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Abstract

In this thesis we investigate the existence of normal forms for the transverse
Poisson structure to the coadjoint orbit of a point µ in the dual of a Lie alge-
bra. We start by establishing a formula for the transverse Poisson structure
to a coadjoint orbit which is easily programmable. After that, we prove a
new sufficient condition for linearity of the transverse Poisson structure to
a coadjoint orbit and apply it to important classes of Lie algebras. We also
establish a necessary condition for linearity and use it to show, for example,
that there are no linear transverse Poisson structures to any coadjoint orbit
of se(3)∗, apart from the trivial ones. After, we prove that there are also no
polynomial transverse Poisson structures to coadjoint orbits of se(3)∗. Ne-
vertheless, it turns out that in this specific case there are transverse Poisson
structures that are ”polynomializable”, i.e., Poisson-diffeomorphic to a poly-
nomial Poisson structure. In order to illustrate the presented results, several
examples of transverse Poisson structures to coadjoint orbits are computed,
using the formula referred to above.

Resumo

Nesta tese investigamos a existência de formas normais para a estrutura de
Poisson transversa à órbita coadjunta de um ponto µ no dual de uma ál-
gebra de Lie. Em primeiro lugar, desenvolvemos uma formula facilmente
programável para a estrutura de Poisson transversa a uma órbita coadjunta.
Depois, demonstramos uma nova condição suficiente para a linearidade da
estrutura de Poisson transversa a uma órbita coadjunta, que se aplica a
classes importantes de álgebras de Lie. Demonstramos também uma condição
necessária para a linearidade da transversa e usamo-la para mostrar que, por
exemplo, não existem estruturas de Poisson transversas a nenhuma órbita
coadjunta de se(3)∗ que sejam lineares, para além das triviais. Por fim,
provamos que também não existem estruturas de Poisson transversas a ór-
bitas coadjuntas de se(3)∗ que sejam polinomiais. No entanto, acontece que
no caso de se(3)∗ existem estruturas de Poisson transversas que são ”poli-
nomializáveis”, ou seja, Poisson-difeomorfas a estruturas de Poisson polino-
miais. Ilustrámos os resultados apresentados através do cálculo explícito de
vários exemplos de estruturas de Poisson transversas a órbitas coadjuntas,
utilizando a formula referida acima.
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Résumé
Dans cette thèse, nous étudions l’existence de formes normales pour la struc-
ture de Poisson transverse à l’orbite coadjointe en un point du dual d’une
algèbre de Lie. En premier lieu, on prouve une formule pour la structure de
Poisson transverse à une orbite coadjointe qui peut être facilement program-
mée. Ensuite, on exhibe une nouvelle condition suffisante pour la linéarité de
la structure de Poisson transverse à une orbite coadjointe, que l’on applique à
des classes importantes d’algèbres de Lie. On démontre aussi une condition
nécessaire pour la linéarité d’une structure transverse que on l’utilise, par
exemple, pour montrer qu’il n’existe pas de structure de Poisson transverse à
aucune orbite coadjointe de se(3)∗ qui soit linéaire, sauf pour les cas triviaux.
Finalement, on montre qu’il n’y a pas de structure de Poisson transverse à
aucune orbite coadjointe de se(3)∗ qui soit polynomiale. Il existe cependant
dans ce cas des structures de Poisson transverses qui sont "polynomializ-
ables", c’est-à-dire difféomorphes à une structure de Poisson polynomiale.
Pour illustrer les résultats présentés, on calcule des exemples de structures
de Poisson transverses à des orbites coadjointes, en utilisant notre formule.
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Introduction

Poisson manifolds appear naturally in many Classical Mechanics problems.
Singular Poisson structures (i.e., Poisson structures in which the rank varies
pointwise) appear less frequently, and are greater in complexity and interest
than the more common constant rank Poisson structures. Some examples in
Mechanics where such singular structures arise are:

1. the Euler equations for the angular velocity vector for a rigid body with
a fixed point;

2. equations for a mechanical system in which a given parameter ap-
proaches a limit value.

The simpler Poisson structures are the symplectic structures, which are
the basic layout for the equations in Classical Mechanics.

Lie-Poisson structures, defined on the dual of any real Lie algebra, are
examples of non-symplectic Poisson structures. They appear in the Euler
equations referred to above. In this case, the Poisson structure involved is
the Lie-Poisson structure on the dual of the Lie algebra so(3). These singular
structures are precisely the linear ones, and constitute the simplest possible
example of singular Poisson structures.

