C.

2. C∗ is an associative algebra with unit εC and multiplication

(f ∗r g)(c) = g(f (c1)c2)

for f ,g ∈ C∗ and c ∈ C.

3. ∗C∗ is an associative algebra with unit εC and multiplication

(f ∗ g)(c) = f (c1)g(c2)

for f ,g ∈ ∗C∗ and c ∈ C.

Proof:

1. For f ,g,h ∈ ∗C and c ∈ C,

((f ∗l g) ∗l h)(c) = f ((c1h(c2))1g((c1h(c2))2)) = f (χ(c11)g(c12α
−1(h(c2))))

= f (χ(c11)g(c12h(χ
−1(c2))))

(4.1)
= f (c1g(c21h(c22)))

= (f ∗l (g ∗l h))(c),

where the second equality comes from the fact that ∆C is right (A,α)-linear, i.e.,

∆C(ca) = (ca)1 ⊗A (ca)2 = ∆C(c)a = (c1 ⊗A c2)a = χ(c1)⊗A c2α−1(a), ∀c ∈ C, a ∈ A.

(f ∗l εC)(c) = f (c1εC(c2)) = f (c),

(εC ∗l f )(c) = εC(c1f (c2)) = εC(c1)f (c2) = f (εC(c1)c2) = f (c).

By similar computations one can prove (2) and (3).

�
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Definition 4.2.6 A (right-right) Hom-entwining structure is a triple [(A,α), (C,γ)]ψ con-

sisting of a monoidal Hom-algebra (A,α), a monoidal Hom-coalgebra (C,γ) and a k-

linear map ψ : C ⊗A→ A⊗C satisfying the following conditions for all a,a′ ∈ A, c ∈ C:

(aa′)κ ⊗γ(c)κ = aκa′λ ⊗γ(c
κλ), (4.7)

α−1(aκ)⊗ cκ1 ⊗ c
κ
2 = α

−1(a)κλ ⊗ c λ1 ⊗ c
κ
2 , (4.8)

1κ ⊗ cκ = 1⊗ c, (4.9)

aκε(c
κ) = aε(c), (4.10)

where we have used the notation ψ(c ⊗ a) = aκ ⊗ cκ, a ∈ A, c ∈ C, for the so-called

entwining map ψ. It is said that (C,γ) and (A,α) are entwined by ψ. ψ is in H̃(Mk), that

is, the relation holds:

α(a)κ ⊗γ(c)κ = α(aκ)⊗γ(cκ), (4.11)

which follows from (4.7), (4.9) and Hom-unity of (A,α):

α(aκ)⊗γ(cκ) = aκ1⊗γ(cκ) = aκ1λ ⊗γ(cκλ)

= (a1)κ ⊗γ(c)κ = α(a)κ ⊗γ(c)κ.

It can also be obtained from (4.8) and (4.10).

Definition 4.2.7 A [(A,α), (C,γ)]ψ-entwined Hom-module is an object (M,µ) ∈ H̃(Mk)

which is a right (A,α)-Hom-module with action ρM : M ⊗ A → M, m ⊗ a 7→ ma and a

right (C,γ)-Hom-comodule with coaction ρM :M→M ⊗C, m 7→m(0) ⊗m(1) fulfilling the

condition, for all m ∈M, a ∈ A,

ρM(ma) =m(0)α
−1(a)κ ⊗γ(m κ

(1) ). (4.12)

By M̃C
A(ψ), we denote the category of [(A,α), (C,γ)]ψ-entwined Hom-modules to-

gether with the morphisms in which are both right (A,α)-linear and right (C,γ)-colinear.

With the following theorem, we construct a Hom-coring associated to an entwin-

ing Hom-structure and show an identification of entwined Hom-modules with Hom-

comodules of this Hom-coring, pursuing the Proposition 2.2 in [13].
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Theorem 4.2.8 Let (A,α) be a monoidal Hom-algebra and (C,γ) be a monoidal Hom-

coalgebra.

1. For a Hom-entwining structure [(A,α), (C,γ)]ψ, (A ⊗ C,α ⊗ γ) is an (A,α)-Hom-

bimodule with a left Hom-module structure a(a′ ⊗ c) = α−1(a)a′ ⊗ γ(c) and a right

Hom-module structure (a′ ⊗ c)a = a′α−1(a)κ ⊗γ(cκ), for all a,a′ ∈ A, c ∈ C. Further-

more, (C,χ) = (A⊗C,α ⊗ γ) is an (A,α)-Hom-coring with the comultiplication and

counit

∆C : C → C ⊗A C, a⊗ c 7→ (α−1(a)⊗ c1)⊗A (1⊗ c2), (4.13)

εC : C → A, a⊗ c 7→ α(a)ε(c). (4.14)

2. If C = (A ⊗ C,α ⊗ γ) is an (A,α)-Hom-coring with the comultiplication and counit

given above, then [(A,α), (C,γ)]ψ is a Hom-entwining structure, where

ψ : C ⊗A→ A⊗C, c⊗ a 7→ (1⊗γ−1(c))a.

3. Let (C,χ) = (A⊗C,α⊗γ) be the (A,α)-Hom-coring associated to [(A,α), (C,γ)]ψ as

in (1). Then the category of [(A,α), (C,γ)]ψ-entwined Hom-modules is isomorphic

to the category of right (C,χ)-Hom-comodules.

Proof:

1. We first show that the right Hom-action of (A,α) on (A⊗C,α⊗γ) is Hom-associative

and Hom-unital, for all a,d,e ∈ A and c ∈ C:

(α(a)⊗γ(c))(de) = α(a)α−1(de)κ ⊗γ(γ(c)κ)

= α(a)(α−1(d)α−1(e))κ ⊗γ(γ(c)κ)
(4.7)
= α(a)(α−1(d)κα

−1(e)λ)⊗γ2(cκλ)

= (aα−1(d)κ)α(α
−1(e)λ)⊗γ(γ(cκλ))

(4.11)
= (aα−1(d)κ)α(α

−1(e))λ ⊗γ(γ(cκ)λ)

= (aα−1(d)κ ⊗γ(cκ))α(e)

= ((a⊗ c)d)α(e),
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(a⊗ c)1 = aα−1(1)κ ⊗γ(cκ) = a1κ ⊗γ(cκ)

= α−1(α(a))1κ ⊗γ(cκ) = α(a)(1κ ⊗ cκ)
(4.9)
= α(a)(1⊗ c) = a1⊗γ(c)

= (α ⊗γ)(a⊗ c).

One can also show that the left Hom-action, too, satisfies the Hom-associativity

and Hom-unity. For any a,b,d ∈ A and c ∈ C,

(b(a⊗ c))α(d) = (α−1(b)a⊗γ(c))α(d) = (α−1(b)a)α−1(α(d))κ ⊗γ(γ(c)κ)

= (α−1(b)a)α(α−1(d))κ ⊗γ(γ(c)κ)
(4.11)
= (α−1(b)a)α(α−1(d)κ)⊗γ2(cκ)

= b(aα−1(d)κ)⊗γ2(cκ) = α−1(α(b))(aα−1(d)κ)⊗γ(γ(cκ))

= α(b)(aα−1(d)κ ⊗γ(cκ)) = α(b)((a⊗ c)d),

proves the compatibility condition between left and right (A,α)-Hom-actions.

First, it can easily be proven that the morphisms A⊗ (C ⊗A C)→C⊗A C,

a⊗ ((a′ ⊗ c)⊗A (a′′ ⊗ c′)) 7→ α−1(a)(a′ ⊗ c)⊗A (α(a′′)⊗γ(c′)) (4.15)

and (C ⊗A C)⊗A→C⊗A C,

((a′ ⊗ c)⊗A (a′′ ⊗ c′))a 7→ (α(a′)⊗γ(c))⊗A (a′′ ⊗ c′)α−1(a) (4.16)

define a left Hom-action and a right Hom-action of (A,α) on (C ⊗A C,χ ⊗ χ), re-

spectively. Next it is shown that the comultiplication ∆C is (A,α)-bilinear, that is,

∆C preserves the left and right (A,α)-Hom-actions and the compatibility condition

between them as follows: Let a,a′ ,b,d ∈ A and c ∈ C, then we have the following

computations
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∆C(a(a
′ ⊗ c)) = (α−1(α−1(a)a′)⊗γ(c)1)⊗A (1⊗γ(c)2)

(3.6)
= (α−2(a)α−1(a′)⊗γ(c1))⊗A (1⊗γ(c2))

= α−1(a)(α−1(a′)⊗ c1)⊗A (α(1)⊗γ(c2))
(4.15)
= a((α−1(a′)⊗ c1)⊗A (1⊗ c2))

= a∆C(a
′ ⊗ c),

∆C((a
′ ⊗ c)a) = ∆C(a

′α−1(a)κ ⊗γ(cκ))

= (α−1(a′α−1(a)κ)⊗γ(cκ)1)⊗A (1⊗γ(cκ)2)
(3.6)
= (α−1(a′)α−1(α−1(a)κ)⊗γ(cκ1))⊗A (1⊗γ(c

κ
2))

(4.8)
= (α−1(a′)α−2(a)κλ ⊗γ(c λ1 ))⊗A (1⊗γ(c κ2 ))

= (α−1(a′)⊗ c1)α(α−2(a)κ)⊗A (1⊗γ(c κ2 ))
(3.22)
= (a′ ⊗γ(c1))⊗A α(α−2(a)κ)(1⊗ c κ2 )

= (a′ ⊗γ(c1))⊗A (α(α−2(a)κ)⊗γ(c κ2 ))

= (a′ ⊗γ(c1))⊗A (1α−1(α−1(a))κ ⊗γ(c κ2 ))

= (a′ ⊗γ(c1))⊗A (1⊗ c2)α−1(a)
(4.16)
= ((α−1(a′)⊗ c1)⊗A (1⊗ c2))a

= ∆C(a
′ ⊗ c)a,
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α(b)(∆C(a⊗ c)d) = α(b)(((α−1(a)⊗ c1)⊗A (1⊗ c2))d)

= α(b)((a⊗γ(c1))⊗A (1⊗ c2)α−1(d))
(4.16)
= α(b)((a⊗γ(c1))⊗A (1α−1(α−1(d))κ ⊗γ(c κ2 )))

= α(b)((a⊗γ(c1))⊗A (α(α−2(d)κ)⊗γ(c κ2 )))
(4.15)
= b(a⊗γ(c1))⊗A (α2(α−2(d)κ)⊗γ2(c κ2 ))

= (α−1(b)a⊗γ2(c1))⊗A α2(α−2(d)κ)(1⊗γ(c κ2 ))
(3.22)
= (α−1(α−1(b)a)⊗γ(c1))α2(α−2(d)κ)⊗A (1⊗γ2(c κ2 ))

= ((α−2(b)α−1(a))α(α−2(d)κ)λ ⊗γ(γ(c1)λ))⊗A (1⊗γ2(c κ2 ))
(4.11)
= ((α−2(b)α−1(a))α(α−2(d)κλ)⊗γ(γ(c λ1 )))⊗A (1⊗γ2(c κ2 ))

= (α−1(b)(α−1(a)α−2(d)κλ)⊗γ2(c λ1 ))⊗A (1⊗γ2(c κ2 ))

= (α−1(b)(α−1(a)α−1(α−1(d))κλ)⊗γ2(c λ1 ))⊗A (1⊗γ2(c κ2 ))
(4.8)
= (α−1(b)(α−1(a)α−1(α−1(d)κ))⊗γ2(cκ1))⊗A (1⊗γ

2(cκ2))

= ((α−2(b)α−1(a))α−1(d)κ ⊗γ2(cκ1))⊗A (1⊗γ
2(cκ2))

(3.6)
= (α−1((α−1(b)a)α(α−1(d)κ))⊗γ2(cκ)1)⊗A (1⊗γ2(cκ)2)

= ∆C((α
−1(b)a)α(α−1(d)κ)⊗γ2(cκ))

= ∆C(b(a⊗ c))α(d).

One easily checks that the counit εC is both left and right (A,α)-linear. For any

a,b,d ∈ A and c ∈ C we have

εC((b(a⊗ c))α(d)) = εC(b(aα
−1(d)κ)⊗γ2(cκ))

= α(b(aα−1(d)κ))ε(γ
2(cκ))

(3.6)
= α(b)(α(a)α(α−1(d)κ))ε(c

κ)

= α(b)(α(a)α(α−1(d)κε(c
κ)))

(4.10)
= α(b)(α(a)α(α−1(d)ε(c)))

= α(b)(α(a)ε(c)d)

= α(b)(εC(a⊗ c)d).
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This finishes the proof that εC is (A,α)-bilinear. Let us put

∆C(a⊗ c) = (a⊗ c)1 ⊗A (a⊗ c)2 = (α−1(a)⊗ c1)⊗A (1⊗ c2).

Then we get the following

(α−1 ⊗γ−1)((a⊗ c)1)⊗A ∆C((a⊗ c)2)

= (α−2(a)⊗γ−1(c1))⊗A ((1⊗ c21)⊗A (1⊗ c22))

= (α−2(a)⊗ c11)⊗A ((1⊗ c12)⊗A (1⊗γ−1(c2)))

= (α−1(a)⊗ c1)1 ⊗A ((α−1(a)⊗ c1)2 ⊗A (1⊗γ−1(c2)))

= (a⊗ c)11 ⊗A ((a⊗ c)12 ⊗A (α−1 ⊗γ−1)((a⊗ c)2)),

where in the second step the Hom-coassociativity of (C,γ) is used.

εC((a⊗ c)1)(a⊗ c)2 = εC((α
−1(a)⊗ c1))(1⊗ c2)

= α(α−1(a)ε(c1))(1⊗ c2) = a(1⊗ ε(c1)c2)

= a(1⊗γ−1(c)) = a⊗ c,

on the other hand we have

(a⊗ c)1εC((a⊗ c)2) = (α−1(a)⊗ c1)α(1)ε(c2)

= (α−1(a)⊗ c1ε(c2))1

= (α−1(a)⊗γ−1(c))1

= a⊗ c.

We also show that the following relations

∆C(α(a)⊗γ(c)) = (α−1(α(a))⊗γ(c)1)⊗A (1⊗γ(c)2)

= (α(α−1(a))⊗γ(c1))⊗A (α(1)⊗γ(c2)

= ((α ⊗γ)⊗ (α ⊗γ))(∆C(a⊗ c)),
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εC(α(a)⊗γ(c)) = α(α(a))ε(γ(c))

= α(α(a))ε(c)

= α(εC(a⊗ c))

hold, which completes the proof that (A⊗C,α ⊗γ) is an (A,α)-Hom-coring.

2. Let us denote ψ(c⊗ a) = (1⊗γ−1(c))a = aκ ⊗ cκ. ψ is in H̃(Mk):

(α ⊗γ)(ψ(c⊗ a)) = α(aκ)⊗γ(cκ) = (α ⊗γ)((1⊗γ−1(c))a)

= (α(1)⊗γ(γ−1(c)))α(a) = (1⊗ c)α(a)

= (1⊗γ−1(γ(c)))α(a) = α(a)κ ⊗γ(c)κ

= ψ(γ(c)⊗α(a)),

where in the third equality the fact that the right Hom-action of (A,α) on (A⊗C,α⊗
γ) is a morphism in H̃(Mk) was used. Now, let a,a′ ∈ A and c ∈ C, then

ψ(c⊗ aa′) = (aa′)κ ⊗ cκ = (1⊗γ−1(c))(aa′)

= ((α−1(1)⊗γ−1(γ−1(c)))a)α(a′) = ((1⊗γ−1(γ−1(c)))a)α(a′)

= (aκ ⊗γ−1(c)κ)α(a′) = (α−1(aκ)1⊗γ(γ−1(γ−1(c)κ)))α(a′)

= (aκ(1⊗γ−1(γ−1(c)κ)))α(a′)

= α(aκ)((1⊗γ−1(γ−1(c)κ))a′) = α(aκ)ψ(γ−1(c)κ ⊗ a′)

= α(aκ)(a
′
λ ⊗γ

−1(c)κλ) = α−1(α(aκ))a
′
λ ⊗γ(γ

−1(c)κλ)

= aκa
′
λ ⊗γ(γ

−1(c)κλ).

In the above equality, if we replace c by γ(c) we obtain (aa′)κ⊗γ(c)κ = aκa′λ⊗γ(c
κλ).

Next, by using the right (A,α)-linearity of ∆C we prove the following
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α−1(a)κλ ⊗ c λ1 ⊗ c
κ
2

= ψ(c1 ⊗α−1(a)κ)⊗ c κ2
= (1⊗γ−1(c1))α−1(a)κ ⊗ c κ2
= (1⊗γ−1(c1))α−1(a)κ ⊗A (1⊗γ−1(c κ2 ))

(3.22)
= (1⊗ c1)⊗A α−1(a)κ(1⊗γ−2(c κ2 ))

= (1⊗ c1)⊗A (α−1(a)κ ⊗γ−1(c κ2 ))

= (idA⊗C ⊗ idA ⊗γ−1)((1⊗ c1)⊗A ψ(c2 ⊗α−1(a)))

= (idA⊗C ⊗ idA ⊗γ−1)((1⊗ c1)⊗A ((1⊗γ−1(c2))α−1(a)))
(4.16)
= (idA⊗C ⊗ idA ⊗γ−1)(((α−1(1)⊗γ−1(c1))⊗A (1⊗γ−1(c2)))a)

(3.6)
= (idA⊗C ⊗ idA ⊗γ−1)(((1⊗γ−1(c)1)⊗A (1⊗γ−1(c)2))a)

= (idA⊗C ⊗ idA ⊗γ−1)(∆C(1⊗γ−1(c))a)

= (idA⊗C ⊗ idA ⊗γ−1)(∆C((1⊗γ−1(c))a))

= (idA⊗C ⊗ idA ⊗γ−1)(∆C(aκ ⊗ cκ))

= (idA⊗C ⊗ idA ⊗γ−1)((α−1(aκ)⊗ cκ1)⊗A (1⊗ c
κ
2))

= (α−1(aκ)⊗ cκ1)⊗A (1⊗γ
−1(cκ2))

= (α−1(α−1(aκ))⊗γ−1(cκ1))1⊗γ(γ
−1(cκ2))

= α−1(aκ)⊗ cκ1 ⊗ c
κ
2.

We also find

ψ(c⊗ 1) = 1κ ⊗ cκ = (1⊗γ−1(c))1 = 1⊗ c.

Finally, the fact of εC being right (A,α)-linear gives

α(aκ)ε(c
κ) = εC(aκ ⊗ cκ) = εC((1⊗γ−1(c))a)

= εC(1⊗γ−1(c))a = α(1)ε(γ−1(c))a = 1aε(c)

= α(a)ε(c),

which means that aκε(cκ) = aε(c). Therefore [(A,α), (C,γ)]ψ is a Hom-entwining

structure.

