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Factorization

Factorization, in its broadest sense.

Uniqueness of factorization.

In N := {1, 2, 3, . . . }, every number a is a product of n ≥ 0 primes,
not necessarily distinct. Moreover, such a factorization is
essentially unique: if

a = p1p2 · · · pr and a = q1q2 · · · qs

are two factorizations of a with p1, p2, . . . , pr , q1, q2, . . . , qs prime
numbers, then r = s and, relabelling if necessary, pi = qi for
i = 1, 2, . . . , r .
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Finite (abelian) groups
Ferdinand Georg Frobenius (Berlin, 1849-1917)

Frobenius and Stickelberger, “Über Gruppen von vertauschbaren
Elementen”, J. reine angew. Math. 86 (1879), 217–262:
any finite abelian group is a direct product of cyclic groups whose
orders are powers of primes, and this powers of primes are uniquely
determined by the group.

Joseph Henry Maclagan Wedderburn (Angus, Scotland 1882 -
Princeton 1948 – a Scottish mathematician, who taught at
Princeton University for most of his career.)
“On the Direct Product in the Theory of Finite Groups”, Ann. of
Math. 10 (1909), 173–176; Wedderburn mentions some credit is
due to G. A. Miller): if a finite group G has two direct-product
decompositions G = G1 ×G2 × · · · ×Gt = H1 ×H2 × · · · ×Hs into
indecomposables, then t = s and there is an automorphism ϕ of G
such that ϕ(Gi ) = Hσ(i) for all i ’s for some permutation σ of
1, 2, . . . , n.
The proof was not complete.
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Krull-Schmidt-Remak Theorem

Robert Erich Remak (Berlin 1888 - Auschwitz 1943), German
mathematician, of Jewish ancestry.

His dissertation, “Über die Zerlegung der endlichen Gruppen in
indirekte unzerlegbare Faktoren” (”On the decomposition of finite
groups into indirect indecomposable factors”, 1911) contained a
complete proof and established that if a finite group G has two
direct-product decompositions into indecomposables
G = G1 × G2 × · · · × Gt = H1 × H2 × · · · × Hs , then t = s and
there is a central automorphism ϕ of G such that ϕ(Gi ) = Hσ(i)
for all i ’s for some permutation σ of 1, 2, . . . , n.

central automorphism of G = automorphism of G that induces the
identity G/ζ(G )→ G/ζ(G ). Here ζ(G ) denotes the center of G .
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Krull-Schmidt-Remak Theorem

Otto Yulyevich Schmidt (Otto �l~eviq Xmidt, Mogilëv,
Russian Empire (now Belarus) 1891 - Moscow 1956).

His father was a descendant of German settlers in Latvia, while his
mother was a Latvian.
Soviet mathematician, astronomer, geophysicist, statesman,
academician, celebrated explorer of the Arctic, Hero of the USSR
(1937), member of the Communist Party.

“Sur les produits directs”, Bull. Soc. Math. France 41 (1913),
161–164: a simplified proof of Remak’s main results.



Krull-Schmidt-Remak Theorem

Otto Yulyevich Schmidt (Otto �l~eviq Xmidt, Mogilëv,
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History of the Krull-Schmidt-Remak Theorem

Wolfgang Krull (Baden-Baden 1899, Bonn 1971)

“Über verallgemeinerte endliche Abelsche Gruppen”, Math.
Zeitschrift 23 (1925), 161–196:

Abelian operator groups with ascending and descending chain
conditions (operator groups = Ω-groups. Here Ω is a set and an
Ω-group is a pair (H, ϕ), where H is a group and ϕ : Ω→ End(H)
is a mapping).

Groups that satisfy ACC and DCC on normal subgroups ( = G
group, N (G ), partially ordered by ⊆, turns out to be a modular
lattice. If N (G ) is a partially ordered set that satisfies the ACC
and the DCC, then K-S holds for G ).
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History of the Krull-Schmidt-Remak Theorem

Øystein Ore (Oslo, 1899-1968)

unified the proofs from various
categories: groups, abelian operator groups, rings and algebras, the
theorem of Wedderburn holds for modular lattices with descending
and ascending chain conditions.

