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I am truly grateful to Professor José A. Ramı́rez, Professor Santiago Cambronero, and
Professor Pedro Méndez for all those interesting topics that they taught me, and for have
trusted on me from the very beginning. I also want to thank to Professor Joe Várilly and
Professor Michael Josephy for their recommendation letters and all the support that
gave me four years ago. I want to thank to one of my very close best friends, Ólger
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Abstract

Let X be a closed and connected Riemann surface of genus g > 2. The main object of
study in this thesis is the moduli spaceMk of k-Higgs bundles. These are a generaliza-
tion of the usual Higgs bundles, where the Higgs field is twisted byO(k · p), for p ∈ X .
There are natural inclusionsMk →Mk+1.

Here, we study the stabilization with respect to k of the homotopy groups of Mk

using the natural C∗-action on the moduli space. We prove results on freeness and
stabilization of homology groups in rank two and three. This conjecturely implies sta-
bilization for homotopy groups. However, we do not obtain precise numerical estimates
for the range of the stabilization of the homology and homotopy indices. This work
partially generalizes the result by Hausel in rank two.

Moreover, we study the inclusion of the fixed loci of the C∗-action, where the most
important case is the one that corresponds to holomorphic triples. The moduli spaces of
triples depend on a stability parameter σ, and we investigate the relation of the various
stability conditions, finding in particular natural inclusions of triples moduli spaces cor-
responding to the inclusionsMk → Mk+1. An essential ingredient is the study of the
flips relating moduli spaces of triples for different values of the parameter σ.

The moduli spaceM is stratified by the Harder-Narasimhan type of the underlying
vector bundle of a Higgs bundle. This stratification is called the Shatz stratification. We
study the relationship between the Shatz stratification and the Bialynicki-Birula strati-
fication onM, coming from the limit z → 0 of the C∗-action, for rank two and three.
Our results should produce a more refined stratification for rank three, which we expect
to be useful in generalizing Hausel’s results for rank two to rank three. We present a

11



12

different proof for the rank two case stratifications equivalence obtained by Hausel, and
we give a description, for the rank three case, of how the Shatz stratification relates to
the Bialynicki-Birula stratification and also the other way around.

The Nilpotent Cone in M is the pre-image of zero under the Hitchin map. It has
another Bialynicki-Birula stratification, using the limit z → ∞ for z ∈ C∗. Finally, we
study this stratification of the Nilpotent Cone ofM. These results complement those of
the relationship between the Shatz stratification and the Bialynicki-Birula stratification
mentioned above.

Key Words

Algebraic Geometry, Algebraic Topology, Differential Geometry, Moduli Spaces, Gauge
Theory, Morse Theory, Higgs Bundles, Hitchin Pairs, Homotopy, Homology, Cohomol-
ogy, Connections, Holomorphic Structures, Vector Bundles.



Resumo

Seja X uma superfı́cie de Riemann fechada e conexa de género g > 2. O principal
objeto de estudo desta tese é o espaço móduli Mk de k-fibrados de Higgs. Estes são
uma generalização dos fibrados de Higgs habituais, onde o campo de Higgs é torcido
por O(k · p), para p ∈ X . Existem mergulhos naturaisMk →Mk+1.

Aqui estuda-se a estabilização com respeito a k dos grupos de homotopia deMk uti-
lizando a acção natural de C∗ sobre o espaço de móduli. Provamos resultados de torção
livre e de estabilização de grupos de homologia em posto dois e três. Isto implica, como
uma conjectura, a estabilização para grupos de homotopia. Contudo, não é possı́vel
obter estimativas numéricas precisas para a estabilização dos ı́ndices de homologia e de
homotopia. Este trabalho generaliza parcialmente o resultado de Hausel para posto dois.

Além disso, é estudado o mergulho dos lugares geométricos de pontos fixos da acção
de C∗, onde o caso mais importante é aquele que corresponde a triplos holomorfos. Os
espaços móduli de triplos dependem dum parâmetro de estabilidade σ, e investiga-se
a relação das distintas condições de estabilidade, encontrando em particular mergulhos
naturais de espaços móduli de triplos correspondentes às inclusõesMk →Mk+1. Um
ingrediente essencial é o estudo dos lugares geométricos de salto relacionando espaços
móduli de triplos para diferentes valores do parâmetro σ.

O espaço móduliM é estratificado pelo tipo Harder-Narasimhan do fibrado vecto-
rial subjacente dum fibrado de Higgs. Esta estratificação chama-se a estratificação de
Shatz. Estuda-se a relação entre a estratificação de Shatz e a estratificação de Bialynicki-
Birula emM, associada ao limite de z → 0 da acção de C∗, para posto dois e três. Os
nossos resultados devem produzir uma estratificação mais refinada para posto três, que
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esperamos seja útil na generalização dos resultados de Hausel de posto dois para posto
três. Apresentamos uma prova diferente para a equivalência dessas duas estratificações
no caso de posto dois, obtida por Hausel, e damos uma descrição, para o caso de posto
três, de como se relaciona a estratificação de Shatz com a estratificação de Bialynicki-
Birula e também reciprocamente.

O Cone Nilpotente em M é a imagem inversa de zero sob o mapeo de Hitchin.
O Cone Nilpotente, tem outra estratificação de Bialynicki-Birula, usando o limite de
z → ∞ para z ∈ C∗. Finalmente, estudamos esta estratificação do Cone Nilpotente de
M. Estes resultados complementam aqueles da relação entre a estratificação de Shatz e
a de Bialynicki-Birula mencionados anteriormente.

Palavras-Chave

Geometria Algébrica, Topologia Algébrica, Geometria Diferencial, Espaços Moduli,
Teoria de Gauge, Teoria de Morse, Fibrados de Higgs, Pares de Hitchin, Homotopia,
Homologia, Cohomologia, Conexões, Estructuras Holomorfas, Fibrados Vectoriais.



Resumen

Sea X una superficie de Riemann cerrada y conexa de género g > 2. El principal objeto
de estudio de esta tesis es el espacio móduliMk de k-fibrados de Higgs. Estos son una
generalización de los fibrados de Higgs habituales, donde el campo de Higgs es torcido
por O(k · p), para p ∈ X . Existen inclusiones naturalesMk →Mk+1.

Aquı́, se estudia la estabilización con respecto a k de los grupos de homotopı́a de
Mk utilizando la acción natural de C∗ sobre el espacio de móduli. Demostramos resul-
tados de torsión libre y de estabilización de grupos de homologı́a en rango dos y tres.
Esto implica, a modo de conjetura, la estabilización para grupos de homotopı́a. Sin
embargo, no obtenemos estimaciones numéricas precisas para la estabilización de los
ı́ndices de homologı́a y de homotopı́a. Este trabajo generaliza parcialmente el resultado
de Hausel para rango dos.

Por otra parte, se estudia la inclusión de los lugares geométricos de puntos fijos de
la acción de C∗, donde el caso más importante es el que corresponde con triples holo-
morfos. Los espacios móduli de triples dependen de un parámetro de estabilidad σ, y se
investiga la relación de las distintas condiciones de estabilidad, encontrando en particu-
lar inclusiones naturales de espacios móduli de triples correspondientes a las inclusiones
Mk →Mk+1. Un ingrediente esencial es el estudio de los lugares geométricos de salto
relacionando espacios móduli de triples para diferentes valores del parámetro σ.

El espacio móduliM es estratificado por el tipo Harder-Narasimhan del fibrado vec-
torial subyacente de un fibrado de Higgs. Esta estratificación se llama la estratificación
de Shatz. Se estudia la relación entre la estratificación de Shatz y la estratificación de
Bialynicki-Birula enM, procedente del lı́mite de z → 0 de la acción de C∗, para rango
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dos y tres. Nuestros resultados deben producir una estratificación más refinada para
rango tres, que esperamos sea útil en la generalización de los resultados de Hausel de
rango dos para rango tres. Presentamos una prueba diferente para la equivalencia de
estas dos estratificaciones en el caso de rango dos, obtenida por Hausel, y damos una
descripción, para el caso de rango tres, de cómo la estratificación de Shatz se relaciona
con la estratificación de Bialynicki-Birula y también a la inversa.

El Cono Nilpotente enM es la imagen inversa de cero bajo el mapeo de Hitchin.
El Cono Nilpotente, tiene otra estratificación de Bialynicki-Birula, usando el lı́mite de
z → ∞ para z ∈ C∗. Finalmente, estudiamos esta estratificación del Cono Nilpotente
deM. Estos resultados complementan los de la relación entre la estratificación de Shatz
y la de Bialynicki-Birula mencionados anteriormente.

Palabras Clave

Geometrı́a Algebraica, Topologı́a Algebraica, Geometrı́a Diferencial, Espacios Moduli,
Teorı́a de Gauge, Teorı́a de Morse, Fibrados de Higgs, Pares de Hitchin, Homotopı́a,
Homologı́a, Cohomologı́a, Conexiones, Estructuras Holomorfas, Fibrados Vectoriales.
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Introduction

Higgs bundles appeared in the work of Hitchin [24] and they are of interest for a lot of
reasons in a lot of mathematical fields like: Algebraic Geometry, Algebraic Topology,
Differential Geometry, Mathematical Physics, Quantum Field Theory, among others.
Even so, this thesis is concerned only with Mathematics, especifically with Algebraic
Geometry, Algebraic Topology and Differential Geometry, but is not concerned directly
with Physics.

Let X be a closed and connected Riemann surface of genus g > 2. Let K = KX
∼=

(TX)∗ be the canonical line bundle over X .

From the point of view of Algebraic Geometry, a Higgs bundle is a pair (E,Φ)

where E → X is a holomorphic vector bundle over X and Φ ∈ H0(X,End(E) ⊗K)

is a holomorphic section of End(E), the endomorphism bundle of E, called as a Higgs

field.

On the other hand, if we fix a Hermitian metric on X , compatible with its Riemann
surface structure, since dimCX = 1, this metric will be Kähler, and so, there is a Kähler
form ω that we can choose such that: ∫

X

ω = 2π, (1)

and so, from the gauge theory point of view, a Higgs bundle is defined as a pair (dA,Φ)

where dA is a unitary connection on a smooth complex vector bundle E → X and

19



20 INTRODUCTION

Φ ∈ Ω1,0(X,End(E)), satisfying Hitchin’s equations:
FA + [Φ,Φ∗] = −i · µ · IE · ω

∂̄AΦ = 0

(2)

a set of non-linear differential equations for dA and Φ, related through the curvature
FA, where Φ∗ is the adjoint of Φ with respect to a hermitian metric on E (see Theorem
1.3.7), where IE ∈ End(E) is the identity and µ = µ(E) is the slope of E, and one
consequence is that Φ is holomorphic with respect to the holomorphic structure of E
induced by dA:

i.e. ∂̄EΦ = 0

where ∂̄E = ∂̄A comes from the Chern-correspondence:

dA = d+ A = d+ A0,1dz̄ − A1,0dz 7−→ ∂̄ + A0,1dz̄ = ∂̄A.

A solution to Hitchin’s equations gives us a holomorphic Higgs bundle (E,Φ) by
givingE the holomorphic structure induced by the unitary connection dA, and this Higgs
bundle will be polystable. Stability can be introduced as follows:

A holomorphic vector bundle E → X , is called semistable if µ(F ) 6 µ(E) for any
F such that 0 ( F ⊆ E. Similarly, a holomorphic vector bundle E → X is called
stable if µ(F ) < µ(E) for any non-zero proper subbundle 0 ( F ( E. Finally, E is
called polystable if it is the direct sum of stable subbundles, all of the same slope.

We can then generalize the notion of stability to Higgs bundles applying it only to
Φ-invariant subbundles of E: for a Higgs bundle (E,Φ), a subbundle F ⊂ E is said to
be Φ-invariant if Φ(F ) ⊂ F ⊗K. A Higgs bundle is said to be semistable (respectively
stable) if µ(F ) 6 µ(E) (respectivelyµ(F ) < µ(E)) for any non-zero, Φ-invariant sub-
bundle F ⊆ E (respectivelyF ( E). Similarly, (E,Φ) is called polystable if E is the
direct sum of stable Φ-invariant subbundles, all of the same slope.

The converse is quite hard to prove, but also true: any polystable Higgs bundle
(E,Φ) admits a hermitian metric on it such that (dA,Φ) solves the Hitchin’s equations
(2), where dA is the Chern connection (see Theorem 1.3.7).
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A gauge transformation is an automorphism of E. Locally, a gauge transformation
g ∈ Aut(E) is a C∞(E)-function with values in GLr(C). A gauge transformation g is
called unitary if g preserves the hermitian inner product. We will denote G as the group
of unitary gauge transformations. Atiyah and Bott [2] denote Ḡ as the quotient of G by
its constant central U(1)-subgroup. We will follow this notation too. Moreover, denote
BG and BḠ as the classifying spaces of G and Ḡ, respectively.

A Hitchin pair is a generalization of a Higgs bundle. Instead of consider K, the
canonical line bundle of X , if we consider a general line bundle L → X , we get a
Hitchin pair where now Φ ∈ H0(X,End(E) ⊗ L). The stability condition for Hitchin
pairs is the obvious generalization of the one for Higgs bundles.

For k > 0, a k-Higgs bundle or Higgs bundle with poles of order k is the particular
case of a Hitchin pair where L = K ⊗ L⊗kp . More clearly, if we consider a fixed point
p ∈ X as a divisor p ∈ Sym1(X) = X , and Lp the line bundle that corresponds to that
divisor p, we get a complex of the form

E
Φk−−−−−→ E ⊗K ⊗ L⊗kp

where Φk ∈ H0(X,End(E)⊗K ⊗ L⊗kp ) is a Higgs field with poles of order k. So, we
call such a complex as a k-Higgs bundle and Φk as its k-Higgs field. A k-Higgs bundle
(E,Φk) is stable (respectively semistable) if the slope of any Φk-invariant subbundle of
E is strictly less (respectively less or equal) than the slope ofE : µ(E). Finally, (E,Φk)

is called polystable if E is the direct sum of stable Φk-invariant subbundles, all of the
same slope.

The moduli space of stable Hitchin pairsML(r, d), can be constructed either ana-
lytically:

ML(r, d) =ML := Bs(r, d)/GC

with

Bs(r, d) =
{

(∂̄A,Φ) : ∂̄A(Φ) = 0 and (E,Φ) is stable
}
⊂
(
A0,1(r, d)×Ω0(X; End(E)⊗L

)
,
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and where, by abuse of notation, we denote the ∂̄-operator on End(E) ⊗ L comming
from ∂̄A on E and the fixed holomorphic structure on L; or using Geometric Invariant
Theory, considering Φ as a 0-section:

Φ ∈ H0(X;End(E)⊗ L).

This construction is carried out by Nitsure [34]:

Theorem (Nitsure [34, Proposition 7.4.]). The space ML(r, d) is a quasi-projective

smooth variety of complex dimension

dimC(ML(r, d)) = (r2 − 1)deg(L).

In particular:

dimC(Mk(r, d)) = (r2 − 1)deg(K ⊗ L⊗kp ) = (r2 − 1)(2g − 2 + k).

An important feature of ML(r, d) is that it carries an action of C∗: z · (E,Φ) =

(E, z · Φ). According to Hitchin [24], (M, I, Ω) is a Kähler manifold, where I is its
complex structure andΩ its corresponding Kähler form. Furthermore, C∗ acts onM bi-
holomorphically with respect to the complex structure I by the action mentioned above,
where the Kähler form Ω is invariant under the induced action eiθ · (E,Φ) = (E, eiθ ·Φ)

of the circle S1 ⊂ C∗. Besides, this circle action is Hamiltonian with proper momentum
map

f :M−→ R

defined by:

f(E,Φ) =
1

2π
‖Φ‖2

L2 =
i

2π

∫
X

tr(ΦΦ∗). (3)

where Φ∗ is again the adjoint of Φ with respect to the hermitian metric on E given by
Theorem 1.3.7, and f has finitely many critical values.

There is another important fact mentioned by Hitchin [24](see the original version
in Frankel [10], and its application to Higgs bundles in Hitchin [24]): the critical points
of f are exactly the fixed points of the circle action onM.
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If (E,Φ) = (E, eiθΦ) then Φ = 0 with critical value c0 = 0. The corresponding
critical submanifold is F0 = f−1(c0) = f−1(0) = N , the moduli space of stable
bundles. On the other hand, when Φ 6= 0, there is a type of algebraic structure for Higgs
bundles introduced by Simpson [36]: a Variation of Hodge Structure, or simply a VHS,
for a Higgs bundle (E,Φ) is a decomposition:

E =
n⊕
j=1

Ej such that Φ : Ej → Ej+1 ⊗K for 1 6 j 6 n− 1. (4)

Has been proved by Simpson [37] that the fixed points of the circle action onM(r, d),
and so, the critical points of f , are these Variations of the Hodge Structure, VHS, where
the critical values cλ = f(E,Φ) will depend on the degrees dj of the components
Ej ⊂ E. By Morse theory, we can stratify M in such a way that there is a non-zero
critical submanifold Fλ := f−1(cλ) for each non-zero critical value 0 6= cλ = f(E,Φ)

where (E,Φ) represents a fixed point of the circle action, or equivalently, a VHS. We
said then that (E,Φ) is a (rk(E1), ..., rk(En))-VHS.

The calculation of the Betti numbers of the moduli space of stable Higgs bundles
has been done by Hitchin [24] for the rank two case, by Gothen [14] for the rank three
case, and by Garcı́a-Prada, Heinloth and Schmitt [13] for the rank four case. Hitchin
[24] and Gothen [14] work using the proper momentum map (3) mentioned above as a
Morse-Bott function. Gothen follows an approach quite similar to the one that Hitchin
does, but with the main difference that in the determination of the critical submanifolds,
Gothen uses the vortex pairs from the work of Bradlow [4] and their generalization to
stable triples from the work of Bradlow and Garcı́a-Prada [5]. These vortex pairs (V, ϕ)

consist of a bundle together with a section, and there are stability conditions studied by
Bradlow [4] and the moduli space of vortex pairs has been widely studied by Thaddeus
[38]. On the other hand, triples of the form (V1, V2,Φ) consisting of two vector bun-
dles V1 → X , V2 → X and a map Φ : V2 → V1 between them, were introduced by
Bradlow and Garcı́a-Prada as a generalization of the vortex pairs, and these structures
have been widely worked by Bradlow, Garcı́a-Prada, Gothen [6], by Muñoz, Ortega and
Vásquez-Gallo [32], by Muñoz, Oliveira and Sánchez [31], among others. The work
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of Garcı́a-Prada, Heinloth and Schmitt [13] is a little bit different: their computation is
done in the dimensional completion of the Grothendieck ring of varieties and starts by
describing the classes of moduli stacks of chains rather than their coarse moduli space.

We are particularly interested in the homotopy groups of the moduli space of Higgs
bundles. The works of Bradlow, Garcı́a-Prada and Gothen [7] give an estimate of some
of the homotopy groups ofM(r, d), the moduli space of Higgs bundles of rank rk(E) =

r and degree deg(E) = d:

Theorem (Bradlow, Garcı́a-Prada and Gothen [7, Theorem 4.4]). Let G be the unitary

gauge group. If r > 1, g > 3 and GCD(r, d) = 1, then:

(1) π1(M(r, d)) ∼= H1(X,Z);

(2) π2(M(r, d)) ∼= Z;

(3) πj(M(r, d)) ∼= πj−1(G) for 2 < j 6 2(g − 1)(r − 1)− 2.

LetM∞ := limk→∞Mk =
⋃∞
k=0Mk be the direct limit of the spaces

{
Mk(r, d)

}∞
k=0

.
Hausel [19], while estimating the homotopy groups ofMk(2, 1) the moduli space of k-
Higgs bundles of rank rk(E) = 2, finds that the estimate of Bradlow, Garcı́a-Prada and
Gothen [7, Theorem 4.4] holds for a higher homotopy index:

Theorem (Hausel [19, Theorem 7.5.7.]). For k > 0 we have:

πj(Mk(2, 1)) ∼= πj(M∞(2, 1)) ∼= πj(BḠ)

for 0 6 j 6 4g − 8 + k.

The work of the present thesis is motivated by the problem of generalizing this result
to higher rank. Nevertheless, Hausel uses two principal tools that can not be used in
general: first, the Morse stratification ofM(2, 1) coincides with its Shatz stratification;
and second, the study of the higher connectedness properties of the inclusions

Mk(2, 1) ↪→Mk+1(2, 1).
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Before describing the Morse stratification, we will describe the Bialynicki-Birula
strata: consider the set

UBB
λ := {(E,Φ) ∈M| lim

z→0
z · (E,Φ) ∈ Fλ}.

This set UBB
λ is the upward stratum of the Bialynicki-Birula stratification:

M =
⋃
λ

UBB
λ .

On the other hand, let UM
λ be the set of points (E,Φ) ∈ M such that its path of

steepest descent for the Morse function f and the Kähler metric have limit points in Fλ.
This set is called the upward Morse flow of Fλ, and it gives another stratification ofM:

M =
⋃
λ

UM
λ

Kirwan proves that these two stratifications are always equivalent:

Theorem (Kirwan [27, (6.16.)]). Bialynicki-Birula stratification and Morse stratifica-

tion are smooth and diffeomorphic. In other words, using the above notation, we get:

UBB
λ = UM

λ ∀λ.

We will denote simply U+
λ := UBB

λ = UM
λ .

As a consequence of Shatz [35, Proposition 10 and Proposition 11], there is a finite
stratification ofM(r, d) by the Harder-Narasimhan type of the underlying vector bundle
E of a Higgs bundle (E,Φ):

M(r, d) =
⋃
t

U ′t

where U ′t ⊂ M(r, d) is the subspace of Higgs bundles (E,Φ) which associated vector
bundle E has HNT(E) = t, and where we are taking this union over the existing types
inM(r, d). This stratification is known as the Shatz stratification.

Let U ′0 ⊂ M(2, d) be the locus of points (E,Φ) ∈ M(2, d) such that E is stable,
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and let U ′d1 ⊂ M be the locus of points (E,Φ) ∈ M(2, d) such that E is unstable and
its destabilizing line bundle E1 is of degree d1 > 0. This family {U ′d1}

g−1
d1=0 gives us the

Shatz stratification ofM(2, d):

M(2, d) =

g−1⋃
d1=0

U ′d1 .

Hausel proves that U+
d1

= U ′d1 for rank two, ∀d1 such that 0 6 d1 6 g − 1. The
general rank case inclusions Mk(r, d) ↪→ Mk+1(r, d) are ‘well behaved’ some how,
but the Morse stratification and the Shatz stratification do not coincide in general.

This thesis is structured in five chapters. In Chapter 1 we introduce some general
facts and basic definitions useful along the whole thesis.

In Chapter 2 we prove the stabilization of the homotopy groups of Mk(r, d) the
moduli spaces of k-Higgs bundles of general rank rk(E) = r and degree deg(E) = d

using the results from the works of Hausel and Thadeus [21] and [22], among other
tools. We do not obtain precise numerical estimates for stabilization in the general case:

Theorem (Corollary 2.2.17). If Hn
(
Mk(r, d),Z

)
is torsion free ∀k ∈ N and ∀n ∈ N,

and if π1(Mk) acts trivially on πn(M∞,Mk) for all n ∈ N and for all k ∈ N, then for

all n exists k0 = k0(n) such that

πj(Mk)
∼=−−−−→ πj(M∞)

for all k > k0 and for all j 6 n− 1.

Note thatHn
(
Mk(2, d),Z

)
andHn

(
Mk(3, d),Z

)
are torsion free ∀k ∈ N and ∀n ∈

N (see Theorem 2.2.7), while the fact that π1

(
Mk(2, 1)

)
acts trivially on πn(M∞,Mk),

has been taken for granted in the work of Hausel [19].

In Chapter 3, motivated by the result of Hausel [19] in rank two:

Mk(2, 1) ↪→Mk+1(2, 1),
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we study the inclusions of the fixed loci. The most important case is the one of fixed
loci corresponding to holomorphic triples.

A holomorphic triple onX is a triple T = (E1, E2, φ) consisting of two holomorphic
vector bundles E1 → X and E2 → X and a homomorphism φ : E2 → E1, i.e. an
element φ ∈ H0(Hom(E2, E1)). A homomorphism from a triple T ′ = (E ′1, E

′
2, φ
′) to

another triple T = (E1, E2, φ) is a commutative diagram of the form:

E ′1 E ′2

E1 E2

φ′ //

���� φ //

where the vertical arrows represent holomorphic maps. T ′ ⊂ T is a subtriple if the sheaf
homomorphisms E ′1 → E1 and E ′2 → E2 are injective. As usual, a subtriple is called
proper if 0 6= T ′ ( T .

For any σ ∈ R the σ-degree and the σ-slope of T = (E1, E2, φ) are defined as:

degσ(T ) := deg(E1) + deg(E2) + σ · rk(E2)

and
µσ(T ) :=

degσ(T )

rk(E1) + rk(E2)
=

deg(E1) + deg(E2) + σ · rk(E2)

rk(E1) + rk(E2)
= µ(E1 ⊕ E2) + σ

rk(E2)

rk(E1) + rk(E2)
.

T is then called σ-semistable (respectively σ-stable) if µσ(T ′) 6 µσ(T ) (respectively
µσ(T ′) < µσ(T )) for any subtriple T ′ ( T (proper subtriple 0 6= T ′ ( T ). A triple is
called σ-polystable if it is the direct sum of σ-stable triples of the same σ-slope.

We will use the following notation for Moduli Spaces of Triples:

i. Denote r = (r1, r2) and d = (d1, d2), and then consider

Nσ = Nσ(r,d) = Nσ(r1, r2, d1, d2)

as the moduli space of σ-polystable triples T = (E1, E2, φ) such that
rk(Ej) = rj and deg(Ej) = dj .
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ii. Denote N s
σ = N s

σ(r,d) as the subspace of σ-stable triples.

iii. Refer (r,d) = (r1, r2, d1, d2) as the type of the triple T = (E1, E2, φ).