3. The essential point is that if (M,µ) is a right (A,α)-Hom-module, then (M⊗C,µ⊗γ)
is a right (A,α)-Hom-module with the Hom-action ρM⊗C : (M ⊗C) ⊗A→ M ⊗C,
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(m⊗ c)⊗a 7→ (m⊗ c)a =mα−1(a)κ⊗γ(cκ). ρM⊗C indeed satisfies Hom-associativity

and Hom-unity as follows. For all m ∈M, a,a′ ∈ A and c ∈ C,

(µ(m)⊗γ(c))(aa′) = µ(m)α−1(aa′)κ ⊗γ(γ(c)κ)
(4.7)
= µ(m)(α−1(a)κα

−1(a′)λ)⊗γ(γ(cκλ))

= (mα−1(a)κ)α(α
−1(a′)λ)⊗γ(γ(cκλ))

(4.11)
= (mα−1(a)κ)α(α

−1(a′))λ ⊗γ(γ(cκ)λ)

= (mα−1(a)κ)α
−1(α(a′))λ ⊗γ(γ(cκ)λ)

= (mα−1(a)κ ⊗γ(cκ))α(a′)

= ((m⊗ c)a)α(a′),

(m⊗ c)1 = mα−1(1)κ ⊗γ(cκ) =m1κ ⊗γ(cκ)
(4.9)
= m1⊗γ(c) = µ(m)⊗γ(c).

With respect to this Hom-action of (A,α) on (M⊗C,µ⊗γ), becoming an [(A,α), (C,γ)]ψ-

entwined Hom-module is equivalent to the fact that the Hom-coaction of (C,γ) on

(M,µ) is right (A,α)-linear.

Let (M,µ) ∈ M̃C
A(ψ) with the right (C,γ)-Hom-comodule structure m 7→m(0) ⊗m(1).

Then (M,µ) ∈ M̃C with the Hom-coaction ρM : M → M ⊗A C, m 7→ m(0) ⊗A (1 ⊗
γ−1(m(1))), which actually is

ρM(m) = m(0) ⊗A (1⊗γ−1(m(1))) = µ
−1(m)1⊗γ(γ−1(m(1)))

= m(0) ⊗m(1),

where in the second equality we have used the canonical identification

φ :M ⊗A (A⊗C) 'M ⊗C, m⊗A (a⊗ c) 7→ µ−1(m)a⊗γ(c),

and ρM is (A,α)-linear since

ρM(ma) = (ma)(0) ⊗ (ma)(1) =m(0)α
−1(a)κ ⊗γ(m κ

(1) ) = (m(0) ⊗m(1))a.
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Conversely, if (M,µ) is a right (A ⊗ C,α ⊗ γ)-Hom-comodule with the coaction

ρM :M→M ⊗A (A⊗C), by using the canonical identification above, one gets the

(C,γ)-Hom-comodule structure ρ̄M = φ◦ρM :M→M⊗C on (M,µ). One can also

check that φ is right (A,α)-linear once the following (A,α)-Hom-module structure

on M ⊗A C is given:

ρM⊗AC : (M ⊗A C)⊗A→M ⊗A C, (m⊗A (a⊗ c))⊗ a′ 7→ µ(m)⊗A (a⊗ c)α−1(a′),

thus ρ̄M is (A,α)-linear since by definition ρM is (A,α)-linear. Therefore (M,µ) has

an [(A,α), (C,γ)]ψ-entwined Hom-module structure.

�

One should refer to both [20, Proposition 25] and [14, Item 32.9] for the classical

version of the following theorem.

Theorem 4.2.9 Let [(A,α), (C,γ)]ψbe an entwining Hom-structure and (C,χ) = (A ⊗
C,α⊗γ) be the associated (A,α)-Hom-coring. Then the so-called Koppinen smash or ψ-

twisted convolution algebra HomHψ (C,A) = (HomH(C,A),∗ψ ,ηA ◦ εC), where (f ∗ψ g)(c) =
f (c2)κg(c

κ
1 ) for any f ,g ∈ HomH(C,A), is anti-isomorphic to the algebra (∗C,∗l , εC) in

Proposition (4.2.5).

Proof: For f ,g,h ∈HomH(C,A) and c ∈ C,

((f ∗ψ g) ∗ψ h)(c)

= (f ∗ψ g)(c2)κh(c κ1 ) = (f (c22)λg(c
λ

21 ))h(c
κ
1 )

(4.7)
= (f (c22)λκg(c

λ
21 )σ )h(γ(γ

−1(c1)
κσ )) = (f (c22)λκg(c

λ
21 )σ )α(h(γ

−1(c1)
κσ ))

= α(f (c22)λκ)(g(c
λ

21 )σh(γ
−1(c1)

κσ )) κ↔λ= α(f (c22)κλ)(g(c
κ

21 )σh(γ
−1(c1)

λσ ))
(3.5)
= α(f (γ−1(c2))κλ)(g(c

κ
12 )σh(c

λσ
11 )) = α(α−1(f (c2))κλ)(g(c

κ
12 )σh(c

λσ
11 ))

(4.8)
= f (c2)κ(g(c

κ
1 2)σh(c

κ σ
1 1 ))

= f (c2)κ(g ∗ψ h)(c κ1 )

= (f ∗ψ (g ∗ψ h))(c),

proving that ∗ψ is associative. Now we show that ηε is the unit for ∗ψ:
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(ηε ∗ψ f )(c) = ηε(c2)κf (c
κ
1 ) = ε(c2)1κf (c

κ
1 )

= 1κf (γ
−1(c)κ)

(4.9)
= 1f (γ−1(c))

= f (c)

= f (γ−1(c))1 = f (c2)ε(c1)1
(4.10)
= f (c2)κε(c

κ
1 )1 = f (c2)κηε(c

κ
1 )

= (f ∗ψ ηε)(c).

The map φ : ∗C = AHom
H(A⊗C,A)→HomH(C,A) given by

φ(ξ)(c) = ξ(1⊗γ−1(c)) (4.17)

for any ξ ∈ ∗C and c ∈ C, is a k-module isomorphism with the inverse ϕ :HomH(C,A)→
∗C given by ϕ(f )(a ⊗ c) = af (c) for all f ∈ HomH(C,A) and a ⊗ c ∈ A ⊗ C: Let a ∈ A,

a′ ⊗ c ∈ A⊗C and f ∈HomH(C,A). Then

ϕ(f )(a(a′ ⊗ c)) = ϕ(f )(α−1(a)a′ ⊗γ(c)) = (α−1(a)a′)f (γ(c))

= (α−1(a)a′)α(f (c)) = a(a′f (c)) = aϕ(f )(a′ ⊗ c)

and

ϕ(f )(α(a)⊗γ(c)) = α(a)f (γ(c)) = α(af (c)) = α(ϕ(f )(a⊗ c)),

showing that ϕ(f ) is (A,α)-linear. On the other hand,

ϕ(φ(ξ))(a⊗ c) = aφ(ξ)(c) = aξ(1⊗γ−1(c)) = ξ(a(1⊗γ−1(c))) = ξ(a⊗ c),

φ(ϕ(f ))(c) = ϕ(f )(1⊗γ−1(c)) = 1f (γ−1(c)) = f (c).

Now if we put φ(ξ) = f and φ(ξ ′) = f ′, we have f (c) = ξ(1⊗γ−1(c)), f ′(c) = ξ ′(1⊗γ−1(c))
for c ∈ C, and then
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(ξ ∗l ξ ′)(a⊗ c) = ξ((a⊗ c)1ξ ′((a⊗ c)2))
(4.13)
= ξ((α−1(a)⊗ c1)ξ ′(1⊗ c2))

= ξ((α−1(a)⊗ c1)f ′(γ(c2))) = ξ((α−1(a)⊗ c1)α(f ′(c2)))

= ξ(α−1(a)α−1(α(f ′(c2)))κ ⊗γ(c κ1 )) = ξ(α−1(a)f ′(c2)κ ⊗γ(c κ1 ))

= (α−1(a)f ′(c2)κ)f (γ(c
κ
1 )) = (α−1(a)f ′(c2)κ)α(f (c

κ
1 ))

= a(f ′(c2)κf (c
κ
1 )) = a(f ′∗ψf )(c),

which induces the following

φ(ξ ∗l ξ ′)(c) = (ξ ∗l ξ ′)(1⊗γ−1(c)) = 1(f ′ ∗ψ f )(γ−1(c))

= α((f ′ ∗ψ f )(γ−1(c))) = (f ′ ∗ψ f )(γ(γ−1(c)))

= (f ′ ∗ψ f )(c) = (φ(ξ ′) ∗ψ φ(ξ))(c).

Moreover, φ(εC)(c) = εC(1 ⊗ γ−1(c)) = α(1)ε(γ−1(c)) = ηε(c). Therefore φ is the anti-

isomorphism of the algebras ∗C and HomHψ (C,A). �

4.3 Entwinings and Hom-Hopf-type Modules

Definition 4.3.1 Let (B,β) be a monoidal Hom-bialgebra. A right (B,β)-Hom-module

coalgebra (C,γ) is a monoidal Hom-coalgebra and a right (B,β)-Hom-module with the

Hom-action ρC : C ⊗B→ C, c⊗ b 7→ cb such that ρC is a Hom-coalgebra morphism, that

is, for any c ∈ C and b ∈ B

(cb)1 ⊗ (cb)2 = c1b1 ⊗ c2b2, εC(cb) = εC(c)εB(b). (4.18)

The equality

ρC ◦ (γ ⊗ β) = γ ◦ ρC

is a consequence of (4.18) and the properties of (B,β) and (C,γ).

By the following construction, we show that a Hom-Doi-Koppinen datum comes from

a Hom-entwining structure and that the Doi-Koppinen Hom-Hopf modules are the same

as the associated entwined Hom-modules, and give the structure of Hom-coring corre-

sponding to the relevant Hom-entwining structure.
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Proposition 4.3.2 Let (B,β) be a monoidal Hom-bialgebra. Let (A,α) be a right (B,β)-

Hom-comodule algebra with Hom-coaction ρA : A→ A⊗B, a 7→ a(0) ⊗ a(1) and (C,γ) be

a right (B,β)-Hom-module coalgebra with Hom-action ρC : C⊗B→ C, c⊗b 7→ cb. Define

the morphism

ψ : C ⊗A→ A⊗C, c⊗ a 7→ α(a(0))⊗γ−1(c)a(1) = aκ ⊗ cκ. (4.19)

Then the following assertions hold.

1. [(A,α), (C,γ)]ψ is an Hom-entwining structure.

2. (M,µ) is an [(A,α), (C,γ)]ψ-entwined Hom-module if and only if it is a right (A,α)-

Hom-module with ρM :M ⊗A→M, m⊗ a 7→ma and a right (C,γ)-Hom-comodule

with ρM :M→M ⊗C, m 7→m(0) ⊗m(1) such that

ρM(ma) =m(0)a(0) ⊗m(1)a(1) (4.20)

for any m ∈M and a ∈ A.

3. (C,χ) = (A⊗C,α⊗γ) is an (A,α)-Hom-coring with comultiplication and counit given

by (4.13) and (4.14), respectively, and it has the (A,α)-Hom-bimodule structure

a(a′ ⊗ c) = α−1(a)a′ ⊗γ(c), (a′ ⊗ c)a = a′a(0) ⊗ ca(1) for a,a′ ∈ A and c ∈ C.

4. HomH(C,A) is an associative algebra with the unit ηε and the multiplication ∗ψ
defined by

(f ∗ψ g)(c) = α(f (c2)(0))g(γ−1(c1)f (c2)(1)) = α(f (c2))(0)α−1(g(c1α(f (c2)(1)))), (4.21)

for all f ,g ∈HomH(C,A) and c ∈ C.

Proof:

1. By (4.19) we have aκ ⊗γ(c)κ = α(a(0))⊗ ca(1), and thus
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(aa′)κ ⊗γ(c)κ = α((aa′)(0))⊗ c((aa′)(1))
(3.18)
= α(a(0)a

′
(0))⊗ c(a(1)a

′
(1)) = α(a(0))α(a

′
(0))⊗ (γ

−1(c)a(1))β(a
′
(1))

(4.19)
= aκα(a

′
(0))⊗ c

κβ(a′(1))

= aκα(a
′
(0))⊗γ(γ

−1(cκ)a′(1))

(4.19)
= aκa

′
λ ⊗γ(c

κλ),

which shows that ψ satisfies (4.7). To prove that ψ fulfills (4.8) we have the com-

putation

α−1(aκ)⊗ cκ1 ⊗ c
κ
2 = α−1(α(a(0)))⊗ (γ−1(c)a(1))1 ⊗ (γ−1(c)a(1))2

(4.18)
= a(0) ⊗γ−1(c)1a(1)1 ⊗γ−1(c)2a(1)2
= a(0) ⊗γ−1(c1)a(1)1 ⊗γ−1(c2)a(1)2

(3.9)
= α(a(0)(0))⊗γ−1(c1)a(0)(1) ⊗γ−1(c2)β−1(a(1))

(4.19)
= a(0)κ ⊗ c

κ
1 ⊗γ

−1(c2)β
−1(a(1))

= α(α−1(a(0)))κ ⊗ c κ1 ⊗γ
−1(c2)β

−1(a(1))
(3.10)
= α(α−1(a)(0))κ ⊗ c κ1 ⊗γ

−1(c2)α
−1(a)(1)

(4.19)
= α−1(a)λκ ⊗ c κ1 ⊗ c

λ
2 .

To finish the proof of (1) we finally verify that ψ satisfies (4.9) and (4.10) as follows,

1κ ⊗ cκ = α(1(0))⊗γ−1(c)1(1) = α(1A)⊗γ−1(c)1B = 1⊗ c,

aκε(c
κ) = α(a(0))ε(γ

−1(c)a(1)) = α(a(0))ε(γ
−1(cβ(a(1))))

(3.6)
= α(a(0))ε(cβ(a(1)))

(4.18)
= α(a(0))ε(c)εB(β(a(1)))

= α(a(0)εB(a(1)))ε(c)
(3.9)
= α(α−1(a))ε(c)

= aε(c).

115



2. We see that the condition for entwined Hom-modules,i.e., ρM(ma) =m(0)α
−1(a)κ⊗

γ(m κ
(1) ) and the condition in (4.20) are equivalent by the following, for m ∈M and

a ∈ A,

m(0)α
−1(a)κ ⊗γ(m κ

(1) ) = m(0)α(α
−1(a)(0))⊗γ(γ−1(m(1))α

−1(a)(1))

= m(0)α(α
−1(a(0)))⊗γ(γ−1(m(1))β

−1(a(1)))

= m(0)a(0) ⊗γ(γ−1(m(1)a(1)))

= m(0)a(0) ⊗m(1)a(1).

3. We only prove that the right (A,α)-Hom-module structure holds as is given in the

assertion. The rest of the structure of the corresponding Hom-coring can be seen

at once from Theorem (4.2.8). For a,a′ ∈ A and c ∈ C,

(a′ ⊗ c)a = a′α−1(a)κ ⊗γ(cκ)

= a′α(α−1(a)(0))⊗γ(γ−1(c)α−1(a)(1)) = a′a(0))⊗γ(γ−1(c)β−1(a(1)))

= a′a(0) ⊗ ca(1).

4. By the definition of product ∗ψ given in Theorem (4.2.9) and the definition of ψ

given in (4.19) we have, for f ,g ∈HomH(C,A) and c ∈ C,

(f ∗ψ g)(c) = f (c2)κg(c
κ
1 )

= α(f (c2)(0))g(γ
−1(c1)f (c2)(1)) = α(f (c2)(0))g(γ

−1(c1β(f (c2)(1))))

= α(f (c2)(0))α
−1(g(c1β(f (c2)(1)))) = α(f (c2))(0)α

−1(g(c1α(f (c2))(1))).

�

Definition 4.3.3 A triple [(A,α), (B,β), (C,γ)] is called a (right-right) Hom-Doi-Koppinen

datum if it satisfies the conditions of Proposition (4.3.2), that is, if (A,α) is a right (B,β)-

Hom-comodule algebra and (C,γ) is a right (B,β)-Hom-module coalgebra for a monoidal

Hom-bialgebra (B,β).
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[(A,α), (C,γ)]ψ in Proposition (4.3.2) is called a Hom-entwining structure associated

to a Hom-Doi-Koppinen datum.

A Doi-Koppinen Hom-Hopf module or a unifying Hom-Hopf module is a Hom-module

satisfying the condition (4.20).

Now we give the following collection of examples. Each of them is a special case of

the construction given above.

Example 4.3.4 Hom-bialgebra entwinings and Hom-Hopf modules Let (B,β) be a

monoidal Hom-bialgebra with Hom-multiplication mB : B⊗B→ B, b⊗b′ 7→ bb′ and Hom-

comutiplication ∆B : B→ B⊗B, b 7→ b1 ⊗ b2.

1. [(B,β), (B,β)]ψ, with ψ : B⊗B→ B⊗B,b′⊗b 7→ β(b1)⊗β−1(b′)b2, is an Hom-entwining

structure.

2. (M,µ) is an [(B,β), (B,β)]ψ-entwined Hom-module if and only if it is a right (B,β)-

Hom-module with ρM :M ⊗B→M, m⊗ b 7→mb and a right (B,β)-Hom-comodule

with ρM :M→M ⊗B, m 7→m(0) ⊗m(1) such that

ρM(mb) =m(0)b1 ⊗m(1)b2 (4.22)

for all m ∈M and b ∈ B. Such Hom-modules are called Hom-Hopf modules (see

[21]).

3. (C,χ) = (B ⊗ B,β ⊗ β) is a (B,β)-Hom-coring with comultiplication ∆C(b ⊗ b′) =

(β−1(b)⊗b′1)⊗B (1B⊗b
′
2) and counit εC(b⊗b′) = β(b)εB(b′), and (B,β)-Hom-bimodule

structure

b(b′ ⊗ b′′) = β−1(b)b′ ⊗ β(b′), (b′ ⊗ b′′)b = b′b1 ⊗ b′′b2

for all b,b′ ,b′′ ∈ B.

Proof:Since ∆B is a Hom-algebra morphism, (B,β) is a right (B,β)-Hom-comodule alge-

bra with Hom-coaction

ρB = ∆B : B→ B⊗B, b 7→ b(0) ⊗ b(1) = b1 ⊗ b2,

and since mB is a Hom-coalgebra morphism, (B,β) is a right (B,β)-Hom-module coal-

gebra with Hom-action ρB = mB : B ⊗ B → B, b ⊗ b′ 7→ bb′ . So, we have the triple
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[(B,β), (B,β), (B,β)] as Hom-Doi-Koppinen datum, and the associated Hom-entwining

structure is [(B,β), (B,β)]ψ, where ψ(b′ ⊗b) = β(b(0))⊗β−1(b′)b(1) = β(b1)⊗β−1(b′)b2. The

rest of the assertions are immediately obtained by the above proposition.

�

Example 4.3.5 Relative entwinings and relative Hom-Hopf modules Let (B,β) be

a monoidal Hom-bialgebra and let (A,α) be a (B,β)-Hom-comodule algebra with Hom-

coaction ρA : A→ A⊗B,a 7→ a(0) ⊗ a(1).

1. [(A,α), (B,β)]ψ, with ψ : B ⊗ A → A ⊗ B, b ⊗ a 7→ α(a(0)) ⊗ β−1(b)a(1), is an Hom-

entwining structure.