Goro Azumaya (Yokohama 1920 - Bloomington, Indiana, 2010).
”Corrections and supplementaries to my paper concerning
Krull-Remak-Schmidt’s theorem”, Nagoya Math. J. 1 (1950),
117–124:
Let R be a ring, Mi (i ∈ I ) be a right R-module, EndR(Mi ) a
local ring, M =

⊕
i∈I Mi . Then any two direct sum decompositions

of M into indecomposable direct summands are isomorphic.
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An example that follows a different pattern

R any ring, MR any right R-module.

MR is uniserial if its lattice of submodules is linearly ordered, that
is, if for any submodules A,B of MR either A ⊆ B or B ⊆ A.

The endomorphism ring of a uniserial module has at most two
maximal right (left) ideals:
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Non-zero uniserial modules and their endomorphism rings

Theorem
[F., T.A.M.S. 1996] Let UR be a non-zero uniserial module over a
ring R,

E := End(UR) its endomorphism ring, I := { f ∈ E | f is
not injective } and K := { f ∈ E | f is not surjective }. Then I and
K are two two-sided completely prime ideals of E , and every
proper right ideal of E and every proper left ideal of E is contained
either in I or in K . Moreover,
(a) either E is a local ring with maximal ideal I ∪ K , or
(b) E/I and E/K are division rings, and E/J(E ) ∼= E/I × E/K .
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Monogeny class, epigeny class

Two modules U and V are said to have

1. the same monogeny class, denoted [U]m = [V ]m, if there exist
a monomorphism U → V and a monomorphism V → U;

2. the same epigeny class, denoted [U]e = [V ]e , if there exist an
epimorphism U → V and an epimorphism V → U.
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Weak Krull-Schmidt Theorem

Theorem
[F., T.A.M.S. 1996] Let U1, . . . , Un, V1, . . . , Vt be n + t
non-zero uniserial right modules over a ring R. Then the direct
sums U1 ⊕ · · · ⊕Un and V1 ⊕ · · · ⊕ Vt are isomorphic R-modules if
and only if n = t and there exist two permutations σ and τ of
{1, 2, . . . , n} such that [Ui ]m = [Vσ(i)]m and [Ui ]e = [Vτ(i)]e for
every i = 1, 2, . . . , n.



Cyclically presented modules over local rings

The behavior of uniserial modules is enjoyed by other classes of
modules.

First example [B. Amini, A. Amini and A. Facchini, J. Algebra
2008].

A right module over a ring R is cyclically presented if it is
isomorphic to R/aR for some element a ∈ R. For any ring R, we
will denote with U(R) the group of all invertible elements of R.
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Cyclically presented modules over local rings

If R/aR and R/bR are cyclically presented modules over a local
ring R, we say that R/aR and R/bR have the same lower part,
and write [R/aR]l = [R/bR]l , if there exist u, v ∈ U(R) and
r , s ∈ R with au = rb and bv = sa.

(Two cyclically presented modules over a local ring have the same
lower part if and only if their Auslander-Bridger transposes have
the same epigeny class.)
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Cyclically presented modules and idealizer

The endomorphism ring EndR(R/aR) of a non-zero cyclically
presented module R/aR is isomorphic to E/aR, where
E := { r ∈ R | ra ∈ aR } is the idealizer of aR.



Cyclically presented modules over local rings

E := { r ∈ R | ra ∈ aR } is the idealizer of aR.

Theorem
Let a be a non-zero non-invertible element of an arbitrary local
ring R, let E be the idealizer of aR, and let E/aR be the
endomorphism ring of the cyclically presented right R-module
R/aR. Set I := { r ∈ R | ra ∈ aJ(R) } and K := J(R) ∩ E . Then I
and K are two two-sided completely prime ideals of E containing
aR, the union (I/aR) ∪ (K/aR) is the set of all non-invertible
elements of E/aR, and every proper right ideal of E/aR and every
proper left ideal of E/aR is contained either in I/aR or in K/aR.
Moreover, exactly one of the following two conditions holds:
(a) Either I and K are comparable (that is, I ⊆ K or K ⊆ I ), in
which case E/aR is a local ring, or
(b) I and K are not comparable, and in this case E/I and E/K are
division rings, J(E/aR) = (I ∩ K )/aR, and (E/aR)/J(E/aR) is
canonically isomorphic to the direct product E/I × E/K .
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Weak Krull-Schmidt Theorem for cyclically presented
modules over local rings