As mentioned by Bradlow, Garcı́a-Prada and Gothen [6], there are certain necessary
conditions in order for σ-polystable triples to exist. Denote µj = µ(Ej) =

dj
rj

and define
then:

σm := µ1 − µ2 (5)

and

σM :=

(
1 +

r1 + r2

|r1 − r2|

)
(µ1 − µ2), when r1 6= r2. (6)

Then:

Proposition (Bradlow, Garcı́a-Prada and Gothen [6, Proposition 2.2.]). The moduli

space Nσ(r1, r2, d1, d2) is a complex analytic variety, which is projective when σ ∈ Q.

A necessary condition for Nσ(r1, r2, d1, d2) 6= ∅ is:

0 6 σm < σ < σM when r1 6= r2,

or

0 6 σm < σ when r1 = r2.

If σm = 0 and r1 6= r2 then σm = σM = 0 and N s
σ(r1, r2, d1, d2) = ∅ unless σ = 0.

We denote by I ⊂ R the following interval:

I =


[σm, σM ] if r1 6= r2, r1 6= 0, r2 6= 0,

[σm,∞[ if r1 = r2 6= 0,

R if r1 = 0 or r2 = 0.

(7)

Muñoz, Ortega and Vásquez-Gallo [32] present useful results that we will use later:

Proposition (Muñoz, Ortega and Vásquez-Gallo [32, Proposition 3.7]). Let σ0 ∈ I and

let T = (E1, E2, φ) ∈ Nσ0(r1, r2, d1, d2) be a strictly σ0-semistable triple. Then one of

the following conditions holds:
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(1) For all σ0-destabilizing subtriples T ′ = (E ′1, E
′
2, φ
′), we have

r′2
r′1 + r′2

=
r2

r1 + r2

.

Then T is strictly σ-semistable for σ ∈ ]σ0 − ε, σ0 + ε[, for some ε > 0 small

enough.

(2) There exists a σ0-destabilizing subtriple T ′ = (E ′1, E
′
2, φ
′) with

r′2
r′1 + r′2

6= r2

r1 + r2

.

Then:

• either
r′2

r′1 + r′2
>

r2

r1 + r2

,

and so T is σ-unstable for any σ > σ0,

• or
r′2

r′1 + r′2
<

r2

r1 + r2

,

and so T is σ-unstable for any σ < σ0.

Those values of σ for which Case (2) in the last proposition occurs are called critical

values.

Lemma (Muñoz, Ortega and Vásquez-Gallo [32, Lemma 3.16]). (1) If d1 < d2 then

Nσ(1, 1, d1, d2) = ∅.

(2) If d1 > d2 then:

• Nσm(1, 1, d1, d2) ∼= J d1 × J d2 and N s
σm(1, 1, d1, d2) = ∅.

• Nσ(1, 1, d1, d2) = N s
σ(1, 1, d1, d2) ∼= J d1 × Symd1−d2(X) ∀σ > σm.

• Nσ(1, 1, d1, d2) = N s
σ(1, 1, d1, d2) = ∅ for σ < σm.

Fixing the type (r,d) = (r1, r2, d1, d2) for the moduli spaces of holomorphic triples,
Muñoz, Ortega and Vásquez-Gallo [32] describe the differences between two spaces
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Nσ1 and Nσ2 when σ1 and σ2 are separated by a critical value. For a critical value
σc ∈ I set σ+

c = σ + ε and σ−c = σ − ε, where ε > 0 is small enough so that σc is the
only critical value in the interval ]σ−c , σ

+
c [.

The flip loci are defined as:

Sσ+
c

:=
{
T ∈ Nσ+

c
: T is σ−c − unstable

}
⊂ Nσ+

c
,

Sσ−c :=
{
T ∈ Nσ−c : T is σ+

c − unstable
}
⊂ Nσ−c ,

and Ss
σ±c

:= Sσ±c ∩N
s
σ±c

for the stable part of the flip loci.

Note that for σc = σm, Nσ−m = ∅, hence Nσ+
m

= Sσ+
m

. Also N s
σm = ∅, by the last

part of the last proposition. Anologously, when r1 6= r2, Nσ+
M

= ∅, Nσ−M = Sσ−M
and

N s
σM

= ∅.
For the rank three case, using the isomorphisms between the (1, 2)-VHS and the

moduli spaces of triples F k
d1
∼= NσH(k)(2, 1, d̃1, d̃2), together with the restrictions F k

d1
↪→

F k+1
d1

of the inclusions, we find very nice and interesting results in terms of triples:

NσH(k)(2, 1, d̃1, d̃2) ↪→ NσH(k+1)(2, 1, d̃1 + 2, d̃2) :

Lemma (Lemma 3.1.1). A triple T is σ-stable⇔ ik(T ) is (σ + 1)-stable.

Using this result we do even more: we extend the embedding to

ik : Nσc(k)(2, 1, d̃1, d̃2)→ Nσc(k+1)(2, 1, d̃1 + 2, d̃2)

and hence to

ik : Nσ−c (k)(2, 1, d̃1, d̃2)→ Nσ−c (k+1)(2, 1, d̃1 + 2, d̃2)

and to
ik : Nσ+

c (k)(2, 1, d̃1, d̃2)→ Nσ+
c (k+1)(2, 1, d̃1 + 2, d̃2)

for any critical value σm < σc(k) < σM , and so we extend the embedding to the space
Ñσc(k) the blow-up ofNσ−c (k) along the flip locus Sσ−c (k) and, at the same time, represents
the blow-up of Nσ+

c (k) along the flip locus Sσ+
c (k):
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Proposition (Proposition 3.2.1). There exists an embedding at the blow-up level

ĩk : Ñσc(k) ↪→ Ñσc(k+1)

such that the following diagram commutes:

Nσ−c (k+1)

Ñσc(k+1)

Ñσc(k)

Nσ+
c (k+1)

Nσ−c (k) Nσ+
c (k)

∃ĩk

LL

��

ik

LL

��

ik

LL

��

��

where Ñσc(k) is the blow-up of Nσ−c (k) = Nσ−c (k)(2, 1, d̃1, d̃2) along the flip locus Sσ−c (k)

and, at the same time, represents the blow-up ofNσ+
c (k) = Nσ+

c (k)(2, 1, d̃1, d̃2) along the

flip locus Sσ+
c (k).

We study then, the stabilization of the cohomology groups of the moduli space
Nσc(k), leaving for future work the approach to the (1, 2)-VHS:

Theorem (Corollary 3.3.7).

i∗k : Hj(Nσc(k+1),Z)
∼=−−−−→ Hj(Nσc(k),Z) ∀j 6 ñ(k).

Similar results can be obtained using the isomorphisms F k
d2
∼= NσH(k)(1, 2, d̃1, d̃2)

between the (2, 1)-VHS and the moduli spaces of triples, and the dual isomorphisms

NσH(k)(2, 1, d̃1, d̃2) ∼= NσH(k)(1, 2,−d̃2,−d̃1)

between moduli spaces of triples. We leave the application of these results to the study
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of the topology of the moduli spaceMk(r, d) for future work.

In Chapter 4, we study the relationship between the Shatz stratification and the
Bialynicki-Birula stratification on M(r, d) for rank r = 2 and rank r = 3. Our re-
sults should produce a more refined stratification for rank three, which we expect to be
useful in generalizing Hausel’results for rank two to rank three.

In this chapter, we present there a different proof for the rank two case stratifications
equivalence, obtained by Hausel [19]. Furthermore, we give a description, for the rank
three case, of how the Shatz stratification relates to the Morse stratification and also the
other way around.

Let
[
(E,Φ)

]
∈ M(3, d) and denote (E0,Φ0) := lim

z→0
(E, z · Φ). The stratum of

the Morse stratification where (E,Φ) belongs is determined by (E0,Φ0), and depends
on the Harder-Narasimhan Type of E, and on certain properties of Φ. Our Principal
Theorem describes in detail that dependence.

To state the Theorem, is convenient to use the following notation: for a vector bun-
dle morphism φ : E → F , we write im(φ) ⊂ F for that subbundle obtained by the
saturation of the respective subsheaf.

Theorem (Theorem 4.2.1). (1.) Suppose thatE is an unstable vector bundle of rk(E) =

3 with a Harder-Narasimhan Filtration of length 1:

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

where E1 is the maximal destabilizing line subbundle of E, and µ(V1) > µ(V2)

where V1 = E1, V2 = E/E1 are semi-stables. In other words, suppose that E →
X is a holomorphic bundle that has HNT(E) = (µ1, µ2, µ2) where µj = µ(Vj).

Consider φ21 : V1 → V2 ⊗K induced by

E1
ı−−−−→ E

Φ−−−−→ E ⊗K ⊗idK−−−→
(
E/E1

)
⊗K.

Define I := φ21(E1) ⊗ K−1 ⊂ V2 which is a subbundle of V2, where rk(I) = 1,

and define also F := V1⊕I ⊂ V1⊕ V2 = E where rk(F ) = 2. Then, we have two

possibilities:
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(1.1.) Suppose that µ(F ) < µ(E). Then, (E0,Φ0) is a (1, 2)-VHS of the form:

(E0,Φ0) =
(
V1 ⊕ V2,

(
0 0

φ21 0

))
.

(1.2.) On the other hand, if µ(F ) > µ(E), then, (E0,Φ0) is a (1, 1, 1)-VHS of the

form:

(E0,Φ0) =
(
L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)
where L1, L2, and L3 are line bundles.

(2.) Similarly, suppose thatE is an unstable vector bundle of rk(E) = 3 with a Harder-

Narasimhan Filtration of length 1:

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

but this time E1 is the maximal destabilizing subbundle of E with rk(E1) = 2, and

µ(V1) > µ(V2) where V1 = E1, V2 = E/E1 are semi-stables. In other words,

suppose that E → X is a holomorphic bundle that has HNT(E) = (µ1, µ1, µ2)

where µj = µ(Vj). Consider φ21 : V1 → V2 ⊗K induced by

E1
ı−−−−→ E

Φ−−−−→ E ⊗K ⊗idK−−−→
(
E/E1

)
⊗K.

Define N := ker(φ21) ⊂ V1 which is a subbundle. Then, we have two possibilities:

(2.1.) Suppose that µ(N) < µ(E). Then, (E0,Φ0) is a (2, 1)-VHS of the form:

(E0,Φ0) =
(
V1 ⊕ V2,

(
0 0

φ21 0

))
.

(2.2.) On the other hand, if µ(N) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS of the
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form:

(E0,Φ0) =
(
L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)
where L1, L2, and L3 are line bundles.

(3.) Finally, suppose that (E,Φ) is a Higgs Bundle where E is an unstable vector bun-

dle of rk(E) = 3 with a Harder-Narasimhan Filtration of length 2:

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 = E

where µ(V1) > µ(V2) > µ(V3) and V1 = E1, V2 = E2/E1, and V3 = E/E2 are

semi-stables.

(3.1.) Suppose that µ(E2/E1) < µ(E). Then we can define F as we did in (1.), and

then, we have two possibilities:

(3.1.1.) Suppose that µ(F ) < µ(E). Then: (E0,Φ0) is a (1, 2)-VHS.

(3.1.2.) On the other hand, if µ(F ) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS.

(3.2.) On the other hand, if µ(E2/E1) > µ(E), then define N as we did in (2.), and

then, we have two possibilities:

(3.2.1.) If µ(N) < µ(E). Then: (E0,Φ0) is a (2, 1)-VHS.

(3.2.2.) If µ(N) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS.

Finally, in Chapter 5 we study the stratification of the Nilpotent Cone given by the
Downward Morse Flow. The results presented there complement those of Chapter 4.
There, in Chapter 5 we find a filtration that describes the Nilpotent Cone in terms of
the Downward Morse Flow, for rank two and rank three cases. Hence, for rank two, we
have:

Theorem (Theorem 5.2.1). Let [(E,Φ)] ∈ χ−1(0) be a Hitchin pair with rk(E) = 2.

Then, there is a filtration

E = E1 ⊃ E2 ⊃ E3 = 0

such that

Φ(Ej) ⊂ Ej+1 ⊗ L
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and

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
L1 ⊕ L2,

(
0 0

ϕ 0

))
(8)

is a (1, 1)-VHS where

Lj = Ej/Ej+1 and ϕ : L1 → L2 ⊗ L.

Similarly, for rank three, we have:

Theorem (Theorem 5.3.1). Let [(E,Φ)] ∈ χ−1(0) be a Hitchin pair with rk(E) = 3.

Then:

(a) either there is a filtration

E = E1 ⊃ E2 ⊃ E3 ⊃ E4 = 0

such that

Φ(Ej) ⊂ Ej+1 ⊗ L

and

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

) (9)

is a (1, 1, 1)-VHS where

Lj = Ej/Ej+1 and ϕj : Lj−1 → Lj ⊗ L

(b) or, there is a filtration

E = E1 ⊃ E2 ⊃ E3 = 0

such that

(b.1.) either

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
V1 ⊕ V2,

(
0 0

ϕ21 0

))
(10)
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is a (1, 2)-VHS where

Vj = Ej/Ej+1 and ϕ : V1 → V2 ⊗ L,

and where Φ(Ej) ⊂ Ej+1 ⊗ L,

(b.2.) or

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
W1 ⊕W2,

(
0 0

ϕ21 0

))
(11)

is a (2, 1)-VHS, depending on the rank of E2, and depending also on some

properties of Φ.



Chapter 1

General Facts

Let X be a closed and connected Riemann surface of genus g > 2. Let K = KX
∼=

(TX)∗ be the canonical line bundle over X . Note that, algebraically, X is also a non-
singular complex projective algebraic curve.

1.1 Basic Definitions

Definition 1.1.1. For a smooth vector bundle E → X , we denote the rank of E by
rk(E) = r and the degree of E by deg(E) = d. Then, the slope of E is defined to be:

µ(E) :=
deg(E)

rk(E)
=
d

r
. (1.1)

Definition 1.1.2. A connection dA on a smooth vector bundle E → X is a differential
operator

dA : Ω0(X,E) −→ Ω1(X,E)

such that
dA(fs) = df ⊗ s+ fdAs

for any function f ∈ C∞(X) and any section s ∈ Ω0(X,E) where Ωn(X,E) is the set
of smooth n-forms of X with values in E. Locally:

dA = d+ A = d+ Cdz +Bdz̄

37
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where A is a matrix of 1-forms: Aij ∈ Ω1(X,E), and B,C are matrix valued functions
depending on the hermitian metric on E.

Some authors call the matrix A as a connection and call dA = d + A as its corre-
spoding covariant derivative. We abuse notation and will not distinguish between them.

Suppose, from now on, that there is a hermitian metric on E. When a connection dA
is compatible with the hermitian metric, i.e. when

d < s, t >=< dAs, t > + < s, dAt >

for the hermitian inner product < ·, · > and for s, t any couple of sections of E, dA is
a unitary connection. Denote A(E), or sometimes just A, the space of unitary connec-
tions on E, for a smooth bundle E → X .

Definition 1.1.3. The fundamental invariant of a connection is its curvature:

FA := d2
A = dA ◦ dA : Ω0(X,E) −→ Ω2(X,E)

where we are extending dA to n-forms in Ωn(X,E) in the obvious way. Locally:

FA = dA+ A2.

FA isC∞(X,E)-linear and can be considered as a 2-form onX with values in End(E) :

FA ∈ Ω2(X,End(E)), or locally as a matrix-valued 2-form.

Definition 1.1.4. If the curvature vanishes, i.e FA = 0, we say that the connection dA
is flat. A flat connection gives a family of constant transition functions for E, which in
turn defines a representation of the fundamental group of X , π1(X) into GLr(C):

π1(X)→ GLr(C)

[α] 7−→Mα.

Note that the image is in U(n) if A is unitary. Besides, from Chern-Weil theory, if
FA = 0, then deg(E) = 0.
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Definition 1.1.5. A gauge transformation is an automorphism of E. Locally, a gauge
transformation g ∈ Aut(E) is a C∞-function with values in GLr(C). A gauge transfor-
mation g is called unitary if g preserves the hermitian inner product.

We will denote by G the group of unitary gauge transformations. This gauge group
G acts on A by conjugation:

g · dA = g−1dAg ∀g ∈ G and for dA ∈ A.

Note that conjugation by a unitary gauge transformation takes a unitary connection to a
unitary connection.

Definition 1.1.6. A holomorphic structure on E is a differential operator:

∂̄A : Ω0(X,E) −→ Ω0,1(X,E)

such that
∂̄A(fs) = ∂̄f ⊗ s+ f∂̄As

where ∂̄f = ∂f
∂z̄
dz̄, and Ωp,q(X,E) is the space of smooth (p, q)-forms with values in

E. Locally:
∂̄A = ∂̄ + A0,1dz̄

where A0,1 is a matrix valued function.

Definition 1.1.7. A holomorphic vector bundle E → X , is called semistable if µ(F ) 6

µ(E) for any F such that 0 ( F ⊆ E. Similarly, a vector bundle E → X is called
stable if µ(F ) < µ(E) for any non-zero proper subbundle 0 ( F ( E. Finally, E is
called polystable if it is the direct sum of stable subbundles, all of the same slope.

Denote A0,1(E), or sometimes simply A0,1, as the space of holomorphic structures
on smooth bundles E → X with rank rk(E) = r and degree deg(E) = d, and denote
A0,1
s (E), A0,1

ss (E) and A0,1
ps (E) as the subspaces of holomorphic strucutres on stable,

semistable and polystable smooth bundles respectively.

Remark 1.1.8. Since E has a hermitian metric on it, from a holomorphic structure ∂̄A =

∂̄ +A0,1dz̄ on E we can define a unique unitary connection dA such that dA = d+A =

d − A1,0dz + A0,1dz̄ is compatible with the hermitian inner product. This is known as
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the Chern-correspondence between A and A0,1 given by:

dA = d+ A = d+ A0,1dz̄ − A1,0dz 7−→ ∂̄ + A0,1dz̄ = ∂̄A.

Recall that smooth vector bundles over X are classified by their ranks and degrees.
Let A0,1(E) be the complex affine space of holomorphic structures on E → X a fixed
smooth complex vector bundle over X of rank rk(E) = r and degree deg(E) = d.
Consider the complexified gauge group GC = Aut(E) of complex automorphisms of E ,
which acts naturally on A0,1(E) by conjugation:

g · ∂̄A = g−1∂̄Ag ∀g ∈ GC, ∀∂̄A ∈ A0,1

and this action induces an equivalence relation between holomorphic structures:

∂̄A1 ' ∂̄A2 ⇔ ∃g ∈ GC such that g−1∂̄A1g = ∂̄A2 .

An orbit of this action is the set of vector bundles isomorphic to a given one, then
the problem of classifying all the vector bundles over X , reduces to understand these
orbits. Nevertheless, because of the so-called jumping phenomenon, the quotient space
A0,1/GC is not Hausdorff. However, we can get a Hausdorff space using the polystable
subspace A0,1

ps (E) ⊂ A0,1(E), and defining the moduli space of stable bundles as

N (r, d) := A0,1
ps (E)/GC,

which is a projective variety.

Remark 1.1.9. Since g ∈ GC takes solutions s of ∂̄A2s = 0 into solutions gs of ∂̄A1s = 0,
g is a holomorphic isomorphism. Besides, note that the gauge group action on holomor-
phic structures looks in local terms like:

g−1∂̄Ag = ∂̄ + g−1(∂̄g) + (g−1A0,1g)dz̄.

Considering the open GC-invariant subset A0,1
s ⊂ A0,1, is possible to construct a

smooth quasi-projective algebraic variety for the parameter space of stable vector bun-
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dles
Ns(r, d) := A0,1

s (E)/GC ⊂ N (r, d)

and get the following result:

Theorem 1.1.10. If GCD(r, d) = 1 then A0,1
s = A0,1

ss and the moduli space Ns(r, d) is

a smooth projective algebraic variety of dimension dimC(Ns) = r2(g − 1) + 1.

Actually, Narasimhan and Seshadri [33] explain that the moduli space Ns(r, d) is
compact when GCD(r, d) = 1, and its topology is independent of the complex struc-
ture of X .

1.2 Harder-Narasimhan Filtrations

We shall introduce two concepts that are really relevant to our purposes and quite close
related to stability: the Harder-Narasimhan Filtration and the Harder-Narasimhan Type.
Furthermore, we also present the main result about the Harder-Narasimhan Filtration:
the Shatz Theorem.

Definition 1.2.1. Let E → X be a holomorphic vector bundle. A Harder-Narasimhan

Filtration of E, is a filtration of the form

HNF (E) : E = Es ⊃ Es−1 ⊃ ... ⊃ E1 ⊃ E0 = 0

which satisfies the following two properties:

i. µ(Ej+1/Ej) < µ(Ej/Ej−1) for 1 6 j 6 s− 1.

ii. Ej/Ej−1 is semistable for 1 6 j 6 s.

Remark 1.2.2. i. For simplicity, we shall denote Vj := Ej/Ej−1 for 1 6 j 6 s.

ii. From the last definition, property i. µ(Vj+1) < µ(Vj) for 1 6 j 6 s−1 is equivalent
to the condition µ(Ej+1) < µ(Ej) for 1 6 j 6 s − 1, which could be intuitively
clear if we take a view to the Harder-Narasimhan Polygon (for more details, see
Shatz [35, Proposition 5]):
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Figure 1: On the left, the Harder-Narasimhan Polygon, where the black points
represent the pairs (ri, di) for Ei, and the blue line segments represent segments

with slope µ(Vi) = µ(Ei/Ei−1). On the right, the red-dashed line segments
represent segments with slope µ(Ei).

Once we have defined the Harder-Narasimhan Filtration, we will present one of the
most important results related to this concept: Shatz [35] has an analogue result of the
Jordan-Hölder Theorem for vector bundles, if we take semistable vector bundles as the
analogues of simple finite groups:

Theorem 1.2.3 (Shatz [35, Theorem 1]). Every vector bundle E → X has a unique

Harder-Narasimhan Filtration.

This has been proved in the case when X is a projective non-singular algebraic
curve, by Harder and Narasimhan [16]. In the following, we outline Shatz’proof of
Theorem 1.2.3. To prove that, Shatz [35] uses the following proposition:

Proposition 1.2.4 (Shatz [35, Proposition 6]). Let E be an unstable vector bundle.

Then, there is a unique V ⊂ E semi-stable subbundle of E such that V is the maximal

destabilizing subbundle of E,

i.e. µ(V ) > µ(E) with maximal rank rk(V ).

The existence of the destabilizing subbundle has been proved first by Narasimhan
and Seshadri [33, Proposition 4.5.], and Shatz [35] adds uniqueness and maximality.

Proof. (Theorem 1.2.3)
For the existence, we will use induction on the rank of E. If rk(E) = 1 or E is semi-
stable, the existence of the HNF is trivial. Suppose then, that rk(E) > 1 and that it is
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unstable. Let E1 ⊂ E be the maximal destabilizing subbundle of E mentioned in 1.2.4.
The quotient E/E1 has rank rk(E/E1) = n− 1 so, by hypothesis of induction, it has a
HNF of the form:

HNF (E/E1) : E/E1 = Vt ⊃ Vt−1 ⊃ ... ⊃ V1 ⊃ V0 = 0

where the subbundles of E/E1 satisfy the following two properties:

i. µ(Vj+1) < µ(Vj) for 1 6 j 6 t− 1.

ii. Vj/Vj−1 is semi-stable for 1 6 j 6 t.

This HNF (E/E1) lifts to

E = Et+1 ⊃ Et ⊃ ... ⊃ E1 ⊃ E0 = 0

where Vj = Ej+1/E1 for 1 6 j 6 t. Follows that Ej+1/Ej ∼= Vj/Vj−1 are semi-stables
for 1 6 j 6 t, and that

µ(Ej+1/Ej) < µ(Ej/Ej−1) for 2 6 j 6 t.

Since E1 is semi-stable, all we need to prove is that µ(E2/E1) < µ(E1). Both, E1 and
E2 are subbundles of E. So, by maximality, 1.2.4 shows that µ(E2) 6 µ(E1). E2 can-
not be semi-stable: if it were, we would have µ(E1) 6 µ(E2), contradicting 1.2.4, since
rk(E2) > rk(E1). As E2 is unstable, there is a unique maximal subbundle V ⊂ E2

such that µ(V ) > µ(E2). Once again, by 1.2.4: µ(E1) > µ(V ) > µ(E2), as required to
prove existence.

For the uniqueness, we also proceed by induction on rk(E). If rk(E) = 1, unique-
ness is trivial. More generally, if E is semi-stable, then ii. in 1.2.4 yields uniqueness.
Then, assume E is unstable with rk(E) = n > 1. Suppose

E = Et ⊃ Et−1 ⊃ ... ⊃ E1 ⊃ E0 = 0

E = E ′s ⊃ E ′s−1 ⊃ ... ⊃ E ′1 ⊃ E0 = 0
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are two HNF’s for E. Let V be the maximal destabilizing subbundle of E given by
1.2.4, and let j be the smallest integer such that the inclusion V ↪→ E factors trough
Ej . Then, there is a non-zero homomorphism V → Ej → Ej/Ej−1 where Ej/Ej−1 is
semi-stable. Then, µ(V ) 6 µ(Ej/Ej−1). However, by 1.2.4, we have:

µ(V ) > µ(E1) > µ(E2) > ... > µ(Ej) > µ(Ej/Ej−1)

which is a contradiction unless j = 1. In such a case, V ⊂ E1, where E1 is semi-stable.
Hence µ(V ) = µ(E1). By 1.2.4, rk(V ) = rk(E1), and therefore: V = E1. In a very
similar way V = E ′1. By considering E/E1 = E/E ′1, we reduce the rank of the bundle
under consideration, and the induction hypothesis completes the proof. ♠

Definition 1.2.5. For a vector bundle E → X of rank rk(E) = r, with a Harder-
Narasimhan Filtration of the form

HNF (E) : E = Es ⊃ Es−1 ⊃ ... ⊃ E1 ⊃ E0 = 0

the Harder-Narasimhan Type, abreviated as HNT, is defined as the vector

HNT (E) : ~µ = (µ1, ..., µ1, µ2, ..., µ2, ... ..., µs, ..., µs) ∈ Qr

where µj = µ(Vj) = µ(Ej/Ej−1) appears rj-times, where rj = rk(Vj).

All the bundles of a given HNT ~µ define a subspace A0,1(~µ) of A0,1(E). Since the
HNF is canonical, the subspaces A0,1(~µ) are preserved by the gauge group action, so
each subspace A0,1(~µ) is a union of orbits. For further details, see Atiyah and Bott [2].