2. (M,µ) is an [(A,α), (B,β)]ψ-entwined Hom-module if and only if it is a right (A,α)-

Hom-module with ρM :M ⊗A→M, m⊗ a 7→ma and a right (B,β)-Hom-comodule

with ρM :M→M ⊗B, m 7→m[0] ⊗m[1] such that

ρM(ma) =m[0]a(0) ⊗m[1]a(1) (4.23)

for all m ∈ M and a ∈ A. Hom-modules fulfilling the above condition are called

relative Hom-Hopf modules (see [39]).

3. (C,χ) = (A ⊗ B,α ⊗ β) is a (A,α)-Hom-coring with comultiplication ∆C(a ⊗ b) =

(α−1(a)⊗b1)⊗A (1A⊗b2) and counit εC(a⊗b) = α(a)εB(b), and (A,α)-Hom-bimodule

structure

a(a′ ⊗ b) = α−1(a)a′ ⊗ β(b), (a′ ⊗ b)a = a′a(0) ⊗ ba(1)

for all a,a′ ∈ A and b ∈ B.

Proof:The relevant Hom-Doi-Koppinen datum is [(A,α), (B,β), (B,β)], where the first ob-

ject (A,α) is assumed to be a right (B,β)-Hom-comodule algebra with the Hom-coaction

ρA : a 7→ a(0)⊗a(1) and the third object (B,β) is a right (B,β)-Hom-module coalgebra with

Hom-action given by its Hom-multiplication. Hence, [(A,α), (B,β)]ψ is the associated

Hom-entwining structure, where ψ(b ⊗ a) = α(a(0)) ⊗ β−1(b)a(1). Assertions (2) and (3)

can be seen at once from Proposition (4.3.2). �

Remark 6 (A,α) itself is a relative Hom-Hopf-module by its Hom-multiplication and the

(B,β)-Hom-coaction ρA.
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Example 4.3.6 Dual-relative entwinings and [(C,γ), (A,α)]-Hom-Hopf modules Let

(A,α) be a monoidal Hom-bialgebra and let (C,γ) be a right (A,α)-Hom-module coalge-

bra with Hom-action ρC : C ⊗A→ C,c⊗ a 7→ ca.

1. [(A,α), (C,γ)]ψ, with ψ : C⊗A→ A⊗C, c⊗a 7→ α(a1)⊗β−1(c)a2, is an Hom-entwining

structure.

2. (M,µ) is an [(A,α), (C,γ)]ψ-entwined Hom-module if and only if it is a right (A,α)-

Hom-module with ρM :M ⊗A→M, m⊗ a 7→ma and a right (C,γ)-Hom-comodule

with ρM :M→M ⊗B, m 7→m(0) ⊗m(1) such that

ρM(ma) =m(0)a1 ⊗m(1)a2 (4.24)

for all m ∈ M and a ∈ A. Such a Hom-module is called [(C,γ), (A,α)]-Hom-Hopf

module.

3. (C,χ) = (A ⊗ C,α ⊗ γ) is a (A,α)-Hom-coring with comultiplication ∆C(a ⊗ c) =
(α−1(a)⊗c1)⊗A (1A⊗c2) and counit εC(a⊗b) = α(a)εC(c), and (A,α)-Hom-bimodule

structure

a(a′ ⊗ b) = α−1(a)a′ ⊗γ(c), (a′ ⊗ c)a = a′a1 ⊗ ca2

for all a,a′ ∈ A and c ∈ C.

Proof: (A,α) is a right (A,α)-Hom-comodule algebra with Hom-coaction given by the

Hom-comultiplication

ρA = ∆A : A→ A⊗A, a 7→ a(0) ⊗ a(1) = a1 ⊗ a2,

since ∆A is a Hom-algebra morphism. Besides (C,γ) is assumed to be a right (A,α)-

Hom-module coalgebra with Hom-action ρC(c ⊗ a) = ca. Thus, the related Hom-Doi-

Koppinen datum is [(A,α), (A,α), (C,γ)]. Then [(A,α), (C,γ)]ψ is the Hom-entwining

structure associated to the datum, where

ψ(c⊗ a) = α(a(0))⊗γ−1(c)a(1) = α(a1)⊗γ−1(c)a2.

The assertions (2) and (3) are also immediate by Proposition (4.3.2). �

Remark 7 (C,γ) itself is a [(C,γ), (A,α)]-Hom-Hopf-module by the (A,α)-Hom-action

ρC and its Hom-comultiplication.
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The following example gives a Hom-generalization of the so-called (α,β)-Yetter-Drinfeld

modules introduced in [69] as an entwined Hom-module:

Example 4.3.7 Generalized Yetter-Drinfeld entwinings and (φ,ϕ)-Hom-Yetter-Drinfeld

modules Let (H,α) be a monoidal Hom-Hopf algebra and let φ,ϕ : H → H be two

monoidal Hom-Hopf algebra automorphisms. Define the map, for all h,g ∈H

ψ :H ⊗H →H ⊗H, g ⊗ h 7→ α2(h21)⊗ϕ(S(h1))(α−2(g)φ(h22)), (4.25)

where S is the antipode of H .

1. [(H,α), (H,α)]ψ is an Hom-entwining structure.

2. (M,µ) is an [(H,α), (H,α)]ψ-entwined Hom-module if and only if it is a right (H,α)-

Hom-module with ρM :M⊗H →M, m⊗h 7→mh and a right (H,α)-Hom-comodule

with ρM :M→M ⊗H, m 7→m(0) ⊗m(1) such that

ρM(mh) =m(0)α(h21)⊗ϕ(S(h1))(α−1(m(1))φ(h22)) (4.26)

for all m ∈M and h ∈ H . A Hom-module (M,µ) satisfying this condition is called

(φ,ϕ)-Hom-Yetter-Drinfeld module .

3. (C,χ) = (H ⊗H,α ⊗ α) is an (H,α)-Hom-coring with comultiplication ∆C(h ⊗ h′) =
(α−1(h) ⊗ h′1) ⊗H (1H ⊗ h′2) and counit εC(h ⊗ h′) = α(h)εH (h′), and (H,α)-Hom-

bimodule structure

g(h⊗ h′) = α−1(g)h⊗α(h′), (h⊗ h′)g = hα(g21)⊗ϕ(S(g1))(α−1(h′)φ(g22))

for all h,h′ , g ∈H .

Proof: In the first place, we prove that the map

ρH :H →H ⊗ (Hop ⊗H), h 7→ h(0) ⊗ h(1) := α(h21)⊗ (α−1(ϕ(S(h1)))⊗ h22)

defines a (Hop⊗H,α⊗α)-Hom-comodule algebra structure on (H,α). Let us put (Hop⊗
H,α ⊗α) = (H̃, α̃). Then
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h(0)(0) ⊗ (h(0)(1))⊗ α̃−1(h(1))

= α(α(h21)21)⊗ ((α−1(ϕ(S(α(h21)1)))⊗α(h21)22)⊗ (α−2(ϕ(S(h1)))⊗α−1(h22)))

= α2(h2121)⊗ ((α−1(ϕ(S(α(h211))))⊗α(h2122))⊗ (α−2(ϕ(S(h1)))⊗α−1(h22)))

= α2(h2121)⊗ ((ϕ(S(h211))⊗α(h2122))⊗ (α−2(ϕ(S(h1)))⊗α−1(h22)))

= h21 ⊗ ((α−1(ϕ(S(h12)))⊗ h221)⊗ (α−1(ϕ(S(h11)))⊗ h222))

= h21 ⊗ ((α−1(ϕ(S(h1)))1 ⊗ h221)⊗ (α−1(ϕ(S(h1)))2 ⊗ h222))

= α−1(h(0))⊗∆H̃ (h(1)),

where in the fourth step we used

α(h11)⊗α−1(h12)⊗α−2(h21)⊗α−1(h221)⊗α(h222) = h1 ⊗ h211 ⊗ h2121 ⊗ h2122 ⊗ h22,

which can be obtained by applying the Hom-coassociativity of ∆H three times. We also

have

h(0)εH̃ (h(0)) = α(h21)ε(α
−1(ϕ(S(h1))))ε(h22)

= α(h21ε(h22))ε(α
−1(ϕ(S(h1)))) = α(α

−1(h2))ε(h1)

= α−1(h),

where in the third equality we used the relations ε ◦α−1 = ε, ε ◦ϕ = ε and ε ◦S = ε. One

can easily check that the relations ρH ◦α = (α⊗ α̃)◦ρH and ρH (1H ) = 1H ⊗1H̃ hold. For

g,h ∈H ,

ρH (g)ρH (g) = (α(g21)⊗ (α−1(ϕ(S(g1)))⊗ g22))(α(h21)⊗ (α−1(ϕ(S(h1)))⊗ h22))

= α(g21)α(h21)⊗ (α−1(ϕ(S(h1)))α−1(ϕ(S(g1)))⊗ g22h22)

= α(g21h21)⊗ (α−1(ϕ(S(h1)S(g1)))⊗ g22h22)

= α((gh)21)⊗ (α−1(ϕ(S((gh)1)))⊗ (gh)22)

= ρH (gh),

which completes the proof of the statement that ρH makes (H,α) an (H̃, α̃)-Hom-comodule

algebra. We next consider the map, for all g,h,k ∈H

ρH :H ⊗ H̃ →H, g · (h⊗ k) := (hα−1(g))φ(α(k))
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and we claim that it defines an (H̃, α̃)-Hom-module coalgebra structure on (H,α): In-

deed,

(g · (h⊗ k)) · (α(h′)⊗α(k′)) = ((hα−1(g))φ(α(k))) · (α(h′)⊗α(k′))

= (α(h′)((α−1(h)α−2(g))α−1(φ(α(k)))))φ(α2(k′))

= (α(h′)((α−1(h)α−2(g))φ(k)))φ(α2(k′))

= ((h′(α−1(h)α−2(g)))α(φ(k)))φ(α2(k′))

= (α−1((h′h)g)α(φ(k)))φ(α2(k′))

= ((h′h)g)(α(φ(k))α−1(φ(α2(k′)))) = ((h′h)g)(φ(α(k))φ(α(k′)))

= ((h′h)g)φ(α((kk′))) = ((h′h)α−1(α(g)))φ(α((kk′)))

= α(g) · (h′h⊗ kk′) = α(g) · ((h⊗ k)(h′ ⊗ k′)),

h · (1H ⊗ 1H ) = (1Hα
−1(h))φ(α(1H )) = α(h),

(g · (h⊗ k))1 ⊗ (g · (h⊗ k))2 = ((hα−1(g))φ(α(k)))1 ⊗ ((hα−1(g))φ(α(k)))2
= (hα−1(g))1φ(α(k))1 ⊗ (hα−1(g))2φ(α(k))2
= (h1α

−1(g1))φ(α(k1))⊗ (h2α−1(g2))φ(α(k2))

= g1 · (h1 ⊗ k1)⊗ g2 · (h2 ⊗ k2)

= g1 · (h⊗ k)1 ⊗ g2 · (h⊗ k)2,

ε(g ·(h⊗k)) = ε((hα−1(g))φ(α(k))) = ε(h)ε(α−1(g))ε(φ(α(k))) = ε(h)ε(g)ε(k) = ε(h)εH̃ (g⊗k),

proving that (H,α) is an (H̃, α̃)-Hom-module coalgebra with the Hom-action ρH . Hence,

the Hom-Doi-Koppinen datum is given by [(H,α), (Hop ⊗H,α ⊗ α), (H,α)] to which the

Hom-entwining structure [(H,α), (H,α)]ψ is associated, where we have the entwining

map ψ :H ⊗H →H ⊗H as

ψ(g ⊗ h) = α(h(0))α
−1(g) · h(1) = α(α(h21))⊗α−1(g) · (α−1(ϕ(S(h1)))⊗ h22)

= α2(h21)⊗ (α−1(ϕ(S(h1)))α−2(g))φ(α(h22))

= α2(h21)⊗ϕ(S(h1))(α−2(g)φ(h22)).
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For m ∈M and h ∈H , we have the condition (4.26)

ρM(mh) = m(0)h(0) ⊗m(1) · h(1)
= m(0)α(h21)⊗m(1) · (α−1(ϕ(S(h1)))⊗ h22)

= m(0)α(h21)⊗α−1(ϕ(S(h1))m(1))φ(α(h22))

= m(0)α(h21)⊗ϕ(S(h1))(α−1(m(1))φ(h22)).

By the above proposition, the (H,α)-Hom-coring structure of (H⊗H,α⊗α) is immediate.

Here we only write down the right Hom-module condition

(h⊗ h′)g = hg(0) ⊗ h′ · g(1)
= hα(g21)⊗ h′ · (α−1(ϕ(S(g1)))⊗ g22)

= hα(g21)⊗ϕ(S(g1))(α−1(h′)φ(g22)),

completing the proof. �

Remark 8 1. By putting φ = idH = ϕ in the compatibility condition (4.26) we get the

usual condition for (right-right) Hom-Yetter-Drinfeld modules, which is

ρM(mh) =m(0)α(h21)⊗ S(h1)(α−1(m(1))h22). (4.27)

2. If the antipode S of (H,α) is a bijection , then by taking φ = idH and ϕ = S−2 , we

have the compatibility condition for (right-right) anti-Hom-Yetter-Drinfeld modules

as follows

ρM(mh) =m(0)α(h21)⊗ S−1(h1)(α−1(m(1))h22). (4.28)

We get an equivalent condition for the generalized Hom-Yetter-Drinfeld modules by

the following

Proposition 4.3.8 The compatibility condition (4.26) for (φ,ϕ)-Hom-Yetter-Drinfeld mod-

ules is equivalent to the equation

m(0)α
−1(h1)⊗m(1)φ(α

−1(h2)) = (mh2)(0) ⊗α−1(ϕ(h1)(mh2)(1)). (4.29)
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Proof:Assume that (4.29) holds, then

m(0)α(h21)⊗ϕ(S(h1))(α−1(m(1))φ(h22))

= m(0)α
−1(α2(h21))⊗ϕ(S(h1))(α−1(m(1))α

−2(φ(α2(h22))))

= m(0)α
−1(α2(h2)1)⊗ϕ(S(h1))α−1(m(1)α

−1(φ(α2(h2)2)))
(4.29)
= (mα2(h2)2)(0) ⊗ϕ(S(h1))(α−2(ϕ(α2(h2)1))α

−2((mα2(h2)2)(1)))

= (mα2(h22))(0) ⊗ϕ(S(h1))(ϕ(h21)α−2((mα2(h22))(1)))
(3.5)
= (mα(h2))(0) ⊗ϕ(S(α(h11)))(ϕ(h12)α−2((mα(h2))(1)))

= (mα(h2))(0) ⊗ϕ(S(h11)h12)α−1((mα(h2))(1))

= (mα(h2))(0) ⊗ϕ(ε(h1)1H )α−1((mα(h2))(1)))

= ε(h1)(mα(h2))(0) ⊗ (mα(h2))(1)
= ε(h1)ρ

M(mα(h2)) = ρ
M(mh),

which gives us (4.26). One can easily show that by applying the Hom-coassociativity

condition (3.5) twice we have

α−1(h1)⊗ h21 ⊗α(h221)⊗α(h222) = h11 ⊗ h12 ⊗ h21 ⊗ h22, (4.30)

which is used in the below computation. Thus, if we suppose that (4.26) holds, then

(mh2)(0) ⊗α−1(ϕ(h1)(mh2)(1))
(4.26)
= m(0)α(h221)⊗α−1(ϕ(h1)(ϕ(S(h21))(α−1(m(1))φ(h222))))

= m(0)α(h221)⊗α−1((α−1(ϕ(h1))ϕ(S(h21)))(m(1)α(φ(h222))))
(4.30)
= m(0)h21 ⊗α−1((ϕ(h11)ϕ(S(h12)))(m(1)φ(h22)))

= m(0)h21 ⊗ (ε(h1)1H )α−1(m(1)φ(h22))

= m(0)h21 ⊗ ε(h1)m(1)φ(h22)
(3.5)
= m(0)h12ε(h11)⊗m(1)φ(α

−1(h2))

= m(0)α
−1(h1)⊗m(1)φ(α

−1(h2)),

finishing the proof. �

Remark 9 The above result implies that the equations (4.27) and (4.28) are equivalent

to

m(0)α
−1(h1)⊗m(1)α

−1(h2) = (mh2)(0) ⊗α−1(h1(mh2)(1))
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and

m(0)α
−1(h1)⊗m(1)α

−1(h2) = (mh2)(0) ⊗α−1(S−2(h1)(mh2)(1)),

respectively.

Example 4.3.9 The flip and Hom-Long dimodule Let (H,α) be a monoidal Hom-

bialgebra. Then:

1. [(H,α), (H,α)]ψ, where ψ : H ⊗H → H ⊗H, g ⊗ h 7→ h ⊗ g, is an Hom-entwining

structure.

2. (M,µ) is an [(H,α), (H,α)]ψ-entwined Hom-module if and only if it is a right (H,α)-

Hom-module with ρM :M⊗H →M, m⊗h 7→mh and a right (H,α)-Hom-comodule

with ρM :M→M ⊗H, m 7→m(0) ⊗m(1) such that

ρM(mh) =m(0)α
−1(h)⊗α(m(1)) (4.31)

for all m ∈M and h ∈ H . Such Hom-modules (M,µ) are called (right-right) (H,α)-

Hom-Long dimodules (see [27]).

3. (C,χ) = (H ⊗H,α ⊗ α) is an (H,α)-Hom-coring with comultiplication ∆C(h ⊗ h′) =
(α−1(h) ⊗ h′1) ⊗H (1H ⊗ h′2) and counit εC(h ⊗ h′) = α(h)εH (h′), and (H,α)-Hom-

bimodule structure

g(h⊗ h′) = α−1(g)h⊗α(h′), (h⊗ h′)g = hα−1(g)⊗α(h′)

for all h,h′ , g ∈H .

Proof: (H,α) itself is a right (H,α)-Hom-comodule algebra with Hom-coaction ρH = ∆H :

H → H ⊗H, h 7→ h(0) ⊗ h(1) = h1 ⊗ h2. In addition, (H,α) becomes a right (H,α)-Hom-

module coalgebra with the trivial Hom-action ρH : H ⊗H → H, g ⊗ h 7→ g · h = α(g)ε(h).
Hence we have [(H,α), (H,α), (H,α)] as Hom-Doi-Koppinen datum with the associated

Hom-entwining structure [(H,α), (H,α)]ψ, where ψ(h′⊗h) = α(h(0))⊗α−1(h′)·h(1) = α(h1)⊗
α−1(h′) · h2 = α(h1)⊗α(α−1(h′))ε(h2) = h⊗ h′. �

Definition 4.3.10 Let (B,β) be a monoidal Hom-bialgebra. A left (B,β)-Hom-comodule

coalgebra (C,γ) is a monoidal Hom-coalgebra and a left (B,β)-Hom-comodule with a

Hom-coaction ρ : C→ B⊗C, c 7→ c(−1) ⊗ c(0) such that, for any c ∈ C

c(−1) ⊗ c(0)1 ⊗ c(0)2 = c1(−1)c2(−1) ⊗ c1(0) ⊗ c2(0), c(−1)εC(c(0)) = 1BεC(c). (4.32)
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The equation

ρ ◦γ = (β ⊗γ) ◦ ρ

follows from (4.32) and the properties of (B,β) and (C,γ).