Theorem
(Weak Krull-Schmidt Theorem) Let a1, . . . , an, b1, . . . , bt be
n + t non-invertible elements of a local ring R. Then the direct
sums R/a1R ⊕ · · · ⊕ R/anR and R/b1R ⊕ · · · ⊕ R/btR are
isomorphic right R-modules if and only if n = t and there exist two
permutations σ, τ of {1, 2, . . . , n} such that [R/aiR]l = [R/bσ(i)R]l
and [R/aiR]e = [R/bτ(i)R]e for every i = 1, 2, . . . , n.



Equivalence of matrices

The Weak Krull-Schmidt Theorem for cyclically presented modules
has an immediate consequence as far as equivalence of matrices is
concerned. Recall that two m× n matrices A and B with entries in
a ring R are said to be equivalent matrices, denoted A ∼ B, if
there exist an m ×m invertible matrix P and an n × n invertible
matrix Q with entries in R (that is, matrices invertible in the rings
Mm(R) and Mn(R), respectively) such that B = PAQ.

We denote
by diag(a1, . . . , an) the n × n diagonal matrix whose (i , i) entry is
ai and whose other entries are zero.
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Equivalence of matrices

If R is a commutative local ring and a1, . . . , an, b1, . . . , bn are
elements of R, then diag(a1, . . . , an) ∼ diag(b1, . . . , bn) if and only
if there exists a permutation σ of {1, 2, . . . , n} with ai and bσ(i)
associates for every i = 1, 2, . . . , n. Here a, b ∈ R are associates if
they generate the same principal ideal of R.

If the ring R is local, but non-necessarily commutative, we have
the following result:

Proposition

Let a1, . . . , an, b1, . . . , bn be elements of a local ring R. Then
diag(a1, . . . , an) ∼ diag(b1, . . . , bn) if and only if there exist two
permutations σ, τ of {1, 2, . . . , n} with

[R/aiR]l = [R/bσ(i)R]l and [R/aiR]e = [R/bτ(i)R]e

for every i = 1, 2, . . . , n.
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Several other classes of modules have the same behaviour:

Biuniform modules.
Kernels of morphisms between indecomposable injective modules
(Ecevit, F., Koşan).
Couniformly presented modules (F., Girardi).
Auslander-Bridger modules (F., Girardi).
Also for direct products (Alahmadi, F., J. Algebra 2015).
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Couniformly presented modules (F., Girardi).
Auslander-Bridger modules (F., Girardi).

Also for direct products (Alahmadi, F., J. Algebra 2015).



Several other classes of modules have the same behaviour:

Biuniform modules.
Kernels of morphisms between indecomposable injective modules
(Ecevit, F., Koşan).
Couniformly presented modules (F., Girardi).
Auslander-Bridger modules (F., Girardi).
Also for direct products (Alahmadi, F., J. Algebra 2015).



Other algebraic structures?

Other algebraic structures, not only modules, could have the same
behavior.

Groups, Lie algebras, G -groups,. . .



Algebras

K a commutative ring with identity

M a K -module with a K -bilinear mapping M ×M → M is a
K -algebra (not necessarily associative).

If M is a K -algebra and we endow M with the multiplication
M ×M → M, (x , y) 7→ yx , we get another algebra, called its
opposite algebra, denoted by Mop.
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M ×M → M, (x , y) 7→ yx , we get another algebra, called its
opposite algebra, denoted by Mop.



Rings

Rings are the associative K -algebras (for K = Z).

(a) The main example of ring is the endomorphism ring of any
abelian group (or the endomorphism ring of any K -module).

(b) More generally, for any ring R and any a ∈ R, left
multiplication by a is an abelian group endomorphism λa : R → R.