1.3 The Moduli Space of Stable Higgs BundlesM(r, d)

Definition 1.3.1. A Higgs bundle over X is a pair (E,Φ) where E → X is a holomor-
phic vector bundle and Φ : E → E ⊗K is an endomorphism of E twisted by K, which
is called a Higgs field. Note that Φ ∈ H0

(
X; End(E)⊗K

)
.

Definition 1.3.2. A subbundle F ⊂ E is said to be Φ-invariant if Φ(F ) ⊂ F ⊗ K. A
Higgs bundle is said to be semistable (respectively stable) if µ(F ) 6 µ(E) (respectively
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µ(F ) < µ(E)) for any non-zero, Φ-invariant subbundle F ⊆ E (respectivelyF ( E).
Finally, (E,Φ) is called polystable if it is the direct sum of stable Φ-invariant subbun-
dles, all of the same slope.

Remark 1.3.3. Note that a Higgs bundle (E,Φ) could be stable, while E is unstable: if
no destabilizing subbundle of E is Φ-invariant, then (E,Φ) is stable. On the other hand,
if (E,Φ) is unstable, it is because E is also unstable.

There is a construction of the moduli space of polystable Higgs bundles due to Simp-
son [37]:

Proposition 1.3.4 (Simpson [37, Proposition 1.4.]). There is a quasi-projective variety

MDol whose points parametrize polystable Higgs bundles (E,Φ) on X with vanishing

Chern classes. There is a map fromMDol to the space of polynomials with coefficients

in the symmetric powers of the cotangent bundle of X that takes a Higgs bundle (E,Φ)

to the characteristic polynomial of Φ. This map is proper.

The last proposition has been proved in the case when X is an algebraic curve, by
Nitsure [34], without conditions on Chern classes (see Theorem 1.4.2 below).

There is a similar moduli spaceMB for representations of the fundamental group:
let RB be the affine variety of homomorphisms from π1(X) into GLr(C) obtained by
looking at generators and relators. Then,MB is the affine categorical quotient ofRB by
the action of GLr(C), by conjugation. The points ofMB parametrize semisimple rep-
resentations. The correspondence in Simpson [37, Theorem 1.] yields an isomorphism
of sets betweenMB andMDol:

Proposition 1.3.5 (Simpson [37, Proposition 1.5.]). There is a homemorphism of topo-

logical spaces

MB
∼=MDol.

On the other hand, recall that Hitchin [24] constructs the moduli space M(r, d)

using gauge theory:

Definition 1.3.6. Consider the space A0,1(E)× Ω1,0
(
X; End(E)

)
. Define

B(r, d) :=
{

(∂̄B,Φ) : ∂̄B(Φ) = 0
}
⊂ A0,1(E)× Ω1,0

(
X; End(E)

)
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and consider the respective subspaces Bss(r, d),Bs(r, d) and Bps(r, d) of B(r, d) for
semi-stable, stable and polystable bundles respectively. Then, defineM(r, d), the mod-

uli space of stable Higgs Bundles as the quotient of this latter subspace by the complex
gauge group action:

M(r, d) := Bps(r, d)/GC.

Fixing a Hermitian metric on X , compatible with its Riemann surface structure,
since dimCX = 1, this metric will be Kähler, and so, there is a Kähler form ω that we
can choose such that: ∫

X

ω = 2π, (1.2)

and so, has been proved by Hitchin [24], that a stable Higgs bundle (∂̄A,Φ) defined as
above, comes from a pair (dA,Φ) where dA is a unitary connection on a smooth complex
vector bundle E → X and Φ ∈ Ω1,0

(
X,End(E)

)
, satisfying Hitchin’s equations:

FA + [Φ,Φ∗] = −i · µ · IE · ω

∂̄AΦ = 0

(1.3)

a set of non-linear differential equations for dA and Φ, related through the curvature
FA, where Φ∗ is the adjoint of Φ with respect to a hermitian metric on E (see Theorem
1.3.7), where IE ∈ End(E) is the identity and µ = µ(E) is the slope of E, and one
consequence is that Φ is holomorphic with respect to the holomorphic structure of E
induced by dA:

i.e. ∂̄EΦ = 0

where ∂̄E = ∂̄A comes from the Chern-correspondence:

dA = d+ A = d+ A0,1dz̄ − A1,0dz 7−→ ∂̄ + A0,1dz̄ = ∂̄A,

and where Φ∗ is the adjoint of Φ with respect to a hermitian metric on E (given by
Theorem 1.3.7 below).

Furthermore, one can see that any solution to (1.3) produces a polystable Higgs
bundle. Nevertheless, the converse is quite hard to prove, but also true (see for instance
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Wentworth [39, Theorem 2.17]):

Theorem 1.3.7. If (E,Φ) is polystable, then it admits a hermitian metric satisfying the

equations (1.3).

This result comes indeed from the work of Hitchin [24] and more general from
Simpson [36]. This last result, together with the results from the works of Donaldson
[9] and also Corlette [8], generalizes the theorem presented by Narasimhan and Seshadri
[33], known as the Non-Abelian Hodge Theorem and says that the character variety is
homeomorphic to the moduli space of Higgs bundles (see Proposition 1.3.5 above).

There is an alternative construction ofM(r, d) presented by Nitsure [34] using Ge-
ometric Invariant Theory. To do that, Nitsure first defines Higgs bundles like we do at
the begining of this section: as pairs (E,Φ) where E → X is a holomorphic vector
bundle, and Φ : E → E ⊗K is an endomorphism twisted by the canonical line bundle
K → X , where Φ ∈ H0(X;End(E)). We elaborate on this in the next section.

1.4 The Moduli Space of Stable k-Higgs BundlesMk(r, d)

Definition 1.4.1. Hitchin Pairs and k-Higgs Bundles

i. A Hitchin pair is a generalization of a Higgs bundle. Instead of consider K, the
canonical line bundle of X , if we consider a general line bundle L → X , we get a
Hitchin pair where now Φ ∈ H0(X,End(E)⊗ L).

ii. For k > 0, a k-Higgs bundle or Higgs bundle with poles of order k is the particular
case of a Hitchin pair where L = K ⊗ L⊗kp . More clearly, if we consider a fixed
point p ∈ X as a divisor p ∈ Sym1(X) = X , and Lp = OX(p) the line bundle that
corresponds to that divisor p, we get a complex of the form

E
Φk−−−−−→ E ⊗K ⊗ L⊗kp

where Φk : E → E ⊗K ⊗ L⊗kp is a Higgs field with poles of order k. So, we call
such a complex as a k-Higgs bundle and Φk as its k-Higgs field.
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iii. A k-Higgs bundle (E,Φk) is stable (respectively semistable) if the slope of any Φk-
invariant subbundle of E is strictly less (respectively less or equal) than the slope
of E : µ(E). Finally, (E,Φk) is called polystable if it is the direct sum of stable
Φk-invariant subbundles, all of the same slope.

The moduli space of stable k-Higgs bundlesMk(r, d), and more generally, the mod-
uli space of Hitchin pairsML(r, d), can be constructed either using gauge theory:

Mk(r, d) =Mk := Bpsk (r, d)/GC

where

Bpsk (r, d) =
{

(∂̄B,Φ
k) : ∂̄B(Φk) = 0

}
⊂
(
A0,1
ps (r, d)× Ω1,0

k (X; End(E)
)
,

or using Geometric Invariant Theory, considering Φk as a 0-section:

Φk ∈ H0(X;End(E)⊗ L⊗kp ).

The moduli space of k-Higgs bundles is constructed by Nitsure [34]:

Theorem 1.4.2 (Nitsure [34, Proposition 7.4.]). The spaceMk(r, d) is a quasi-projective

variety of complex dimension

dimC
(
Mk(r, d)

)
= (r2 − 1)deg(K ⊗ L⊗kp ) = (r2 − 1)(2g − 2 + k).

From now on, we will suppose that GCD(r, d) = 1. This co-prime condition implies
thatMk(r, d) is smooth.

1.5 The Hitchin Map

From Proposition 1.3.4, the characteristic polynomial of Φ, the so-called Hitchin map
is defined by:

χ :Mk(r, d) −→ H0(X,L)⊕ · · · ⊕H0(X,Lr) (1.4)
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where L = K ⊗ L⊗kp (see Nitsure [34, Theorem 6.1]). The Hitchin map is proper, and
it is also an algebraically completely integrable system.

Definition 1.5.1. The set

χ−1(0) :=
{

[(E,Φ)] ∈ML(r, d) : χ(Φ) = 0
}

is called the Nilpotent Cone.

1.6 The Moduli Space of Stable Triples Nσ(r1, r2, d1, d2)

The reader may see the work of Bradlow and Garcı́a-Prada [5], the work of Bradlow,
Garcı́a-Prada and Gothen [6] and the work of Muñoz, Ortega, Vázquez-Gallo [32] for
the details on the results sumarized here.

Definition 1.6.1. Holomorphic Triples

i. A holomorphic triple on X is a triple T = (E1, E2, φ) consisting of two holomor-
phic vector bundles E1 → X and E2 → X and a homomorphism φ : E2 → E1,
i.e. an element φ ∈ H0(Hom(E2, E1)).

ii. A homomorphism from a triple T ′ = (E ′1, E
′
2, φ
′) to another triple T = (E1, E2, φ)

is a commutative diagram of the form:

E ′1 E ′2

E1 E2

φ′ //

���� φ //

where the vertical arrows represent holomorphic maps.

iii. T ′ ⊂ T is a subtriple if the sheaf homomorphisms E ′1 → E1 and E ′2 → E2 are
injective. As usual, a subtriple is called proper if 0 6= T ′ ( T .

Definition 1.6.2. σ-Stability, σ-Semistability and σ-Polystability
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i. For any σ ∈ R the σ-degree and the σ-slope of T = (E1, E2, φ) are defined as:

degσ(T ) := deg(E1) + deg(E2) + σ · rk(E2)

and
µσ(T ) :=

degσ(T )

rk(E1) + rk(E2)
=

deg(E1) + deg(E2) + σ · rk(E2)

rk(E1) + rk(E2)
= µ(E1 ⊕ E2) + σ

rk(E2)

rk(E1) + rk(E2)
.

ii. T is then called σ-stable (respectively σ-semistable) if µσ(T ′) < µσ(T ) (respec-
tively µσ(T ′) 6 µσ(T )) for any proper subtriple 0 6= T ′ ( T .

iii. A triple is called σ-polystable if it is the direct sum of σ-stable triples of the same
σ-slope.

Now, we may use the following notation for Moduli Spaces of Triples:

i. Denote r = (r1, r2) and d = (d1, d2), and then consider

Nσ = Nσ(r,d) = Nσ(r1, r2, d1, d2)

as the moduli space of σ-polystable triples T = (E1, E2, φ) such that
rk(Ej) = rj and deg(Ej) = dj .

ii. Denote N s
σ = N s

σ(r,d) as the subspace of σ-stable triples.

iii. Refer (r,d) = (r1, r2, d1, d2) as the type of the triple T = (E1, E2, φ).

As mentioned by Bradlow, Garcı́a-Prada and Gothen [6], there are certain necessary
conditions in order for σ-polystable triples to exist. Denote µj = µ(Ej) =

dj
rj

and define
then:

σm := µ1 − µ2 (1.5)

and

σM :=

(
1 +

r1 + r2

|r1 − r2|

)
(µ1 − µ2), when r1 6= r2. (1.6)
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Then, there is a couple of nice results from Bradlow, Garcı́a-Prada and Gothen [6],
the first one in terms of these necessary conditions for the existence, and the second one
in terms of a duality isomorphism between moduli spaces:

Proposition 1.6.3 (Bradlow, Garcı́a-Prada and Gothen [6, Proposition 2.2.]). The mod-

uli space Nσ(r1, r2, d1, d2) is a complex analytic variety, which is projective when σ ∈
Q. A necessary condition for Nσ(r1, r2, d1, d2) 6= ∅ is:

0 6 σm < σ < σM when r1 6= r2,

or

0 6 σm < σ when r1 = r2.

Remark 1.6.4 (Bradlow, Garcı́a-Prada and Gothen [6, Remark 2.3.]). If σm = 0 and
r1 6= r2 then σm = σM = 0 and N s

σ(r1, r2, d1, d2) = ∅ unless σ = 0.

We denote by I ⊂ R the following interval:

I =


[σm, σM ] if r1 6= r2, r1 6= 0, r2 6= 0,

[σm,∞[ if r1 = r2 6= 0,

R if r1 = 0 or r2 = 0.

(1.7)

Given a triple T = (E1, E2, φ), its dual triple is T ∗ = (E∗2 , E
∗
1 , φ

∗), where E∗j is the
dual of Ej and φ∗ : E∗1 → E∗2 is the transpose of φ : E2 → E1. So:

Theorem 1.6.5 (Bradlow and Garcı́a-Prada [5, Proposition 3.16]). T is σ-stable (re-

spectively σ-semistable) if and only if T ∗ is σ-stable (respectively σ-semistable). The

map T 7→ T ∗ induces an isomorphism:

Nσ(r1, r2, d1, d2) ∼= Nσ(r2, r1,−d2,−d1).

Last theorem is an important tool since it can be used to restrict the study of triples
to the case r1 > r2 and appeal to duality when dealing with r1 < r2. For more triples
details, the reader may see [5] or [6].

Here we present the main results of Bradlow, Garcı́a-Prada and Gothen [6], where
they describe the general moduli spaces of triples:
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Theorem 1.6.6 (Bradlow, Garcı́a-Prada and Gothen [6, Theorem A]). (1) A triple T =

(E1, E2, ϕ) is σm-polystable if and only if ϕ = 0, and E1 and E2 are polystable. We

thus have

Nσm(r1, r2, d1, d2) ∼= M(r1, d1)×M(r2, d2)

where M(r, d) represents the moduli space of polystable bundles of rank r and

degree d. In particular, Nσm(r1, r2, d1, d2) is non-empty and irreducible.

(2) If σ > σm is any value such that σ > 2g − 2 (and σ < σM if r1 6= r2) then

N s
σ(r1, r2, d1, d2) is smooth, non-empty and irreducible of dimension

dimC(N s
σ(r1, r2, d1, d2)) = (g − 1)(r2

1 + r2
2 − r1r2)− r1d2 + r2d1 + 1.

Moreover:

• If r1 = r2 = r then the moduli space N s
σ(r, r, d1, d2) is birrationally equiva-

lent to a PN -fibration overN (r, d2)×Symd1−d2(X) where the fiber dimension

is N = r(d1 − d2)− 1.

• If r1 > r2 then the moduli space N s
σ(r1, r2, d1, d2) is birrationally equiva-

lent to a PN -fibration over N (r1 − r2, d1 − d2) × N (r2, d2) where the fiber

dimension is N = r2d1 − r1d2 + r2(r1 − r2)(g − 1)− 1.

• If r1 < r2 then the moduli space N s
σ(r1, r2, d1, d2) is birrationally equiva-

lent to a PN -fibration over N (r2 − r1, d2 − d1) × N (r1, d1) where the fiber

dimension is N = r2d1 − r1d2 + r1(r2 − r1)(g − 1)− 1.

(3) If r1 6= r2 then NσM (r1, r2, d1, d2) is non-empty and irreducible. Moreover:

NσM (r1, r2, d1, d2) ∼= N (r2, d2)×N (r1 − r2, d1 − d2) if r1 > r2

and

NσM (r1, r2, d1, d2) ∼= N (r1, d1)×N (r2 − r1, d2 − d1) if r1 < r2.

Using the results above, Muñoz, Ortega and Vásquez-Gallo [32] conclude some
useful results that we will use later:
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Lemma 1.6.7 (Muñoz, Ortega and Vásquez-Gallo [32, Lemma 3.5]). There are isomor-

phisms

Nσ(r, 0, d, 0) ∼= M(r, d) and N s
σ(r, 0, d, 0) ∼= N (r, d) ∀σ ∈ R.

In particular

Nσ(1, 0, d, 0) = N s
σ(1, 0, d, 0) ∼= J d(X) ∀σ ∈ R.

Proposition 1.6.8 (Muñoz, Ortega and Vásquez-Gallo [32, Proposition 3.7]). Let σ0 ∈
I and let T = (E1, E2, φ) ∈ Nσ0(r1, r2, d1, d2) be a strictly σ0-semistable triple. Then

one of the following conditions holds:

(1) For all σ0-destabilizing subtriples T ′ = (E ′1, E
′
2, φ
′), we have

r′2
r′1 + r′2

=
r2

r1 + r2

.

Then T is strictly σ-semistable for σ ∈ ]σ0 − ε, σ0 + ε[, for some ε > 0 small

enough.

(2) There exists a σ0-destabilizing subtriple T ′ = (E ′1, E
′
2, φ
′) with

r′2
r′1 + r′2

6= r2

r1 + r2

.

Then:

• either
r′2

r′1 + r′2
>

r2

r1 + r2

,

and so T is σ-unstable for any σ > σ0,

• or
r′2

r′1 + r′2
<

r2

r1 + r2

,

and so T is σ-unstable for any σ < σ0.

Definition 1.6.9. Those values of σ for which Case (2) in Proposition 1.6.8 occurs are
called critical values.
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Lemma 1.6.10 (Muñoz, Ortega and Vásquez-Gallo [32, Lemma 3.16]). (1) If d1 < d2

then Nσ(1, 1, d1, d2) = ∅.

(2) If d1 > d2 then:

• Nσm(1, 1, d1, d2) ∼= J d1 × J d2 and N s
σm(1, 1, d1, d2) = ∅.

• Nσ(1, 1, d1, d2) = N s
σ(1, 1, d1, d2) ∼= J d1 × Symd1−d2(X) ∀σ > σm.

• Nσ(1, 1, d1, d2) = N s
σ(1, 1, d1, d2) = ∅ for σ < σm.

Fixing the type (r,d) = (r1, r2, d1, d2) for the moduli spaces of holomorphic triples,
Muñoz, Ortega and Vásquez-Gallo [32] describe the differences between two spaces
Nσ1 and Nσ2 when σ1 and σ2 are separated by a critical value. For a critical value
σc ∈ I set σ+

c = σ + ε and σ−c = σ − ε, where ε > 0 is small enough so that σc is the
only critical value in the interval ]σ−c , σ

+
c [.

Definition 1.6.11. The flip loci are defined as:

Sσ+
c

:=
{
T ∈ Nσ+

c
: T is σ−c − unstable

}
⊂ Nσ+

c
,

Sσ−c :=
{
T ∈ Nσ−c : T is σ+

c − unstable
}
⊂ Nσ−c ,

and Ss
σ±c

:= Sσ±c ∩N
s
σ±c

for the stable part of the flip loci.

Remark 1.6.12. Note that for σc = σm,Nσ−m = ∅, henceNσ+
m

= Sσ+
m

. AlsoN s
σm = ∅, by

the last part of Proposition 1.6.8. Anologously, when r1 6= r2, Nσ+
M

= ∅, Nσ−M = Sσ−M
and N s

σM
= ∅.

1.7 Stratifications on the Moduli Space
of Higgs Bundles

Definition 1.7.1. As a consequence of Shatz [35, Proposition 10 and Proposition 11],
there is a finite stratification ofM(r, d) by the Harder-Narasimhan type of the underly-
ing vector bundle E of a Higgs bundle (E,Φ):

M(r, d) =
⋃
t

U ′t
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where U ′t ⊂ M(r, d) is the subspace of Higgs bundles (E,Φ) which associated vector
bundle E has HNT(E) = t, and where we are taking this union over the existing types
inM(r, d). This stratification is known as the Shatz stratification.

On the other hand, according to Hitchin [24], (M, I, Ω) is a Kähler manifold, where
I is its complex structure andΩ its corresponding Kähler form. Furthermore, C∗ acts on
M biholomorphically with respect to the complex structure I by the action z · (E,Φ) =

(E, z ·Φ), where the Kähler form Ω is invariant under the induced action eiθ · (E,Φ) =

(E, eiθ ·Φ) of the circle S1 ⊂ C∗. Besides, this circle action is Hamiltonian with proper
momentum map

f :M−→ R

defined by:

f(E,Φ) =
1

2π
‖Φ‖2

L2 =
i

2π

∫
X

tr(ΦΦ∗). (1.8)

where Φ∗ is the adjoint of Φ with respect to the hermitian metric onE given by Theorem
1.3.7, and f has finitely many critical values.

There is another important fact mentioned by Hitchin [24](see the original version
in Frankel [10], and its application to Higgs bundles in Hitchin [24]): the critical points
of f are exactly the fixed points of the circle action onM.

If (E,Φ) = (E, eiθΦ) then Φ = 0 with critical value c0 = 0. The corresponding crit-
ical submanifold is F0 = f−1(c0) = f−1(0) = N , the moduli space of stable bundles.

On the other hand, when Φ 6= 0, there is a type of algebraic structure for Higgs
bundles introduced by Simpson [36]: a Variation of Hodge Structure, or simply a VHS,
for a Higgs bundle (E,Φ) is a decomposition:

E =
n⊕
j=1

Ej such that Φ : Ej → Ej+1 ⊗K for 1 6 j 6 n− 1. (1.9)

Has been proved by Simpson [37] that the fixed points of the circle action onM(r, d),
and so, the critical points of f , are these Variations of the Hodge Structure, VHS, where
the critical values cλ = f(E,Φ) will depend on the degrees dj of the components
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Ej ⊂ E. By Morse theory, we can stratify M in such a way that there is a non-zero
critical submanifold Fλ := f−1(cλ) for each non-zero critical value 0 6= cλ = f(E,Φ)

where (E,Φ) represents a fixed point of the circle action, or equivalently, a VHS. We
said then that (E,Φ) is a (rk(E1), ..., rk(En))-VHS.

For rank rk(E) = 2 and degree deg(E) = d Higgs bundles, Hitchin [24, Proposi-
tion (7.1)] establishes that:

1. The momentum map f is proper.

2. f has a finite number of critical values: c0 = 0 and cd1 = d1 − d
2

for d1 ∈
{1, ..., g − 1}.

3. F0 = f−1(0) is a non-degenerate critical manifold of index 0, and is isomorphic
to the moduli space N of stable bundles.

Hence, a point (E,Φ) ∈ N = F0 is a pair where E → X is an indecomposable
holomorphic bundle of rk(E) = r and Φ ≡ 0. This statement holds in general, as well
as the first one: f is also proper in higher rank. The second statement is proved just for
rank two by Hitchin [24] and for rank three by Gothen [14]; even so, it holds in general:
it follows from the results in Garcı́a-Prada and Heinloth [12], where they describe the
possibles VHS that can exist as fixed loci in the moduli of Higgs bundles.

We will use some results of Kirwan [27] in terms of stratifications. SinceM is not
a compact manifold, we shall need the following:

Theorem 1.7.2 (Kirwan [27, (9.1.)]). Let Σ be any symplectic manifold. Let K be any

compact group that acts on Σ. Suppose there is a moment map f : Σ → R. Then one

can obtain the same results of Kirwan [27] as for compact manifolds (except for Kirwan

[27, Theorem (5.8.)]) subject only to one condition: for some metric on Σ, every path

of steepest descent under the function h := ‖f‖ is contained in some compact subset of

Σ.

In our particular case, Σ =M, K = S1 ⊂ C∗, f :M→ R defined as before, and
everything holds. Recall that there is a holomorphic action of the multiplicative group
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C∗ onM(r, d) defined by the multiplication: z · (E,Φ) 7→ (E, z · Φ). Recall also that
Hausel [19] proves that the limit lim

z→0
z ·(E,Φ) = lim

z→0
(E, z ·Φ) exists and is well defined

for all (E,Φ) ∈ M(r, d). Moreover, this limit is fixed by the C∗-action. Let {Fλ} be
the irreducible components of the fixed points loci of C∗ onM(r, d).

In general, when we have a Kähler manifold (Σ, I, ω) with complex structure I and
Kähler form ω, where a compact group K acts biholomorphically with respect to I

and such that ω is invariant under this action, where besides, the action is Hamiltonian
with proper momentum map f : Σ → R, with finitely many critical values, being
(0, c0) the absolute minimum, we may then consider the set of components of the fixed
points of the K-action: {Fλ}λ∈Λ and then, we may consider two stratifications on Σ:
the Bialynicki-Birula stratification and the Morse stratification. We shall define both.

Definition 1.7.3. Consider the set

UBB
λ := {(E,Φ) ∈M| lim

z→0
z · (E,Φ) ∈ Fλ}.

This set UBB
λ is the upward stratum of the Bialynicki-Birula stratification:

M =
⋃
λ

UBB
λ .

Definition 1.7.4. Similarly, consider the set

DBB
λ := {(E,Φ) ∈M| lim

z→∞
z · (E,Φ) ∈ Fλ},

is known as the downward stratum of the Bialynicki-Birula stratification.

Remark 1.7.5. This time, we must be careful,
⋃
λ

DBB
λ is not the whole spaceM, but a

deformation retraction of it.

Definition 1.7.6. Let UM
λ be the set of points (E,Φ) ∈M such that its path of steepest

descent for the Morse function f and the Kähler metric have limit points in Fλ. This set
is called the upward Morse flow of Fλ, and it gives another stratification ofM:

M =
⋃
λ

UM
λ
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Definition 1.7.7. As well as we did above, we may define DM
λ as the set of points

(E,Φ) ∈ M such that its path of steepest descent for the Morse function −f and the
Kähler metric have limit points in Fλ. This set is called the downward Morse flow of

Fλ.

Remark 1.7.8. Once again, we must be careful, because
⋃
λ

DM
λ is not the wholeM, it

is just a deformation retraction of it.

1.7.2 is a very strong result that allows us to use all the work of Kirwan [27], except
Theorem Kirwan [27, Theorem (5.8.)]. In particular, we have:

Theorem 1.7.9 (Kirwan [27, Theorem (6.16.)]). The Bialynicki-Birula stratification and

the Morse stratification coincide. In other words, using the above notation, we get:

UBB
λ = UM

λ and DBB
λ = DM

λ ∀λ

From now on, we will denote simply U+
λ := UBB

λ = UM
λ .

Remark 1.7.10. Everything in this section can be generalized to Hitchin pairs.