We lastly introduce the below construction regarding the Hom-version of the so-

called alternative Doi-Koppinen datum given in [73].

Proposition 4.3.11 Let (B,β) be a monoidal Hom-bialgebra. Let (A,α) be a left (B,β)-

Hom-module algebra with Hom-action Aρ : B ⊗ A → A, b ⊗ a 7→ b · a and (C,γ) be a

left (B,β)-Hom-comodule coalgebra with Hom-coaction Cρ : C → B⊗C, c 7→ c(−1) ⊗ c(0).
Define the map

ψ : C ⊗A→ A⊗C, c⊗ a 7→ c(−1) ·α−1(a)⊗γ(c(0)) (4.33)

Then the following statements hold.

1. [(A,α), (C,γ)]ψ is an Hom-entwining structure.

2. (M,µ) is an [(A,α), (C,γ)]ψ-entwined Hom-module iff it is a right (A,α)-Hom-module

with ρM :M⊗A→M,m⊗a 7→ma and a right (C,γ)-Hom-comodule with ρM :M→
M ⊗C, m 7→m[0] ⊗m[1] such that

ρM(ma) = (ma)[0] ⊗ (ma)[1] =m[0](m[1](−1) ·α−2(a))⊗γ2(m[1](0)) (4.34)

for any m ∈M and a ∈ A.

3. (C,χ) = (A⊗C,α⊗γ) is an (A,α)-Hom-coring with comultiplication and counit given

by (4.13) and (4.14), respectively, and the (A,α)-Hom-bimodule structure a(a′⊗c) =
α−1(a)a′ ⊗γ(c), (a′ ⊗ c)a = a′(c(−1) ·α−2(a))⊗γ2(c(0)) for a,a′ ∈ A and c ∈ C.

A triple [(A,α), (B,β), (C,γ)] satisfying the above assumptions of the proposition is called

an alternative Hom-Doi-Koppinen datum.

Proof:The first two conditions for Hom-entwining structures will be checked and the

rest of the proof can be completed by performing similar computations as in Proposition

(4.3.2). For a,a′ ∈ A and c ∈ C,
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(aa′)κ ⊗γ(c)κ = γ(c)(−1) ·α−1(aa′)⊗γ(γ(c)(0))

= β(c(−1)) · (α−1(a)α−1(a′))⊗γ2(c(0))

= (β(c(−1))1 ·α−1(a))(β(c(−1))2 ·α−1(a′))⊗γ2(c(0))

= (β(c(−1)1) ·α−1(a))(β(c(−1)2) ·α−1(a′))⊗γ2(c(0))

= (β(β−1(c(−1))) ·α−1(a))(β(c(0)(−1)) ·α−1(a′))⊗γ2(γ(c(0)(0)))

= (c(−1) ·α−1(a))(γ(c(0))(−1) ·α−1(a′))⊗γ2(γ(c(0))(0))

= (c(−1) ·α−1(a))a′λ ⊗γ(γ(c(0))
λ)

= aκa
′
λ ⊗γ(c

κλ),

α−1(aκ)⊗ cκ1 ⊗ c
κ
2 = α−1(c(−1) ·α−1(a))⊗γ(c(0))1 ⊗γ(c(0))2

= β−1(c(−1)) ·α−2(a)⊗γ(c(0)1)⊗γ(c(0)2)

= β−1(c1(−1)c2(−1)) ·α−2(a)⊗γ(c1(0))⊗γ(c2(0))

= (β−1(c1(−1))β
−1(c2(−1))) ·α−2(a)⊗γ(c1(0))⊗γ(c2(0))

= c1(−1) · (β−1(c2(−1)) ·α−3(a))⊗γ(c1(0))⊗γ(c2(0))

= c1(−1) ·α−1(c2(−1) ·α−2(a))⊗γ(c1(0))⊗γ(c2(0))

= (c2(−1) ·α−1(α−1(a)))κ ⊗ c κ1 ⊗γ(c2(0))

= α−1(a)λκ ⊗ c κ1 ⊗ c
λ
2 .

�
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Chapter 5

Covariant Hom-Differential

Calculus

The general theory of covariant differential calculi on quantum groups was introduced

by S. L. Woronowicz in [80], [81],[82]. Many results obtained in this chapter in the Hom-

setting follow from the classical results appear in the fundamental reference [82]. In

Section 5.1, after the notions of first order differential calculus (FODC) on a monoidal

Hom-algebra and left-covariant FODC over a left Hom-quantum space with respect to

a monoidal Hom-Hopf algebra are presented, the left-covariance of a Hom-FODC is

characterized. The extension of the universal FODC over a monoidal Hom-algebra to

a universal Hom-differential calculus (Hom-DC) is described as well (for the classical

case, that is, for the extension of a FODC over an algebra A to the differential envelope

of A one should refer to [32], [31]). In the rest of the chapter, the concepts of left-

covariant and bicovariant FODC over a monoidal Hom-Hopf algebra (H,α) are studied

in detail. A subobject R of kerε, which is a right Hom-ideal of (H,α), and a quantum

Hom-tangent space are associated to each left-covariant (H,α)-Hom-FODC: It is in-

dicated that left-covariant Hom-FODCs are in one-to one correspondence with these

right Hom-ideals R, and that the quantum Hom-tangent space and the left coinvari-

ant of the monoidal Hom-Hopf algebra on Hom-FODC form a nondegenerate dual pair.

The quantum Hom-tangent space associated to a bicovariant Hom-FODC is equipped

with an analogue of Lie bracket (or commutator) through Woronowicz’ braiding and it

is proven that this commutator satisfies quantum (or generalized) versions of the anti-

symmetry relation and Hom-Jacobi identity, which is therefore called the quantum (or
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generalized) Hom-Lie algebra of that bicovariant Hom-FODC. Throughout the chapter,

we work with vector spaces over a field k.

5.1 Left-Covariant FODC over Hom-quantum spaces

Definition 5.1.1 A first order differential calculus over a monoidal Hom-algebra (A,α)

is an (A,α)-Hom-bimodule (Γ ,γ) with a linear map d : A→ Γ such that

1. d satisfies the Leibniz rule, i.e., d(ab) = a · db+ da · b,∀a,b ∈ A,

2. d ◦α = γ ◦ d, which means that d is in H̃(Mk),

3. Γ is linearly spanned by the elements of the form (a · db) · c with a,b,c ∈ A.

We call (Γ ,γ) an (A,α)-Hom-FODC for short.

Remark 10 1. In the above definition, the second condition, i.e. d ◦ α = γ ◦ d, is

equivalent to the equality d1 = 0.

2. By the compatibility condition for Hom-bimodule structure of (Γ ,γ), we have (a ·
db) · c = α(a) · (db · α−1(c)), which implies that Γ is also linearly spanned by the

elements a · (db · c) for all a,b,c ∈ A. Thus we denote Γ = (A · dA) ·A = A · (dA ·A).

3. By using the Leibniz rule and the fact that d(α(a)) = γ(da) for any a ∈ A, we get

(a · db) · c = (d(ab)− da · b) · c = d(ab) · c − (da · b) · c

= d(ab) · c −γ(d(a)) · (bα−1(c)) = d(ab) · c − d(α(a)) · (bα−1(c)),

and

α(a) · (db ·α−1(c)) = α(a) · (d(bα−1(c))− b · d(α−1(c)))

= α(a) · d(bα−1(c))−α(a) · (b · d(α−1(c)))

= α(a) · d(bα−1(c))− (ab) · d(c).

Hence, Γ = A · dA = dA ·A.

Definition 5.1.2 Let (H,β) be a monoidal Hom-bialgebra and (A,α) be a left Hom-

quantum space for (H,β) (i.e. a left (H,β)-Hom-comodule algebra) with the left Hom-

coaction ϕ : A → H ⊗ A, a 7→ a(−1) ⊗ a(0). An (A,α)-Hom-FODC (Γ ,γ) is called left-

covariant with respect to (H,β) if there is a left Hom-coaction φ : Γ → H ⊗ Γ , ω 7→
ω(−1) ⊗ω(0) of (H,β) on (Γ ,γ) such that
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1. φ(α(a) · (ω · b)) = ϕ(α(a))(φ(ω)ϕ(b)), ∀a,b ∈ A, ω ∈ Γ ,

2. φ(da) = (id ⊗ d)ϕ(a), ∀a ∈ A

Condition (1) can equivalently be written as φ((a ·ω) ·α(b)) = (ϕ(a)φ(ω))ϕ(α(b)) by using

the Hom-bimodule compatibility conditions for (Γ ,γ) and (H ⊗ Γ ,β ⊗ γ), where left and

right (H ⊗A,β ⊗α)-Hom-module structures of (H ⊗ Γ ,β ⊗γ) are respectively given by

(h⊗ a)(h′ ⊗ω) = hh′ ⊗ a ·ω,

(h′ ⊗ω)(h⊗ a) = hh′ ⊗ω · a

for h,h ∈ H , a ∈ A and ω ∈ Γ . Condition (2) means that d : A→ Γ is left (H,β)-colinear,

since the equality d ◦α = γ ◦ d holds too.

One can see that for a given (A,α)-Hom-FODC (Γ ,γ) there exists at most one mor-

phism φ : Γ → H ⊗ Γ in H̃(Mk) which makes (Γ ,γ) left-covariant: Indeed, if there is

one such φ, then by the conditions (1) and (2) in Definition 5.1.2 we do the following

computation

φ

∑
i

ai · dbi

 =
∑
i

φ(γ−1(ai · dbi) · 1A) =
∑
i

φ((α−1(ai) ·γ−1(dbi)) · 1A)

=
∑
i

(ϕ(α−1(ai))φ(γ
−1(dbi)))ϕ(1A)

=
∑
i

([(β−1 ⊗α−1)(ϕ(ai))][(β−1 ⊗γ−1)(φ(dbi))])(1H ⊗ 1A)

=
∑
i

[(β−1 ⊗γ−1)(ϕ(ai)φ(dbi))](1H ⊗ 1A)

=
∑
i

ϕ(ai)φ(dbi) =
∑
i

ϕ(ai)(id ⊗ d)(ϕ(bi)),

showing that ϕ and d describe φ uniquely.

Proposition 5.1.3 Let (Γ ,γ) be an (A,α)-Hom-FODC. Then the following statements

are equivalent:

1. (Γ ,γ) is left-covariant.

2. There is a morphism φ : Γ →H⊗Γ in H̃(Mk) such that φ(a·db) = ϕ(a)(id⊗d)(ϕ(b))
for all a,b ∈ A.
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3.
∑
i ai · dbi = 0 in Γ implies that

∑
iϕ(ai)(id ⊗ d)(ϕ(bi)) = 0 in H ⊗ Γ .

Proof:(1)⇒ (2) and (2)⇒ (3) are trivial.

(3)⇒ (1) : Let φ : Γ →H ⊗ Γ be defined by the equation

φ(
∑
i

ai · dbi) =
∑
i

ϕ(ai)(id ⊗ d)(ϕ(bi))

as was obtained in the above computation. By using hypothesis (3) it is immediate

to see that φ is well-defined. If we write ϕ(a) = a(−1) ⊗ a(0) for any a ∈ A and φ(ω) =

ω(−1) ⊗ω(0) for all ω ∈ Γ , then for ω =
∑
i ai · dbi ∈ Γ we have

φ(ω) = ω(−1) ⊗ω(0) =
∑
i

ai,(−1)bi,(−1) ⊗ ai,(0) · dbi,(0),

where we have used the notation ϕ(ai) = ai,(−1) ⊗ ai,(0). Now we prove that φ is a left

Hom-coaction of (H,β) on (Γ ,γ):

β−1(ω(−1))⊗φ(ω(0)) =
∑
i

β−1(ai,(−1)bi,(−1))⊗φ(ai,(0) · dbi,(0))

=
∑
i

β−1(ai,(−1))β
−1(bi,(−1))⊗ ai,(0)(−1)bi,(0)(−1) ⊗ ai,(0)(0) · dbi,(0)(0)

=
∑
i

ai,(−1)1bi,(−1)1 ⊗ ai,(−1)2bi,(−1)2 ⊗α−1(ai,(0)) · d(α−1(bi,(0)))

=
∑
i

(ai,(−1)bi,(−1))1 ⊗ (ai,(−1)bi,(−1))2 ⊗γ−1(ai,(0) · dbi,(0))

= ∆(ω(−1))⊗γ−1(ω(0)),

ε(ω(−1))ω(0) =
∑
i

ε(ai,(−1)bi,(−1))ai,(0) · dbi,(0)

=
∑
i

ε(ai,(−1))ai,(0) · d(ε(bi,(−1))bi,(0))

=
∑
i

α−1(ai) · d(α−1(bi)) = γ−1(ω),
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φ(γ(
∑
i

ai · dbi)) = φ(
∑
i

α(ai) · d(α(bi)))

=
∑
i

ϕ(α(ai))(id ⊗ d)(ϕ(α(bi)))

= (β ⊗α)(ϕ(ai))(id ⊗ d)((β ⊗α)(ϕ(bi)))

=
∑
i

β(ai,(−1))β(bi,(−1))⊗α(ai,(0)) · d(α(bi,(0)))

= (β ⊗γ)(φ(
∑
i

ai · dbi)).

Let ω =
∑
i ai · dbi ∈ Γ , and a,b ∈ A. Then we have

φ(α(a) · (ω · b))

= φ(α(a) · (
∑
i

(ai · dbi) · b))

= φ(α(a) · (
∑
i

(α(ai) · d(biα−1(b))− (aibi) · db)))

= φ(
∑
i

[(aα(ai)) · d(α(bi)b)− (a(aibi)) · d(α(b))])

=
∑
i

ϕ(aα(ai))(id ⊗ d)(ϕ(α(bi)b))−
∑
i

ϕ(a(aibi))(id ⊗ d)(ϕ(α(b)))

=
∑
i

(ϕ(a)ϕ(α(ai)))(id ⊗ d)(ϕ(α(bi)b))−
∑
i

(ϕ(a)ϕ(aibi))(id ⊗ d)(ϕ(α(b)))

=
∑
i

ϕ(α(a))(ϕ(α(ai))(id ⊗ d)(ϕ(biα−1(b))))−
∑
i

ϕ(α(a))(ϕ(aibi)(id ⊗ d)(ϕ(b)))

= ϕ(α(a))(
∑
i

ϕ(α(ai))(id ⊗ d)(ϕ(biα−1(b)))−
∑
i

ϕ(aibi)(id ⊗ d)(ϕ(b)))

= ϕ(α(a))(
∑
i

ϕ(α(ai))(id ⊗ d)(ϕ(biα−1(b)))−
∑
i

(ϕ(ai)ϕ(bi))(id ⊗ d)(ϕ(b)))

= ϕ(α(a))(
∑
i

ϕ(α(ai))[(id ⊗ d)(ϕ(biα−1(b)))−ϕ(bi)(id ⊗ d)(ϕ(α−1(b)))])

= ϕ(α(a))(
∑
i

ϕ(α(ai))[((id ⊗ d)(ϕ(bi)))ϕ(α−1(b))])

= ϕ(α(a))([
∑
i

ϕ(ai)(id ⊗ d)(ϕ(bi))]ϕ(b))

= ϕ(α(a))(φ(ω)ϕ(b)),
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which is the first condition of Definition 5.1.2. For any a ∈ A, we get

φ(da) = φ(1A ·γ−1(da)) = φ(1A · d(α−1(a)))

= ϕ(1A)(id ⊗ d)(ϕ(α−1(a)))

= (1H ⊗ 1A)[((id ⊗ d) ◦ (β−1 ⊗α−1))(ϕ(a))]

= (1H ⊗ 1A)[((β−1 ⊗γ−1) ◦ (id ⊗ d))(ϕ(a))] = (id ⊗ d)(ϕ(a)),

which is the second condition of Definition 5.1.2. �

5.2 Universal Differential Calculus of a Monoidal Hom-Hopf

Algebra

In the theory of quantum groups, a differential calculus is a substitute of the de Rham

complex of a smooth manifold for arbitrary algebras. In this section, the definition of dif-

ferential calculus over a monoidal Hom-algebra (abbreviated, Hom-DC) is given and the

construction of the universal differential calculus of a monoidal Hom-algebra (universal

Hom-DC) is outlined.

Definition 5.2.1 A graded monoidal Hom-algebra is a monoidal Hom-algebra (A,α)

together with subobjects An,n ≥ 0 (that is, for each k-submodule An ⊆ A, (An,α|An) ∈
H̃(Mk)) such that

A =
⊕
n≥0

An,

1 ∈ A0, and AnAm ⊆ An+m for all n,m ≥ 0.

Definition 5.2.2 A differential calculus over a monoidal Hom-algebra (A,α) is a graded

monoidal Hom-algebra (Γ =
⊕

n≥0 Γ
n,γ) with a linear map d : Γ → Γ , in H̃(Mk), of

degree one (i.e., d : Γ n→ Γ n+1) such that

1. d2 = 0,

2. d(ωω′) = d(ω)ω′ + (−1)nωd(ω′) for ω ∈ Γ n,ω′ ∈ Γ (graded Leibniz rule),

3. Γ 0 = A, γ |Γ 0 = α, and Γ n is a linear span of the elements of the form

a0(da1(· · · (dan−1dan) · · · )) with a0, · · · , an ∈ A, n ≥ 0.
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A differential Hom-ideal of (Γ ,γ) is a Hom-ideal I of the monoidal Hom-algebra (Γ ,γ)

(that is, I is a subobject of (Γ ,γ) such that (Γ I )Γ = Γ (IΓ ) ⊂ I ) such that I ∩Γ 0 = {0} and

I is invariant under the differentiation d.

Let us write γn for γ |Γ n for all n ≥ 0. Then, the map d ∈ H̃(Mk) means that d ◦ γn =

γn+1 ◦ d for all n ≥ 0. Let I be a differential Hom-ideal of a (A,α)-Hom-DC (Γ ,γ). Then,

γ induces an automorphism γ̄ of Γ̄ := Γ /I and (Γ̄ , γ̄) is a monoidal Hom-algebra. Since

the condition I ∩ Γ 0 = {0} holds, Γ̄ 0 = Γ 0 = A. On the other hand, let π : Γ → Γ̄ be the

canonical surjective map and define d̄ : Γ̄ → Γ̄ by d̄(π(ω)) := π(d(ω)) for any ω ∈ Γ .

Thus, (Γ̄ , γ̄) is again a Hom-DC on (A,α) with differentiation d̄.

In the rest of the section, the construction of the universal differential calculus on a

monoidal Hom-algebra (A,α) is discussed. Let (A,α) be a monoidal Hom-algebra with

Hom-multiplication mA : A⊗A→ A. The linear map d : A→ A⊗A, in H̃(Mk), given by

da := 1⊗α−1(a)−α−1(a)⊗ 1, ∀a ∈ A

satisfies the Leibniz rule: For a,b ∈ A,

a · db+ da · b = a · (1⊗α−1(b)−α−1(b)⊗ 1) + (1⊗α−1(a)−α−1(a)⊗ 1) · b

= α−1(a)1⊗α(α−1(b))−α−1(a)α−1(b)⊗ 1

+ 1⊗α−1(a)α−1(b)−α(α−1(a))⊗ 1α−1(b)

= a⊗ b −α−1(ab)⊗ 1+1⊗α−1(ab)− a⊗ b = 1⊗α−1(ab)−α−1(ab)⊗ 1

= d(ab).