(c) There is a canonical ring morphism λ : R → EndAb(R),
λ : a 7→ λa.
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R-modules

Correspondingly, we have:

(d) Left R-modules = abelian groups G with a ring
homomorphism λ : R → EndAb(G ).

(e) Right R-modules = abelian groups G with a ring
antihomomorphism ρ : R → EndAb(G ),
or equivalently

= abelian groups G with a ring
homomorphism ρ : Rop → EndAb(G ).
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Lie algebras

They are the K -algebras with [x , x ] = 0 and the Jacobi identity.

The first example is, for any K -module M, the algebra gl(M) of all
K -module endomorphisms of M with multiplication
[f , g ] = fg − gf . But:
(a) The main example of Lie algebra is the algebra of derivations
DerK (M) of any K -algebra M.
A derivation of a K -algebra M is a mapping D : M → M that is
K -linear and is such that D(xy) = (Dx)y + x(Dx) for every
x , y ∈ M.
If D1,D2 are derivations of an algebra M, then D1D2 − D2D1 is a
derivation of M.
(b) If L is any Lie algebra, the mapping
ad x := [x ,−] : L→ L, y 7→ [x , y ], is a derivation of L for every
x ∈ L.
(c) There is a canonical Lie algebra morphism L→ DerK (L),
x 7→ ad x .
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L-modules, L a Lie algebra

Correspondingly, we have:

(d) Left L-modules = K -modules M with a Lie algebra
homomorphism L→ gl(M).

(e) Right L-modules = K -modules M with a Lie algebra
antihomomorphism L→ gl(M),
or equivalently

= K -modules M with a Lie algebra
homomorphism Lop → gl(M). But:

(1) the opposite of any Lie algebra L is a Lie algebra Lop;
(2) the mapping L→ Lop, defined by x ∈ L 7→ −x , is an
isomorphism of L onto Lop. So there is no need to
introduce/distinguish left modules or right modules, they form
isomorphic categories.
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G -groups

Let G be a group. A (left) G -group is a pair (H, ϕ), where H is a
group and ϕ : G → Aut(H) is a group homomorphism.

Equivalently, a G -group is a group H endowed with a mapping
· : G × H → H, (g , h) 7→ gh, called left scalar multiplication, such
that
(a) g(hh′) = (gh)(gh′)
(b) (gg ′)h = g(g ′h)
(c) 1Gh = h
for every g , g ′ ∈ G and every h, h′ ∈ H.
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The category G -Grp

Objects of G -Grp: all pairs (H, ϕ), where H is any group and
ϕ : G → Aut(H) is a group homomorphism.

Strict analogy with left modules over a ring R:
Objects of R-Mod: all pairs (H, ϕ), where H is any abelian group
and ϕ : R → End(H) is a ring homomorphism.



The category G -Grp

Objects of G -Grp: all pairs (H, ϕ), where H is any group and
ϕ : G → Aut(H) is a group homomorphism.

Strict analogy with left modules over a ring R:
Objects of R-Mod: all pairs (H, ϕ), where H is any abelian group
and ϕ : R → End(H) is a ring homomorphism.
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A special object of G -Grp is the regular G -group (G , α). Here
α : G → Aut(G ), g 7→ αg , where αg (x) = gxg−1 for every
g , x ∈ G .

The regular G -group (G , α) plays, in the category G -Grp, a role
pretty similar to the role of the regular module RR in the category
R-Mod.
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(Subobjects of the regular R-module RR = left ideals of R)

Quotient objects of the regular G -group G = factor groups G/M
(Quotient objects of the regular R-module RR = cyclic right
R-modules)

Normal homomorphisms f : H → H ′, f (gh) = gf (h), are
morphisms in the category G -Grp
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The category G -Grp

G -Grp is a semi-abelian category in the sense of Janelidze, Márki
and Tholen.

We determine free G -groups and show that the injective objects in
the category G -Grp are only the trivial groups, like in the case of
the category Grp of groups.