1.8 Morse Theory

In this section we shall use the abbreviated notationsM = M = Mk(r, d), whenever
no confusion is likely to arise. We assume here, as everywhere else, that r and d are
co-prime.

The Hitchin functional f : M → R is a perfect Bott–Morse function. This was
observed by Hitchin [24] and follows from a Theorem of Frankel [10], using the fact
that f is a non-negative proper moment map for a circle action on a Kähler manifold.

We denote the (connected) critical submanifolds of f by {Fλ}. Write Nλ = TM/Fλ

for the normal bundle to Fλ inM. The fact that f is Bott–Morse means that the restric-
tion of the tangent bundle ofM to Fλ decomposes as

TM|Fλ = TFλ ⊕N+
λ ⊕N

−
λ ,

where N±λ denote the subbundles of Nλ on which the Hessian of f is positive and
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negative definite, respectively. Thus the normal bundle to Fλ inM is

Nλ = N+
λ ⊕N

−
λ

The Bott–Morse index of the critical submanifold Fλ is by definition the rank of the
negative part of the normal bundle:

I−λ := rk(N−λ ).

It is a standard procedure in Morse theory to perturb the Bott–Morse function f , so
that it takes different values in each of the critical submanifolds Fλ (see, for example,
Hirsch [23]). In what follows we shall assume that this has been done, so that we may
write f(Fλ) = λ ∈ R, with the absolute minimum of f being the moduli space of stable
bundles N0 = f−1(0) = N (r, d).

We shall use the standard Morse theory notation

Mλ = f−1([0, λ]).

Denote by S(N−λ ) and D(N−λ ) the sphere and disk bundles in N−λ , respectively. It is a
basic fact of Bott-Morse theory that, for each λ, there is a homotopy equivalence

Mλ ∼Mλ−ε ∪S(N−λ ) D(N−λ ), (1.10)

for ε > 0 small enough that there are no critical values of f in [λ− ε, λ[. Moreover, the
fact that f is perfect means that, even with integer coefficients,

H∗(Mλ) = H∗(Mλ−ε)⊕H∗(D(N−λ ), S(N−λ )). (1.11)

Moreover, the Thom isomorphism gives

H∗(D(N−λ ), S(N−λ )) ∼= H∗+Iλ(Nλ), (1.12)
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so that, with Z-coefficients,

H∗(Mλ) = H∗(Mλ−ε)⊕H∗+Iλ(Nλ). (1.13)

It follows that
H∗(M,Z) =

⊕
λ

H∗+Iλ(Fλ,Z). (1.14)

When the rank is rk(E) = 2, Bento [3, Theorem 2.1.7.] shows that the Bott-Morse
index Iλ = Id1 = 2(2d1 − d+ g − 1), for

Fλ = Fd1 =

{
(E,Φ) = (E1⊕E2,

(
0 0

ϕ21 0

)
)

∣∣∣∣∣
deg(E1) = d1, deg(E2) = d2,

rk(E1) = 1, rk(E2) = 1,

ϕ21 : E1 → E2 ⊗ L

}
.

So, there is a explicit description of the additive cohomology ofM(2, d):

H∗(M(2, d),Z) = H∗(N ,Z)⊕

d+dL
2⊕

d1>
d
2

H∗+2(2d1−d+g−1)(Fd1 ,Z), (1.15)

where dL = deg(L) and d
2
< d1 <

d+dL
2

.

When the rank is rk(E) = 3, there are three kinds of non-trivial critical submani-
folds, or equivalently, three different VHS:

1. (1, 2)-VHS of the form

Fd1 =

{
(E,Φ) = (E1⊕E2,

(
0 0

ϕ21 0

)
)

∣∣∣∣∣
deg(E1) = d1, deg(E2) = d2,

rk(E1) = 1, rk(E2) = 2,

ϕ21 : E1 → E2 ⊗ L

}
,

with Bott-Morse index Iλ = Id1 = 2(3d1 − d+ 2g − 2), and d
3
< d1 <

d
3

+ dL
2

.
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2. (2, 1)-VHS of the form

Fd2 =

{
(E,Φ) = (E2⊕E1,

(
0 0

ϕ21 0

)
)

∣∣∣∣∣
deg(E2) = d2, deg(E1) = d1,

rk(E2) = 2, rk(E1) = 1,

ϕ21 : E2 → E1 ⊗ L

}
,

with Bott-Morse index Iλ = Id2 = 2(3d2− 2d+ 2g− 2), and 2d
3
< d2 <

2d
3

+ dL
2

.

3. (1, 1, 1)-VHS of the form

Fm1m2 =

{
(E,Φ) = (E1⊕E2⊕E3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)

∣∣∣∣∣
deg(Ej) = dj,

rk(Ej) = 1,

ϕij : Ej → Ei ⊗ L

}
,

with Bott-Morse index Iλ = Im1m2 = 2(3dL − (m1 + m2) + 2g − 2), where
(m1,m2) ∈ Ω where Mj := E∗jEj+1L, mj := deg(Mj) = dj+1 − dj + dL, and

Ω =

{
(m1,m2) ∈ N× N

∣∣∣∣∣
2m1 +m2 < 3dL

m1 + 2m2 < 3dL

m1 + 2m2 ≡ 0(mod3)

}
.

For more details of the description of Ω, the reader can see Gothen [14], or
Bento [3]. Therefore, there is a explicit description of the additive cohomology of
M(3, d):

H∗(M(3, d),Z) = H∗(N ,Z)⊕
d
3

+
dL
2⊕

d1>
d
3

H∗+Id1 (Fd1 ,Z)⊕

2d
3

+
dL
2⊕

d2>
2d
3

H∗+Id2 (Fd2 ,Z)⊕
⊕

(m1,m2)∈Ω

H∗+Im1m2 (Fm1m2 ,Z).

(1.16)
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Chapter 2

Stabilization of the Homotopy Groups
of the Moduli Space of k-Higgs Bundles

Fix a point p ∈ X , and let Lp = OX(p) be the associated line bundle to the divisor
p ∈ Sym1(X) = X . Recall that a k-Higgs bundle (or Higgs bundle with poles of order

k) is a pair (E,Φk) where:

E
Φk−−−−−→ E ⊗K ⊗ L⊗kp

and where the morphism Φk ∈ H0(X,End(E)⊗K ⊗ L⊗kp ) is what we call as a Higgs

field with poles of order k. The moduli space of k-Higgs bundles of rank r and degree d
is denoted byMk(r, d). Recall that GCD(r, d) = 1, soMk(r, d) is smooth.

Furthermore, there is an embedding

ik :Mk(r, d)→Mk+1(r, d)

[
(E,Φk)

]
7−→

[
(E,Φk ⊗ sp)

]
where 0 6= sp ∈ H0(X,Lp) is a non-zero fixed section of Lp.

63
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2.1 Generators for the Cohomology Ring

According to Hausel and Thaddeus [21, (4.4)], there is a universal family (Ek,Φk) over
X ×Mk where {

Ek → X ×Mk(r, d)

Φk ∈ H0
(
End(Ek)⊗K ⊗ L⊗kp

)
and from now on, we will refer (Ek,Φk) as a universal k-Higgs bundle. Note that
(Ek,Φk) satisfies the Universal Property, it means that, whenever exists (Fk,Ψk) such
that

(Ek,Φk)p ∼= (Fk,Ψk)p ∀p = (E,Φk) ∈Mk(r, d),

then, there exists a unique bundle morphism ξ : Fk → Ek such that

Fk Ek

X ×Mk(r, d)

∃!ξ //

p1

��

p2

��
(2.1)

commutes: p2 = p1 ◦ ξ. Equivalently, if (Ek,Φk) and (Fk,Ψk) are families of sta-
ble k-Higgs bundles parametrized by Mk(r, d), such that (Ek,Φk)p ∼= (Fk,Ψk)p for
all p = (E,Φk) ∈ Mk(r, d), then, there is a line bundle L → Mk(r, d) such that
(Ek,Φk) ∼= (Fk ⊗ π∗2(L),Φk), where π2 : X ×Mk(r, d) → Mk(r, d) is the natural
projection. For more details, see Hausel and Thaddeus [21, (4.2)].

If we consider the embedding ik :Mk(r, d)→Mk+1(r, d) for general rank, we get
that:

Proposition 2.1.1. Let (Ek,Φk) be a universal Higgs bundle. Then:

(IdX × ik)∗(Ek+1) ∼= Ek.

Proof. Note that (
Ek,Φk ⊗ π∗1(sp)

)
→ X ×Mk
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is a family of (k + 1)-Higgs bundles on X , where π1 : X ×Mk → X is the natural
projection. So, by the univeral property:

(
Ek,Φk ⊗ π∗1(sp)

)
= j∗

(
Ek+1, Φk+1

)
where

j : X ×Mk → X ×Mk+1(
x, (E,Φk)

)
7→
(
x, (E,Φk ⊗ sp)

)
.

♠

Now, define Vectr(X) as

Vectr(X) :=
{
V → X : V is a topological vector bundle of rank rk(V ) = r

}
/ ∼=,

and take the operation
[V ]⊕ [W ] := [V ⊕W ]

where the equivalence classes are taken by isomorphism between vector bundles. Then,(
Vectr(X),⊕

)
is an abelian semi-group. Let K(X) be the K-theory group of X where

K(X) = K
(
Vectr(X)

)
:=
{

[V ]− [W ]
}
/ ∼

and where

[V ]− [W ] ∼ [V ⊕ U ]− [W ⊕ U ] ∀U → X topological vector bundle,

and recall that it is an abelian group (see Atiyah [1] or Hatcher [18]). Recall also that
the Chern classes factor through K-theory:

Vectr(X)

K(X)

H∗(X,Z)

��

c

<<
c //

(2.2)
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where, for a complex vector bundle V → X of rank rk(V ) = r, c is defined as

c
(
[V ]
)

:=
r∑
i=0

ci(V ) ∀[V ] ∈ Vectr(X)

and where ci(V ) ∈ H2i(X,Z). This map is a homomorphism since

c
(
[W ]⊕ [W ]

)
= c
(
[V ]
)
· c
(
[W ]

)
∈ H∗(X,Z).

We now describe a result of Markman [30]. Choose a basis:

{x1, ..., x2g, x2g+1, x2g+2} ⊂ K(X) = K0(X)⊕K1(X),

where {x1, ..., x2g} ⊂ K1(X), and {x2g+1, x2g+2} ⊂ K0(X) and so, since there is a
universal bundle Ek → X ×Mk, we can get the Künneth decomposition (see Atiyah
[1, Corollary 2.7.15]):

[Ek] =

2g∑
j=0

xj ⊗ ekj

for ekj ∈ K(Mk), since K(X ×Mk) ∼= K(X)⊗K(M).

Then, Markman [30] considers the Chern classes cj(eki ) ∈ H2j(Mk,Z) for eki ∈
K(Mk) and proves that:

Theorem 2.1.2 (Markman [30, Theorem 3]). The cohomology ring H∗
(
Mk(r, d),Z

)
is

generated by the Chern classes of the Künneth factors of the universal vector bundle.

2.2 Main Result

Recall that we want to prove that the map

πj(ik) : πj
(
Mk(r, d)

)
→ πj

(
Mk+1(r, d)

)
stabilizes as k → ∞. But first, we need to present some previous results to conclude
that.
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Proposition 2.2.1. Consider the classes eki ∈ K(Mk). Then i∗k
(
cj(e

k+1
i )

)
= cj(e

k
i ).

Proof. By 2.1.1, and by the naturality of the Chern classes:

2g∑
j=0

xj ⊗ ekj = [Ek] = [(IdX × ik)∗(Ek+1)] =

2g∑
j=0

xj ⊗ i∗k(ek+1
j )

we have that i∗k
(
ek+1
i

)
= eki and hence i∗k

(
cj(e

k+1
i )

)
= cj(e

k
i ). ♠

An immediate consequence will be

Corollary 2.2.2. i∗k : H∗(Mk+1,Z)� H∗(Mk,Z) is surjective.

Recall that a gauge transformation g is called unitary if g preserves the hermitian
inner product. We will denote G as the group of unitary gauge transformations. Atiyah
and Bott [2] denote Ḡ as the quotient of G by its constant central U(1)-subgroup. We
will follow this notation too. Moreover, denote BG and BḠ as the classifying spaces of
G and Ḡ, respectively.

There are a couple of results of Atiyah and Bott [2] that will be very useful for us:

Theorem 2.2.3 (Atiyah and Bott [2, (2.7)]). H∗(BG,Z) is torsion free and has Poincaré

polynomial:

Pt(BG) =

(
(1 + t)(1 + t3)

)2g

(1− t2)2(1− t4)
.

Corollary 2.2.4 (Atiyah and Bott [2, (9.7)]). H∗(BḠ,Z) is also torsion free with Poincaré

polynomial:

Pt(BḠ) = (1− t2)Pt(BG) =

(
(1 + t)(1 + t3)

)2g

(1− t2)(1− t4)
.

LetM∞ := limk→∞Mk =
⋃∞
k=0Mk be the direct limit of the spaces

{
Mk(r, d)

}∞
k=0

.
Hausel and Thaddeus [21, (9.7)] prove that:

Theorem 2.2.5. BḠ ∼=M∞ = lim
k→∞
Mk.

Proof. By the last corollary, Hj(BḠ,Z) ∼= Hj(M∞,Z) � Hj(Mk,Z) must be sur-
jective, since all the groups Hj(BḠ,Z) are finitely generated free abelian groups. The
result follows then from Corollary 2.2.2. ♠
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We will make the following conjecture, which has not been proved before, since the
general form of critical manifolds has not been described before.

Conjecture 2.2.6. Hn
(
Mk(r, d)

)
is torsion free ∀k ∈ N and ∀n ∈ N.

A possible sketch of a proof would be the use of the result of Frankel [10, Corol-
lary 1]:

F k
λ is torsion free ∀λ⇔Mk is torsion free,

but unfortunately, we have not proved that Fλ is torsion free for all λ for general rank
rk(E) = r. Nevertheless, the last result is certainly true for rank two and rank three
k-Higgs bundles:

Theorem 2.2.7. Hn
(
Mk(2, d)

)
and Hn

(
Mk(3, d)

)
are torsion free for all k ∈ N and

for all n ∈ N.

Proof. 1. When rk(E) = 2, the non-trivial critical submanifolds, or (1, 1)-VHS, are
of the form

F k
d1

=

{
(E,Φk) = (E1⊕E2,

(
0 0

ϕk21 0

)
)

∣∣∣∣∣
deg(E1) = d1, deg(E2) = d2,

rk(E1) = 1, rk(E2) = 1,

ϕk21 : E1 → E2 ⊗K ⊗ L⊗kp

}

and F k
d1

is isomorphic to the moduli space of σH-stable triples NσH (1, 1, d̄, d1),
where σH = deg(K ⊗ L⊗kp ) = 2g − 2 + k and d̄ = d2 + 2g − 2 + k − d1, by the
map:

(E1 ⊗ E2,Φ
k) 7→ (E2 ⊗K ⊗ L⊗kp , E1, ϕ

k
21).

Furthermore, by Muñoz, Ortega, Vázquez-Gallo [32, Lemma 3.16.],NσH (1, 1, d̄, d1),
is isomorphic to the cartesian product J d1(X)× Symd̄−d1(X). Hence:

F k
d1
∼= J d1(X)× Symd̄−d1(X)

which, by Macdonald [28, (12.3)], is indeed torsion free.

2. When rk(E) = 3, there are three kinds of non-trivial critical submanifolds:
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2.1. (1, 2)-VHS of the form

F k
d1

=

{
(E,Φk) = (E1⊕E2,

(
0 0

ϕk21 0

)
)

∣∣∣∣∣
deg(E1) = d1, deg(E2) = d2,

rk(E1) = 1, rk(E2) = 2,

ϕk21 : E1 → E2 ⊗K ⊗ L⊗kp

}
.

In this case, there are isomorphisms between the (1, 2)-VHS and the moduli
spaces of triples F k

d1
∼= NσH(k)(2, 1, d̃1, d̃2), where d̃1 = d2 + 2(2g − 2 + k) and

d̃2 = d1, and where the isomorphism is giving by a map similar to the mentioned
above. By Muñoz, Ortega, Vázquez-Gallo [32], the flip loci S+

σc and S−σc are free
of torsion for all σc ∈ I , and so is NσH(k)(2, 1, d̃1, d̃2). Hence, F k

d1
is torsion free.

The fact thatNσH(k)(2, 1, d̃1, d̃2) is torsion free since the flip loci are, follows from
the next lemma:

Lemma 2.2.8. Let M be a complex manifold, and let Σ ⊂ M be a complex

submanifold. Let M̃ be the blow-up of M along Σ. Let E = P(NΣ/M) be the

projectivized normal bundle of Σ in M , sometimes called exceptional divisor.

Then

H∗(M̃,Z) ∼= H∗(M,Z)⊕H∗+2(Σ,Z)⊕ . . . H∗+2n−2(Σ,Z)

where n is the rank of NΣ/M .

Proof. (Lemma 2.2.8)
It follows from the fact that the additive cohomology of the blow-up H∗(M̃,Z),
can be expressed as:

H∗(M̃) ∼= π∗H∗(M)⊕H∗(E)/π∗H∗(Σ)

(see for instance Griffiths and Harris [15, Chapter 4.,Section 6.]), and the fact that
H∗(E) is a free module over H∗(Σ) via the injective map π∗ : H∗(Σ) → H∗(E)

with basis
1, c, . . . , cn−1,

where c ∈ H2(E) is the first Chern class of the tautological line bundle along the
fibres of the projective bundle E → Σ (see the general version at Husemoller [25,
Chapter 17.,Theorem 2.5.]). ♠
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2.2. (2, 1)-VHS of the form

F k
d2

=

{
(E,Φk) = (E2⊕E1,

(
0 0

ϕk21 0

)
)

∣∣∣∣∣
deg(E2) = d2, deg(E1) = d1,

rk(E2) = 2, rk(E1) = 1,

ϕk21 : E2 → E1 ⊗K ⊗ L⊗kp

}
.

By symmetry, similar results can be obtained using the isomorphisms between the
(2, 1)-VHS and the moduli spaces of triples: F k

d2
∼= NσH(k)(1, 2, d̃1, d̃2), and the

dual isomorphisms

NσH(k)(2, 1, d̃1, d̃2) ∼= NσH(k)(1, 2,−d̃2,−d̃1)

between moduli spaces of triples.

2.3. (1, 1, 1)-VHS of the form

F k
d1d2d3

=

{
(E,Φk) = (E1⊕E2⊕E3,

 0 0 0

ϕk21 0 0

0 ϕk32 0

)

∣∣∣∣∣
deg(Ej) = dj,

rk(Ej) = 1,

ϕij : Ej → Ei ⊗K

}
.

Finally, we know that

F k
d1d2d3

∼=−−−−→ Symm1(X)× Symm2(X)× J d3(X)

(E,Φk) 7→ (div(ϕk21), div(ϕk32), E3),

where mi = di+1 − di + σH , and so, by Macdonald [28, (12.3)] there is nothing
to worry about torsion.

♠

Using all the facts above, if the Conjecture 2.2.6 is true, Hausel and Thaddeus [21,
(10.1)] conclude that:

Corollary 2.2.9. If H∗(Mk,Z) is torsion free, then H∗(BḠ,Z) = lim←−H
∗(Mk,Z).

And so, we may conclude also that:
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Theorem 2.2.10. IfHn
(
Mk(r, d)

)
is torsion free ∀k ∈ N and ∀n ∈ N, then ∀j ∃k0 =

k0(j) such that

i∗k : Hj(Mk+1,Z)
∼=−−−−→ Hj(Mk,Z) ∀k > k0.

By the Universal Coefficient Theorem for Cohomology (see for instance Hatcher
[17, Theorem 3.2. and Corollary 3.3.]), we would get

Lemma 2.2.11. If Hn
(
Mk(r, d)

)
is torsion free ∀k ∈ N and ∀n ∈ N, then for all n

there exists k0 = k0(n) such thatHj(M∞,Mk;Z) = 0 for all k > k0 and for all j 6 n.

In particular, this statement holds true for rank 2 and rank 3.

Proof. The embedding ik : Mk(r, d) → Mk+1(r, d) is injective, and by Theorem
2.2.10, we know that i∗k : Hj(Mk,Z) ← Hj(Mk+1,Z) is surjective ∀k. Hence, by
the Universal Coefficient Theorem, we get that the following diagram

0 0 0

0 Ext
(
Hj−1(Mk),Z

)
Hj(Mk,Z) Hom

(
Hj(Mk),Z

)
0

0 Ext
(
Hj−1(Mk+1),Z

)
Hj(Mk+1,Z) Hom

(
Hj(Mk+1),Z

)
0

// // // //

// // // //

(ik∗)
∗

OO

i∗k

OO

(ik∗)
∗

OO

OO OO OO

(2.3)

commutes. So, if the Conjecture 2.2.6 is true, then ∀n ∃k0 = k0(n) such that

Hj

(
Mk(r, d),Z

) ∼=−−−−→ Hj

(
Mk+1(r, d),Z

) ∼=−−−−→ Hj

(
M∞(r, d),Z

)
∀k > k0 and ∀j 6 n⇒ Hj(M∞,Mk;Z) = 0 ∀k > k0 and ∀j 6 n. ♠
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Proposition 2.2.12.

π1(Mk)

π1(N )

π1(Mk+1)

π1(N )

∼=

OO

∼= //

∼=

OO

=
// (2.4)

Proof. It is an immediate consequence of the result proved by Bradlow, Garcı́a-Prada
and Gothen [7, Proposition 3.2.] using Morse theory. ♠

Proposition 2.2.13.
π1(Mk)

∼=−−−−→ π1(M∞).

Proof. Using the generalization of Van Kampen’s Theorem presented by Fulton [11],
and using the fact that Mk ↪→ Mk+1 are embeddings of Deformation Neighborhood

Retracts (DNR), i.e. everyMk(r, d) is the image of a map defined on some open neigh-
borhood of itself and homotopic to the identity (see Hausel and Thaddeus [21, (9.1)]),
we can conlcude that π1

(
lim
k→∞
Mk

)
= lim

k→∞
π1

(
Mk

)
. ♠

We will need the following version of Hurewicz Theorem, presented by Hatcher [17,
Theorem 4.37.] (see also James [26]). Hatcher first mentions that, in the relative case
when (X,A) is an (n − 1)-connected pair of path-connected spaces, the kernel of the
Hurewicz map

h : πn(X,A)→ Hn(X,A;Z)

contains the elements of the form [γ][f ]− [f ] for [γ] ∈ π1(A). Hatcher defines π′1(X,A)

to be the quotient group of πn(X,A) obtained by factoring out the subgroup generated
by the elements of the form [γ][f ] − [f ], or the normal subgroup generated by such
elements in the case n = 2 when π2(X,A) may not be abelian, then h induces a ho-
momorphism h′ : π′n(X,A) → Hn(X,A;Z). The general form of Hurewicz Theorem
presented by Hatcher deals with this homomorphism:

Theorem 2.2.14. If (X,A) is an (n − 1)-connected pair of path-connected spaces,

with n > 2 and A 6= ∅, then h′ : π′n(X,A) → Hn(X,A;Z) is an isomorphism and

Hj(X,A;Z) = 0 for j 6 n− 1.
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One would expect the action of π1(Mk) on the higher homotopy groups to be trivial
but we did not manage to prove it. Therefore, the following group of results is condi-
tional on the following conjecture being true:

Conjecture 2.2.15. π1(Mk) acts trivially on πn(M∞,Mk) ∀n ∈ N, ∀k ∈ N.

Remark 2.2.16. If we restrict our attention to Mk(r,Λ), the moduli space of Higgs
bundles with fixed determinant Λ, then, the fundamental group will be trivial, since
Mk(r,Λ) is simply connected. So, the conjecture will be trivially true forMk(r,Λ).

Now, supposing that Conjecture 2.2.6 and Conjecture 2.2.15 mentioned above are
true, we could get that:

Proposition 2.2.17. If Hn
(
Mk(r, d),Z

)
is torsion free ∀k ∈ N and ∀n ∈ N, and if

π1(Mk) acts trivially on πn(M∞,Mk) for all n ∈ N and for all k ∈ N, then for all n

exists k0 = k0(n) such that πj(M∞,Mk) = 0 for all k > k0 and for all j 6 n.

Proof. Assume that Conjecture 2.2.6 and Conjecture 2.2.15 are true. We proceed by
induction on m ∈ N for 2 6 m 6 n. The first induction step is trivial because

π1(N ) = π1(M) = π1(Mk) = π1(M∞)

by Proposition 2.2.12. For m = 2 we need π2(M∞,Mk) to be abelian. Consider the
sequence

π2(M∞)→ π2(M∞,Mk)→ π1(Mk)→ π1(M∞)→ π1(M∞,Mk)→ 0

where π2(M∞) � π2(M∞,Mk) is surjective, π1(Mk)
∼=−−−−→ π1(M∞), and hence

π1(M∞,Mk) = 0. So, π2(M∞,Mk) is a quotient of the abelian group π2(M∞), and
so it is also abelian.
Finally, suppose that the statement is true for all j 6 m − 1 for 2 6 m 6 n. So,
(M∞,Mk) is (m− 1)-connected, i.e.

πj(M∞,Mk) = 0 ∀j 6 m− 1.

For m > 2, by Hurewicz Theorem 2.2.14,

h′ : π′m(M∞,Mk)
∼=−−−−→ Hm(M∞,Mk;Z)
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is an isomorphism. If Hn

(
Mk(r, d),Z

)
is torsion free ∀k ∈ N and ∀n ∈ N, by Lemma

2.2.11, Hm(M∞,Mk;Z) = 0. Hence, if π1(Mk) acts trivially on πn(M∞,Mk) for all
n ∈ N and for all k ∈ N, then

πm(M∞,Mk) = π′m(M∞,Mk) = 0

finishing the induction process. ♠

Corollary 2.2.18. If Hn
(
Mk(r, d),Z

)
is torsion free ∀k ∈ N and ∀n ∈ N, and if

π1(Mk) acts trivially on πn(M∞,Mk) for all n ∈ N and for all k ∈ N, then for all n

exists k0 = k0(n) such that

πj(Mk)
∼=−−−−→ πj(M∞)

for all k > k0 and for all j 6 n− 1.