For any a ∈ A, we get

(d ◦α)(a) = d(α(a)) = 1⊗ a− a⊗ 1

= (α ⊗α)(1⊗α−1(a)−α−1(a)⊗ 1) = (α ⊗α)(da),

meaning d is in H̃(Mk). Let Ω1(A) be the (A,α)-Hom-subbimodule of (A ⊗ A,α ⊗ α)
generated by elements of the form a · db for a,b ∈ A. Then we have

Ω1(A) = ker mA.

Indeed, if a · db ∈Ω1(A), then

mA(a · db) =mA(a⊗ b −α−1(ab)⊗ 1) = ab −α−1(ab)1 = 0.
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On the other hand, if
∑
i ai ⊗bi ∈ ker mA (

∑
i denotes a finite sum), then

∑
i aibi = 0, thus

we write

∑
i

ai ⊗ bi =
∑
i

(ai ⊗ bi −α−1(aibi)⊗ 1) =
∑
i

ai · (1⊗α−1(bi)−α−1(bi)⊗ 1) =
∑
i

ai · dbi .

The left and right (A,α)-Hom-module structures of (Ω1(A),β) = (Ω1(A), (α⊗α)|ker mA
)

are respectively given by

a · (b · dc) = (α−1(a)b) · d(α(c)) (a · db) · c = α(a) · d(bα−1(c))− (ab) · dc,

for any a,b,c ∈ A. (Ω1(A),β) is called the universal first order differential calculus of

monoidal Hom-algebra (A,α).

Let Ā := A/k · 1 be the quotient space of A by the scalar multiples of the Hom-unit

and let ā denote the equivalence class a+k ·1 for any a ∈ A. α induces an automorphism

ᾱ : Ā→ Ā, ā 7→ ᾱ(ā) = α(a) and (Ā, ᾱ) ∈ H̃(Mk). Let A⊗ Ā = Ω1(A) by the identification

a0 ⊗ a1 7→ a0da1. This identification is well-defined since d1 = 0, and one can easily

show that it is an (A,α)-Hom-bimodule isomorphism once the Hom-bimodule structure

of (A⊗ Ā,α ⊗ ᾱ) is given by, for b ∈ A,

b(a0 ⊗ a1) = α−1(b)a0 ⊗α(a1), (a0 ⊗ a1)b = α(a0)⊗ a1α−1(b)− a0a1 ⊗ b̄.

Now, we set

Ωn(A) := ⊗(n)A (Ω1(A)) =Ω1(A)⊗A (⊗
(n−1)
A (Ω1(A))).

Above, ⊗(n)A (Ω1(A)) has been put for

T nA (Ω
1(A)) = ⊗t

n

A (Ω
1(A), · · · ,Ω1(A)) =Ω1(A)⊗A (Ω1(A)⊗A (· · · (Ω1(A)⊗AΩ1(A)) · · · )),

where tn is a fixed element in the set Tn of planar binary trees with n leaves and one

root, which corresponds to the parenthesized monomial x1(x2(· · · (xn−1xn) · · · )) in n non-

commuting variables (see [83] e.g.). One should also refer to [21, Section 6] for the

construction of tensor Hom-algebra applied to an object (M,µ) ∈ H̃(Mk)). So, we have,

for any n ≥ 0,

Ωn(A) = A⊗ (⊗(n)(Ā)) = A⊗ (Ā⊗ (Ā⊗ (· · · (Ā⊗ Ā) · · · )))
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by the correspondence (A⊗ Ā)⊗A (A⊗ (⊗(n−1)(Ā))) = A⊗ (⊗
(n)
A (Ā)), in H̃(Mk),

(a0 ⊗ a1)⊗A (a2 ⊗ (⊗(n−1)(a3, · · · , an+1))) 7→ α(a0)⊗ (⊗n(α−1(a1a2), a3, · · · , an+1))

−a0a1 ⊗ (⊗n(a2, · · · , an+1)),

where we have used the notation ⊗(n)(a1, · · · , an) for a1 ⊗ (a2 ⊗ (· · · (an−1 ⊗ an) · · · )). To

the object A ⊗ (⊗(n)(Ā)) we associate the automorphism α ⊗ (⊗(n)(ᾱ)) : A ⊗ (⊗(n)(Ā))→
A⊗ (⊗(n)(Ā)) given by

a0 ⊗ (⊗(n)(a1, · · · , an)) 7→ α(a0)⊗ (⊗(n)(α(a1), · · · ,α(an))),

for a0 ∈ A and ai ∈ Ā, i = 1, · · · ,n.

On
⊕∞

n=0Ω
n(A), we define the differential by the linear mapping d : A⊗ (⊗(n)(Ā))→

A⊗ (⊗(n+1)(Ā)) of degree one by

d(a0 ⊗ (a1 ⊗ (· · · (an−1 ⊗ an) · · · ))) = 1⊗ (α−1(a0)⊗ (· · · (α−1(an−1)⊗α−1(an)) · · · )). (5.1)

We immediately obtain d2 = 0 from the fact that 1̄ = 0. If we start with an ∈ A, multiplying

on the left and applying d repeatedly gives us the following

a0 ⊗ (a1 ⊗ (· · · (an−1 ⊗ an) · · · )) = a0(da1(da2(· · · (dan−1dan) · · · ))),

where a0(da1(da2(· · · (dan−1dan) · · · ))) = a0 ⊗A (da1 ⊗A (da2 ⊗A (· · · (dan−1 ⊗A dan) · · · ))).
We make

⊕∞
n=0Ω

n(A) an (A,α)-Hom-bimodule as follows. The left (A,α)-Hom-

module structure is given by, for b ∈ A and a0(da1(da2(· · · (dan−1dan) · · · ))) ∈Ωn(A), n ≥ 1,

b(a0(da1(da2(· · · (dan−1dan) · · · ))))

= (α−1(b)a0)(d(α(a1))(d(α(a2))(· · · (d(α(an−1))d(α(an)) · · · ))).

We now get the right (A,α)-Hom-module structure: One can show that, for b ∈ A,

a0da1 ∈ Ω1(A), a0(da1da2) ∈ Ω2(A) and a0(da1(da2da3)) ∈ Ω3(A), the following equa-

tions hold:

(a0da1)b = α(a0)d(a1α
−1(b))− (a0a1)db,
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(a0(da1da2))b = α(a0)(d(α(a1))d(a2α
−2(b)))−α(a0)(d(a1a2)d(α−1(b)))

+ (a0α(a1))(d(α(a2))d(α
−1(b))),

(a0(da1(da2da3)))b

= α(a0)(d(α(a1))(d(α(a2))d(a3α
−3(b))))−α(a0)(d(α(a1))(d(a2a3)d(α−2(b))))

+ α(a0)(d(a1α(a2))(d(α(a3))d(α
−2(b))))− (a0α(a1))(d(α2(a2))(d(α(a3))d(α

−2(b)))).

By induction, one can also prove that the equation

(a0(da1(da2(· · · (dan−1dan) · · · ))))b

= (−1)n(a0α(a1))(d(α2(a2))(d(α
2(a3))(· · ·d(α2(an−1))(d(α(an))d(α

−(n−1)(b))) · · · )))

+
n−3∑
i=1

(−1)n−iα(a0)(d(α(a1))(· · ·d(α(ai−1))(d(aiα(ai+1))(d(α2(ai+2))(· · ·

d(α2(an−1))(d(α(an))d(α
−(n−1)(b))) · · · ))) · · · ))

+ α(a0)(d(α(a1))(· · ·d(α(an−3))(d(an−2α(an−1))(d(α(an))d(α−(n−1)(b)))) · · · ))

− α(a0)(d(α(a1))(· · ·d(α(an−2))(d(an−1an)d(α−(n−1)(b))) · · · ))

+ α(a0)(d(α(a1))(· · · (d(α(an−1))d(anα−n(b))) · · · ))

holds for a0(da1(da2(· · · (dan−1dan) · · · ))) ∈Ωn(A), n ≥ 4.

Next, we define the Hom-multiplication between any two parenthesized monomials,

by using the right Hom-module structure given above, as

[a0(da1(· · · (dan−1dan) · · · ))][an+1(dan+2(· · · (dan+k−1dan+k) · · · ))]

= [(α−1(a0)(d(α
−1(a1))(· · · (d(α−1(an−1))d(α−1(an)) · · · ))))an+1]

[d(α(an+2))(· · · (d(α(an+k−1))d(α(an+k)) · · · ))], (5.2)

for ωn = a0(da1(· · · (dan−1dan) · · · )) ∈Ωn(A) and ωk−1 = an+1(dan+2(· · · (dan+k−1dan+k) · · · ))
∈Ωk−1(A). For any n ≥ 4, we explicitly write the above multiplication:
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ωnωk−1

= [a0(da1(· · · (dan−1dan) · · · ))][an+1(dan+2(· · · (dan+k−1dan+k) · · · ))]

= [(α−1(a0)(d(α
−1(a1))(· · · (d(α−1(an−1))d(α−1(an)) · · · ))))an+1]

[d(α(an+2))(· · · (d(α(an+k−1))d(α(an+k)) · · · ))]

= [(−1)n(α−1(a0)a1)(d(α(a2))(d(α(a3))(· · ·d(α(an−1))(d(an)d(α−(n−1)(an+1))) · · · )))

+
n−3∑
i=1

(−1)n−ia0(d(a1)(· · ·d(ai−1)(d(α−1(ai)ai+1)(d(α(ai+2))(· · ·

d(α(an−1))(d(an)d(α
−(n−1)(an+1))) · · · ))) · · · ))

+ a0(d(a1)(· · ·d(an−3)(d(α−1(an−2)an−1)(d(an)d(α−(n−1)(an+1)))) · · · ))

− a0(d(a1)(· · ·d(an−2)(d(α−1(an−1an))d(α−(n−1)(an+1))) · · · ))

+ a0(d(a1)(· · · (d(an−1)d(α−1(an)α−n(an+1))) · · · ))]

[d(α(an+2))(· · · (d(α(an+k−1))d(α(an+k)) · · · ))]

= (−1)n(a0α(a1))(d(α2(a2))(· · ·d(α2(an−1))(d(α(an))(d(α
−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · ))) · · · ))

+
n−3∑
i=1

(−1)n−iα(a0)(d(α(a1))(· · ·d(α(ai−1))(d(aiα(ai+1))(d(α2(ai+2))(· · ·d(α2(an−1))

(d(α(an))(d(α
−(n−1)(an+1))(· · · (d(α−(n−1)(an+k−1))d(α−(n−1)(an+k))) · · · ))) · · · ))) · · · ))

+ α(a0)(d(α(a1))(· · ·d(α(an−3))(d(an−2α(an−1))(d(α(an))(d(α−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · ))

− α(a0)(d(α(a1)) · · ·d(α(an−2))(d(an−1an−1)(d(α−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )) · · · ))

+ α(a0)(d(α(a1))(· · ·d(α(an−2))(d(α(an−1))(d(α−1(an)α−n(an+1))(d(α−(n−1)(an+2))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · ))

On the other hand, we have the following computations for ωn and ωk−1 given above:
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dωnωk−1

= [da0(da1(· · · (dan−1dan) · · · ))][an+1(dan+2(· · · (dan+k−1dan+k) · · · ))]

= [(d(α−1(a0))(d(α
−1(a1))(· · · (d(α−1(an−1))d(α−1(an)) · · · ))))an+1]

[d(α(an+2))(· · · (d(α(an+k−1))d(α(an+k))) · · · )]

= (−1)n+1α(a0)(d(α(a1))(· · · (d(α(an−1))(dan(d(α−n(an+1))(· · ·

(d(α−n(an+k−1))d(α
−n(an+k))) · · · )))) · · · ))

+ (−1)nd(a0α(a1))(d(α2(a2))(· · · (d(α2(an−1))(d(α(an))(d(α
−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · ))

+
n−2∑
i=2

(−1)n+1−id(α(a0))(· · · (d(α(ai−2))(d(ai−1α(ai))(d(α2(ai+1))(· · · (d(α2(an−1))

(d(α(an))(d(α
−(n−1)(an+1))(· · · (d(α−(n−1)(an+k−1))d(α−(n−1)(an+k))) · · · )))) · · · )))) · · · )

+ d(α(a0))(· · · (d(α(an−3))(d(an−2α(an−1))(d(α(an))(d(α−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · ))))) · · · )

− d(α(a0))(· · · (d(α(an−2))(d(an−1an)(d(α−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · )

+ d(α(a0))(· · · (d(α(an−1))(d(α−1(an)α−n(an+1))(d(α−(n−1)(an+2))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · )

and

ωndωk−1

= [a0(da1(· · · (dan−1dan) · · · ))][dan+1(· · · (dan+k−1dan+k) · · · )]

= α(a0)([da1(· · · (dan−1dan) · · · )][d(α−1(an+1))(· · · (d(α−1(an+k−1))d(α−1(an+k))) · · · )])

= α(a0)(d(α(a1))(· · · (d(α(an−1))(d(an)(d(α−n(an+1))(· · ·

(d(α−n(an+k−1))d(α
−n(an+k))) · · · )))) · · · )).

Thus, the equation below holds:

139



dωnωk−1 + (−1)nωndωk−1
= (−1)nd(a0α(a1))(d(α2(a2))(· · · (d(α2(an−1))(d(α(an))(d(α

−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · ))

+
n−2∑
i=2

(−1)n+1−id(α(a0))(· · · (d(α(ai−2))(d(ai−1α(ai))(d(α2(ai+1))(· · · (d(α2(an−1))

(d(α(an))(d(α
−(n−1)(an+1))(· · · (d(α−(n−1)(an+k−1))d(α−(n−1)(an+k))) · · · )))) · · · )))) · · · )

+ d(α(a0))(· · · (d(α(an−3))(d(an−2α(an−1))(d(α(an))(d(α−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · ))))) · · · )

− d(α(a0))(· · · (d(α(an−2))(d(an−1an)(d(α−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · )

+ d(α(a0))(· · · (d(α(an−1))(d(α−1(an)α−n(an+1))(d(α−(n−1)(an+2))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · )

= (−1)nd(a0α(a1))(d(α2(a2))(· · · (d(α2(an−1))(d(α(an))(d(α
−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · ))

+
n−3∑
i=1

(−1)n−id(α(a0))(· · · (d(α(ai−1))(d(aiα(ai+1))(d(α2(ai+2))(· · · (d(α2(an−1))

(d(α(an))(d(α
−(n−1)(an+1))(· · · (d(α−(n−1)(an+k−1))d(α−(n−1)(an+k))) · · · )))) · · · )))) · · · )

+ d(α(a0))(· · · (d(α(an−3))(d(an−2α(an−1))(d(α(an))(d(α−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · ))))) · · · )

− d(α(a0))(· · · (d(α(an−2))(d(an−1an)(d(α−(n−1)(an+1))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · )

+ d(α(a0))(· · · (d(α(an−1))(d(α−1(an)α−n(an+1))(d(α−(n−1)(an+2))(· · ·

(d(α−(n−1)(an+k−1))d(α
−(n−1)(an+k))) · · · )))) · · · )

= d(ωnωk−1),

which the graded Leibniz rule. Next, we verify by induction that the following identity

holds:

d(a0(da1(· · · (dan−1dan) · · · ))) = da0(da1(· · · (dan−1dan) · · · )) (5.3)
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using the graded Leibniz rule and the equation d2 = d ◦ d = 0. For a0da1 ∈Ω1(A),

d(a0da1) = da0da1 + (−1)0a0d(d(a1)) = da0da1.

Suppose now that the identity

d(a0(da1(· · · (dan−2dan−1) · · · ))) = da0(da1(· · · (dan−2dan−1) · · · ))

holds for a0(da1(· · · (dan−2dan−1) · · · )) ∈ Ωn−1(A), that is, if we replace ai with ai+1 for

i = 0, · · · ,n− 1, we have d(a1(da2(· · · (dan−1dan) · · · ))) = da1(da2(· · · (dan−1dan) · · · )). Thus,

for a0(da1(· · · (dan−1dan) · · · )) ∈Ωn(A),

d(a0(da1(· · · (dan−1dan) · · · )))

= da0(da1(da2(· · · (dan−1dan) · · · ))) + (−1)0a0d(da1(da2(· · · (dan−1dan) · · · )))

= da0(da1(da2(· · · (dan−1dan) · · · ))) + (−1)0a0d(d(a1(da2(· · · (dan−1dan) · · · ))))

= da0(da1(da2(· · · (dan−1dan) · · · ))).

Let (Γ ,γ) be another Hom-DC on (A,α) with differential d̃ and let the morphism ψ :

Ω(A)→ Γ , in H̃(Mk), be given by

ψ(a) = aandψ(a0(da1(· · · (dan−1dan) · · · ))) = a0(d̃a1(· · · (d̃an−1d̃an) · · · )), n ≥ 1

for a ∈ A, a0(da1(· · · (dan−1dan) · · · )) ∈ Ωn(A). Clearly, ψ is surjective by its definition.

Now, letN := kerψ be the kernel of ψ. From the equations (5.2) and (5.3) it is concluded

that N is a differential Hom-ideal of Ω(A). Thus, Γ is identified with Ω(A)/N showing

the universality of Ω(A).

5.3 Left-Covariant FODC over Monoidal Hom-Hopf Algebras

5.3.1 Left-Covariant Hom-FODC and Their Right Hom-ideals

Let (H,α) be a monoidal Hom-Hopf algebra with a bijective antipode throughout the sec-

tion. (H,α) is a left Hom-quantum space for itself with respect to the Hom-comultiplication

∆ :H →H⊗H,h 7→ h1⊗h2. Thus, by applying Definition 5.1.2 to the monoidal Hom-Hopf

algebra (H,α) we obtain the following

141



Definition 5.3.1 A FODC (Γ ,γ) over the monoidal Hom-Hopf algebra (H,α) is said to

be left-covariant if (Γ ,γ) is a left-covariant FODC over the left Hom-quantum space

(H,α) with left Hom-coaction ϕ = ∆ in Definition 5.1.2.

Remark 11 According to Proposition 5.1.3, an (H,α)-Hom-FODC (Γ ,γ) is left-covariant

if and only if there exists a morphism φ : Γ →H ⊗ Γ in H̃(Mk) such that, for h,g ∈H ,

φ(h · dg) = ∆(h)(id ⊗ d)(∆(g)). (5.4)

In the proof of Proposition 5.1.3, it has been shown that if there is such a morphism

φ, it defines a left Hom-comodule structure of (Γ ,γ) on (H,α) and satisfies

φ(α(h) · (ω · g)) = ∆(α(h))(φ(ω)∆(g))

for h,g ∈ H and ω ∈ Γ . From this it follows that (Γ ,γ) is a left-covariant (H,α)-Hom-

bimodule.