The category G -Set of G -sets is a Boolean topos (which does not
satisfy the Axiom of Choice), and the category of G -groups is the
category of groups of that topos (Janelidze).
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Modules vs groups

module MR , E := End(MR) group H

idempotents in E idempotents in End(H)
l l

{ (A,B) | A,B ≤ MR , { (A,B) | A,B ≤ H,
MR = A⊕ B } H = Ao B }

normal idempotents in End(H)
l

{ (A,B) | A,B ≤ H,
H = A× B }



Modules vs groups

Ω-groups G -sets
\ /

E -Mod EE regular module G -groups

GG regular G -group
E -Mod is the category G -Grp is the category

in which it is natural to study in which it is natural to study
direct-sum decompositions direct-product decompositions

of EE of G
= direct-sum decompositions

of MR EndG -Grp(G ) =

={normal endomorphisms of G}
AutG -Grp(G ) =

={central automorphisms of G}



Factorisation of polynomials

A different application: uniqueness of factorisation of polynomials
into irreducible polynomials.

Uniqueness of factorisation: UFD. The standard definition is:
A unique factorisation domain R (UFD) is a commutative integral
domain R in which:
(i) every element a ∈ R, a 6= 0 and a non-invertible, is a product
of finitely many irreducible elements of R;
(ii) if p1, . . . , pn, q1, . . . , qm are irreducible elements of R and
p1 . . . pn = q1 . . . qm, then n = m and there exists a permutation σ
of {1, 2, . . . , n} such that pi and qσ(i) are associates for every
i = 1, 2, . . . , n.
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Primes and irreducible elements

In an integral domain R, every prime element is irreducible.

If R is
a UFD, the converse holds. More precisely:
An integral domain R is a UFD if and only if every irreducible is
prime and R satisfies ascending chain condition on principal ideals,
if and only if every irreducible is prime and R is atomic (every
element a ∈ R, a 6= 0 and a non-invertible, is a product of finitely
many irreducible elements of R.)
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Associated elements

Proposition

The following conditions are equivalent for two prime elements a, b
of a commutative integral domain R:

(i) a = bu for some invertible element u ∈ R.

(ii) aR = bR.

(iii) R/aR ∼= R/bR.

(iv) [R/aR]m = [R/bR]m.

(v) [R/aR]e = [R/bR]e .

(vi) [R/aR]l = [R/bR]l .



Commutative polynomials, non-commutative polynomials

The ring Z[x1, . . . , xn].

Coefficients in the ring of integers Z.
n commuting indeterminates x1, . . . , xn.

It is a UFD.
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Non-commutative polynomials

The ring Z〈x1, . . . , xn〉.

Coefficients in the ring of integers Z.
n non-commuting indeterminates x1, . . . , xn. Z〈x1, . . . , xn〉 is the
free ring on n objects.

Do polynomials in Z〈x1, . . . , xn〉 factorise in a unique way as
product of irreducible polynomials?

Z〈x1, . . . , xn〉 is atomic: polynomials do factorise as product of
irreducible polynomials. The invertible elements in Z〈x1, . . . , xn〉
are only 1 and −1.
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Non-commutative polynomials

Does a polynomial in Z〈x1, . . . , xn〉 factorise as a product of
irreducible polynomials in a unique way up to the sign of the
irreducible factors?

No: x(yx − 2) = (xy − 2)x in the ring Z〈x , y〉.
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The Brungs Theorem

Theorem
Every polynomial in R := Z〈x1, . . . , xn〉 factorises as a product of

irreducible polynomials. Moreover, if p1, . . . , pn, q1, . . . , qm are
irreducible polynomials in R and p1 . . . pn = q1 . . . qm, then n = m
and there exists a permutation σ of {1, 2, . . . , n} such that
[R/piR]m = [R/qσ(i)R]m. �

For x(yx − 2) = (xy − 2)x in the ring R = Z〈x , y〉,
[R/(xy − 2)R]m = [R/(yx − 2)R]m,
because λy : R/(xy − 2)R → R/(yx − 2)R and
λx : R/(yx − 2)R → R/(xy − 2)R are monomorphisms.
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Polynomials with non-negative coefficients

Now consider N0[x ], set of all polynomials in Z[x ] whose
coefficients are all ≥ 0.