Chapter 3

Moduli Space of Triples

Motivated by the result of Hausel for rank two, the derive result for general rank rk(E) =

r, finding the value of the bounds for j and k, we investigate when the embedding

ik :Mk(r, d)→Mk+1(r, d)

[
(E,Φk)

]
7−→

[
(E,Φk ⊗ sp)

]
,

is well defined, where sp ∈ H0(X,Lp), sp 6= 0 is a non-zero fixed section of Lp. We
show that ik induces embeddings of the form

F k
λ

ik−−−−→ F k+1
λ ∀λ,

and that those embeddings induce isomorphisms in cohomology:

Hj(F k+1
λ ,Z)

∼=−−−−→ Hj(F k
λ ,Z)

for certain values of j and k. It turns out that is difficult to find the range for j for
which the isomorphism holds. Hence, it is not obvious how to apply this approach to
Mk(3, d).

In the particular case of the moduli space of rank three k-Higgs bundles, if we restrict

75
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the embedding to the critical manifolds of type (1, 2):

F k
d1

ik−−−−→ F k+1
d1

(E1 ⊕ E2,

(
0 0

ϕk21 0

)
) 7−→ (E1 ⊕ E2,

(
0 0

ϕk21 ⊗ sp 0

)
)

(3.1)

(see for instance Gothen [14] or Bento [3]) then, the isomorphisms

F k
d1

∼=−−−−→ NσkH (2, 1, d̃1, d̃2)

(E1 ⊕ E2,

(
0 0

ϕk21 0

)
) 7−→ (V1, V2, ϕ)

between (1, 2)-VHS and the moduli space of triples, where we denote by V1 = E2 ⊗
K ⊗ L⊗kp , by V2 = E1, by ϕ = ϕk21 and σkH = deg(K ⊗ L⊗kp ) = 2g − 2 + k, induces
another embedding:

ik : NσkH (2, 1, d̃1, d̃2)→ Nσk+1
H

(2, 1, d̃1 + 2, d̃2)

(V1, V2, ϕ) 7→ (V1 ⊗ Lp, V2, ϕ⊗ sp)

where d̃1 = deg(V1) = d2 +2σkH and d̃2 = deg(V2) = d1, and so, it induces embeddings
of the kind:

ik : Nσ−c (k)(2, 1, d̃1, d̃2)→ Nσ−c (k+1)(2, 1, d̃1 + 2, d̃2)

and
ik : Nσ+

c (k)(2, 1, d̃1, d̃2)→ Nσ+
c (k+1)(2, 1, d̃1 + 2, d̃2)

for σm < σc(k) < σM .

3.1 σ-Stability

Our first result has to do with σ-stability:

Lemma 3.1.1. A triple T is σ-stable⇔ ik(T ) is (σ + 1)-stable.

Proof. Recall that T = (V1, V2, ϕ) is σ-stable if and only if µσ(T ′) < µσ(T ) for any T ′
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proper subtriple of T .

Denote by S = ik(T ) = (V1 ⊗ Lp, V2, ϕ ⊗ sp). Is easy to check that µσ+1(S) =

µσ(T ) + 1.

Without lost of generality, we may suppose that any S ′ proper subtriple of S is of
the form S ′ = ik(T

′) for some T ′ subtriple of T , or equivalently:

S ′ = (V ′1 ⊗ Lp, V ′2 , ϕ⊗ sp)

and that there are injective sheaf homomorphisms V ′1 → V1 and V ′2 → V2. This state-
ment is justified since the following diagram commutes:

S : V2
ϕ⊗sp−−−−−−−−→ V1 ⊗ Lp

↓ ∪ ∪

S ′ : B
(ϕ⊗sp)|B−−−−−−−−−→ A

↓ ↓ ↓

T ′ : B
(ϕ⊗sp)|B⊗s−1

p−−−−−−−−→ A⊗ L(−p)

↓ ∩ ∩
T : V2

ϕ−−−−−−−−→ V1 ⊗ Lp

i.e. there is a (1−1)-correspodence between the proper subtriples S ′ ⊂ S and the proper
subtriples T ′ ⊂ T . Taking A = V ′1 ⊗ Lp, B = V ′2 and T ′ = (V ′1 , V

′
2 , ϕ), we can easily

see that µσ+1(S ′) = µσ(T ′) + 1 and hence:

µσ+1(S ′) < µσ+1(S)⇔ µσ(T ′) + 1 < µσ(T ) + 1⇔ µσ(T ′) < µσ(T ).

Therefore, T is σ-stable⇔ S = ik(T ) is (σ + 1)-stable. ♠

Corollary 3.1.2. The embedding

ik : Nσ(k)(2, 1, d̃1, d̃2)→ Nσ(k+1)(2, 1, d̃1 + 2, d̃2)

is well defined for any σ(k) such that σm < σ(k) < σM . In particular, the embedding ik
restricted to F k

d1
(see (3.1)) is well defined and we have a commutative diagram of the
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form:

(Ẽ1, Ẽ2, ϕ
k
21)

NσH(k)

F k
d1

(E1 ⊕ E2,Φ
k)

(Ẽ1, Ẽ2, ϕ
k
21 ⊗ sp),

NσH(k+1)

F k+1
d1

(E1 ⊕ E2,Φ
k ⊗ sp)

��

∼=

OO

��

∼=

OO

ik
//

ik //

� //

� //

where Ẽ1 = E2 ⊗K ⊗ L⊗kp , Ẽ2 = E1, and ϕk21 : E1 → E2 ⊗K ⊗ L⊗kp .

These results give us an interesting and important correspondence between the σ-
stability values of moduli spaces of triples:

σm(k) σH(k) σM(k)
| ∗ | · · |

· | · ∗ | · · | · · |
σm(k + 1) σH(k + 1) σc σM(k + 1)

//

ik

��

ik

��

ik

��

ik

�� ��
//

where σm(k) = µ̃1 − µ̃2, σM(k) = 4(µ̃1 − µ̃2), σH(k) = deg(K ⊗ L⊗kp ) = 2g − 2 + k,
and the correspodence gives us σm(k+ 1) = σm(k) + 1, σc = σM(k) + 1, σM(k+ 1) =

σM(k) + 3, and σH(k + 1) = σH(k) + 1.

3.2 Blow-UP and The Roof Theorem

Recall that the blow-up of Nσ−c (k) = Nσ−c (k)(2, 1, d̃1, d̃2) along the flip locus Sσ−c (k),
Ñσ−c (k) is isomorphic to Ñσ+

c (k), the blow-up of Nσ+
c (k) = Nσ+

c (k)(2, 1, d̃1, d̃2) along the
flip locus Sσ+

c (k). From now on, we will denote just Ñσc(k) whenever no confusion is
likely to arise.
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Proposition 3.2.1. There exists an embedding at the blow-up level

ĩk : Ñσc(k) ↪→ Ñσc(k+1)

such that the following diagram commutes:

Nσ−c (k+1)

Ñσc(k+1)

Ñσc(k)

Nσ+
c (k+1)

Nσ−c (k) Nσ+
c (k)

∃ĩk

LL

��

ik

LL

��

ik

LL

��

��

where Ñσc(k) is the blow-up of Nσ−c (k) = Nσ−c (k)(2, 1, d̃1, d̃2) along the flip locus Sσ−c (k)

and, at the same time, represents the blow-up ofNσ+
c (k) = Nσ+

c (k)(2, 1, d̃1, d̃2) along the

flip locus Sσ+
c (k).

Remark 3.2.2. The construction of the blow-up may be found in the book of Griffiths
and Harris [15].

Proof. Recall that T is σ-stable if and only if ik(T ) is (σ + 1)-stable. Furthermore, by
Muñoz, Ortega and Vásquez-Gallo [32], note that any triple T ∈ Sσ+

c (k) ⊂ Nσ+
c (k)(2, 1, d̃1, d̃2)

is a non-trivial extension of a subtriple T ′ ⊂ T of the form T ′ = (V ′1 , V
′

2 , ϕ
′) =

(M, 0, ϕ′) by a quotient triple of the form T ′′ = (V ′′1 , V
′′

2 , ϕ
′′) = (L, V2, ϕ

′′), where
M is a line bundle of degree deg(M) = dM and L is a line bundle of degree deg(L) =

dL = d̃1− dM . Besides, also by Muñoz, Ortega and Vásquez-Gallo [32], the non-trivial
critical values σc 6= σm for σm < σ < σM are of the form σc = 3dM − d̃1 − d̃2. Then,
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we can visualize the embedding ik : T → ik(T ) as follows:

0 T ′ T T ′′ 0

0 0 V2 V2 0

0 M V1 L 0

0 0 V2 V2 0

0 M ⊗ Lp V1 ⊗ Lp L⊗ Lp 0

// // // //

// // = // //

ϕ′

��

ϕ

��

ϕ′′

��
// // // //

_

ik

��
// // = // //

ϕ′⊗sp

��

ϕ⊗sp

��

ϕ′′⊗sp

��
// // // //

where deg(V1 ⊗Lp) = d̃1 + 2 and deg(M ⊗Lp) = dM + 1, and so L⊗Lp verifies that
deg(L⊗ Lp) = deg(V1 ⊗ Lp)− deg(M ⊗ Lp):

deg(L⊗Lp) = dL+1 = d̃1−dM+1 = (d̃1+2)−(dM+1) = deg(V1⊗Lp)−deg(M⊗Lp).

Hence, σc(k + 1) verifies that σc(k + 1) = σc(k) + 1:

σc(k + 1) = 3deg(M ⊗ Lp)− deg(V1 ⊗ Lp)− deg(V2) =

3dM + 3− d̃1 − 2− d̃2 = (3dM − d̃1 − d̃2) + 1 = σc(k) + 1

and where ik(T ′) = (M ⊗ Lp, 0, ϕ′ ⊗ sp) is the maximal σ+
c (k + 1)-destabilizing sub-

triple of ik(T ).

Similarly, also by Muñoz, Ortega and Vásquez-Gallo [32], any triple T ∈ Sσ−c (k) ⊂
Nσ−c (k)(2, 1, d̃1, d̃2) is a non-trivial extension of a subtriple T ′ ⊂ T of the form T ′ =

(V ′1 , V
′

2 , ϕ
′) = (L, V2, ϕ

′) by a quotient triple of the form T ′′ = (V ′′1 , V
′′

2 , ϕ
′′) = (M, 0, ϕ′′),

where M is a line bundle of degree deg(M) = dM and L is a line bundle of degree
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deg(L) = dL = d̃1 − dM . Then, the embedding ik : T → ik(T ) looks like:

0 T ′ T T ′′ 0

0 V2 V2 0 0

0 L V1 M 0

0 V2 V2 0 0

0 L⊗ Lp V1 ⊗ Lp M ⊗ Lp 0

// // // //

// = // // //

ϕ′

��

ϕ

��

ϕ′′

��
// // // //

_

ik

��
// = // // //

ϕ′⊗sp

��

ϕ⊗sp

��

ϕ′′⊗sp

��
// // // //

where ik(T ′) = (L, V2, ϕ
′) is the maximal σ+

c (k + 1)-destabilizing subtriple of ik(T ).

Hence, ik restricts to the flip loci Sσ+
c (k) and Sσ−c (k). Recall that, by definition, the

blow-up of Nσ+
c (k) along the flip locus Sσ+

c (k), is the space Ñσc(k) together with the
projection

π : Ñσc(k) → Nσ+
c (k)

where π restricted to Nσ+
c (k) − Sσ+

c (k) is an isomorphism and the exceptional divisor

E+ = π−1(Sσ+
c (k)) ⊂ Ñσc(k) is a fiber bundle over Sσ+

c (k) with fiber Pn−k−1, where
n = dim(Nσ+

c (k)) and k = dim(Sσ+
c (k)). So, the embedding can be extended to E+ in a

natural way. Same argument remains valid when we consider Ñσc(k) as the blow-up of
Nσ−c (k) along the flip locus Sσ−c (k) with exceptional divisor E− = π−1(Sσ−c (k)) ⊂ Ñσc(k).
Therefore, the embedding can be extended to the whole Ñσc(k). ♠
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3.3 Cohomology of the (1, 2)-VHS

We need to prove that the embedding ik : F k
d1
↪→ F k+1

d1
induces an isomorphism in

cohomology:
Hj(F k+1

d1
,Z)

∼=−−−−→ Hj(F k
d1
,Z)

for certain j, or equivalently:

Hj(N k+1
σH

,Z)
∼=−−−−→ Hj(N k

σH
,Z),

where we denote N k
σH

= NσH(k)(2, 1, d̃1, d̃2). Nevertheless, what we get so far, is that

Hj(N k+1
σc ,Z)

∼=−−−−→ Hj(N k
σc ,Z)

for all σc = σc(k) critical such that σm(k) < σc(k) < σM(k), and for all j 6 ñ(k),
where the bound ñ(k) is known. We first analize the embedding restricted to the flip
loci: ik : Sσ−c (k) ↪→ Sσ−c (k+1) and ik : Sσ+

c (k) ↪→ Sσ+
c (k+1). For simplicity, we will denote

from now on Sk− = Sσ−c (k) and Sk+ = Sσ+
c (k) whenever no confusion is likely to arise

about the critical value.

Theorem 3.3.1.
i∗k : Hj(Sk+1

− ,Z)
∼=−−−−→ Hj(Sk−,Z)

for all j 6 d̃1 − dM − d̃2 − 1 = d2 − d1 + 2σH(k) − dM , where dj = deg(Ej),

d̃j = deg(Ẽj), dM = deg(M), and σH(k) = deg(K ⊗ L⊗kp ) = 2g − 2 + k.

Proof. Recall that, according to Muñoz, Ortega, Vázquez-Gallo [32, Theorem 4.8.],
Sk− = P(V) is the projectivization of a bundle V → N ′c × N ′′c of rank rk(V) =

−χ(T ′′, T ′), where N ′c = Nc(1, 1, d̃1 − dM , d̃2) ∼= J d̃2 × Symd̃1−dM−d̃2(X) and N ′′c =

Nc(1, 0, dM , 0) ∼= J dM (X), and where any triple T = (V1, V2, ϕ) ∈ Sk− ⊂ Nσ−c (k)(2, 1, d̃1, d̃2)

is a non-trivial extension of a subtriple T ′ ⊂ T of the form T ′ = (V ′1 , V
′

2 , ϕ
′) =

(L, V2, ϕ
′) by a quotient triple of the form T ′′ = (V ′′1 , V

′′
2 , ϕ

′′) = (M, 0, ϕ′′), where
M is a line bundle of degree deg(M) = dM and L is a line bundle of degree deg(L) =
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dL = d̃1 − dM . Then, the embedding ik : T → ik(T ) restricts to:

(
[V ′2 ], div(ϕ′)

)J d̃2 × Symd̃1−dM−d̃2(X)

N ′σc

(V ′1 , V
′

2 , ϕ
′)

(
[V ′2 ], div(ϕ′ ⊗ sp)

)J d̃2 × Symd̃1−dM−d̃2+1(X)

N ′σc+1

(V ′1 ⊗ Lp, V ′2 , ϕ′ ⊗ sp)

��

∼=

OO

��

∼=

OO

ik
//

ik //

� //

� //

because σc(k+ 1) = σc(k) + 1, and dM(k+ 1) = dM(k) + 1, and because, by the proof
of the Roof Theorem 3.2.1, ik restricts to the flip locus Sk−.
Similarly, ik restricts to:

[V ′′1 ]

J dM

N ′′σc

(V ′′1 , 0, 0)

[V ′′1 ⊗ Lp]

J dM

N ′′σc+1

(V ′′1 ⊗ Lp, 0, 0)

��

∼=

OO

��

∼=

OO

ik
//

ik //

� //

� //

So, by Macdonald [28, (12.2)], i∗k : Hj(N ′σc+1,Z)
∼=−−−−→ Hj(N ′σc ,Z) for all j 6

d̃1 − dM − d̃2 − 1, and hence

i∗k : Hj(Sk+1
− ,Z)

∼=−−−−→ Hj(Sk−,Z) ∀j 6 d̃1 − dM − d̃2 − 1.

♠

Similarly, for the flip locus Sk+ = Sσ+
c (k) we have:
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Theorem 3.3.2.
i∗k : Hj(Sk+1

+ ,Z)
∼=−−−−→ Hj(Sk+,Z)

for all j 6 2dM − d̃1 + g − 2 = 2dM −
(
d2 + 2σH(k)

)
+ g − 2, where dj = deg(Ej),

d̃j = deg(Ẽj), dM = deg(M), and σH(k) = deg(K ⊗ L⊗kp ) = 2g − 2 + k.

Proof. Quite similar argument to the one presented above, except for the detail that
this time is the other way around: according also to Muñoz, Ortega, Vázquez-Gallo
[32, Theorem 4.8.], Sk+ = P(V) is the projectivization of a bundle V → N ′c × N ′′c
of rank rk(V) = −χ(T ′′, T ′), but this time N ′c = Nc(1, 0, dM , 0) ∼= J dM (X), and
N ′′c = Nc(1, 1, d̃1 − dM , d̃2) ∼= J d̃2 × Symd̃1−dM−d̃2(X) and where any triple T =

(V1, V2, ϕ) ∈ Sk+ ⊂ Nσ+
c (k)(2, 1, d̃1, d̃2) is a non-trivial extension of a subtriple T ′ ⊂ T

of the form T ′ = (V ′1 , V
′

2 , ϕ
′) = (M, 0, ϕ′) by a quotient triple of the form T ′′ =

(V ′′1 , V
′′

2 , ϕ
′′) = (L, V2, ϕ

′′), where M is a line bundle of degree deg(M) = dM and L is
a line bundle of degree deg(L) = dL = d̃1 − dM . ♠

Theorem 3.3.3.

i∗k : Hj(Nσ−c (k+1),Z)
∼=−−−−→ Hj(Nσ−c (k),Z) ∀j 6 2

(
d̃1 − 2d̃2 − (2g − 2)

)
+ 1.

Since the behavior of Nσ−c , where σ−c = σc − ε, is the same that the one of Nσ+
m

,
where σ+

m = σm + ε, is enough to prove the following lemma:

Lemma 3.3.4.

Hj(Nσ+
m(k+1),Nσ+

m(k);Z) = 0 ∀j 6 2
(
d̃1 − 2d̃2 − (2g − 2)

)
.

Proof. Note that Nσ−m(k) = ∅, hence Nσ+
m(k) = Sk+, and according to Muñoz, Ortega,

Vázquez-Gallo [32, Theorem 4.10.], any triple T = (V1, V2, ϕ) ∈ Sk+ = Nσ+
m(k)(2, 1, d̃1, d̃2)

is a non-trivial extension of a subtriple T ′ ⊂ T of the form T ′ = (V ′1 , V
′

2 , ϕ
′) = (V1, 0, 0)

by a quotient triple of the form T ′′ = (V ′′1 , V
′′

2 , ϕ
′′) = (0, V2, 0). Hence, there is a map

π : Nσ+
m
→ N (2, d̃1)× J d̃2(X)

(V1, V2, ϕ) 7→ ([V1], [V2])
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where the inverse image π−1
(
N (2, d̃1)× J d̃2(X)

)
= PN has rank N = −χ(T ′′, T ′) =

d̃1 − 2d̃2 − (2g − 2), and the proof follows. ♠

Theorem 3.3.5.

ĩ∗k : Hj(Ñσc(k+1),Z)
∼=−−−−→ Hj(Ñσc(k),Z) ∀j 6 n(k)

at the blow-up level, where n(k) := min(d̃1−dM−d̃2−1, 2
(
d̃1−2d̃2−(2g−2)

)
+1).

Proof. By the Roof Theorem 3.2.1, ik lifts to the blow-up level. We will denote N k
− =

Nσ−c (k)(2, 1, d̃1, d̃2) and Ñ k = Ñσc(k) its blow-up along the flip locus Sk− = Sσ−c (k).
Recall that, from the construction of the blow-up, there is a map π− : Ñ k → N k

− such
that

0→ π∗−
(
Hj(N k

−)
)
→ Hj(Ñ k)→ Hj(Ek)/π∗−

(
Hj(Sk−)

)
→ 0

splits where Ek = π−1
− (Sk−) is the so-called exceptional divisor. Hence, the following

diagram

0 π∗−
(
Hj(N k

−)
)

Hj(Ñ k) Hj(Ek)/π∗−
(
Hj(Sk−)

)
0

0 π∗−
(
Hj(N k+1

− )
)

Hj(Ñ k+1) Hj(Ek+1)/π∗−
(
Hj(Sk+1

− )
)

0

// // // //

// // // //

∼=

OO

ĩ∗k

OO

∼=

OO

(3.2)

commutes for all j 6 n(k), and the theorem follows. ♠

Corollary 3.3.6.

i∗k : Hj(Nσ+
c (k+1),Z)

∼=−−−−→ Hj(Nσ+
c (k),Z) ∀j 6 ñ(k)

where ñ(k) := min
(
n(k), 2dM − d̃1 + g − 2

)
.

Proof. Recall that Ñ k = Ñσc(k) is also the blow-up of N k
+ = Nσ+

c (k)(2, 1, d̃1, d̃2) along
the flip locus Sk+ = Sσ+

c (k), so there is a map π+ : Ñ k → N k
+ such that

0→ π∗+
(
Hj(N k

+)
)
→ Hj(Ñ k)→ Hj(Ek)/π∗+

(
Hj(Sk+)

)
→ 0
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splits:
Hj(Ñ k) = π∗+

(
Hj(N k

+)
)
⊕Hj(Ek)/π∗+

(
Hj(Sk+)

)
,

and by Theorem 3.3.2 and Theorem 3.3.5, the result follows. ♠

Corollary 3.3.7.

i∗k : Hj(Nσc(k+1),Z)
∼=−−−−→ Hj(Nσc(k),Z) ∀j 6 ñ(k).



Chapter 4

Stratifications on the Moduli Space
of Higgs Bundles

Recall that we are supposing that GCD(r, d) = 1. In this chapter, we study the relation-
ship between the Shatz stratification and the Bialynicki-Birula stratification onM(r, d)

for rank r = 2 and rank r = 3. Our results should produce a more refined stratification
for rank three, which we expect to be useful in generalizing Hausel’results for rank two
to rank three.

4.1 Equivalent Stratifications on the Moduli Space
of Rank Two Higgs Bundles

Recall that a point (E,Φ) ∈ N = F0 is a pair where E → X is a stable holomorphic
bundle of rk(E) = 2 and Φ ≡ 0.

On the other hand, for d1 > 0 and Φ 6= 0, define then Fd1 as follow:

Fd1 =

{
(E,Φ) = (E1 ⊕ E2,

(
0 0

ϕ 0

)
)

∣∣∣∣∣
deg(E1) = d1, deg(E2) = d2,

rk(E1) = 1, rk(E2) = 1,

ϕ : E1 → E2 ⊗K

}
.

The description of these critical submanifolds has been done by Bento [3]:

87
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Proposition 4.1.1 (Bento [3, Proposição 2.1.1.]). There is a critical submanifold Fd1
for each d1 ∈ ]d

2
, d+dK

2
[ ∩ Z.

Proof. Let Fd1 be a critical submanifold as described above, with d1 > 0 and Φ 6=

0, where Φ =

(
0 0

ϕ 0

)
and ϕ : E1 → E2 ⊗ K, so we can consider 0 6= ϕ ∈

H0(Hom(E1, E2)⊗K). Then, E2 is Φ-invariant and so, the stability of (E,Φ) implies:

µ(E2) < µ(E)⇔ d− d1 = d2 <
d

2
⇔ d

2
< d1.

But, if d1 >
d
2

then E1 can not be Φ-invariant, and so, since ϕ 6= 0, we get that:

deg(E∗1E2K) > 0⇔ d2 + dK − d1 > 0⇔ d− d1 + dK − d1 > 0⇔ d1 <
d+ dK

2
.

Since d1 ∈ Z, the Proposition follows. ♠

The holomorphic splitting (E,Φ) = (E1⊕E2,

(
0 0

ϕ 0

)
) is the so-called Variation

of Hodge Structure of type (1, 1), and denoted (1, 1)-VHS.

In such a case:
[Φ,Φ∗] = ΦΦ∗ + Φ∗Φ =(

0 0

ϕ 0

)(
0 ϕ∗

0 0

)
+

(
0 ϕ∗

0 0

)(
0 0

ϕ 0

)
=

(
ϕ∗ϕ 0

0 ϕϕ∗

)

Hence, the first Hitchin-Equation becomes:(
FA(E1)− ϕϕ∗ 0

0 FA(E2) + ϕϕ∗

)
= −i · µ ·

(
I1 0

0 I2

)
· ω

where µ = µ(E) = deg(E)
rk(E)

= d
2
, so it is constant. In the first entry we have:

FA(E1)− ϕϕ∗ = −i · µ · I1 · ω.
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Taking the trace tr(·) and integrating on X , we get:∫
X

tr(FA(E1))−
∫
X

tr(ϕϕ∗) = −i · µ
∫
X

tr(I1)ω

which is equivalent to:

−2π · i · c1(E1)−
∫
X

tr(ΦΦ∗) = −i · d
2
· rk(E1) · 2π

which implies:

−2πi(d1 −
d

2
) =

∫
X

tr(ΦΦ∗)

Therefore:
f(E,Φ) = d1 −

d

2

for each (E,Φ) ∈ Fd1 , for every 1 6 d1 6 g − 1. The non-zero critical values for the
rk(E) = 2 case, were computed by Hitchin [24] (and also by Hausel [20]) with the
assumption of deg(E) ≡ 1, and the stability of (E,Φ) ∈ Fd1 gives the bound d1 < g.
See the work of Hitchin [24] for more details.

Recall that the sets

UBB
d1

:= {(E,Φ) ∈M(2, d)| lim
z→0

z · (E,Φ) ∈ Fd1}

are the upward stratum sets of the Bialynicki-Birula stratification:

M(2, d) =

g−1⋃
d1=0

UBB
d1

.