Let (Γ ,γ) be a left-covariant (H,α)-Hom-FODC with derivation d : H → Γ . By the

above remark (Γ ,γ) is a left-covariant (H,α)-Hom-bimodule, and then by adapting the

structure theory of left-covariant Hom-bimodules, which is discussed in Lemma (3.3.2)

and Proposition (3.3.4), to (Γ ,γ) we summarize the following results. We have the

unique projection PL : (Γ ,γ) → (coHΓ ,γ |coH Γ ) given by PL(%) = S(%(−1))%(0), for all % ∈ Γ ,

such that

PL(h · %) = ε(h)γ(PL(%)), % = %(−1)PL(%(0))

and

PL(% · h) = ãdR(h)(PL(%)) =: PL(%)C h

for any h ∈H and % ∈ Γ . Let us now define a linear mapping ωΓ :H
d→ Γ

PL→ coHΓ by

ωΓ (h) = PL(dh), ∀h ∈H.

Obviously, it is in H̃(Mk), that is, ωΓ ◦ α = γ ◦ ωΓ . Since φ(dh) = (dh)(−1) ⊗ (dh)(0) =

(id ⊗ d)(∆(h)) = h1 ⊗ dh2 by the above remark, we obtain

ωΓ (h) = PL(dh) = S(h1) · dh2, ∀h ∈H. (5.5)

On the other hand, we can write dh = (dh)(−1) · PL((dh)(0)) = h1 · PL(dh2), that is,
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dh = h1 ·ωΓ (h2), ∀h ∈H. (5.6)

We will drop the subscript Γ from ωΓ (·). By definition, for any h ∈ H , ω(h) ∈ coHΓ .

Conversely, let % =
∑
i hi · dgi ∈ coHΓ for hi , gi ∈H . Then

% = PL(%) =
∑
i

ε(hi)γ(PL(dgi)) =
∑
i

ε(hi)γ(ω(gi)) =
∑
i

ε(hi)ω(α(gi)),

showing that ρ ∈ ω(H). Thus, we get ω(H) = coHΓ which implies that Γ =H ·ω(H) =

ω(H) ·H and hence any k-linear basis of ω(H) is a left (H,α)-Hom-module basis and a

right (H,α)-Hom-module basis for (Γ ,γ).

For h,g ∈H , we get

ω(h)C g = PL(ω(h) · g) = PL((S(h1) · dh2) · g)

= PL(S(α(h1)) · (dh2 ·α−1(g))) = ε(S(α(h1)))γ(PL(dh2 ·α−1(g)))

= ε(h1)γ(PL(dh2 ·α−1(g))) = γ(PL(d(α−1(h)) ·α−1(g)))

= γ(PL(d(α
−1(hg))−α−1(h) · d(α−1(g))))

= γ(ω(α−1(hg)))−γ(ε(α−1(h))γ(PL(d(α−1(g)))))

= ω(hg)− ε(h)γ2(ω(α−1(g))) = ω(hg)− ε(h)ω(α(g))

= ω(hg − ε(h)α(g)) = ω((h− ε(h)1)g).

Thus, by setting the notation h̄ := h− ε(h)1, we have

ω(h)C g = ãdR(g)(ω(h)) = ω(h̄g), (5.7)

and we rewrite the (H,α)-Hom-bimodule structure as

g ′ · (g ·ω(h)) = (α−1(g ′)g) ·ω(α(h)), (5.8)

(g ′ ·ω(h)) · g = (g ′g1) · (ω(h)C g2) = (g ′g1) ·ω(h̄g2), (5.9)

for g,g ′ ,h ∈H .

In the following example we introduce the universal FODC over monoidal Hom-Hopf-

algebra (H,α).

Example 5.3.2 We define (Ω1(H),β) := (H ⊗ kerε,α ⊗ α′), where α′ = α|kerε. Let us

denote the element 1⊗α−1(ḡ) = 1⊗α−1(g), for g ∈ H , by ω(g). Thus we identify g ⊗ h̄ ∈
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Ω1(H), where g,h ∈ H , with g ·ω(h). We then introduce the Hom-bimodule structure of

Ω1(H) as in (5.8) and (5.9), for all g,g ′ ,h ∈H ,

g ′ · (g ·ω(h)) := (α−1(g ′)g) ·ω(α(h)),

(g ′ ·ω(h)) · g := (g ′g1) ·ω(h̄g2),

and a linear mapping

d :H →Ω1(H), h 7→ h1 ⊗ h2 = h1 ·ω(h2).

For any g,h ∈H ,

g · dh+ dg · h = g · (h1 ·ω(h2)) + (g1 ·ω(g2)) · h

= (α−1(g)h1) ·ω(α(h2)) + (g1h1) ·ω(g2h2)

= (α−1(g)h1) ·ω(α(h2)) + (g1h1) ·ω(g2h2)− (g1h1)ω((ε(g2)1)h2)

= (α−1(g)h1) ·ω(α(h2)) + (g1h1) ·ω(g2h2)− (α−1(g)h1) ·ω(α(h2))

= (g1h1) ·ω(g2h2) = (gh)1ω((gh)2)

= d(gh),

showing that d satisfies the Leibniz rule.

d(α(h)) = α(h1) ·ω(α(h2)) = α(h1) · β(ω(h2)) = β(h1 ·ω(h2)) = β(dh),

which means that d ∈ H̃(Mk).

ω(h) = ω(α(ε(h1)h2)) = ε(h1)ω(α(h2))

= ε(h1)β(ω(h2)) = (ε(h1)1) ·ω(h2)

= (S(h11)h12) ·ω(h2) = (S(α−1(h1))h21) ·ω(α(h22))

= α(S(α−1(h1))) · (h21 · β−1(ω(α(h22))))

= S(h1) · (h21 ·ω(h22)) = S(h1) · d(h2),

which proves that Ω1(H) =H · dH . Therefore, (Ω1(H),β) is an (H,α)-Hom-FODC.

For another (H,α)-Hom-FODC (Γ ,γ) with differentiation d̄ : H → Γ , let us define the

linear map ψ :Ω1(H)→ Γ by ψ(h·dg) = h·d̄g, where g,h ∈H . It is well-defined: Suppose
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that
∑
i hi · dgi = 0 in Ω1(H), where hi , gi ∈H . Then we have∑
i

hi · dgi =
∑
i

hi · (gi,1 ⊗ gi,2) =
∑
i

α−1(hi)gi,1 ⊗α(gi,2)

=
∑
i

α−1(hi)gi,1 ⊗α(gi,2) =
∑
i

α−1(hi)gi,1 ⊗ (α(gi,2)− ε(α(gi,2))1)

=
∑
i

[α−1(hi)gi,1 ⊗α(gi,2)−α−1(hi)gi,1ε(gi,2)⊗ 1)]

=
∑
i

[α−1(hi)gi,1 ⊗α(gi,2)−α−1(higi)⊗ 1)] = 0.

So, by applying (m⊗ id) ◦ ã−1 ◦ (id ⊗ S ⊗ id) ◦ (id ⊗∆) to

∑
i

hi · dgi =
∑
i

[α−1(hi)gi,1 ⊗α(gi,2)−α−1(higi)⊗ 1)] = 0,

we acquire the equality
∑
i(hi ⊗ gi − α−1(higi) ⊗ 1) = 0. Thus

∑
i hi · d̄gi = 0 in Γ

concluding that ψ is well-defined. On the other hand we prove that ψ ∈ H̃(Mk):

ψ(β(h · dg)) = ψ(α(h) · β(dg)) = ψ(α(h) · d(α(g)))

= α(h) · d̄(α(g)) = α(h) ·γ(d̄(g)) = γ(h · d̄g) = γ(ψ(h · dg)).

The subobject (kerψ,β|kerψ) = (N ,β′) is an (H,α)-Hom-subbimodule of (Ω1(H),β):

Indeed, for h′ ∈H and h · dg ∈ N ,

ψ(h′ · (h · dg)) = ψ((α−1(h′)h) · d(α(g))) = (α−1(h′)h) · d̄(α(g))

= h′ · (h · d̄g) = h′ ·ψ(h · dg) = 0,

ψ((h · dg) · h′) = ψ(α(h) · d(gα−1(h′))− (hg) · dh′)

= α(h) · d̄(gα−1(h′))− (hg) · d̄h′ = α(h) · d̄(gα−1(h′))−α(h) · (g · d̄(α−1(h′)))

= α(h) · (d̄g ·α−1(h′)) = (h · d̄g) · h′ = 0.

Hence we have the quotient object (Ω1(H)/N , β̄) as (H,α)-Hom-bimodule, where the

automorphism β̄ is induced by β and define the (H,α)-bilinear map ψ̄ : Ω1(H)/N →
Γ , h · dg 7→ h · d̄g, which is surjective by definition. Since kerψ̄ = N , ψ̄ is 1-1, showing

that Γ is isomorphic to the quotient Ω1(H)/N . Therefore (Ω1(H),β) is the universal

Hom-FODC over (H,α).
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We define the subobject

RΓ = {h ∈ kerε|ωΓ (h) = 0} (5.10)

of (kerε,α|kerε) for a given left-covariant (H,α)-Hom-FODC (Γ ,γ), which is clearly a

Hom-ideal of (H,α). We now prove that there is a one-to-one correspondence between

left-covariant (H,α)-Hom-FODC and right Hom-ideals of (kerε,α′), where α′ = α|kerε.

Proposition 5.3.3 1. Let (R,α′′) be a right Hom-ideal of (H,α) which is a subob-

ject of (kerε,α′), where α′′ = α|R. Then N := H · ωΩ1(H)(R) is an (H,α)-Hom-

subbimodule of (Ω1(H),β). Furthermore, (Γ ,γ) := (Ω1(H)/N , β̄) is a left-covariant

Hom-FODC over (H,α) such that RΓ =R.

2. For a given left-covariant (H,α)-Hom-FODC (Γ ,γ), RΓ is a right Hom-ideal of

(H,α) and Γ is isomorphic to Ω1(H)/H ·ωΩ1(H)(RΓ ).

Proof:

1. For any h ∈ R and g ∈H , we have

ω(h) · g = (1g1) · (β−1(ω(h))C g2) = α(g1) · (ω(α−1(h))C g2)

= α(g1) ·ω(α−1(h̄)g2) = α(g1) ·ω(α−1(h)g2),

which is inH ·ωΩ1(H)(R), and henceN =H ·ωΩ1(H)(R) is an (H,α)-Hom-subbimodule

of Ω1(H) =H ·ωΩ1(H)(H). So, (Γ =Ω1(H)/N , β̄) is a (H,α)-Hom-FODC with differ-

entiation d̄ :H → Γ , h 7→ d̄h = π(dh) = h1 ·ω(h2)+N , where π :Ω1(H)→Ω1(H)/N
is the natural projection.

Let φ :Ω1(H)→H ⊗Ω1(H), h ·ω(g) 7→ α(h1)⊗h2 ·ω(α−1(g)) be the Hom-coaction

for the left-covariant Hom-FODC (Ω1(H),β). Since, for h ·ω(r) ∈ N we have

φ(h ·ω(r)) = α(h1)⊗ h2 ·ω(α−1(r)) ∈H ⊗N ,

that is, φ(N ) ⊆ H ⊗N , φ passes to a left Hom-action of (H,α) on (Γ , β̄) as φ̄(h ·
ω(g) +N ) = α(h1)⊗ (h2 ·ω(α−1(g)) +N ). For g,h ∈H , we get
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∆(g)(id ⊗ d̄)(∆(h))

= (g1 ⊗ g2)(h1 ⊗ d̄h2)

= g1h1 ⊗ g2 · (h21 ·ω(h22) +N ) = g1h1 ⊗ (g2 · (h21 ·ω(h22)) +N )

= g1h1 ⊗ ((α−1(g2)h21) ·ω(α(h22)) +N )

= g1α(h11)⊗ ((α−1(g2)h12) ·ω(h2) +N ) = φ̄(α−1(g)h1 ·ω(α(h2)) +N )

= φ̄(g · (h1 ·ω(h2)) +N ) = φ̄(g · d̄h),

proving the left-covariance of (Γ , β̄) with respect to (H,α). Thus, we have the

projection P L : Γ → coHΓ given by

P L(h ·ω(g) +N ) = ε(h)ω(α(g)) +N

for h ·ω(g) ∈Ω1(H).

For h ∈ R,

ωΓ (h) = P L(d̄h) = P L(h1 ·ω(h2) +N ) = ε(h1)ω(α(h2)) +N =ω(h) +N =N = 0Γ ,

implying that R ⊆ RΓ . On the contrary, if ωΓ (h) = 0Γ for some h ∈ kerε, then

ω(h) ∈ N =H ·ω(R), that is, h ∈ R, i.e., RΓ ⊆R. Therefore, R =RΓ .

2. Since (Γ ,γ) is a left-covariant Hom-FODC, ãdR(g)(ω(h)) = ω(h̄g) holds for g,h ∈H .

Hence, for h ∈ RΓ and g ∈ kerε, we have ωΓ (hg) = ωΓ (h̄g) = ãdR(g)(ωΓ (h)) = 0

since ωΓ (h) = 0. Therefore, RΓ is a right Hom-ideal of kerε. Thus, Γ 'Ω1(H)/H ·
ωΩ1(H)(RΓ ) by (1).

�

5.3.2 Quantum Hom-Tangent Space

In the theory of Lie groups, if A = C∞(G) is the algebra of smooth functions on a Lie

group G and R is the ideal of A consisting of all functions vanishing with first deriva-

tives at the neutral element of G, then the vector space of all linear functionals on A is

identified with the tangent space at the neutral element, i.e., with the Lie algebra of G.

In the theory of quantum groups, this consideration gives rise to the notion of quantum
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tangent space associated to a left-covariant FODC Γ on a Hopf algebra A, which is

defined as the vector space

TΓ = {X ∈ A′ |X(1) = 0, X(a) = 0,∀a ∈ RΓ },

where RΓ = {a ∈ kerεA| PL(da) = 0}. In what follows, we study the Hom-version of the

quantum tangent space.

We recall that the dual monoidal Hom-algebra (H ′ , ᾱ) of (H,α) consists of function-

als X : H → k and is equipped with the convolution product (XY )(h) = X(h1)Y (h2), for

X,Y ∈ H ′ and h ∈ H , as Hom-multiplication and with the Hom-unit ε : H → k, where

automorphism ᾱ :H ′→H ′ is given by ᾱ(X) = X ◦α−1. The morphism

H ′ ⊗H →H,X ⊗ h 7→ X • h := α2(h1)X(α(h2)),

in H̃(Mk), makes (H,α) a left (H ′ , ᾱ)-Hom-module.

Definition 5.3.4 Let (Γ ,γ) be a left-covariant (H,α)-Hom-FODC. Then the subobject

TΓ = {X ∈H ′ |X(1) = 0, X(h) = 0,∀h ∈ RΓ } (5.11)

of (H ′ , ᾱ), in H̃(Mk), is said to be the quantum Hom-tangent space to (Γ ,γ).

Proposition 5.3.5 Let (Γ ,γ) be a left-covariant (H,α)-Hom-FODC and (TΓ , ᾱ′) be the

quantum Hom-tangent space to it, where ᾱ′ = ᾱ|TΓ . Then, there is a unique bilinear

form < ·, · >: TΓ × Γ → k in H̃(Mk) such that

< X,h · dg >= ε(h)X(g), ∀g,h ∈H, X ∈ TΓ . (5.12)

With respect to this bilinear form, (TΓ , ᾱ′) and ( coHΓ ,γ ′) = (ω(H),γ ′) form a nonde-

generate dual pairing, where γ ′ = γ |coH Γ . Moreover, we have

< X,ω(h) >= X(α−1(h)),∀h ∈H,X ∈ TΓ . (5.13)

Proof: We define < X,% >:= X(
∑
i ε(hi)gi) =

∑
i ε(hi)X(gi) for X ∈H ′ and % =

∑
i hi · dgi ∈
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Γ . Suppose that % =
∑
i hi · dgi = 0. Then

0 = PL(γ
−1(ρ)) =

∑
i

PL(α
−1(hi)d(α

−1(gi)))

=
∑
i

ε(α−1(hi))γ(PL(d(α
−1(gi))))

=
∑
i

ε(hi)γ(ω(α
−1(gi)))

= ω

∑
i

ε(hi)gi

 ,
hence ω(

∑
i ε(hi)gi) = 0, which implies that

∑
i ε(hi)gi ∈ RΓ . Thus, by the definition of TΓ

we get

< X,ρ > = X

∑
i

ε(hi)gi

 = X
∑
i

(ε(hi)gi + ε(hi)ε(gi)1)


= X

∑
i

ε(hi)gi

+∑
i

ε(hi)ε(gi)X(1) = 0,

which proves that the bilinear form < ·, · > is well-defined. Uniqueness comes immedi-

ately from the fact that Γ =H · dH . Since

< ᾱ(X),γ(%) > = (X ◦α−1)

∑
i

ε(α(hi))α(gi)

 =∑
i

ε(α(hi))(X ◦α−1)(α(gi))

= X

∑
i

ε(hi)gi

 =< X,% >,
the bilinear form < ·, · > is in H̃(Mk). For any h ∈ H , < X,ω(h) >=< X,S(h1) · dh2 >=
ε(h1)X(h2) = X(ε(h1)h2) = X(α−1(h)), which is the formula (5.13). For any h ∈ kerε,
if < X,ω(h) >= X(α−1(h)) = 0, ∀X ∈ TΓ , then α−1(h) ∈ RΓ : Suppose that the element

0 , α−1(h) ∈ kerε is not contained in RΓ . Then we can extend α−1(h) to a basis of

kerε and find a functional X ∈ TΓ such that X(α−1(h)) , 0, which contradicts with the

hypothesis of the statement. So we have h ∈ RΓ since ω ◦α−1 = γ−1 ◦ω. On the other

hand < X,ω(h) >= X(α−1(h)) = ᾱ(X)(h) = 0 for all ω(h) ∈ ω(H) implies ᾱ(X) = 0, that is,

X = 0. Hence, (TΓ , ᾱ′) and ( coHΓ ,γ ′) = (ω(H),γ ′) form a nondegenerate dual pairing

with respect to < ·, · >. �
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Let {Xi}i∈I be a linear basis of TΓ and {ωi}i∈I be the dual basis of coHΓ , that is,

< Xi ,ωj >= δij for i, j ∈ I . Also, from Theorem (3.3.11), recall the family of functionals

{f ij }i,j∈I in the definition of the Hom-action coHΓ ⊗H → coHΓ ,ωi ⊗ h 7→ ωi C h = f
i
j (h)ωj ,

where all but finitely many f ij (h) vanish and Einstein summation convention is used.

These functionals satisfy, for all h,g ∈H and i, j ∈ I ,

f ij (hg) = (γ̄ ikf
k
l )(h)f

l
j (α(g)), f

i
j (1) = γ

i
j ,

where γ ′(ωi) = γ
i
jωj and γ ′−1(ωi) = γ̄

i
jωj such that γ ij γ̄

j
k = δik = γ̄

i
jγ

j
k.

Proposition 5.3.6 For h,g ∈H , we have

dh = (Xi •α−2(h)) ·ωi , (5.14)

Xi(hg) = ε(h)(γ
j
i Xj )(g) +Xk(h)(γ

l
i f̄
k
l )(g), (5.15)

where f̄ kl = γ̄kpf
p
l .

Proof: By the formula 5.13, we have < Xi ,ω(h) >= Xi(α−1(h)) implyingω(h) = Xi(α−1(h))ωi .