Given a Poisson manifold and a singular point (of arbitrary rank), we
consider two associated (sub)structures:

1. the symplectic leaf through the singular point;

2. the transverse Poisson structure to the symplectic leaf through the same
point.

The latter is defined on any transverse manifold to the symplectic leaf, and
was introduced by A. Weinstein [18]. It depends on the chosen transverse
manifold, but two transverse Poisson structures to a symplectic leaf at the
same point are always Poisson-diffeomorphic.

In the particular case where the original Poisson manifold is the dual of
a Lie algebra, the symplectic leaf through the singular point is the coadjoint
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orbit through the same point. In this case, there is a ”canonic family” of
transverse manifolds which are actually affine subspaces in the dual of the
Lie algebra (see [18]). These affine subspaces are related to a specific sup-
plement of the isotropy subalgebra of the given point, and different choices
of that supplement lead to different (although Poisson-diffeomorphic) trans-
verse Poisson structures.

There are conditions on such supplements of the isotropy subalgebra
which imply linearity of the transverse Poisson structure (Molino [12]) or
that it is quadratic (Oh [13]). Cushman & Roberts [3] proved that if the
initial Lie algebra is semisimple, then there is a polynomial transverse Pois-
son structure. This result had already been conjectured by Damianou [4].
However, the conditions by Molino and Oh are often difficult to prove in a
particular case.

In [1] we have presented a simple formula for computing the transverse
Poisson structure to a coadjoint orbit and applied it to some specific cases.
We verified that different choices of the supplement referred above may result
in transverse Poisson structures substancially different in nature. That is the
case of the dual of the Lie algebra so(4), where we obtained both a linear and
a non-polynomial transverse Poisson structure, at the same singular point.

It is important to notice that all the results we referred to up to this
point were included in the author’s masters degree dissertation, finished in
February of 2003. These results correspond to the majority of Chapters 1
and 2 of this thesis. In Chapter 1, the exceptions are Lemma 9 and Examples
13, 23 and 25. In Chapter 2, the exceptions are the proofs of Proposition 36
and Theorem 38, as well as the whole Section 2.3.

Chapter 3 begins with a proof that, if there is a linear transverse Poisson
structure to a coadjoint orbit at a certain point, then there will also be a
linear transverse Poisson structure at any point in the same coadjoint orbit.
Hence, the expression ”linear Poisson structure to a coadjoint orbit” makes
sense. After that, we prove a sufficient condition (on the isotropy subalgebra
of the given point) so that there is an affine subspace on which the transverse
Poisson structure is linear. This condition (which is sufficient but not neces-
sary) implies that there is a supplement of the isotropy subalgebra in g which
satisfies the condition by Molino, which in turn guarantees the linearity of
the transverse Poisson structure. Several corollaries of this result are then
derived, establishing linear transverse Poisson structures to coadjoint orbits
in several classes of Lie-Poisson manifolds. More specifically, there is a linear
transverse Poisson structure to a coadjoint orbit when:

1. the Lie algebra g is of compact type;

2. the Lie algebra g considered is semisimple and the splitting point con-
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sidered is a semisimple element of g∗;

3. the isotropy subalgebra of the splitting point is semisimple or the
isotropy subgroup is compact.

We provide several examples that illustrate these corollaries. We also give
an example that shows that the Molino condition is not necessary for linear-
ity. Furthermore, we show that our condition for linearity is equivalent to
the Molino condition for some classes of Lie algebras, but the two are not
equivalent in general.

In Chapter 4, we work on necessary conditions for linearity of the trans-
verse Poisson structure, using the notion of Taylor approximation (of de-
gree 1) of a Poisson structure at a zero rank point. We were able to infer
the linearity or non-linearity of transverse Poisson structures on several Lie-
Poisson manifolds using a necessary condition for linearity. The main idea
used throughout this chapter was to find out exactly what Poisson structures
have in common with their linear Taylor approximations.

Chapter 5 was originated by two questions raised by the referee of [2],
regarding transverse Poisson structures to coadjoint orbits of se(3)∗. Apart
from their (non-)linearity, he was interested in two issues:

1. investigating the existence of polynomial transverse Poisson structures;

2. investigating if they are Poisson-diffeomorphic to polynomial Poisson
structures (or ”polynomializable”).