On the other hand, recall also that, as a consequence of Shatz [35, Proposition 10
and Proposition 11], there is a finite stratification ofM(r, d) by the Harder-Narasimhan
type of the underlying vector bundle E of a Higgs bundle (E,Φ):

M(r, d) =
⋃
t

U ′t

where U ′t ⊂ M(r, d) is the subspace of Higgs bundles (E,Φ) which associated vector
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bundleE has HNT(E) = t, and where we are taking this union over the existing types in
M(r, d). This is the Shatz stratification. Nevertheless, for rank two Higgs bundles, the
HNT is a vector of the form t = (d1d − d1), where d = deg(E) is a known parameter.
So, Hausel labels the Shatz stratum as follows: Let U ′0 ⊂ M be the locus of points
(E,Φ) ∈ M(2, d) such that E is stable, and let U ′d1 ⊂ M be the locus of points
(E,Φ) ∈ M(2, d) such that E is unstable and its destabilizing line bundle E1 is of
degree d1 > 0. This family {U ′d1}

g−1
d1=0 gives us the Shatz stratification ofM:

M =

g−1⋃
d1=0

U ′d1 .

We shall give an alternative proof for the statement of Hausel [19]: that Shatz strat-
ification and Hitchin stratification are essentially the same thing when rk(E) = 2:

Theorem 4.1.2 (Hausel [19, Proposition 4.3.2]). The Shatz stratification coincides with

the Hitchin stratification,

i.e. U ′d1 = Ud1 for 0 6 d1 6 g − 1

using the above notation.

Proof. The inclusion Ud1 ⊆ U ′d1 is trivial:
Just take a point (E,Φ) ∈ Ud1 and consider its limit:

(E0,Φ0) := lim
z→0

z · (E,Φ) = lim
z→0

(E, z · Φ) ∈ Fd1 .

Since (E0,Φ0) ∈ Fd1 , it has the form:

(E0,Φ0) = (L1 ⊕ L2,

(
0 0

φ21 0

)
)

where d1 = deg(L1), rk(L1) = 1, and φ21 : L1 → L2 ⊗K.

The Harder-Narasimhan Type of the limit bundle (E0,Φ0) is then the vector

HNT (E0,Φ0) : ~µ = (µ1, µ2) = (d1, d2)
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where deg(L2) = d2 = d − d1. Then, it is enough to consider E1 := L1 as maximal
destabilizing line bundle of E with degree d1. It is destabilizing since

cd1 = d1 −
d

2
> 0, so µ(E1) = d1 >

d

2
= µ(E);

and it is trivially maximal. Besides, E1 and E/E1 are semi-stables.
So, we get the Harder-Narasimhan Filtration:

0 ⊂ E1 ⊂ E

and hence:
Ud1 ⊆ U ′d1 .

Remark 4.1.3. Note that E = E0 as smooth vector bundles, but not as holomorphic
vector bundles, since we are varying its holomorphic structure when we take the limit
when z → 0. That is why E1 = L1 is its maximal destabilizing subundle as smooth
vector bundle, but not as Higgs bundle, since E1 is not even Φ0-invariant.

The other inclusion, U ′d1 ⊆ Ud1 , is not so trivial. Suppose E is an unstable bundle
with maximal destabilizing line bundle E1 with deg(E1) = d1.

i.e. HNF (E) : 0 ⊂ E1 ⊂ E

where µ(E1) > µ(E) andE1 is the already mentioned maximal destabilizing subbundle
ofE. Then, there is a smooth decompositionE = L1⊕L2 comming from the short exact
sequence:

0 −→ L1 −→ E −→ L2 −→ 0

where L1 = E1 and L2
∼= E/E1.

So far, we have been abusing of the notation before, since the points ofM, and so the
elements of the subsets Fd1 , Ud1 , and U ′d1 , are not the pairs (E,Φ), but their equivalence
classes [(E,Φ)] under the gauge group action. So, for an element [(E,Φ)] ∈ U ′d1 it will
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be enough to find a gauge transformation g ∈ G such that

(E0,Φ0) = lim
z→0

g(z)−1(E, z · Φ)g(z) ∈ Fd1 .

We may suppose that g(z) ∈ GL2(C) is diagonal, so, g12(z) ≡ 0 and g21(z) ≡ 0. In
such a case, we have:

g(z) =

(
g11(z) g12(z)

g21(z) g22(z)

)
=

(
g11(z) 0

0 g22(z)

)
for z ∈ C∗

and then:

g(z)−1 =
1

det(g)

(
g22(z) 0

0 g11(z)

)
=

1

g11(z)g22(z)

(
g22(z) 0

0 g11(z)

)

=

(
1

g11(z)
0

0 1
g22(z)

)
for z ∈ C∗.

Recall also that a representative pair (E,Φ) of the equivalence class [(E,Φ)] ∈ U ′d1
has a representative holomorphic structure ∂̄E = ∂̄A = ∂̄ +Bdz̄ of the form:

∂̄A =

(
∂̄1 β

0 ∂̄2

)
=

(
∂̄ + b11dz̄ b12dz̄

0 ∂̄ + b22dz̄

)

and its Higgs field takes the form:

Φ =

(
φ11 φ12

φ21 φ22

)

where φij : Lj → Li ⊗K. Then:

g−1(z · Φ)g =

(
1

g11(z)
0

0 1
g22(z)

)(
z · φ11 z · φ12

z · φ21 z · φ22

)(
g11 0

0 g22

)

=

(
z · φ11

g22
g11
z · φ12

g11
g22
z · φ21 z · φ22

)
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where, once again, gij = gij(z) is an abuse of notation. Since an element of Fd1 has a
Higgs field of the form:

Ψ =

(
0 0

ψ 0

)
it will be enough if the gij’s satisfy:

lim
z→0

g11(z)

g22(z)
z = 1

and
lim
z→0

g22(z)

g11(z)
z = 0

We may choose
g11(z) ≡ 1, g22(z) = z for z ∈ C∗ :

g−1(z)(z · Φ)g(z) =

(
1 0

0 z−1

)(
z · φ11 z · φ12

z · φ21 z · φ22

)(
1 0

0 z

)
=

(
z · φ11 z2 · φ12

φ21 z · φ22

)
→

(
0 0

φ21 0

)
when z → 0.

Furthermore:
g−1∂̄Eg = g−1∂̄Ag = ∂̄ + g−1(∂̄g) + (g−1Bg)dz̄

In this case g(z) doesn’t depend on z̄, so ∂̄g = ∂g
∂z̄
dz̄ ≡ 0. Then:

g−1∂̄Ag = ∂̄ + (g−1Bg)dz̄

where

g(z)−1Bg(z) =

(
b11 zb12

0 b22

)
→

(
b11 0

0 b22

)
when z → 0.

So:

g−1∂̄Eg →

(
∂̄1 0

0 ∂̄2

)
when z → 0.

We are almost done. It remains to verify two things: first, that Φ0 is holomorphic
since Φ is; and second, that (E0,Φ0) is stable.
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If we look carefully to how is φ21 defined, we can see that:

φ21 : L1
ı1−→ E

Φ−→ E ⊗K 2⊗1−−→ L2 ⊗K

where ı1 : L1 → E and 2 : E → L2 are the canonical inclusion and projection re-
spectively, and the three components are holomorphic, so φ21 is. Since φ21 is the only
non-trivial component, Φ0 is also holomorphic.

Since L1 = E1 is not Φ0-invariant, the line subbundles which are Φ0-invariant are
those that are isomorphic to L2. But we know that µ(L2) < µ(E0) trivially, since
µ(E1) > µ(E) = µ(E0).

∴ [(E0,Φ0)] ∈ Fd1 .

♠

Remark 4.1.4. Recall that 4.1.2 doesn’t remain valid for the general case:

rk(E) = r > 3.

See for instance the works of Hausel and Thaddeus [21] and [22]. It will follow also
from our work in the next section.

4.2 Stratifications on the Moduli Space of Rank Three
Higgs Bundles

Denote as above d = deg(E). Recall that we are considering the coprime caseGCD(3, d) =

1.

If E is stable, then (E,Φ) ∈ N = F0 ⊂M(3, d) is a pair where E → X is a stable
holomorphic bundle of rk(E) = 3 and Φ ≡ 0.

Suppose then that (E,Φ) is a pair whereE is an unstable vector bundle and Φ 6= 0 is
not trivial. Hence, we must consider three non-trivial cases for the Harder-Narasimhan
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Filtration of E.

Let
[
(E,Φ)

]
∈ M(3, d) and denote (E0,Φ0) := lim

z→0
(E, z · Φ). The stratum of

the Morse stratification where (E,Φ) belongs is determined by (E0,Φ0), and depends
on the Harder-Narasimhan Type of E, and on certain properties of Φ. Our Principal
Theorem describes in detail that dependence.

To state the Theorem, is convenient to use the following notation: for a vector bundle
morphism φ : E → F , we write ker(φ) ⊂ E and im(φ) ⊂ F for those subbundles
obtained by the saturation of the respective subsheaves.

Theorem 4.2.1. Let
[
(E,Φ)

]
∈M(3, d) and denote (E0,Φ0) := lim

z→0
(E, z · Φ).

(1.) Suppose thatE is an unstable vector bundle of rk(E) = 3 with a Harder-Narasimhan

Filtration of length 1:

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

where E1 is the maximal destabilizing line subbundle of E, and µ(V1) > µ(V2)

where V1 = E1, V2 = E/E1 are semi-stables. In other words, suppose that E →
X is a holomorphic bundle that has HNT(E) = (µ1, µ2, µ2) where µj = µ(Vj).

Consider φ21 : V1 → V2 ⊗K induced by

E1
ı−−−−→ E

Φ−−−−→ E ⊗K ⊗idK−−−→
(
E/E1

)
⊗K.

Define I := φ21(E1) ⊗ K−1 ⊂ V2 which is a subbundle of V2, where rk(I) = 1,

and define also F := V1⊕I ⊂ V1⊕ V2 = E where rk(F ) = 2. Then, we have two

possibilities:

(1.1.) Suppose that µ(F ) < µ(E). Then, (E0,Φ0) is a (1, 2)-VHS of the form:

(E0,Φ0) =
(
V1 ⊕ V2,

(
0 0

φ21 0

))
.

(1.2.) On the other hand, if µ(F ) > µ(E), then, (E0,Φ0) is a (1, 1, 1)-VHS of the
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form:

(E0,Φ0) =
(
L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)
where L1, L2, and L3 are line bundles.

(2.) Analogously, suppose that E is an unstable vector bundle of rk(E) = 3 with a

Harder-Narasimhan Filtration of length 1:

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

but this time E1 is the maximal destabilizing subbundle of E with rk(E1) = 2, and

µ(V1) > µ(V2) where V1 = E1, V2 = E/E1 are semi-stables. In other words,

suppose that E → X is a holomorphic bundle that has HNT(E) = (µ1, µ1, µ2)

where µj = µ(Vj). Consider φ21 : V1 → V2 ⊗K induced by

E1
ı−−−−→ E

Φ−−−−→ E ⊗K ⊗idK−−−→
(
E/E1

)
⊗K.

Define N := ker(φ21) ⊂ V1 which is a subbundle. Then, we have two possibilities:

(2.1.) Suppose that µ(N) < µ(E). Then, (E0,Φ0) is a (2, 1)-VHS of the form:

(E0,Φ0) =
(
V1 ⊕ V2,

(
0 0

φ21 0

))
.

(2.2.) On the other hand, if µ(N) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS of the

form:

(E0,Φ0) =
(
L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)
where L1, L2, and L3 are line bundles.

(3.) Finally, suppose that (E,Φ) is a Higgs Bundle where E is an unstable vector bun-
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dle of rk(E) = 3 with a Harder-Narasimhan Filtration of length 2:

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 = E

where µ(V1) > µ(V2) > µ(V3) and V1 = E1, V2 = E2/E1, and V3 = E/E2 are

semi-stables.

(3.1.) Suppose that µ(E2/E1) < µ(E). Then we can define F as we did in (1.), and

then, we have two possibilities:

(3.1.1.) Suppose that µ(F ) < µ(E). Then: (E0,Φ0) is a (1, 2)-VHS.

(3.1.2.) On the other hand, if µ(F ) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS.

(3.2.) On the other hand, if µ(E2/E1) > µ(E), then define N as we did in (2.), and

then, we have two possibilities:

(3.2.1.) If µ(N) < µ(E). Then: (E0,Φ0) is a (2, 1)-VHS.

(3.2.2.) If µ(N) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS.

This theorem shall be proved, case by case, step by step, considering every single
Harder-Narasimhan Type.

4.2.1 Case (1)

Suppose that E is an unstable vector bundle of rk(E) = 3 with a Harder-Narasimhan
Filtration of length 1:

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

where E1 is the maximal destabilizing line subbundle of E : µ(E1) > µ(E) and V1, V2

are semi-stables. Then, there is a smooth decomposition E = V1 ⊕ V2 from the short
exact sequence:

0 −→ V1 −→ E −→ V2 −→ 0

where V1 = E1, and V2
∼= E/E1. Then, the Higgs field Φ takes the form:

Φ =

(
φ11 φ12

φ21 φ22

)
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where 0 6= φ21 : V1 −→ V2 ⊗ K is a (1 × 2)-size block, and every block φij ∈
Ω1,0(X,Hom(Vj, Vi)⊗K). Besides, the representative holomorphic structure of E, ∂̄E
becomes:

∂̄E =

(
∂̄1 β

0 ∂̄2

)
where ∂̄j is the corresponding holomorphic structure of Vj , and β ∈ Ω0,1(X,Hom(V2, V1)).

Denote by d1 = deg(V1) and d2 = deg(V2). Recall that V2 satisfies the following:

a. rk(V2) = 2

b. d2 = d− d1

c. V2 is semi-stable

d. µ(V2) < µ(E) < µ(V1)

These are general properties of the Harder-Narasimhan Filtration. The last one can be
easily proved, since µ(E1) > µ(E).

Define I := φ21(E1)⊗K−1 ⊂ V2 and recall that we understand this as the subbundle
that we obtain saturating the respective subsheaf. Besides, rk(I) = 1, and define also
F := V1⊕I ⊂ V1⊕V2 = E where rk(F ) = 2. Denote dI = deg(I) and dF = deg(F ),
then dF = d1 + dI .

Define the pair (E0,Φ0) := lim
z→0

(E, z · Φ). We must consider then, two subcases:

(1) µ(F ) < µ(E)

(2) µ(F ) > µ(E)

Case (1.1)

Proposition 4.2.2. Suppose that µ(F ) < µ(E). Then: (E0,Φ0) is a (1, 2)-VHS.
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Proof. All we need to do, is to consider

g(z) :=

(
1 0

0 z · I

)
∈ GL3(C)

where I ∈ GL2(C) is the identity matrix, and g ∈ G defines a gauge transformation.
Then:

g(z) ∗ (z · Φ) = g(z)−1(z · Φ)g(z) =

=

(
z · φ11 z2 · φ12

φ21 z · φ22

)
→

(
0 0

φ21 0

)
when z → 0

and also:
g(z) ∗ ∂̄E = g(z)−1∂̄Eg(z) =

=

(
∂̄1 z · β
0 ∂̄2

)
→

(
∂̄1 0

0 ∂̄2

)
when z → 0.

We can easily showed that Φ0 is holomorphic since Φ is:

φ21 : V1
ı1−→ E

Φ−→ E ⊗K 2⊗id−−−→ V2 ⊗K

where ı1 : V1 → E and 2 : E → V2 are the canonical inclusion and projection re-
spectively, and the three components are holomorphic, so φ21 is. Since φ21 is the only
non-trivial component, Φ0 is also holomorphic.

There are three kinds of Φ0-invariant subbundles: Thoseones isomorphic to F , those
ones isomorphic to V2, and any line bundle L ⊂ V2.

1. F :

By hypothesis µ(F ) < µ(E) = µ(E0) in this subcase, so there is nothing to
worry about.
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2. V2 :

We already have seen that µ(V2) < µ(E) = µ(E0).

3. L ⊂ V2 :

Since V2 is semi-stable, µ(L) 6 µ(V2), and since µ(V2) < µ(E0), we get µ(L) <

µ(E0) for any line bundle L ⊂ V2.

Hence:

(E0,Φ0) := lim
z→0

(E, z · Φ) = (V1 ⊕ V2,

(
0 0

φ21 0

)
) is stable.

♠

Remark 4.2.3. In this case, the Harder-Narasimhan Type of the limit bundle (E0,Φ0)

is the vector:
HNT (E0,Φ0) : ~ν = (ν1, ν2, ν2)

where νj = µ(Vj) coincides with µj = µ(Vj). So, in this subcase we get

HNT (E0,Φ0) = HNT (E,Φ).

Case (1.2)

On the other hand:

Proposition 4.2.4. If µ(F ) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS.

Proof. Suppose µ(F ) > µ(E), defineQ := V2/I and consider the short exact sequence

0 −→ I −→ V2 −→ Q −→ 0.

Then, there is a smooth splitting V2 = I ⊕ Q, and then a new smooth splitting

E = V1 ⊕ I ⊕Q = L1 ⊕ L2 ⊕ L3
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where L1 := V1, L2 := I, and L3 := Q. Hence, we may re-write the Higgs field Φ as:

Φ =

 ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33

 =

 ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

0 ϕ32 ϕ33


where every block ϕij ∈ Ω1,0(X,Hom(Lj, Li)⊗K) using the new notation, and ϕ31 ≡
0 since:

E E ⊗K

L1 L3 ⊗K

Φ //

3⊗id

��

ı1

OO

ϕ31

//

where, by definition, L1 = E1, L3 = Q = V2/I and I = φ21(E1) ⊗ K−1 ⊂ V2, then
ϕ31 ≡ 0.

This time, we shall take

g(z) :=

 1 0 0

0 z 0

0 0 z2

 ∈ GL3(C).

Then, g ∈ G defines a gauge transformation, and then:

g(z) ∗ (z · Φ) = g(z)−1(z · Φ)g(z) =

 1 0 0

0 z−1 0

0 0 z−2


 z · ϕ11 z · ϕ12 z · ϕ13

z · ϕ21 z · ϕ22 z · ϕ23

0 z · ϕ32 z · ϕ33


 1 0 0

0 z 0

0 0 z2

 =
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 z · ϕ11 z2 · ϕ12 z3 · ϕ13

ϕ21 z · ϕ22 z2 · ϕ23

0 ϕ32 z · ϕ33

 −→
 0 0 0

ϕ21 0 0

0 ϕ32 0

 when z → 0.

Besides, ∂̄E the holomorphic structure of E may be expressed as

∂̄E =

 ∂̄1 β12 β13

0 ∂̄2 β23

0 0 ∂̄3


in terms of ∂̄j , which corresponds to the holomorphic structure ofLj , and βij ∈ Ω0,1(X,Hom(Lj, Li)).

Then:
g(z) ∗ ∂̄E = g(z)−1∂̄Eg(z) =

=

 ∂̄1 z · β12 z2 · β13

0 ∂̄2 z · β23

0 0 ∂̄3

 −→
 ∂̄1 0 0

0 ∂̄2 0

0 0 ∂̄3

 when z → 0.

Remains to answer two important questions. First, is Φ0 holomorphic since Φ is?
And second, is

(E0,Φ0) = lim
z→0

(E, z · Φ) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

) stable?

We shall start by answering the first question:

φ21 : L1
ı1−→ E

Φ−→ E ⊗K 2⊗id−−−→ L2 ⊗K
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and
φ32 : L2

ı2−→ E
Φ−→ E ⊗K 3⊗id−−−→ L3 ⊗K

are both holomorphic since Φ, the inclusions and the projections are. Then Φ0 is also
holomorphic, since φ21 and φ32 are the only two non-trivial components of Φ0.

To answer the second question, is necessary to consider the Φ0-invariant subbundles
of E0, and there are two kinds: those ones isomorphic to L3 := Q, and those ones
isomorphic to L2 ⊕ L3 = I ⊕ Q.

µ(L3) 6 µ(E0) :

Recall that we are supposing that µ(F ) > µ(E0) where F = L1 ⊕ L2 = E1 ⊕ I

i.e. µ(F ) =
1

2
(µ(L1) + µ(L2)) >

1

3
(µ(L1) + µ(L2) + µ(L3)) = µ(E0)⇐⇒

3(µ(L1) + µ(L2)) > 2(µ(L1) + µ(L2) + µ(L3))⇐⇒ µ(L1) + µ(L2) > 2µ(L3)⇐⇒

µ(L1) + µ(L2) + µ(L3) > 3µ(L3)⇐⇒ 1

3
(µ(L1) + µ(L2) + µ(L3)) > µ(L3)

∴ µ(E0) > µ(L3).

µ(L2 ⊕ L3) < µ(E0) :

Recall that µ(E) < µ(L1) since L1 = E1 is the maximal destabilizing line subbundle
of E. Then:

1

3
(µ(L1) + µ(L2) + µ(L3)) < µ(L1)⇐⇒ µ(L1) + µ(L2) + µ(L3) < 3µ(L1)⇐⇒

µ(L2) + µ(L3) < 2µ(L1)⇐⇒ 3(µ(L2) + µ(L3)) < 2(µ(L1) + µ(L2) + µ(L3))⇐⇒
1

2
(µ(L2) + µ(L3)) <

1

3
(µ(L1) + µ(L2) + µ(L3))⇐⇒ µ(L2 ⊕ L3) < µ(E0).

We have shown that (E0,Φ0) is semistable, but we are taking GCD(3, d) = 1, and
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it implies stability.

∴ (E0,Φ0) = lim
z→0

(E, z · Φ) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

) is stable.

♠

Remark 4.2.5. Since E/E1 is semi-stable, µ(I) 6 µ(E/E1), and so µ(I) 6 µ(Q).
Then, in this case, the Harder-Narasimhan Type of the limit bundle (E0,Φ0) is the
vector:

HNT (E0,Φ0) : ~λ = (λ1, λ3, λ2)

where λj = µ(Lj). In this subcase, HNT (E0,Φ0) coincides with HNT (E,Φ) if and
only if λ3 = λ2 = µ2 = µ(V2).

4.2.2 Case (2)

Similarly, suppose that E is an unstable vector bundle of rk(E) = 3 with a Harder-
Narasimhan Filtration of length 1:

HNF (E) : 0 ⊂ E1 ⊂ E

but this time E1 is the maximal destabilizing subbundle of E : µ(E1) > µ(E) with
rk(E1) = 2 where V1 = E1, V2 = E/E1 are semi-stables. Then, there is a smooth
decomposition E = V1 ⊕ V2 from the short exact sequence:

0 −→ V1 −→ E −→ V2 −→ 0.

Hence, once again, the Higgs field Φ takes the form:

Φ =

(
φ11 φ12

φ21 φ22

)

where this time 0 6= φ21 : V1 −→ V2 ⊗ K is a block of size (2 × 1), and every
block φij ∈ Ω1,0(X,Hom(Vj, Vi) ⊗ K). Furthermore, the representative holomorphic
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structure of E, ∂̄E takes the upper triangular form:

∂̄E =

(
∂̄1 β

0 ∂̄2

)

where ∂̄j is the corresponding holomorphic structure of Vj , and β ∈ Ω0,1(X,Hom(V2, V1)).

Denote by d1 = deg(V1) and d2 = deg(V2), where d2 = d − d1. We also note that
V2 satisfies:

a. rk(V2) = 1

b. V2 is semi-stable

c. µ(V2) < µ(E) < µ(V1)

Once again, these are general properties of the Harder-Narasimhan Filtration.

Define N := ker(φ21) ⊂ V1 and recall once again that we understand by this the
subbundle that we obtain saturating the respective subsheaf. Besides, rk(N) = 1.

Recall that we have defined (E0,Φ0) := lim
z→0

(E, z · Φ). We must consider then, two
subcases:

(1) µ(N) < µ(E)

(2) µ(N) > µ(E)

Case (2.1)

Proposition 4.2.6. Suppose that µ(N) < µ(E). Then: (E0,Φ0) is a (2, 1)-VHS.

Proof. All we need to do, is to consider

g(z) :=

(
I 0

0 z

)
∈ GL3(C)

where I ∈ GL2(C) is the identity matrix, and g ∈ G defines a gauge transformation.
Then:
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g(z) ∗ (z · Φ) = g(z)−1(z · Φ)g(z) =

=

(
z · φ11 z2 · φ12

φ21 z · φ22

)
→

(
0 0

φ21 0

)
when z → 0

and also:
g(z) ∗ ∂̄E = g(z)−1∂̄Eg(z) =

=

(
∂̄1 z · β
0 ∂̄2

)
→

(
∂̄1 0

0 ∂̄2

)
when z → 0.

To prove that Φ0 is holomorphic since Φ is, we may proceed as before, as what we
have done in 4.2.1. The proof is the same.

There are three kinds of Φ0-invariant subbundles: those ones isomorphic toN , those
ones isomorphic to V2, and those ones isomorphic to F = L ⊕ V2 where L ⊂ V1

is any line bundle. Everything is fine with N since, by hypothesis, in this subcase
µ(N) < µ(E). On the other hand, µ(V2) < µ(E) since µ(E) < µ(E1) and V2 = E/E1.
Let’s see what happen to F = L⊕ V2:
Since V1 = E1 is the maximal destabilizing subbundle of E, and since µ(V2) < µ(E) <

µ(V1) where V1 and V2 are semistable, we have:

µ(F ) =
1

2
(µ(L) + µ(V2)) 6

1

2
(µ(V1) + µ(V2)) <

2

3
µ(V1) +

1

3
µ(V2) = µ(E) = µ(E0)

Hence:

(E0,Φ0) := lim
z→0

(E, z · Φ) = (V1 ⊕ V2,

(
0 0

φ21 0

)
) is stable.

♠

Remark 4.2.7. In this case, the Harder-Narasimhan Type of the limit bundle (E0,Φ0) is
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the vector:
HNT (E0,Φ0) : ~ν = (ν1, ν1, ν2)

where νj = µ(Vj), and besides νj = µj . So, in this subcase we got

HNT (E0,Φ0) = HNT (E,Φ).

Case (2.2)

Proposition 4.2.8. If µ(N) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS.