Thus, dh = h1 ·ω(h2) = h1 · (Xi(α−1(h2)ωi)) = (Xi •α−2(h)) ·ωi which is the formula 5.14.

By using this formula and the Leibniz rule, we obtain

(Xl •α−2(hg)) ·ωl = d(hg) = dh · g + h · dg

= ((Xj •α−2(h)) ·ωj ) · g + h · ((Xi •α−2(g)) ·ωi)

= α(Xj •α−2(h)) · (ωj ·α−1(g)) + (α−1(h)(Xi •α−2(g))) ·γ ′(ωi)

= α(Xj •α−2(h)) · ((f̄
j
k •α

−2(g)) ·ωk) + (α−1(h)(Xi •α−2(g))) · (γ ikωk)

= ((Xj •α−2(h))(f̄
j
k •α

−2(g))) · (γkl ωl) + (α−1(h)(Xi •α−2(g))) · (γ ilωl)

= [(Xj •α−2(h))((γkl f̄
j
k ) •α

−2(g)) +α−1(h)((γ ilXi) •α
−2(g))] ·ωl ,

hence, by replacing α−2(h) and α−2(g) by h and g, respectively, we get

Xl • (hg) = α(h)((γ ilXi) • g) + (Xj • h)((γkl f̄
j
k ) • g), l ∈ I.

By applying ε to the both sides of this equation we acquire

Xl(hg) = ε(h)(γ
l
iXi)(g) +Xj(h)(γ

l
k f̄

k
j )(g),

since, for any h ∈H and f ∈H ′, the equality ε(f •h) = ε(α2(h1))f (α(h2)) = ε(h1)f (α(h2)) =

f (α(ε(h1)h2)) = f (h) holds. �
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Let (A,α) be a monoidal Hom-algebra. Then we consider A′ ⊗ A′, where A′ =

Hom(A,k), as a linear subspace of (A⊗A)′ by identifying f ⊗ g ∈ A′ ⊗A′ with the linear

functional on A⊗A specified by (f ⊗ g)(a⊗ a′) := f (a)g(a′) for a,a′ ∈ A. For f ∈H ′, let us

define ∆(f ) ∈ (A⊗A)′ by ∆(f )(a⊗ b) := f (ab) for a,b ∈ A. We now denote, by A◦, the set

of all functionals f ∈ A′ such that ∆(f ) ∈ A′ ⊗A′, i.e., it is written as a finite sum

∆(f ) =
P∑
p=1

fp ⊗ gp

for some functionals fp, gp ∈ A′ , p = 1, ..., P , where P is a natural number so that we

have f (ab) =
∑
p fp(a)gp(b). Then (A◦,α◦) is a monoidal Hom-coalgebra with Hom-

comultiplication given above and the Hom-counit is defined by ε(f ) = f (1A), where

α◦(f ) = f ◦α−1 for any f ∈ A◦: Let f ∈ A◦ and ∆(f ) =
∑
p fp ⊗ gp such that the function-

als {fp}Pp=1 are chosen to be linearly independent. So, one can find aq ∈ A such that

fp(aq) = δpq. Thus we get

gq(ab) =
∑
p

δqpgp(ab) =
∑
p

fp(aq)gp(ab) = f (aq(ab))

= f ((α−1(aq)a)α(b)) =
∑
p

fp(α
−1(aq)a)gp(α(b)),

showing that gq ∈ A◦, and analogously fq ∈ A◦, and hence ∆(f ) ∈ A◦ ⊗A◦. Let f ∈ A◦

and a,b,c ∈ A. Then we have the Hom-coassociativity of ∆:

(ᾱ−1 ⊗∆)(∆(f ))(a⊗ b⊗ c) = f (α(a)(bc)) = f ((ab)α(c)) = (∆⊗ ᾱ−1)(∆(f ))(a⊗ b⊗ c).

On the other hand,

(id ⊗ ε)(∆(f ))(h) =

∑
p

ᾱ(fp)gp(1A)

 (h) =∑
p

fp(α
−1(h))gp(1A) = f (h)

shows that Hom-counity is satisfied.

Suppose that (A,α) is a monoidal Hom-bialgebra, then the monoidal Hom-coalgebra

(A◦,α◦) endowed with the convolution product, as in the argument before Lemma (3.3.10),

is as well a monoidal Hom-bialgebra with the Hom-unit given by the Hom-counit ε of the

monoidal Hom-coalgebra (A,α): One can easily check the compatibility condition be-

tween Hom-comultiplication and Hom-multiplication of (A◦,α◦) from that of (A,α). So, it
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suffices to verify that for any f ,g ∈ A◦, f g is also in A◦: If we put ∆(f ) =
∑
p fp ⊗ gp and

∆(g) =
∑
q hq ⊗ kq, then we get

(f g)(ab) = ∆(f g)(a⊗ b) =
∑
p,q

fphq(a)gpkq(b) =

∑
p,q

fphq ⊗ gpkq

 (a⊗ b),
so that f g ∈ A◦.

If (A,α) is a monoidal Hom-Hopf algebra, then so is (A◦,α◦) with antipode defined

by S(f )(a) = f (S(a)) for f ∈ A◦ and a ∈ A: Set ∆(f ) =
∑
p fp ⊗ gp, and then we obtain

∆(S(f ))(a⊗ b) = S(f )(ab) = f (S(ab)) =
∑
p

S(fp)(b)S(gp)(a) =

∑
p

S(gp)⊗ S(fp)

 (a⊗ b),
implying S(f ) ∈ A◦. Lastly, for a ∈ A, we have

((m(S ⊗ id)∆)(f ))(a) =
∑
p

(S(fp)gp)(a) = ε(a)f (1) = 1A◦(a)εA◦(f ) = ((η ◦ ε)(f ))(a),

similarly we get ((m(id ⊗ S)∆)(f ))(a) = ((η ◦ ε)(f ))(a).
We then call the monoidal Hom-coalgebra (respectively, Hom-bialgebra, Hom-Hopf

algebra)A◦ above the dual monoidal Hom-coalgebra (respectively, Hom-bialgebra,Hom-

Hopf algebra). Suppose now that the vector space TΓ is finite dimensional. Then assert

from (3.42) and (5.15) that the functionals f ij and Xl are in the dual monoidal Hom-

Hopf algebra H◦ and we have the following equations, where there is summation over

repeating indices,

∆(f ij ) = f̄
i
l ⊗ f

l
j ◦α, (5.16)

∆(Xl) = Xj ⊗γkl f̄
j
k + ε⊗γ liXi (5.17)

in H◦.

5.4 Bicovariant FODC over Monoidal Hom-Hopf Algebras

5.4.1 Right-Covariant Hom-FODC

Definition 5.4.1 Let (H,β) be a monoidal Hom-bialgebra. A FODC (Γ ,γ) over a right

Hom-quantum space (A,α) with right Hom-coaction ϕ : A → A ⊗H, a 7→ a[0] ⊗ a[1] is

called right-covariant with respect to (H,β) if there exists a right Hom-coaction φ : Γ →
Γ ⊗H, ω 7→ω[0] ⊗ω[1] of (H,β) on (Γ ,γ) such that
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1. φ(α(a) · (ω · b)) = ϕ(α(a))(φ(ω)ϕ(b))[= (ϕ(a)φ(ω))ϕ(α(b)) = φ(a ·ω) · b], ∀a,b ∈ A,

ω ∈ Γ ,

2. φ(da) = (d ⊗ id)(ϕ(a)), ∀a ∈ A

Let (H,α) be a monoidal Hom-Hopf algebra with an invertible antipode S. Since (H,α)

a right Hom-quantum space for itself with respect to the Hom-comultiplication ∆ : H →
H ⊗H,h 7→ h1 ⊗ h2, the above definition induces

Definition 5.4.2 A (H,α)-Hom-FODC (Γ ,γ) is said to be right-covariant if (Γ ,γ) is a

right-covariant FODC over the right Hom-quantum space (H,α) with right Hom-action

ϕ = ∆ in the above definition, or in an equivalent way if there is a morphism φ : Γ → Γ ⊗H
in H̃(Mk) such that, for h,g ∈H ,

φ(h · dg) = ∆(h)(d ⊗ id)(∆(g)). (5.18)

If we modify the Proposition 5.1.3 to the right-covariant case, we conclude that the

right-covariant (H,α)-Hom-FODC (Γ ,γ) is a right-covariant (H,α)-Hom-bimodule. Thus,

by using the unique projection PR : (Γ ,γ)→ (Γ coH ,γ |Γ coH ), PR(ρ) = ω[0] · S(ω[1]) we define

the linear mapping

ηΓ :H → Γ coH , η(h) := PR(dh),

for any h ∈ H ,in H̃(Mk), for which η(H)Γ coH . Since φ(dh) = dh1 ⊗ h2, we have, for

h ∈H

η(h) = dh1 · S(h2) and dh = η(h1) · h2.

5.4.2 Bicovariant Hom-FODC

Definition 5.4.3 A (H,α)-Hom-FODC (Γ ,γ) is said to be bicovariant if it is both left-

covariant and right-covariant FODC.

Remark 12 By the Remark 11 and the Definition 5.4.2, a (H,α)-Hom-FODC (Γ ,γ) is

bicovariant if and only if there exist morphisms φL : Γ → H ⊗ Γ and φR : Γ → Γ ⊗H in

H̃(Mk), satisfying the equations 5.4 and 5.18, respectively. So, if (Γ ,γ) is a bicovariant
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(H,α)-Hom-FODC with Hom-coactions φL and φR satisfying 5.4 and 5.18 we get, for

h,g ∈H ,

(id ⊗φR)(φL(h · dg)) = (id ⊗φR)(h1g1 ⊗ h2 · dg2) = h1g1 ⊗ (h21 · dg21 ⊗ h22g22),

(ã ◦ (φL ⊗ id))(φR(h · dg)) = (ã ◦ (φL⊗))(h1 · dg1 ⊗ h2g2)

= α(h11g11)⊗ (h12 · dg12 ⊗α−1(h2g2))

= h1g1 ⊗ (h21 · dg21 ⊗ h22g22).

Thus, (Γ ,γ) is a bicovariant (H,α)-Hom-bimodule and the whole structure theory of

bicovariant bimodules can be applied to it.

Lemma 5.4.4 Let (H,α) be a monoidal Hom-Hopf algebra. Then

1. The linear mapping ÃdR :H →H ⊗H given by

ÃdR(h) = α(h12)⊗ S(h11)α−1(h2) = α(h21)⊗ S(α−1(h1))h22

is a right Hom-coaction of (H,α) on itself.

2. The linear mapping ÃdL :H →H ⊗H given by

ÃdL(h) = α(h11)S(α
−1(h2))⊗α(h12) = α−1(h1)S(h22)⊗α(h21)

is a left Hom-coaction of (H,α) on itself. ÃdR and ÃdL are called adjoint right

Hom-coaction and adjoint left Hom-coaction, respectively

Proof:

1. If we write ÃdR(h) = h[0]⊗h[1] for h ∈H , then the Hom-coassociativity follows from

α−1(h[0])⊗∆(h[1]) = α−1(α(h12))⊗∆(S(h11)α−1(h2))

= h12 ⊗ S(h112)α−1(h21)⊗ S(h111)α−1(h22)

= α2(h1212)⊗ S(α(h1211))h122 ⊗ S(α−1(h11))α−2(h22)

= α2(h1212)⊗ S(α(h1211))h122 ⊗α−1(S(h11)α−1(h22))

= h[0][0] ⊗ h[0][1] ⊗α−1(h[1]),

where in the third step we have used

h11⊗α(h1211)⊗h1212⊗α−1(h122)⊗h2 = α(h111)⊗h112)⊗α−2(h12)⊗α−2(h21)⊗α(h22),
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which results from

((idH ⊗ ãH,H,H )⊗ idH ) ◦ ((idH ⊗ (∆⊗ idH ))⊗ idH )

◦((idH ⊗∆)⊗ idH ) ◦ (∆⊗ idH ) ◦∆

= (ãH,H,H⊗H ⊗ idH ) ◦ ((∆⊗ idH⊗H )⊗ idH ) ◦ (ãH,H,H ⊗ idH )

◦ã−1H⊗H,H,H ◦ (idH⊗H ⊗∆) ◦ (∆⊗ idH ) ◦∆.

Hom-unity condition: For any h ∈H ,

h[0]ε(h[1]) = α(h12)ε(S(h11)α
−1(h2)) = α(h12)ε(h11)ε(h2)

= α(ε(h11)h12)ε(h2) = h1ε(h2) = α
−1(h),

and one can also easily show that ÃdR ◦ α = (α ⊗ α) ◦ ÃdR. Thus ÃdR is a right

Hom-action of (H,α) onto itself.

2. In a similar manner, it can be proven that ÃdL is a left Hom-action of (H,α) onto

itself.

�

With the next lemma we describe the right coaction φR on a left-invariant form ωΓ (h)

and the left coaction φL on a right-invariant form ηΓ (h) by means of ÃdR and ÃdL,

respectively.

Lemma 5.4.5 For h ∈H , we have the formulas

1. φR(ω(h)) = (ω⊗ id)(ÃdR(h)),

2. φL(η(h)) = (id ⊗ η)(ÃdL(h)).

Proof:

1. For h ∈H ,

φR(ω(h)) = ∆(S(h1))(d ⊗ id)(∆(h2))

= (S(h12)⊗ S(h11))(dh21 ⊗ h22) = S(h12) · dh21 ⊗ S(h11)h22
= S(α(h121)) · d(α(h122))⊗ S(h11)α−1(h2)

= ω(α(h12))⊗ S(h11)α−1(h2) = (ω⊗ id)(α(h12)⊗ S(h11)α−1(h2))

= (ω⊗ id)(ÃdR(h)).
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2. Similarly, one can show that the equality φL(η(h)) = (id ⊗ η)(ÃdL(h)) holds.

�

Proposition 5.4.6 Suppose that (Γ ,γ) is a left-covariant (H,α)-Hom-FODC with asso-

ciated right Hom-ideal RΓ . Then (Γ ,γ) is a bicovariant (H,α)-Hom-FODC if and only if

ÃdR(R) ⊆R⊗H , that is, R is ÃdR-invariant.

Proof: If (Γ ,γ) is a bicovariant Hom-FODC, then the equation obtained in Lemma

(5.4.5) holds. It implies that ÃdR(R) ⊆ R ⊗H since R = (h ∈ kerε|ω(h) = 0). On the

contrary, suppose that ÃdR(R) ⊆R⊗H . We know that the universal Hom-FODC Ω1(H)

is bicovariant. So, by applying Lemma (5.4.5) to the bicovariant Hom-FODC Ω1(H) and

using the AdR-invariance of R, we conclude that theright Hom-action of Ω1(H) passes

to the quotient Ω1(H)/N , where N := HωΩ1(H)((R)), which is right-covariant. Hence,

from Proposition (5.3.3), (Γ ,γ) is right-covariant as well. �

5.4.3 Quantum Monoidal Hom-Lie Algebra

Let (Γ ,γ) be a bicovariant (H,α)-Hom-FODC with associated right Hom-ideal R and

finite dimensional quantum Hom-tangent space (T , τ), where τ = ᾱ|T .

We define a linear mapping [−,−] : T ⊗T → T by setting, for X,Y ∈ T ,

[X,Y ](h) = (X ⊗Y )(ÃdR(h)), ∀h ∈H. (5.19)

[X,Y ] ∈ T : Indeed, since ÃdR(R) ⊆ R ⊗ H by the previous proposition and any

element of T annihilates R by the definition of quantum Hom-tangent space, (X ⊗
Y )(ÃdR(h)) = 0 for all h ∈ R, i.e., [X,Y ](h) = 0, ∀h ∈ R. We also obtain [X,Y ](1) = 0

since X(1) = 0 = Y (1). Thus [X,Y ] ∈ T . Besides, we have

[τ(X), τ(Y )](h) = (X ◦α−1 ⊗Y ◦α−1)(ÃdR(h))

= X(h12)Y (S(α
−1(h11))α

−2(h2))

= (X ⊗Y )(ÃdR(α−1(h))) = [X,Y ](α−1(h))

= τ([X,Y ])(h),

for any h ∈H , which means [−,−] : T ⊗T → T is a morphism in H̃(Mk).
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We now fix some notation. Suppose that < ·, · >: T × coHΓ → k is the bilinear form in

the Proposition 5.3.5. There exists a unique bilinear form < ·, · >2 : (T ⊗T )× coH (Γ ⊗H Γ )→
k defined by

< X ⊗Y ,u ⊗ v >2 =< X,u >< Y ,v > (5.20)

for X,Y ∈ T and u,v ∈ coHΓ , which is nondegenerate as the bilinear form < ·, · > is. If

we put B : Γ ⊗H Γ → Γ ⊗H Γ for the Woronowicz’ braiding, then, for h,g ∈H , we compute

B(ω(h)⊗H ω(g)) = γ(ω(α(g12)))⊗H γ−1(ω(h))C (S(g11)α−1(g2))

= ω(α2(g12))⊗H γ−1(ω(h)C (S(α(g11))g2))

= ω(α2(g12))⊗H γ−1(ω(h̄(S(α(g11))g2)))

= ω(α2(g12))⊗H ω(α−1(h)(S(g11)α−1(g2))). (5.21)

With respect to the nondegenerate bilinear form < ·, · >2, we define the transpose Bt of

B as a linear map acting on T ⊗T such that

< Bt(X ⊗Y ),u ⊗ v >2 =< X ⊗Y ,B(u ⊗ v) >2 .

We now recall that the dual monoidal Hom-Hopf algebra (H◦,α◦) of (H,α) consists

of functionals f ∈ H ′ for which ∆H◦(f ) = f1 ⊗ f2 ∈ H ′ ⊗H ′ and the Hom-counit is given

by εH◦(f ) = f (1H ). Since, also ∆(f )(h⊗ g) := f (hg) for ∆(f ) ∈ (H ⊗H)′ and h,g ∈ H , we

have f (hg) = f1(h)f2(g). α◦ is given by α◦(f ) = f ◦ α−1 for f ∈ H◦. Hom-multiplication

mH◦ is the convolution, i.e., mH◦(f ⊗ f ′)(h) = (f f ′)(h) = f (h1)f ′(h2) for f , f ′ ∈ H ′, h ∈ H
and the Hom-unit is εH . The antipode is given by S(f )(h) = f (S(h)) for f ∈H◦ and h ∈H .

Since we assumed that TΓ is finite dimensional, TΓ is contained in H◦. Thus we have

the following theorem in (H◦.

Theorem 5.4.7 For any X,Y ,Z ∈ TΓ we have

1. [X,Y ] = ãdR(Y )(X) = XY −mH◦(Bt(X ⊗Y )).

2. Let χ =
∑
iXi ⊗Yi for Xi ,Yi ∈ T such that Bt(χ) = χ, then

∑
i[Xi ,Yi] = 0.