In general, the first issue is much more difficult to address than the linearity
issue, because a Taylor approximation of a Poisson tensor is not necessarily a
Poisson tensor. However, in the case of se(3)∗, we were able to establish that
there are no polynomial transverse Poisson structures. Regarding the second
issue, we have indeed found polynomializable transverse Poisson structures
to coadjoint orbits of se(3)∗ (apart from the trivial ones).

We include in appendices the computations of several transverse Poisson
structures, referred to in examples throughout this thesis.
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Chapter 1

Preliminary Results

1.1 Notation

We begin by stating some conventions followed in this work:

• All manifolds are supposed to be real, connected, finite dimensional
and differentiable, even if we omit that fact in the text.

• IfM is a finite-dimensional differentiable manifold, we denote its tan-
gent bundle by TM and its cotangent bundle by T∗M.

• Throughout this work, smoothness is intended in the C∞ sense. The
set of all smooth functions f : M → R is hence denoted by C∞(M),
while X(M) is the set of all smooth vector fields onM.

• We denote by Ωk(M) the set of all smooth k-forms overM. In partic-
ular,

Ω0(M) = C∞(M).

• We denote byAk(M) the set of all smooth contravariant skew-symmetric
k-tensors onM.

• If ϕ : M → N is a differentiable application, then ϕ∗ is the pull-back
by ϕ.

• If ϕt is the flow of a vector field X ∈ X(M) and p is a point of M,
then the set

{ϕt(p) : t ∈ I}

is the integral curve of X through p (where I is the maximal interval
where the curve ϕt(p) is defined).
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• All vector spaces (including Lie algebras) are assumed to be real and
finite-dimensional.

• Given a vector space V we denote by 〈α, v〉 the evaluation of α ∈ V ∗
at v ∈ V.

• Given a vector subspace S ⊂ V, the symbol S◦ stands for the annihilator
of S in V ∗, which is the set defined as follows:

S = {α ∈ V ∗ : 〈α, v〉 = 0, ∀v ∈ S}.

• If N ⊂ M is a submanifold and y ∈ N , we denote by T◦yN the anni-
hilator of the tangent space TyN in T∗yM.

• We will frequently use the isomorphism

Ψ : V → V ∗∗

v → Ψv
,

where Ψv is the linear map defined by

Ψv : V ∗ → R
α → 〈α, v〉 .

This identification between V and V ∗∗ will be made with no further
comment.

1.2 Poisson Manifolds
Definition 1 LetM be a manifold. A Poisson bracket inM is a map

{, } : C∞(M)× C∞(M) → C∞(M)
(f, g) 7→ {f, g}

with the following properties:

1. Skew-symmetry:

{f, g} = −{g, f}, ∀ f, g ∈ C∞(M).

2. R−Bilinearity:

{af + bg, h} = a{f, h}+ b{g, h}, ∀ a, b ∈ R, ∀ f, g, h ∈ C∞(M).
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3. Jacobi Identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, ∀ f, g, h ∈ C∞(M).

4. Leibniz Identity:

{fg, h} = f{g, h}+ {f, h}g, ∀ f, g, h ∈ C∞(M).

We say that (M; {, }) is a Poisson manifold.

It follows from properties 2 and 4 that, fixed f ∈ C∞(M), the map

{f, ·} : C∞(M) → C∞(M)
g 7→ {f, g}

is a derivation in C∞(M). Then the following definition makes sense.

Definition 2 Let (M; {, }) be a Poisson manifold and f ∈ C∞(M). The
hamiltonian vector field associated to f is defined as follows:

Xf : C∞(M) → C∞(M)
g 7→ {f, g} .

The set of all hamiltonian fields inM is denoted by XH(M).

Lemma 3 Let (M; {, }) be a Poisson manifold, x1, . . . , xn local coordinates
inM and f, g ∈ C∞(M). Then

{f, g} =
n∑
i=1

n∑
j=1

∂f

∂xi

∂g

∂xj
{xi, xj} =

∑
1≤i<j≤n

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
{xi, xj}.

Consequently, the Poisson structure on M is completely determined by
the skew-symmetric matrix of functions

P(x) = [Pij(x)]ni,j=1 ,

where
Pij(x) = {xi, xj}(x).
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Definition 4 The matrix P is the Poisson matrix of the structure (M; {, })
in coordinates x1, . . . , xn.