Proof. Suppose µ(N) > µ(E), consider then the smooth splitting V1 = N ⊕ Q, from
the short exact sequence

0 −→ N −→ V1 −→ Q −→ 0

where Q := V1/N . Then, there is a new smooth splitting

E = N ⊕Q⊕ V2 = L1 ⊕ L2 ⊕ L3

where L1 := N, L2 := Q, and L3 := V2. Hence, we may re-write the Higgs field Φ as:

Φ =

 ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33

 =

 ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

0 ϕ32 ϕ33


where every block ϕij ∈ Ω1,0(X,Hom(Lj, Li)⊗K), and ϕ31 ≡ 0 since:

E E ⊗K

L1 L3 ⊗K

Φ //

3⊗id

��

ı1

OO

ϕ31

//

where, by definition, L1 = N , L3 = V2 and N is the saturated sheaf of ker(φ21), hence
ϕ31 ≡ 0.
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We shall take

g(z) :=

 1 0 0

0 z 0

0 0 z2

 ∈ GL3(C)

where g ∈ G defines a gauge transformation, and then:

g(z) ∗ (z · Φ) = g(z)−1(z · Φ)g(z) =

 z · ϕ11 z2 · ϕ12 z3 · ϕ13

ϕ21 z · ϕ22 z2 · ϕ23

0 ϕ32 z · ϕ33

−−−−−−−→z → 0

 0 0 0

ϕ21 0 0

0 ϕ32 0

 .

Besides, ∂̄E the holomorphic structure of E may be expressed as

∂̄E =

 ∂̄1 β12 β13

0 ∂̄2 β23

0 0 ∂̄3


in terms of ∂̄j , which corresponds to the holomorphic structure ofLj , and βij ∈ Ω0,1(X,Hom(Lj, Li)).

Then:
g(z) ∗ ∂̄E = g(z)−1∂̄Eg(z) =

=

 ∂̄1 z · β12 z2 · β13

0 ∂̄2 z · β23

0 0 ∂̄3

 −→
 ∂̄1 0 0

0 ∂̄2 0

0 0 ∂̄3

 when z → 0.

The proof that Φ0 is holomorphic since Φ is, is exactly the same proof that we pre-
sented in 4.2.1. To prove that (E0,Φ0) is stable, we must consider the Φ0-invariant
subbundles of E0: those ones isomorphic to L3 := V2, and those ones isomorphic to
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L2 ⊕ L3 = Q⊕ V2.
µ(L3) < µ(E0) trivially, since V1 = E1 is the maximal destabilizing subbundle of E
and V2 = E/E1, then µ(V2) < µ(E) < µ(V1).

Besides, recall that µ(N) > µ(E) = µ(E0)

i.e. µ(N) = µ(L1) >
1

3
(µ(L1) + µ(L2) + µ(L3)) = µ(E0)⇐⇒

3µ(L1) > µ(L1) + µ(L2) + µ(L3)⇐⇒ 2µ(L1) > µ(L2) + µ(L3)⇐⇒

2(µ(L1) + µ(L2) + µ(L3)) > 3(µ(L2) + µ(L3))⇐⇒

1

3
(µ(L1) + µ(L2) + µ(L3)) >

1

2
(µ(L2) + µ(L3))

∴ µ(E0) > µ(L2 ⊕ L3).

Once again, what we have shown is that (E0,Φ0) is semistable, but GCD(3, d) = 1

∴ (E0,Φ0) = lim
z→0

(E, z · Φ) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

) is stable.

♠

Remark 4.2.9. Since E1 is semi-stable, µ(N) 6 µ(E1), and so µ(N) 6 µ(Q). Then,
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in this case, the Harder-Narasimhan Type of the limit bundle (E0,Φ0) is the vector:

HNT (E0,Φ0) : ~λ = (λ2, λ1, λ3)

where λj = µ(Lj). In this subcase, HNT (E0,Φ0) coincides with HNT (E,Φ) if and
only if λ2 = λ1 = µ1 = µ(V1).

4.2.3 Case (3)

Finally, suppose that (E,Φ) is a Higgs Bundle where E is an unstable vector bundle of
rk(E) = 3 with a Harder-Narasimhan Filtration of length 2:

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 = E

where µ(E1) > µ(E2) > µ(E) and V1 = E1, V2 = E2/E1, and V3 = E/E2 are
semi-stables.

There is a smooth decomposition E = L1⊕L2⊕L3 = V1⊕ V2⊕ V3 from the short
exact sequences

0 −→ E1 −→ E2 −→ V2 −→ 0

0 −→ E2 −→ E −→ V3 −→ 0.

Nevertheless, we can not apply similar proceedings to what we did before, since the
Higgs field Φ takes the form

Φ =

 ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33


where ϕ31 : L1 → L3 ⊗K is not necessarily zero, and the gauge transformation g ∈ G
given by

g(z) :=

 1 0 0

0 z 0

0 0 z2

 ∈ GL3(C),
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will give us
g(z) ∗ (z · Φ) = g(z)−1(z · Φ)g(z) = z · ϕ11 z2 · ϕ12 z3 · ϕ13

ϕ21 z · ϕ22 z2 · ϕ23

1
z
· ϕ31 ϕ32 z · ϕ33


and there is a term of the form 1

z
ϕ31 before we take the limit when z → 0.

We may also think in smooth decompositions of the form

E = E1 ⊕ (E/E1) or E = E2 ⊕ (E/E2)

and trying to work the way we did before. However, we are in troubles again, since E2

and E/E1 are not semistables:

a. in the first case, E1 ⊂ E2 where µ(E1) > µ(E2) > µ(E),

b. and in the second case,E2/E1 ⊂ E/E1 where µ(E2/E1) > µ(E) could also happen.

It seems that these subcases could be worked as above, whereas µ(E2/E1) < µ(E)

or not. Recall, once again, that we have defined (E0,Φ0) := lim
z→0

(E, z ·Φ), and consider
the cases:

(1) µ(E2/E1) < µ(E)

(2) µ(E2/E1) > µ(E)
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Figure 2: Harder-Narasimhan Polygons with the possible cases mentioned above, the
red-dashed line segments represent segments with slope µ(V2) = µ(E2/E1) and the
red-thick line segments represent segments with slope µ(E). From left to right, from

top to bottom, µ(V2) > µ(E), µ(V2) < µ(E), µ(V2) = µ(E), µ(V2) < µ(E).

Case (3.1)

Suppose that µ(E2/E1) < µ(E). E2/E1 ⊂ E/E1 is the maximal line bundle such
that µ(E2/E1) > µ(E/E1). In this case, we will consider the smooth decomposition
E = W1 ⊕W2 from the short exact sequence

0→ W1 → E → W2 → 0

where W1 = E1 with rk(W1) = 1 and W2 = E/E1 with rk(W2) = 2; and then, the
Higgs field Φ takes the form:

Φ =

(
φ11 φ12

φ21 φ22

)
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where 0 6= φ21 : W1 −→ W2 ⊗ K is a (1 × 2)-size block, and every single block
φij ∈ Ω1,0(X,Hom(Wj,Wi) ⊗ K). As well as we did in 4.2.1, we consider I ⊂ V2

as the saturated bundle of φ21(E1) ⊗ K−1 where rk(I) = 1, and we consider also
F = V1 ⊕ I ⊂ V1 ⊕ V2 = E where rk(F ) = 2.

Recall that we have defined the pair (E0,Φ0) := lim
z→0

(E, z · Φ).

Proposition 4.2.10. With the conditions mentioned above, we have two possibilities:

i. Suppose that µ(F ) < µ(E). Then: (E0,Φ0) is a (1, 2)-VHS.

ii. On the other hand, if µ(F ) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS.

Proof. The proof is essentially the same presented in 4.2.1 and 4.2.1, except for one de-
tail: in i., as we have already mentioned, W2 is not semistable and, indeed, its maximal
destabilizing line bundle is E2/E1, but there is nothing to worry about in this case, since
we have supposed that µ(E2/E1) < µ(E), and it gives us stability. ♠

When the limit bundle (E0,Φ0) is a (1, 2)-VHS, it takes the form:

(E0,Φ0) = (W1 ⊕W2,

(
0 0

φ21 0

)
)

where W1 = E1 = V1 and W2 = E/E1
∼= V2 ⊕ V3. Then, the Harder-Narasimhan Type

of (E0,Φ0) is the vector:

HNT (E0,Φ0) : ~µ = (µ1, µ2, µ3)

where µj = µ(Vj), in other words:

HNT (E0,Φ0) = HNT (E,Φ).

On the other hand, since here E/E1 is not semi-stable, we cannot ensure that µ(I) 6

µ(Q) as we did in 4.2.1, so the Harder-Narasimhan Type of the limit bundle (E0,Φ0)

when it is a (1, 1, 1)-VHS, is either (λ1, λ2, λ3) or (λ1, λ3, λ2) where λj = µ(Lj) and
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the order of the second and the third entries will depend on who is larger: λ2 or λ3.
Hence:

HNT (E0,Φ0) = HNT (E,Φ)⇔


(λ1, λ2, λ3) = (µ1, µ2, µ3) when µ(Q) < µ(Ĩ)

(λ1, λ3, λ2) = (µ1, µ2, µ3) when µ(Q) > µ(Ĩ)

Case (3.2)

Suppose now that µ(E2/E1) > µ(E). This time, our main concern is that E2 is not
semistable, and actually, E1 ⊂ E2 is its maximal destabilizing line subbundle. In this
case, we will consider the smooth decomposition E = W1 ⊕W2 from the short exact
sequence

0→ W1 → E → W2 → 0

where W1 = E2 with rk(W1) = 2 and W2 = E/E2 with rk(W2) = 1; and then, the
Higgs field Φ takes the form:

Φ =

(
φ11 φ12

φ21 φ22

)

but now 0 6= φ21 : W1 −→ W2 ⊗ K is a (2 × 1)-size block, and every single block
φij ∈ Ω1,0(X,Hom(Wj,Wi) ⊗ K). As well as we did in 4.2.2, we consider N ⊂ W1

as the saturated bundle of ker(φ21), where rk(N) = 1.

Proposition 4.2.11. With the conditions mentioned above, we have two chances:

i. If µ(N) < µ(E). Then: (E0,Φ0) is a (2, 1)-VHS.

ii. On the other hand, if µ(N) > µ(E), then: (E0,Φ0) is a (1, 1, 1)-VHS.

Proof. Basically, the same presented in 4.2.2 and 4.2.2, except for one thing: this time
in i. W1 = E2 is not semistable. Furthermore, E1 ⊂ E2 is its maximal destabilizing line
subbundle. So, E1 ⊕W2 could be destabilizing. Nevertheless, we supposed this time
that µ(E2/E1) > µ(E) or, equivalently:

µ(E) 6 2µ(E2)− µ(E1)⇐⇒ 3µ(E) 6 2µ(E2)− µ(E1) + 2µ(E)⇐⇒
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µ(E1) + (3µ(E)− 2µ(E2)) 6 2µ(E)⇐⇒ µ(E1) + µ(E/E2) 6 2µ(E)

⇐⇒ µ(E1) + µ(W2) 6 2µ(E)⇐⇒ µ(E1 ⊕W2) 6 µ(E).

Since GCD(3, d) = 1, we get stability in this subcase, finishing the proof. ♠

When the limit bundle (E0,Φ0) is a (2, 1)-VHS, it takes the form:

(E0,Φ0) =
(
W1 ⊕W2,

(
0 0

φ21 0

))
where W1 = E2

∼= E1 ⊕ E2/E1 = V1 ⊕ V2 and W2 = E/E2 = V3. Then, the Harder-
Narasimhan Type of (E0,Φ0) is the vector:

HNT (E0,Φ0) : ~µ = (µ1, µ2, µ3)

where µj = µ(Vj), in other words:

HNT (E0,Φ0) = HNT (E,Φ).

On the other hand, since here E2 is not semi-stable, we cannot ensure that µ(N) 6

µ(Q) as we did in 4.2.2, so the Harder-Narasimhan Type of the limit bundle (E0,Φ0)

when it is a (1, 1, 1)-VHS, is either (λ1, λ2, λ3) or (λ2, λ1, λ3) where λj = µ(Lj) and
the order of the first and the second entries depend on who is larger: λ2 or λ1. Hence:

HNT (E0,Φ0) = HNT (E,Φ)⇔


(λ1, λ2, λ3) = (µ1, µ2, µ3) when µ(Q) > µ(N)

(λ2, λ1, λ3) = (µ1, µ2, µ3) when µ(Q) < µ(N)

4.2.4 The Harder-Narasimhan Type

It would be interesting to ask what happen the other way around: given a limit point
(E0,Φ0) ∈ Fλ, what is its Harder-Narasimhan Type and, does this HNT (E0,Φ0) co-
incides with the Harder-Narasimhan Type of (E,Φ) the original bundle, HNT (E,Φ)?

We have already mentioned what the Harder-Narasimhan Type is, but will be very
useful if we write it down properly for every single type of critical point. To do that, we
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will consider the following notation:

Given Fλ a critical submanifold ofM, we will denote

U+
λ =

{
(E,Φ) ∈M : lim

z→0
(E, z · Φ) ∈ Fλ

}
as the λ-upper-flow Morse subset ofM. Recall that these sets will give us a stratification
of the moduli space:

M =
⋃
λ

U+
λ

known as the Morse Stratification and, according to Kirwan [27], equivalent to the
Bialynicki-Birula Stratification.

On the other hand, we will denote

U~µ :=
{

(E,Φ) ∈M : HNT (E,Φ)) = ~µ
}

as the ~µ-Shatz component of the Shatz Stratification:

M =
⋃
~µ

U~µ.

Recall that we denote the pair (E0,Φ0) := lim
z→0

(E, z · Φ).

So far, what we know, for the rank three case is that for a given point (E,Φ) ∈ U~µ,
there is a particular λ such that (E,Φ) ∈ U+

λ :

(1) If (E,Φ) ∈ U~µ with

HNF (E,Φ) : 0 = E0 ⊂ E1 ⊂ E2 = E

where rk(E1) = 1, µ(E1) > µ(E) and V1 = E1, V2 = E/E1 are semi-stables,
then ~µ = (µ1, µ2, µ2) where µj = µ(Vj). Then, by the results showed in 4.2.1 and
4.2.1, and considering the sheaf I := φ21(V1)⊗K−1 ⊂ V2, its saturation Ĩ, where
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rk(Ĩ) = 1, and also F := V1 ⊕ Ĩ ⊂ V1 ⊕ V2 = E where rk(F ) = 2, we have two
possibilities:
Either

a.

(E0,Φ0) = (V1 ⊕ V2,

(
0 0

φ21 0

)
)

is a (1, 2)-VHS if µ(F ) < µ(E), and hence, (E,Φ) ∈ F
(1,2)
d1

where d1 =

deg(V1) ∈ ]d
3
, d

3
+ dK

2
[ ∩ Z (for more details, see Bento [3] or Gothen [14]).

Or

b.

(E0,Φ0) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)

is a (1, 1, 1)-VHS, and so, (E,Φ) ∈ F (1,1,1)
m1m2

where (m1,m2) ∈ Ω where Mj :=

L∗jLj+1K, mj := deg(Mj) = dj+1 − dj + dK , and

Ω =

{
(m1,m2) ∈ N× N

∣∣∣∣∣
2m1 +m2 < 3dK

m1 + 2m2 < 3dK

m1 + 2m2 ≡ 0(mod3)

}
.

For more details of the description of Ω, the reader can see Gothen [14], or Bento
[3].
In this case, L1 ⊕ L2 ⊕ L3 = V1 ⊕ Ĩ ⊕ Q.

Hence, summarizing, if (E,Φ) ∈ U~µ with ~µ = (µ1, µ2, µ2) then
(E0,Φ0) ∈ U~µ if µ(V1 ⊕ Ĩ) < µ(E)

(E0,Φ0) ∈ U~λ if µ(V1 ⊕ Ĩ) > µ(E)

where
~λ = (λ1, λ3, λ2)

since λ2 = µ(Ĩ) 6 µ(Q) = λ3. Note that we could have λ2 = λ3, and in such
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a case λ2 = λ3 = µ2, which implies ~µ = ~λ. In other words, if λ2 = λ3, then
HNT (E,Φ) = HNT (E0,Φ0).

(2) If (E,Φ) ∈ U~µ with

HNF (E,Φ) : 0 = E0 ⊂ E1 ⊂ E2 = E

where rk(E1) = 2, µ(E1) > µ(E) and V1 = E1, V2 = E/E1 are semi-stables, then
~µ = (µ1, µ1, µ2) where µj = µ(Vj). Then, by the results showed in 4.2.2 and 4.2.2,
and considering the sheaf N := ker(φ21), and its saturation N such that rk(N) = 1

and N ⊂ N ⊂ V1, we also have two possibilities:
Either

a.

(E0,Φ0) = (V2 ⊕ V1,

(
0 0

φ21 0

)
)

is a (2, 1)-VHS if µ(N) < µ(E), and hence, (E,Φ) ∈ F
(2,1)
d2

where d2 =

deg(V2) ∈ ]2d
3
, 2d

3
+ dK

2
[ ∩ Z (for more details, see Bento [3] or Gothen [14].)

Or

b.

(E0,Φ0) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)

is a (1, 1, 1)-VHS otherwise, and so, (E,Φ) ∈ F (1,1,1)
m1m2

where (m1,m2) ∈ Ω

where Mj := L∗jLj+1K, mj := deg(Mj) = dj+1 − dj + dK , and

Ω =

{
(m1,m2) ∈ N× N

∣∣∣∣∣
2m1 +m2 < 3dK

m1 + 2m2 < 3dK

m1 + 2m2 ≡ 0(mod3)

}
.

In this case, L1 ⊕ L2 ⊕ L3 = N ⊕Q⊕ V2.
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Then, if (E,Φ) ∈ U~µ with ~µ = (µ1, µ1, µ2) then
(E0,Φ0) ∈ U~µ if µ(N) < µ(E)

(E0,Φ0) ∈ U~λ if µ(N) > µ(E)

where
~λ = (λ2, λ1, λ3)

since λ1 = µ(N) 6 µ(Q) = λ2. Note that we could have λ1 = λ2, and in such
a case λ1 = λ2 = µ1, which implies ~µ = ~λ. In other words, if λ1 = λ2, then
HNT (E,Φ) = HNT (E0,Φ0).

(3) If (E,Φ) ∈ U~µ with

HNF (E,Φ) : 0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 = E

where rk(E1) = 1, rk(E2) = 2, µ(E1) > µ(E2) > µ(E), V1 = E1, V2 =

E2/E1 and V3 = E/E2 are semi-stables, then ~µ = (µ1, µ2, µ3) where µj = µ(Vj).
Then, by the results showed in 4.2.3 and 4.2.3, and considering the subbundles
Ĩ, Q, N and Q as above, we have four possibilities:

Either µ(V2) < µ(E) and then:

a.

(E0,Φ0) = (V1 ⊕ V2,

(
0 0

φ21 0

)
)

is a (1, 2)-VHS if µ(F ) < µ(E), and hence, (E,Φ) ∈ F (1,2)
d1

where
d1 = deg(V1) ∈ ]d

3
, d

3
+ dK

2
[ ∩ Z, or

b.

(E0,Φ0) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)

is a (1, 1, 1)-VHS if µ(F ) > µ(E), and so, (E,Φ) ∈ F (1,1,1)
m1m2

where (m1,m2) ∈
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Ω where Mj := L∗jLj+1K, mj := deg(Mj) = dj+1 − dj + dK , and

Ω =

{
(m1,m2) ∈ N× N

∣∣∣∣∣
2m1 +m2 < 3dK

m1 + 2m2 < 3dK

m1 + 2m2 ≡ 0(mod3)

}
.

Or, µ(V2) > µ(E) and so:

c.

(E0,Φ0) = (V2 ⊕ V1,

(
0 0

φ21 0

)
)

is a (2, 1)-VHS if µ(N) < µ(E), and hence, (E,Φ) ∈ F (2,1)
d2

where
d2 = deg(V2) ∈ ]2d

3
, 2d

3
+ dK

2
[ ∩ Z, or

d.

(E0,Φ0) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)

is a (1, 1, 1)-VHS if µ(N) > µ(E), and so, (E,Φ) ∈ F (1,1,1)
m1m2

where (m1,m2) ∈
Ω where Mj := L∗jLj+1K, mj := deg(Mj) = dj+1 − dj + dK , and

Ω =

{
(m1,m2) ∈ N× N

∣∣∣∣∣
2m1 +m2 < 3dK

m1 + 2m2 < 3dK

m1 + 2m2 ≡ 0(mod3)

}
.

In this case, L1 ⊕ L2 ⊕ L3 = N ⊕Q⊕ V2.
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Therefore, summarizing, we have:

(E,Φ) ∈ U~µ ⇒



if µ(V2) < µ(E)⇒


(E0,Φ0) ∈ U~µ if µ(V1 ⊕ Ĩ) < µ(E)

(E0,Φ0) ∈ U~λ if µ(V1 ⊕ Ĩ) > µ(E)

if µ(V2) > µ(E)⇒


(E0,Φ0) ∈ U~µ if µ(N) < µ(E)

(E0,Φ0) ∈ U~ρ if µ(N) > µ(E)

where

~λ =


(λ1, λ2, λ3) if λ2 > λ3

(λ1, λ3, λ2) if λ2 6 λ3

and

~ρ =


(ρ1, ρ2, ρ3) if ρ1 > ρ2

(ρ2, ρ1, ρ3) if ρ1 6 ρ2

With the information mentioned above, we can splitU~µ in terms of its λ-components:

U~µ =
⋃
λ

U~µλ

where we are defining U~µλ := U~µ ∩ U+
λ ∀λ.

Clearly the Shatz Stratification of U+
λ will be

U+
λ =

⋃
~µ

U~µλ.

We will write down the correspoding decomposition of Fλ =
⋃
~µ

F~µλ for each VHS,

where F~µλ = U~µ ∩ Fλ ∀λ.
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Variation of Hodge Structure of Type (1, 2)

Let Fλ = F
(1,2)
d1

be a (1, 2)-VHS such that d1 ∈]d
3
, d

3
+ dK

2
[∩Z. In this case there are two

components, i.e. for a pair (E0,Φ0) ∈ F (1,2)
d1

we have two possibilities:

1.

(E0,Φ0) = (V1 ⊕ V2,

(
0 0

φ21 0

)
)

comes from (E,Φ) ∈ U~δ1
where

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

with rk(E1) = 1, V1 = E1, V2 = E/E1 semi-stables and µ(V1) > µ(V2), and then

~δ1 = (µ1, µ2, µ2) where µj = µ(Vj).

Here, HNT (E0,Φ0) = ~δ1 = HNT (E,Φ) since E0 = V1 ⊕ V2 where Vj = Vj .

2.

(E0,Φ0) = (V1 ⊕ V2,

(
0 0

φ21 0

)
)

comes from (E,Φ) ∈ U ~ρ1 where

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 = E

with Vj = Ej/Ej−1 semi-stables and µ(Vj) > µ(Vj+1), and then

~ρ1 = (µ1, µ2, µ3) where µj = µ(Vj).

Here, HNT (E0,Φ0) = ~ρ1 = HNT (E,Φ) since E0 = V1 ⊕ V2 where V1 = E1 and
V2 = E/E1

∼= E2/E1 ⊕ E/E2.

Briefly, we get then two disjoint components:

Fλ = F
(1,2)
d1

= F~δ1d1 t F ~ρ1d1 .
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Variation of Hodge Structure of Type (2, 1)

Let Fλ = F
(2,1)
d2

be a (2, 1)-VHS such that d2 ∈]2d
3
, 2d

3
+ dK

2
[∩Z. Similarly, there are two

possibilities for a pair (E0,Φ0) ∈ F (2,1)
d2

:

1.

(E0,Φ0) = (V2 ⊕ V1,

(
0 0

φ21 0

)
)

comes from (E,Φ) ∈ U~δ2
where

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

with rk(E1) = 2, V1 = E1, V2 = E/E1 semi-stables and µ(V1) > µ(V2), and then

~δ2 = (µ1, µ1, µ2) where µj = µ(Vj).

Here, HNT (E0,Φ0) = ~δ2 = HNT (E,Φ) since E0 = V2 ⊕ V1 where V2 = Ẽ1 and
V1 = Ẽ2.

2.

(E0,Φ0) = (V1 ⊕ V2,

(
0 0

φ21 0

)
)

comes from (E,Φ) ∈ U ~ρ2 where

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 = E

with Vj = Ej/Ej−1 semi-stables and µ(Vj) > µ(Vj+1), and then

~ρ2 = (µ1, µ2, µ3) where µj = µ(Vj).

Here, HNT (E0,Φ0) = ~ρ2 = HNT (E,Φ) since E0 = V2 ⊕ V1 where V2 = E2
∼=

V1 ⊕ V2 and V1 = E/E2 = V3.

Therefore, we get then two disjoint components:

Fλ = F
(2,1)
d2

= F~δ2d2 t F ~ρ2d2 .
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Variation of Hodge Structure of Type (1, 1, 1)

Let Fλ = F
(1,1,1)
m1m2 be a (1, 1, 1)-VHS with (m1,m2) ∈ Ω. Here the situation is quite

different: for a pair (E0,Φ0) ∈ F (1,1,1)
m1m2 we have three components:

1.

(E0,Φ0) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)

comes from (E,Φ) ∈ U~δ1
where

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

with rk(E1) = 1, V1 = E1, V2 = E/E1 semi-stables and µ(V1) > µ(V2), and
then

~δ1 = (µ1, µ2, µ2) where µj = µ(Vj).

Here, we will denote `j = µ(Lj) where L1 = V1, L2 = Ĩ, L3 = Q. Hence:

HNT (E0,Φ0) =


(`1, `2, `3) if µ(Ĩ) > µ(Q)

(`1, `3, `2) if µ(Ĩ) 6 µ(Q)

Therefore:

HNT (E,Φ) = HNT (E0,Φ0)⇔ `2 = `3 = µ2 ⇔ µ(Ĩ) = µ(Q) = µ(V2).

2.

(E0,Φ0) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)

comes from (E,Φ) ∈ U~δ2
where

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 = E

with rk(E1) = 2, V1 = E1, V2 = E/E1 semi-stables and µ(V1) > µ(V2), and
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then
~δ2 = (µ1, µ1, µ2) where µj = µ(Vj).

Here, we will denote `j = µ(Lj) where L1 = N, L2 = Q, and L3 = V2. Hence:

HNT (E0,Φ0) =


(`1, `2, `3) if µ(N) > µ(Q)

(`2, `1, `3) if µ(N) 6 µ(Q)

Therefore:

HNT (E,Φ) = HNT (E0,Φ0)⇔ `1 = `2 = µ1 ⇔ µ(N) = µ(Q) = µ(V1).