3. [τ(X), [Y ,τ−1(Z)]] = [[X,Y ],Z] −
∑
i[[X,τ

−1(Zi)], τ(Yi)], where Yi ,Zi ∈ T such that

Bt(Y ⊗Z) =
∑
i Zi ⊗Yi .
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Proof:

1. For h ∈H ,

ãdR(Y )(X)(h) = ((S(Y1)τ
−1(X))τ(Y2))(h)

= (S(Y1)τ
−1(X))(h1)τ(Y2))(h2) = S(Y1)(h11)τ

−1(X)(h12)τ(Y2))(h2)

= Y1(S(h11))X(α(h12))Y2(α
−1(h2)) = X(α(h12))Y1(S(h11))Y2(α

−1(h2))

= X(α(h12))Y (S(h11)α
−1(h2)) = (X ⊗Y )(α(h12)⊗ S(h11)α−1(h2))

= (X ⊗Y )(ÃdR(h)) = [X,Y ](h),

which gives us the first equality. If we set the finite sum for Bt(X ⊗ Y ) =
∑
i Yi ⊗Xi

with Xi ,Yi ∈ T , then, for any h,g ∈H ,

Bt(X ⊗Y )(h⊗ g) =
∑
i

Yi(h)Xi(g) =
∑
i

< τ−1(Yi),ω(h) >< τ
−1(Xi),ω(g) >

= <
∑
i

τ−1(Yi)⊗ τ−1(Xi),ω(h)⊗H ω(g) >2

= < Bt(τ−1(X)⊗ τ−1(Y )),ω(h)⊗H ω(g) >2
= < τ−1(X)⊗ τ−1(Y ),B(ω(h)⊗H ω(g)) >2
= < τ−1(X)⊗ τ−1(Y ),ω(α2(g12))⊗H ω(α−1(h)(S(g11)α−1(g2))) >2
= < τ−1(X),ω(α2(g12)) >< τ

−1(Y ),ω(α−1(h)(S(g11)α
−1(g2))) >

= X(α2(g12))Y (α−1(h)(S(g11)α
−1(g2)))

= X(α2(g12))Y1(α−1(h))Y2(S(g11)α
−1(g2))

= Y1(α−1(h))X(α
2(g12))Y21(S(g11))Y22(α

−1(g2))

= τ(Y1)(h)S(Y21)(g11)X(α
2(g12))Y22(α

−1(g2))

= τ(Y1)(h)(S(Y21)τ
−2(X))(g1)τ(Y22)(g2)

= τ(Y1)(h)[(S(Y21)τ
−2(X))τ(Y22)](g)

= (τ(Y1)⊗ ãdR(Y2)(τ−1(X)))(h⊗ g),

where in the sixth equality we have used the equation 5.21. So, we have Bt(X ⊗
Y ) = τ(Y1)⊗ ãdR(Y2)(τ−1(X)). Hence, we make the following computation
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mH ′ (B
t(X ⊗Y )) = τ(Y1)ãdR(Y2)(τ

−1(X))

= (τ(Y1)− εH◦(τ(Y1))1H◦)ãdR(Y2)(τ−1(X))

= τ(Y1)[(S(Y21)τ
−2(X))τ(Y22)]− (εH◦(Y1)1H◦)[(S(Y21)τ−2(X))τ(Y22)]

= τ(Y1)[S(τ(Y21))(τ
−2(X)Y22)]− (εH◦(Y1)1H◦)((S(Y21)τ−2(X))τ(Y22))

= (Y1S(τ(Y21)))τ(τ
−2(X)Y22)− (εH◦(Y1)1H◦)((S(Y21)τ−2(X))τ(Y22))

= (τ(Y11)S(τ(Y12)))(τ
−1(X)Y2)− 1H◦([S(εH◦(Y11)Y12)τ−2(X)]Y2)

= (εH◦(Y1)1H◦)(τ
−1(X)Y2)− (S(Y1)τ−1(X))τ(Y2)

= 1H◦(τ
−1(XY ))− ãdR(Y )(X)

= XY − ãdR(Y )(X),

that is, we get ãdR(Y )(X) = XY −mH ′ (Bt(X ⊗Y )).

2. It immediately follows from (1) that
∑
i[Xi ,Yi] =

∑
iXiYi −mH ′ (Bt(χ)) =

∑
iXiYi −∑

iXiYi = 0.

3. Let us first set [X,Y ] = ãdR(Y )(X) = X CY . Then,

[[X,Y ],Z] = [X,Y ]CZ = (X CY )CZ = τ(X)C (Y τ−1(Z)) = [τ(X),Y τ−1(Z)].

Since, by (1), YZ = [Y ,Z] +
∑
i ZiYi for Bt(Y ⊗Z) =

∑
i Zi ⊗Yi , we have

[[X,Y ],Z] = [τ(X),Y τ−1(Z)] = [τ(X), [Y ,τ−1(Z)] +
∑
i

τ−1(Zi)Yi]

= [τ(X), [Y ,τ−1(Z)]] +
∑
i

[τ(X), τ−1(Zi)Yi]

= [τ(X), [Y ,τ−1(Z)]] +
∑
i

[[X,τ−1(Zi)], τ(Yi)],

that is, [τ(X), [Y ,τ−1(Z)]] = [[X,Y ],Z]−
∑
i[[X,τ

−1(Zi)], τ(Yi)] holds.

�

Remark 13 If we take the braiding B as the flip operator, then Bt is the flip on T ⊗T by

its definition. In this case, we obtain

[X,Y ] = XY −YX, [X,Y ] + [Y ,X] = 0,∀X,Y ∈ T
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and

[τ(X), [Y ,τ−1(Z)]] = [[X,Y ],Z]− [[X,τ−1(Z)], τ(Y )] = −[Z, [X,Y ]] + [τ(Y ), [X,τ−1(Z)]]

= −[Z, [X,Y ]]− [τ(Y ), [τ−1(Z),X]].

Then, by replacing Z with τ(Z) in the above equality, we get

[τ(X), [Y ,Z]] + [τ(Y ), [Z,X]] + [τ(Z), [X,Y ]] = 0,

which is the Hom-Jacobi identity. In the above theorem, items (2) and (3) are the quan-

tum versions of the antisymmetry and the Hom-Jacobi identity. Therefore, (TΓ , τ) is

called the quantum Hom-Lie algebra of the bicovariant (H,α)-Hom-FODC.
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[18] T. Brzeziński, L. El Kaoutit, C. Lomp, Non-commutative integral forms and twisted

multi-derivations, J. Noncommut. Geom. 4 (2010), 281-312

[19] S. Caenepeel, E. De Groot, Modules over weak entwining structures, Contemp.

Math. 267 (2000), 31-54.

[20] S. Caenepeel, G. Militaru, S. Zhu, Frobenius and Separable Functors for General-

ized Hopf Modules and Nonlinear Equations, LNM 1787, Springer, Berlin, 2002.

[21] S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39

(2011), 2216-2240.

[22] M. Chaichian, D. Ellinas, Z. Popowicz, Quantum conformal algebra with central

extension, Phys. Lett. B 248(1-2) (1990), 95-99.

162



[23] M. Chaichian, A. P. Isaev, J. Lukierski, Z. Popowicz, P. Pres̆najder q-deformations

of Virasoro algebra and conformal dimensions, Phys. Lett. B 262(1) (1991), 32-38.

[24] M. Chaichian, P. Kulish, J. Lukierski, q-deformed Jacobi identity, q-oscillators and

q-deformed infinite-dimensional algebras, Phys. Lett. B 237(3-4) (1990), 401-406.

[25] M. Chaichian, Z. Popowicz, P. Prešnajder q-Virasoro algebra and its relation to the

q-deformed KdV system, Phys. Lett. B 249(1) (1990), 63-65.

[26] Y. Y. Chen, Z. W. Wang, L. Y. Zhang, Integrals for monoidal Hom-Hopf algebras

and their applications, J. Math. Phys. 54 (2013), 073515.

[27] Y. Y. Chen, Z. W. Wang, L. Y. Zhang, The FRT-type theorem for the Hom-Long

equation, Comm. Algebra 41 (2013), 3931-3948.

[28] Y. Y Chen, L. Y. Zhang, The category of Yetter-Drinfeld Hom-modules and the

quantum Hom-Yang-Baxter equation, J. Math. Phys. 55 (2014), 031702.

[29] Y. Y. Chen, L. Y. Zhang, Hopf-Galois extensions for monoidal Hom-Hopf algebras,

arxiv:1409.5184 .

[30] A. Connes, Non-commutative differential geometry, Inst. Hautes Études Sci. Publ.

Math. 62 (1985), 257-360

[31] A. Connes, Noncommutative geometry, Academic Press, New York, 1994.

[32] J. Cuntz, D. Quillen, Algebraic extensions and nonsingularity, J. Amer. Math. Soc.

8 (1995), 251-289.

[33] T. L. Curtright, C. K. Zachos Deforming maps for quantum algebras, Phys. Lett. B

243(3) (1990), 237-244.

[34] C. Daskaloyannis, Generalized deformed Virasoro algebras, Mod. Phys. Lett. A

7(9) (1992), 809-816.

[35] Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11 (1983), 243-

253.

[36] Y. Doi, Unifying Hopf modules, J. Algebra 153 (1992), 373-385.

163



[37] Y. Frégier , A. Gohr, S. D. Silvestrov, Unital algebras of Hom-associative type and

surjective or injective twistings, J. Gen. Lie Theory Appl. 3(4) (2009), 285-295.

[38] A. Gohr, On Hom-algebras with surjective twisting, J. Algebra 324 (2010), 1483-

1491.

[39] S. J. Guo, X. L. Chen, A Maschke-type theorem for relative Hom-Hopf modules,

arXiv:1411.7204, (to appear Czech. Math. J.).

[40] P. M. Hajac, M. Khalkhali, B. Rangipour, Y. Sommerhauser, Stable anti-Yetter-

Drinfeld modules, C. R. Math. Acad. Sci. Paris 338 (2004), 587-590.

[41] P. M. Hajac, M. Khalkhali, B. Rangipour, Y. Sommerhauser, Hopf-cyclic homology

and cohomology with coefficients, C. R. Math. Acad. Sci. Paris 338 (2004), 667-

672.

[42] J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using

σ -derivations, J. Algebra 295 (2006), 314-361.

[43] N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations,

Algebra Colloq. 6(1) (1999), 51-70, arXiv:0512526.

[44] P. Jara, D. Ştefan, Cyclic homology of Hopf-Galois extensions and Hopf algebras,

Proc. London Math. Soc. 93 (2006), 138-174.

[45] S. Karaçuha, Covariant bimodules over monoidal Hom-Hopf algebras, preprint

arXiv: 1404.1296.

[46] S. Karaçuha, Hom-entwining structures and Hom-Hopf-type modules, preprint

arXiv: 1412.2002.

[47] S. Karaçuha, C. Lomp Integral calculus on quantum exterior algebras, Int. J.

Geom. Methods Mod. Phys. 11 (2014), 1450026.

[48] C. Kassel, Cyclic homology of differential operators: The Virasoro algebra and a

q-analogue, Commun. Math. Phys. Lett. 146 (1992), 343-351.

[49] C. Kassel, Quantum Groups, Graduate Text Math. 155, Springer-Verlag, Berlin,

1995.

164



[50] A. Kaygun, M. Khalkhali, Hopf modules and noncommutative differential geometry,

Lett. Math. Phys. 76 (2006), 77-91.

[51] A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representations,

Springer,Berlin, Germany,1997

[52] M. Koppinen, Variations on the smash product with applications to group-graded

rings, J. Pure Appl. Alg. 104 (1994), 61-80.

[53] U.Krähmer, Poincaré duality in Hochschild (co)homology. in New techniques in

Hopf algebras and graded ring theory, 117-125, K. Vlaam. Acad. Belgie Wet. Kun-

sten (KVAB), Brussels, 2007.

[54] D. Larsson, S. D. Silvestrov, Quasi-Hom-Lie algebras, central extensions and 2-

cocycle-like identities, J. Algebra 288 (2005), 321-344.

[55] D. Larsson, S. D. Silvestrov, Quasi-Lie algebras, Contemp. Math. 391 (2005), 241-

248.

[56] D. Larsson, S. D. Silvestrov, Quasi-deformations of sl2(F ) using twisted deriva-

tions, Comm. Algebra 32 (2007), 4303-4318.

[57] K. Q. Liu, Characterizations of the quantum Witt algebra, Lett. Math. Phys. 24(4)

(1992), 257-265.

[58] L. Liu, B. Shen, Radford’s biproducts and Yetter-Drinfel’d modules for monoidal

Hom-Hopf algebras, J. Math. Phys. 55 (2014), 031701.

[59] F. W. Long, The Brauer group of dimodule algebras, J. Algebra 31 (1974), 559-601.

[60] S. Mac Lane, Categories for The Working Mathematician, 2nd ed., Graduate Texts

Math. 5, Spriger-Verlag, Berlin, 1998.

[61] D. Yau, Hom-alternative algebras and Hom-Jordan algebras, Int. E. J. Algebra , 8

(2010), 177-190.

[62] A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2(2)

(2008), 51-64.

165



[63] A. Makhlouf, S. Silvestrov, Hom-Lie admissible Hom-coalgebras and Hom-Hopf

algebras, Ch. 17, pp. 189-206, in "Generalized Lie Theory in Mathematics, Physics

and Beyond" (Eds. S. Silvestrov, E. Paal, V. Abramov, A. Stolin), Springer-Verlag,

Berlin, 2008.

[64] A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl.

9(4) (2010), 553-589.

[65] A. Makhlouf, S. Silvestrov, Notes on formal deformations of Hom-associative and

Hom-Lie algebras, Forum Math. 22(4) (2010), 715-739.

[66] A. Makhlouf, F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math.

Phys. 55 (2014), 013501.

[67] A. Makhlouf, D. Yau, Rota-Baxter Hom-Lie-admissible algebras, Comm. Algebra

42 (2014), 1231-1257.

[68] D. Naidu, P. Shroff, S. Whitherspoon, Hochschild cohomology of group extensions

of quantum symmetric algebras, Proc. Amer. Math. Soc. 139 (2011), 1553-1567

[69] F. Panaite, M. D. Staic, Generalized (anti) Yetter-Drinfeld modules as components

of a braided T-category, Isr. J. Math. 158(1) (2007), 349-365.

[70] B. Pareigis, Non-additive ring and module theory, 1. General theory of monoids,

Publ. Math. Debrecen 24 (1977), 189-204.

[71] D. E. Radford, J. Towber, Yetter-Drinfel’d categories associated to an arbitrary bial-

gebra, J. Pure Appl. Algebra 87 (1993), 259-279.

[72] P. Schauenburg, Hopf modules and Yetter-Drinfel’d modules, J. Algebra 169

(1994), 874-890.

[73] P. Schauenburg, Doi-Koppinen Hopf modules versus entwined modules, New York

J. Math. 6 (2000), 325-329.

[74] Y. Sheng, Representations of Hom-Lie algebras, Algebr. Represent. Theory 15(6)

(2012), 1081-1098.

[75] M. E. Sweedler, Integrals for Hopf algebras, Ann. Math. 89 (1969), 323-335.

166



[76] M. E. Sweedler, The predual theorem to the Jacobson-Bourbaki theorem, Amer.

Math. Soc. 213 (1975), 391-406.

[77] M. Takeuchi, Relative Hopf modules-equivalences and freeness criteria, J. Algebra

60 (1979), 452-471.

[78] K. Ueyama, Graded Frobenius algebras and quantum Beilinson algebras. in Pro-

ceedings of the 44th Symposium on Ring Theory and Representation Theory, 216-

222, Symp. Ring Theory Represent. Theory Organ. Comm., Nagoya, 2012

[79] M. van den Bergh, A relation between Hochschild homology and cohomology for

Gorenstein rings., Proc. Amer. Math. Soc. 126 (1998), no. 5, 1345-1348.

[80] S.L. Woronowicz, Twisted SU(2) group. An example of a noncommutative differen-

tial calculus. Publ. Res. Inst. Math. Sci. 23 (1987), 117-181

[81] S. L. Woronowicz, Compact matrix pseudogroups , Commun. Math. Phys. 111

(1987), 613-665.

[82] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum

groups), Commun. Math. Phys. 122 (1989), 125-170.

[83] D. Yau, Enveloping algebra of Hom-Lie algebras, J. Gen. Lie Theory Appl. 2

(2008), 95-108.

[84] D. Yau, Hom-bialgebras and comodule Hom-algebras, Int. E. J. Algebra 8 (2010),

45-64.

[85] D. Yau, Hom-algebras and homology, J. Lie Theory 19 (2009), 409-421.

[86] D. Yau, Hom-quantum groups I: Quasitriangular Hom-bialgebras, J. Phys. A 45(6)

(2012), 065203.

[87] D. Yau, Hom-quantum groups II: Cobraided Hom-bialgebras and Hom-quantum

geometry, arXiv:0907.1880.

[88] D. Yau, Hom-quantum groups III: Representations and module Hom-algebras,

arXiv:0911.5402.

[89] D. Yau, Hom-Yang-Baxter equation, Hom-Lie algebras and quasitriangular bialge-

bras, J. Phys. A 42(16) (2009), 165202.

167



[90] D. Yau, On n-ary Hom-Nambu and Hom-Nambu-Lie algebras, J. Geom. Phys. 62

(2012), 506-522.

[91] D. Yau, Hom-Novikov algebras, J. Phys. A, 44 (2011), 085202.

[92] D. Yau, Hom-Maltsev, Hom-alternative, and Hom-Jordan algebras, Int. E. J. Alge-

bra 11 (2012), 177-217.

[93] D. Yau, The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, Int. E.

J. Algebra 17 (2015), 11-45.

[94] D. Yau, The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys. 52

(2011), 053502.

[95] D. N. Yetter, Quantum groups and representations of monoidal categories, Math.

Proc. Cambridge Philos. Soc. 108 (1990), 261-290.

168


	Resumo
	Abstract
	Introduction
	Preliminaries
	Monoidal Categories
	Algebras and modules in monoidal categories
	Coalgebras and comodules in monoidal categories
	Bialgebras and Hopf modules in braided monoidal categories

	Integral Calculus On Quantum Exterior Algebras
	Introduction
	Twisted multi-derivations and hom-connections
	Differential calculi on quantum exterior algebras
	Differential calculi from skew derivations
	Multivariate quantum polynomials
	Manin's quantum n-space

	Covariant Bimodules Over Monoidal Hom-Hopf Algebras
	Introduction
	Monoidal Hom-structures
	Left-Covariant Hom-Bimodules
	Right-Covariant Hom-Bimodules
	Bicovariant Hom-Bimodules
	Yetter-Drinfeld Modules over Monoidal Hom-Hopf Algebras

	Hom-Entwining Structures And Hom-Hopf-Type Modules
	Introduction
	Hom-corings and Hom-Entwining structures
	Entwinings and Hom-Hopf-type Modules

	Covariant Hom-Differential Calculus
	Left-Covariant FODC over Hom-quantum spaces
	Universal Differential Calculus of a Monoidal Hom-Hopf Algebra
	Left-Covariant FODC over Monoidal Hom-Hopf Algebras
	Left-Covariant Hom-FODC and Their Right Hom-ideals
	Quantum Hom-Tangent Space

	Bicovariant FODC over Monoidal Hom-Hopf Algebras
	Right-Covariant Hom-FODC 
	Bicovariant Hom-FODC 
	Quantum Monoidal Hom-Lie Algebra