Lemma 5 Given a Poisson manifold (M; {, }), it is possible to define a
bundle map

P# : T∗M→ TM

such that
{f, g} =

〈
dg, P#(df)

〉
, ∀f, g ∈ C∞(M).

It is assumed that at each point x, P#
x is an R-linear map with image in

a fiber over x, i.e.
P#
x : T∗xM→ TxM.

Remark 6 The skew-symmetry of {, } and the Jacobi Identity lead to ad-
ditional restrictions on P#. Furthermore, with respect to the usual bases of
T∗M and TM, P# is represented by the transpose of P (which is also −P
due to skew-symmetry).

A Poisson structure onM may also be defined through a contravariant skew-
symmetric 2-tensor P . Given P ∈ A2(M), we may define a bracket of
functions f, g in C∞(M) by

{f, g} = P(df, dg).

This bracket is bilinear, skew-symmetric and satisfies the Leibniz Identity.
Nevertheless, in order to satisfy Jacobi Identity, the 2-tensor P has to be
such that

[P , P ]S ≡ 0,

where
[·, ·]S : Ak(M)× Al(M)→ Ak+l−1(M)

stands for the Schouten bracket. For further details see [16]. Such a P will be
called a Poisson tensor onM. Its relation with the bundle map P#, defined
in Lemma 5, is the following:

P : Ω1(M)× Ω1(M) → C∞(M)
(α, β) 7→

〈
β,P#(α)

〉 .
4



Let x1, . . . , xm be local coordinates emM. Then, we can write

P =
∑
i<j

Pij
∂

∂xi
∧ ∂

∂xj
,

and the coefficients Pij coincide with the entries Pij of the Poisson matrix,
since:

Pij = P(dxi, dxj)

= {xi, xj}.

Notation 7 From now on, we may denote a generic Poisson manifold (M; {, })
by (M, P), (M, P#) or (M, P).

Definition 8 Let (M; {, }) be a Poisson manifold and x ∈M.

1. The rank of the bracket {, } at x is the rank of the map

P#
x : T∗xM→ TxM.

Equivalently, it is the rank of the Poisson matrix P(x) and is denoted
by rank Px or rankP#

x .

2. The point x is said to be regular if rank Px is constant in a neighborhood
of x inM. Otherwise, x is said to be singular.

3. The Poisson structure is non-degenerate if, for any x ∈M,

rank Px = dimM.

There are some restrictions to the rank of a Poisson structure at a given
point x. The matrix P is always skew-symmetric, so rank Px is always even.
Moreover, we know from Linear Algebra that rank Px is a lower semicontin-
uous function of x. Hence, if x is such that

rank Px = max
y∈M

rank Py

then x is regular. If, in addition, all entries Pij of the Poisson matrix are
analytic functions, then there are no regular points whose rank is not max-
imal. To see that, consider a point x of maximal rank, say 2r. Since x is
regular, the rank of {, } is 2r in a neighborhood of x. Furthermore, there is
a submatrix Q of P such that

det Q(z) 6= 0
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for all points z in a neighborhood of x. Now suppose there is a regular point
y whose rank is lower than 2r. Then there is a neighborhood of y such that
no submatrix of P has rank 2r. Therefore,

det Q(w) = 0

for all points w in a neighborhood of y.On the other hand, det Q is an analytic
function, because it is the result of products and sums of the analytic entries
of the Poisson matrix. Being analytic and constant in an open set, det Q
must be constant, absurd. We have thus proved the following Lemma:

Lemma 9 Given an analytic Poisson structure, a point is regular if and only
if it has maximal rank.

We remark that this does not mean that, in analytic Poisson structures, all
regular points have rank equal to dimM. For example, M could be odd-
dimensional.

Example 10 If (M, ω) is a symplectic manifold, then

{f, g} = ω(Xf , Xg)

is a Poisson bracket onM. For example, considering R2n endowed with the
usual symplectic form

ω0 =
n∑
i=1

dxi ∧ dyi,

we get

{f, g} =
n∑
i=1

∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi
.

Hence, the Poisson matrix is

P =

(
0n×n In
−In 0n×n

)
,∀ (x, y) ∈ R2n.

This matrix will be denoted by J0. We remark that this Poisson structure is
non-degenerate. In fact, it would be so for any symplectic structure we had
chosen. Conversely, all non-degenerate Poisson structures are symplectic.

In fact, non-degeneracy of the Poisson structure on M implies that the
bundle map P# is such that

rankP#
x = dim TxM, ∀x ∈M.
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Hence, the linear map P#
x : T∗xM → TxM is invertible, for every x in M.