3.

(E0,Φ0) = (L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

)

comes from (E,Φ) ∈ U ~ρ3 where

HNF (E) : 0 = E0 ⊂ E1 ⊂ E2 ⊂ E3 = E

with Vj = Ej/Ej−1 semi-stables and µ(Vj) > µ(Vj+1), and then

~ρ3 = (µ1, µ2, µ3) where µj = µ(Vj).

Here, once again, we will denote `j = µ(Lj), but this time the situation is quite
different:

L1⊕L2⊕L3 =


V1 ⊕ Ĩ ⊕ Q if µ(V2) < µ(E) and µ(V1 ⊕ Ĩ) > µ(E)

N ⊕Q⊕ V2 if µ(V2) > µ(E) and µ(N) > µ(E)

Recall that the cases µ(V1⊕ Ĩ) < µ(E) and µ(N) < µ(E), belong to the compo-
nents of the VHS of type (1, 2) and (2, 1) respectively.
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Hence:

HNT (E,Φ) = HNT (E0,Φ0)⇔


Ĩ ∼= V2 and Q ∼= V3

or
N ∼= V1 and Q ∼= V2

Therefore, even when we can have two different limit points in the last subcase, we
get just three disjoint components:

Fλ = F (1,1,1)
m1m2

= F~δ1(m1,m2) t F~δ2(m1,m2) t F ~ρ3(m1,m2).



Chapter 5

Nilpotent Cone

In this chapter, we study the stratification of the Nilpotent Cone given by the Down-
ward Morse Flow, and its relation to the Shatz stratification. The results presented here
complement those of Chapter 4. We find a filtration that describes the Nilpotent Cone
in terms of the Downward Morse Flow, for rank two and rank three cases.

5.1 The Hitchin Map and The Nilpotent Cone

Recall that we are supposing GCD(r, d) = 1. So, the moduli space of Hitchin pairs,
ML(r, d), is a non-compact, smooth complex manifold of dimension

dimC
(
ML(r, d)

)
= (r2 − 1)deg(L).

M(r, d) is also a Riemannian manifold with a complete hyperKähler metric, and there
is a proper map, the so-called Hitchin map defined by:

χ :Mk(r, d) −→ H0(X,L)⊕ · · · ⊕H0(X,Lr)

[(E,Φ)] 7−→ det(Φ)
(5.1)

The Hitchin map is proper, and it is also an algebraically completely integrable Hamil-
tonian system with respet to the symplectic holomorphic form Ω, with a generic fibre
which is a Prym variety corresponding to the espectral cover of X at the image point.

127
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Finally, recall also that the set

χ−1(0) :=
{

[(E,Φ)] ∈ML(r, d) : χ(Φ) = 0
}

is known as the Nilpotent Cone, and has been described by Hitchin [24], Hausel [19],
among others, as one of the most important fibres of the Hitchin map, and the most
singular at the same time.

The Hitchin map is widely studied and descripted by Hausel [19] and [20]. Among
his results, the most relevant is the following assertion:

Theorem 5.1.1 (Hausel [20, Theorem 5.2]). The Downward Morse Flow of M(r, d)

coincides with the Nilpotent Cone:

χ−1(0) ∼=
⋃
λ

DM
λ .

Hence, [(E,Φ)] ∈ χ−1(0) if and only if ∃ lim
z→∞

[(E,Φ)] ∈ML(r, d).

5.2 Rank Two Hitchin Pairs in the Nilpotent Cone

From the last theorem, we can conclude our own general results for the Hitchin pairs in
the Nilpotent Cone. First, for rank two Hitchin pairs (E,Φ) ∈M(2, d), we have:

Theorem 5.2.1. Let [(E,Φ)] ∈ χ−1(0) be a Hitchin pair with rk(E) = 2. Then, there

is a filtration

E = E1 ⊃ E2 ⊃ E3 = 0

such that

Φ(Ej) ⊂ Ej+1 ⊗ L

and

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
L1 ⊕ L2,

(
0 0

ϕ 0

))
(5.2)

is a (1, 1)-VHS where

Lj = Ej/Ej+1 and ϕ : L1 → L2 ⊗ L.
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Proof. Consider the kernel subsheaf N := ker(Φ) ⊂ E, we know that N is not a
subbundle but then, we can consider its saturationN ⊂ Ñ ⊂ E which is a line subundle
of E. Then, consider the exact sequence:

0 −→ L2 −→ E −→ L1 −→ 0

where L2 = Ñ and L1
∼= E/Ñ . Then, there is a smooth splitting: E ∼=C∞ L1⊕L2, and

the Higgs field Φ takes the form:

Φ =

(
0 0

ϕ21 0

)

where ϕ21 : L1 → L2 ⊗ L, and the representative holomorphic structure of E, ∂̄E =

∂̄A = ∂̄ + A0,1dz̄ takes the lower triangular form:

∂̄A =

(
∂̄1 0

β ∂̄2

)
=

(
∂̄ + b11dz̄ 0

b21dz̄ ∂̄ + b22dz̄

)

where ϕ21 6= 0, by the stability of (E,Φ), and ∂̄j = ∂̄ + bjjdz̄ is the corresponding
holomorphic structure of Lj , and β = b21dz̄ ∈ Ω0,1(X,Hom(L1, L2)). See Wentworth
[39] for more details.

Hence, is enough if we consider the filtration

E = E1 ⊃ E2 ⊃ E3 = 0

where we are taking E2 = Ñ . Trivially: Φ(E2) ⊂ E3 ⊗ L, since E3 = 0. Besides, Φ is
nilpotent: Φ2 ≡ 0, and so im(Φ) ⊂ ker(Φ)⊗ L, and hence Φ(E1) = Φ(E) ⊂ E2 ⊗ L.

All we have to do is to find a gauge transformation g = g(z) ∈ GL2(C) such that

(E∞,Φ∞) = lim
z→∞

g(z)−1(E, z · Φ)g(z) ∈ DM
λ .

We may suppose that g(z) is diagonal, so, g12(z) ≡ 0 and g21(z) ≡ 0. In such a
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case, we have:

g(z) =

(
g11(z) g12(z)

g21(z) g22(z)

)
=

(
g11(z) 0

0 g22(z)

)
for z ∈ C∗

and then:

g(z)−1 =
1

det(g)

(
g22(z) 0

0 g11(z)

)
=

1

g11(z)g22(z)

(
g22(z) 0

0 g11(z)

)

=

(
1

g11(z)
0

0 1
g22(z)

)
for z ∈ C∗.

Then:

g−1(z ·Φ)g =

(
1

g11(z)
0

0 1
g22(z)

)(
0 0

z · ϕ21 0

)(
g11 0

0 g22

)
=

(
0 0

g11
g22
z · ϕ21 0

)
.

Similarly:

g−1∂̄Eg = g−1∂̄Ag =

(
1

g11(z)
0

0 1
g22(z)

)(
∂̄1 0

β ∂̄2

)(
g11 0

0 g22

)
=

(
∂̄1 0
g11
g22
β ∂̄2

)
.

It will be enough if the gij’s satisfy:

lim
z→∞

g11(z)

g22(z)
= 0 and lim

z→∞

g11(z)

g22(z)
z = 1

It seems that we may choose polynomials, or even better, integer powers of z:

g11(z) = zp, g22(z) = zq for z ∈ C∗ :

g−1(z)(z · Φ)g(z) =

(
z−p 0

0 z−q

)(
0 0

z · ϕ21 0

)(
zp 0

0 zq

)
=

(
0 0

z1−q+p · ϕ21 0

)
→

(
0 0

ϕ21 0

)
when z →∞⇔ 1− q + p = 0⇔ q − p = 1.
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and also:

g−1∂̄Eg = g−1∂̄Ag =

(
∂̄1 0

zp−qβ ∂̄2

)
so:

g−1∂̄Eg →

(
∂̄1 0

0 ∂̄2

)
when z →∞⇔ p− q < 0⇔ p < q.

It is easy to find a pair (p, q) ∈ Z× Z such that p and q satisfy both conditions, we can
consider for instance p = 0 and q = 1.

We are almost done. It remains to verify two things: first, that (E∞,Φ∞) is stable;
and second, that Φ∞ is holomorphic since Φ is.

Stability follows easily since the original (E,Φ) ∈ χ−1(0) is stable: since Φ(L1) ⊂
im(Φ) ⊗ L ⊂ ker(Φ) ⊗ L ⊂ L2 ⊗ L, L1

∼= E/L2 is not Φ∞-invariant, and so, the
line subbundles which are Φ∞-invariant are those that are isomorphic to L2. But, by
the stability of (E,Φ), we know that µ(L2) < µ(E∞) trivially, since µ(Ñ) < µ(E) =

µ(E∞). Hence, (E∞,Φ∞) is stable.

∂̄End(E)(Φ) = 0⇒ ∂̄End(E∞)(Φ
∞) = 0 :

Recall that
0 = ∂̄End(E)(Φ) = ∂̄E ◦ Φ− Φ ◦ ∂̄E

Then, in local terms we have:

∂̄E ◦ Φ− Φ ◦ ∂̄E =

(
∂̄1 0

β ∂̄2

)(
0 0

ϕ21 0

)
−

(
0 0

ϕ21 0

)(
∂̄1 0

β ∂̄2

)
=

(
0 0

∂̄2ϕ21 0

)
−

(
0 0

ϕ21∂̄1 0

)
=

(
0 0

0 0

)
.
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Similarly:
∂̄E∞ ◦ Φ∞ − Φ∞ ◦ ∂̄E∞ =

(
∂̄1 0

0 ∂̄2

)(
0 0

ϕ21 0

)
−

(
0 0

ϕ21 0

)(
∂̄1 0

0 ∂̄2

)

=

(
0 0

∂̄2ϕ21 0

)
−

(
0 0

ϕ21∂̄1 0

)
=

(
0 0

0 0

)
since, by hypothesis

(∂̄End(E)(Φ))21 = ∂̄2 ◦ ϕ21 − ϕ21 ◦ ∂̄1 ≡ 0.

Therefore, Φ∞ is holomorphic since Φ is. ♠

5.3 Rank Three Hitchin Pairs in the Nilpotent Cone

We would like to say that the result is analogue for rank three Hitchin pairs (E,Φ) ∈
ML(3, d), but truth is that there is a bizard subcase where we must consider the image
subsheaf of the k-Higgs field. So we get the following:

Theorem 5.3.1. Let [(E,Φ)] ∈ χ−1(0) be a Hitchin pair with rk(E) = 3. Then:

(a) either there is a filtration

E = E1 ⊃ E2 ⊃ E3 ⊃ E4 = 0

such that

Φ(Ej) ⊂ Ej+1 ⊗ L

and

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
L1 ⊕ L2 ⊕ L3,

 0 0 0

ϕ21 0 0

0 ϕ32 0

) (5.3)
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is a (1, 1, 1)-VHS where

Lj = Ej/Ej+1 and ϕj : Lj−1 → Lj ⊗ L

(b) or, there is a filtration

E = E1 ⊃ E2 ⊃ E3 = 0

such that

(b.1.) either

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
V1 ⊕ V2,

(
0 0

ϕ21 0

))
(5.4)

is a (1, 2)-VHS where

Vj = Ej/Ej+1 and ϕ : V1 → V2 ⊗ L,

and where Φ(Ej) ⊂ Ej+1 ⊗ L,

(b.2.) or

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
W1 ⊕W2,

(
0 0

ϕ21 0

))
(5.5)

is a (2, 1)-VHS, depending on the rank of E2, and depending also on some

properties of Φ.

Proof. Since (E,Φ) ∈ χ−1(0) ⊂M(3, d), then Φ3 ≡ 0. So, either Φ2 6= 0 or Φ2 ≡ 0.

(a) If Φ2 6= 0, we may consider the following sequence of subsheaves:

N1 = ker(Φ3) ⊃ N2 = ker(Φ2) ⊃ N3 = ker(Φ) ⊃ N4 = 0,

and so, we may consider the filtration:

E = E1 ⊃ E2 ⊃ E3 ⊃ E4 = 0
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where Ej = Ñj is the saturated sheaf of Nj . Clearly Φ(Ej) ⊂ Ej+1 ⊗ L. Then,
taking Lj = Ej/Ej+1, there are morphisms of bundles ϕij : Lj → Li ⊗ L induced
by Φ and, since Φ is nilpotent, we may write:

Φ =

 0 0 0

ϕ21 0 0

ϕ31 ϕ32 0


and then, using

g(z) =

 1 0 0

0 z 0

0 0 z2


as gauge transformation, we get:

g−1(z · Φ)g =

 1 0 0

0 z−1 0

0 0 z−2


 0 0 0

z · ϕ21 0 0

z · ϕ31 z · ϕ32 0


 1 0 0

0 z 0

0 0 z2

 =

 0 0 0

ϕ21 0 0
1
z
· ϕ31 ϕ32 0

−−−−−−−−→z →∞

 0 0 0

ϕ21 0 0

0 ϕ32 0


and also:

g−1∂̄Eg = g−1∂̄Ag =

 1 0 0

0 z−1 0

0 0 z−2


 ∂̄1 0 0

β21 ∂̄2 0

β31 β32 ∂̄3


 1 0 0

0 z 0

0 0 z2

 =

 ∂̄1 0 0
1
z
β21 ∂̄2 0

1
z2
β31

1
z
β32 ∂̄3

−−−−−−−−→z →∞

 ∂̄1 0 0

0 ∂̄2 0

0 0 ∂̄3

 .

Note that Φ∞ is holomorphic since Φ is. Recall that:

0 = ∂̄End(E)(Φ) = ∂̄E ◦ Φ− Φ ◦ ∂̄E
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Then, in local terms we have:

∂̄End(E∞)(Φ
∞) = ∂̄E∞ ◦ Φ∞ − Φ∞ ◦ ∂̄E∞ = ∂̄1 0 0

0 ∂̄2 0

0 0 ∂̄3


 0 0 0

ϕ21 0 0

0 ϕ32 0

−
 0 0 0

ϕ21 0 0

0 ϕ32 0


 ∂̄1 0 0

0 ∂̄2 0

0 0 ∂̄3

 =

 0 0 0

∂̄2ϕ21 0 0

0 ∂̄3ϕ32 0

−
 0 0 0

ϕ21∂̄1 0 0

0 ϕ32∂̄2 0

 =

 0 0 0

0 0 0

0 0 0


since

(
∂̄End(E)(Φ)

)
21

= ∂̄2ϕ21−ϕ21∂̄1 = 0 and
(
∂̄End(E)(Φ)

)
32

= ∂̄3ϕ32−ϕ32∂̄2 =

0 by hypothesis, since ∂̄End(E)(Φ) = 0. Hence, Φ∞ is holomorphic.

To prove stability in this case, is necessary to consider the Φ∞-invariant subbundles
of E∞, and there are two kinds: those ones isomorphic to L3, and those ones iso-
morphic to L2⊕L3. And, by the stability of (E,Φ), we know that µ(L3) < µ(E∞)

trivially, since E3 is Φ-invariant and so µ(E3) = µ(Ñ3) < µ(E) = µ(E∞). On the
other hand, also by the stability of (E,Φ), we have that µ(L2 ⊕ L3) = µ(E2) <

µ(E∞) andE2 is also Φ-invariant, since µ(E2) = µ(Ñ2) < µ(E) = µ(E∞). Hence,
(E∞,Φ∞) is stable.

(b) On the other hand, suppose that Φ2 ≡ 0. Then, we may consider:

N1 = ker(Φ3) ⊃ N2 = ker(Φ2) ⊃ N3 = 0,

and so, we may consider the filtration:

E = E1 ⊃ E2 ⊃ E3 = 0

where Ej = Ñj is the saturated sheaf of Nj . Clearly Φ(Ej) ⊂ Ej+1 ⊗ L. Then,
taking Vj = Ej/Ej+1, there is a morphism of bundles ϕ21 : V1 → V2 ⊗ L induced
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by Φ and so:

Φ =

(
0 0

ϕ21 0

)
The following diagram

E E2 ⊗ L

E/E2

Φ6=0 //

π

��

ϕ21

<<

factors because Φ(E2) = E3 = 0. Now, we must consider two subcases: either
rk(E2) = 1 or rk(E2) = 2.

When rk(E2) = 1, we get that

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
V1 ⊕ V2,

(
0 0

ϕ21 0

))
is a (2, 1)-VHS, and the statement of the proof is almost the same of that one
presented above for the rank two Hitchin pair, with two main differences: first,
ϕ21 : V1 → V2⊗L is actually a (2× 1)-block instead of a (1× 1)-block, and so we
must take

g(z) =

(
I2 0

0 z

)
∈ GL3(C)

as our gauge transformation, where I2 ∈ GL2(C) is the identity matrix; and second,
stability. In this subcase, the Φ∞-invariant subbundles are those isomorphic to V2 =

E2, and those isomorphic to the bundle of the form L′⊕V2, where L′ ⊂ V1 = E/E2

is any line bundle. But by the stability of (E,Φ) we know that µ(E2) < µ(E) since
E2 is Φ-invariant, so µ(V2) < µ(E∞). On the other hand, those bundles of the form
L′ ⊕ E2 also have slope less than E, but the proof is a little bit more sofisticated:
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Consider the short exact sequence

0 −→ E2 −→ E
π−−−→ E/E2 −→ 0.

So, define V := π−1(L′) ⊂ E, and consider the sequence

0 −→ E2 −→ V −→ L′

and note that V is Φ-invariant, then µ(V ) < µ(E), or equivalently, µ(L′ ⊕ E2) <

µ(E). Hence, (E∞,Φ∞) is stable.

When rk(E2) = 2, define I := ϕ21(V1)⊗K−1 ⊂ V2 and its saturation Ĩ such that
I ⊂ Ĩ ⊂ V2, and define also F := V1 ⊕ Ĩ. If µ(F ) < µ(E), we get that

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
V1 ⊕ V2,

(
0 0

ϕ21 0

))
is a (1, 2)-VHS, and the statement of the proof follows a similar argument to the
one above for the rank two Hitchin pair, also with two main differences: first, ϕ21 :

V1 → V2⊗L is actually a (1× 2)-block instead of a (1× 1)-block, and so we must
take

g(z) =

(
1 0

0 I2 · z

)
∈ GL3(C)

as our gauge transformation, where I2 ∈ GL2(C) is again the identity matrix; and
second, stability. In this subcase, the Φ∞-invariant subbundles are those isomorphic
to V2 = E2, those isomorphic to the bundle of the form L′ ⊂ V2, where L′ is any
line bundle, and those isomorphic to F . By the stability of (E,Φ) we know that
µ(E2) < µ(E) since E2 is Φ-invariant, so µ(V2) < µ(E∞). Clearly, those bundles
of the form L′ ⊂ E2 also have slope less than E, since Φ(L′) = 0 because L′ ⊂ E2,
and so it is Φ-invariant, hence µ(L′) < µ(E) = µ(E∞). On the other hand, we are
supposing that µ(F ) < µ(E), so we are done in this subsubcase.
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Finally, when rk(E2) = 2, if µ(F ) > µ(E), then we consider the smooth splitting

E ≡
(
E/Ĩ

)
⊕ Ĩ

where

E Ĩ ⊗ L

E/Ĩ

Φ6=0 //

π̃

��

φ21

<<

factors because Ĩ ⊂ E2 = Ñ2 = ker(Φ). In such a case, we get that

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
(
W1 ⊕W2,

(
0 0

ϕ21 0

))
is a (2, 1)-VHS, where W1 = E/Ĩ and W2 = Ĩ, and the statement of the proof
follows a similar argument to those above. Remains to check stability. The Φ∞-
invariant subbundles of E∞ are of three kinds: those who are isomorphic to E2/Ĩ,
those isomorphic to L′ ⊕ Ĩ for any line bundle L′ ⊂ E/Ĩ, and those isomorphic to
Ĩ.

µ(E2/Ĩ) < µ(E) :

In this subcase, we are supposing that µ(F ) > µ(E), which is equivalent to:

µ(V1 ⊕ Ĩ) > µ(E)⇔ 3
(
deg(V1) + deg(Ĩ)

)
> 2d⇔

3
(
d− deg(V2) + deg(Ĩ)

)
> 2d⇔ d > 3

(
deg(E2)− deg(Ĩ)

)
⇔

d

3
> deg(E2)− deg(Ĩ)⇔ µ(E2/Ĩ) < µ(E).

Note that Φ(Ĩ) = 0 because Ĩ ⊂ E2 = Ñ = k̃er(Φ), and by the stability of (E,Φ)

we get µ(Ĩ) < µ(E) = µ(E∞).
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Finally, to prove that µ(L′ ⊕ Ĩ) < µ(E∞), we consider the following short exact
sequence

0 −→ Ĩ −→ E
π−−−→ E/Ĩ −→ 0.

So, define V := π−1(L′) ⊂ E, and consider the sequence

0 −→ Ĩ −→ V −→ L′

and note that V is Φ-invariant, then µ(V ) < µ(E), or equivalently, µ(L′ ⊕ Ĩ) <

µ(E). Hence, (E∞,Φ∞) is stable.

♠

5.4 Approach for General Rank

Suppose now that [(E,Φ)] ∈ χ−1(0) ⊂ M(r, d) is a Hitchin pair of general rank
rk(E) = r and degree deg(E) = d. Let p ∈ N be the least positive integer such
that Φp = 0 and Φp−1 6= 0, and so consider the subsheaves Kj := ker(Φp+1−j) ⊂ E

and their respective saturations Ej = K̃j such that Kj ⊂ K̃j ⊂ E where Ej ⊂ E is a
subbundle of E ∀j ∈ {1, ..., p}. We would like to conclude that there is a filtration

E = E1 ⊃ E2 ⊃ ... ... ⊃ Ep ⊃ Ep+1 = 0

such that
Φ(Ej) ⊂ Ej+1 ⊗ L

and that

(E∞,Φ∞) := lim
z→∞

(E, z · Φ) =
( p⊕
j=1

Vj,



0 ... ... ... 0

ϕ2 0 ... ... 0

0 ϕ3 0 ... 0
... . . . . . . . . . ...
0 ... 0 ϕp 0


)

(5.6)

where
Vj = Ej/Ej+1 and ϕj : Vj−1 → Vj ⊗ L,
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but this is not always true.

Recall that [(E,Φ)] ∈ χ−1(0) if and only if Φr = Φ ◦ Φ ◦ ... ◦ Φ ≡ 0 by defini-
tion, in general for rk(E) = r. So, we know that there is an integer p ∈ N, p 6 r

such that Φp = Φ ◦ Φ ◦ ... ◦ Φ ≡ 0 by definition, with equality p = r when the
subbundles Ej = K̃j ⊂ E are linear, where Kj := ker(Φr+1−j) ⊂ E and where
Kj ⊂ K̃j ⊂ E ∀j ∈ {1, ..., r}.

As well as we did for rank two and rank three, we may consider the smooth splitting

E ∼=C∞

p⊕
j=1

Vj

where Vj = Ej/Ej+1, and then, think about the Higgs field taking the triangular form:

Φ =



0 ... ... ... 0

ϕ21 0 ... ... 0

ϕ31 ϕ32 0 ... 0
... . . . . . . . . . ...
ϕp1 ... ϕpp−2 ϕpp−1 0


where ϕij : Vj → Vi ⊗ L. In such a case, the holomorphic structure could be of the
form:

∂̄E =


∂̄1 0 ... 0

β21 ∂̄2
. . . ...

... . . . . . . 0

βp1 ... βpp−1 ∂̄p


where ∂̄j is the correspoding holomorphic structure of Vj , and βij ∈ Ω0,1(X,Hom(Vj, Vi)).
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We also may consider g ∈ G such that:

g(z) =


Ir1 0 ... 0

0 zIr2
. . . ...

... . . . . . . 0

0 ... 0 zp−1Irp

 ∈ GLr(C)

defined by blocks, where rj = rk(Vj) is the rank of Vj and Irj ∈ End(Vj) is the identity
∀j ∈ {1, ..., p}. Hence:

g−1(z)(z · Φ)g(z) =
Ir1 0 ... 0

0 z−1Ir2
. . . ...

... . . . . . . 0

0 ... 0 z1−pIrp




0 ... ... 0

zϕ21 0 ... 0
... . . . . . . ...

zϕp1 ... zϕpp−1 0




Ir1 0 ... 0

0 zIr2
. . . ...

... . . . . . . 0

0 ... 0 zp−1Irp



=



0 ... ... ... 0

ϕ21 0 ... ... 0

z−1ϕ31 ϕ32 0 ... 0
... . . . . . . . . . ...

z1−pϕp1 ... z−1ϕpp−2 ϕpp−1 0


−−−−→z →∞



0 ... ... ... 0

ϕ21 0 ... ... 0

0 ϕ32 0 ... 0
... . . . . . . . . . ...
0 ... 0 ϕpp−1 0


,

and also:
g−1(z) ∂̄E g(z) =


Ir1 0 ... 0

0 z−1Ir2
. . . ...

... . . . . . . 0

0 ... 0 z1−pIrp




∂̄1 0 ... 0

β21 ∂̄2
. . . ...

... . . . . . . 0

βp1 ... βpp−1 ∂̄p




Ir1 0 ... 0

0 zIr2
. . . ...

... . . . . . . 0

0 ... 0 zp−1Irp
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=


∂̄1 0 ... 0

z−1β21 ∂̄2
. . . ...

... . . . . . . 0

z−pβp1 ... z−1βpp−1 ∂̄p

→


∂̄1 0 ... 0

0 ∂̄2
. . . ...

... . . . . . . 0

0 ... 0 ∂̄p

when z →∞.

Φ∞ is holomorphic since Φ is. To verify that, is enough to do some general calcula-
tions similar to those we did for rank two and rank three.

Unfortunately, our main trouble lies in how to prove that

lim
z→∞

(E, z · Φ) = (E∞,Φ∞) =
( p⊕
j=1

Vj,



0 ... ... ... 0

ϕ21 0 ... ... 0

0 ϕ32 0 ... 0
... . . . . . . . . . ...
0 ... 0 ϕpp−1 0


)

is stable. This Higgs bundle is not necessarily stable, so we can not conclude a general
form of the theorem.
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