It is not a ring (it is a commutative semiring), it is a semigroup
with respect to multiplication. In N0[x ] every element is a finite
product of atoms (= polynomials irreducible in N0[x ]). The unique
invertible element is 1. Does a polynomial in N0[x ] factorise as a
product of irreducible polynomials in a unique way?

No. Example:
From the theory of cyclotomic polynomials we know that the
factorization of xn − 1 in the UFD Q[x ] is xn − 1 =

∏
d |n Φd(x),

where Φd(x) is the d-th cyclotomic polynomial. Here
Φ1(x) = x − 1, Φ2(x) = x + 1, Φ3(x) = x2 + x + 1,
Φ4(x) = x2 + 1, Φ5(x) = x4 + x3 + x2 + x + 1, Φ6(x) = x2− x + 1.
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Polynomials with non-negative coefficients

Thus x6 − 1 = Φ1(x)Φ2(x)Φ3(x)Φ6(x) =

(x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1), so we have a factorization
x5 + x4 + x3 + x2 + x + 1 = (x + 1)(x2 + x + 1)(x2 − x + 1) into
irreducibles in Q[x ]. Multiplying the first factor and the last one,
we get that (x + 1)(x2 − x + 1) = x3 + 1 ∈ N0[x ], and multiplying
the last two factors we get that
(x2 + x + 1)(x2 − x + 1) = x4 + x2 + 1 ∈ N0[x ]. Thus we get two
essentially different factorizations
(x3 + 1)(x2 + x + 1) = (x + 1)(x4 + x2 + 1) of
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Thus factorizations into irreducibles in N0[x ] are not unique (but
every polynomial in N0[x ] has only finitely many distinct
factorizations into irreducibles).



Polynomials with non-negative coefficients

Thus x6 − 1 = Φ1(x)Φ2(x)Φ3(x)Φ6(x) =
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An application to direct-product decompositions of
partially ordered set.

The Krull-Schmidt theorem does not hold for finite partially
ordered sets (Nakayama and Hashimoto).

In fact:
(1) The category of partially ordered sets has coproducts (disjoint
unions) and products (direct products with the component-wise
order).
(2) This is a distributive category:
X × (Y ∪̇Z ) ∼= (X × Y )∪̇(X × Z ).
(3) Let L = {0, 1} be the partially ordered set with two elements
0 < 1.
(4) For every n ≥ 0, Ln is a connected partially ordered set with 2n

elements and its automorphism group is the symmetric group Sn.
(5) Two essentially different direct-product decompositions of the
partially ordered set 1∪̇L∪̇L2∪̇L3∪̇L4∪̇L5 into indecomposable
partially ordered sets are given by
(L3∪̇1)× (L2∪̇L∪̇1) ∼= (L∪̇1)× (L4∪̇L2∪̇1)
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Further current directions of investigation

(1) (with Federico Campanini) Description of the behaviour, as far
as direct-sum decompositions are concerned, of short exact
sequences

0 //AR
α //BR

β
//CR

//0, (1)

where Ar and CR are uniserial modules. Their endomorphism ring
in the category of all short exact sequences has at most four
maximal ideals, and their isomorphism types are described by four
invariants [B]m,l , [B]e,l , [B]m,u, [B]e,u.

(2) (with Maŕıa José Arroyo Paniagua) Description of the
behaviour, as far as direct-sum decompositions are concerned, of
abelian ideals in groups.
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Further current directions of investigation

(3) (with Zahra Nazemian) Study of the factorizations
A = A1 . . .An of a right ideal A of non-necessarily commutative
ring R as a product of right ideals A1, . . . ,An, with
R/A ∼= R/A1⊕ · · · ⊕R/An and the right modules R/A1, . . . ,R/An

uniserial. The main example is R = a Dedekind domain.

(4) (with Michael Hoefnagel) Krull-Schmidt theorem in distributive
categories. Recall that a category C with finite products (−)× (−)
and coproducts (−) + (−) is called (finitary) distributive if, for any
objects X ,Y ,Z of C, the canonical morphism

X × Y + X × Z → X × (Y + Z )

is an isomorphism.