One can check that

ω(X, Y ) =
〈(
P#
)−1

(X), Y
〉

is a closed, non-degenerate differential two-form, hence a symplectic form on
M.

Example 11 Consider Rm, with cartesian coordinates

{x1, . . . , xl, y1, . . . , yl, z1, . . . , zm−2l}.

When equipped with the bracket

{f, g}m−2l =
n∑
i=1

∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi
,

Rm is a Poisson manifold, which is not symplectic for m 6= 2l. The Poisson
matrix in these coordinates is

P =

(
J0 02l×(m−2l)

0(m−2l)×2l 0(m−2l)×(m−2l)

)
,∀ (x, y z) ∈ R2n+m.

We notice that all points in this Poisson manifold are regular.

Example 12 In M = R3, we may define a Poisson bracket as follows.
Given f, g in C∞(R3), {f, g} is the only function such that

{f, g}dx ∧ dy ∧ dz = df ∧ dg ∧ (dx+ dy + dz),

or alternatively,

{f, g} =
∂f

∂x

(
∂g

∂y
− ∂g

∂z

)
+
∂f

∂y

(
∂g

∂z
− ∂g

∂x

)
+
∂f

∂z

(
∂g

∂x
− ∂g

∂y

)
.

We can easily verify, by computing the Poisson matrix, that all points have
rank two. Also in this example, all points inM are regular but the Poisson
structure is not symplectic.
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Example 13 Consider R2 equipped with the Poisson bracket given by the
matrix (

0 f(x, y)
−f(x, y) 0

)
,

where

f(x, y) =

{
0 if x2 + y2 ≤ 1

e
−1

x2+y2−1 if x2 + y2 > 1
.

then all points in the open disk with radius 1 (centered at the origin) have
rank 0 and are regular. Points on the circle of radius 1 have rank zero and
are singular. Points outside the circle of radius 1 are regular but of rank 2.
We remark that such an f is a smooth function, but not analytic.

1.3 The Dual of a Lie Algebra

Definition 14 Let V be a vector space. A Poisson bracket on V,

{, } : C∞(V )× C∞(V )→ C∞(V )

is called linear if, for any α, β ∈ V ∗ we have:

{α, β} ∈ V ∗.

Let (g; [, ]) be a real and finite dimensional Lie algebra. Then g∗ is a Poisson
manifold when equipped with the Lie-Poisson bracket :

{f, g}L(x) = 〈x, [dfx, dgx]〉 ,

where x is an element of g∗, f and g are smooth functions in g∗. We remark
that

Tx(g
∗) ∼= g∗.

Furthermore,
f, g : g∗ → R,

hence
dfx, dgx ∈ (Txg

∗)∗ = g∗∗ ∼= g.
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Now we take X ,Y elements of g∗∗. The bundle map P# : g→ g∗, associated
to the Lie-Poisson structure, is such that〈

Y , P#
x (X )

〉
= {X , Y }L(x)

= 〈x, [dXx, dYx]〉
∼= 〈x, [X,Y ]〉 ,

i.e.
P#
x : g → g∗

X 7→ ad∗X (x)
.

To compute the Lie-Poisson matrix, we consider a basis of g, {X1, . . . , Xn},
and ckij the structure constants of g with respect to the given basis, i.e., such
that

[Xi, Xj] =
∑
k

ckijXk.

Then x1, . . . , xn, the elements of g∗∗ identified with X1, . . . , Xn, are linear
coordinates in g∗. The entries of the Poisson matrix, in these coordinates,
are given by:

Pij(x) = {xi, xj}L(x)
∼= 〈x, [Xi, Xj]〉
∼=

∑
k

ckijxk(x).

The coefficients ckij are real numbers, therefore this is a linear Poisson struc-
ture. In particular, the entries of the Poisson matrix are analytic functions of
the coordinates x1, . . . , xn, so Lemma 9 guarantees that the regular points
are exactly those of maximal rank. This implies that the origin is always a
singular point (unless g is abelian).

Remark 15 All linear Poisson structures (in a vector space V ) are Lie-
Poisson structures on the dual of some Lie algebra. This derives from the
fact that the space of linear functions in V ∗ is a subalgebra of the Lie algebra
(C∞(V ∗); {, }) and is hence a Lie algebra itself.

1.4 The Symplectic Foliation

Definition 16 Let (M1; {, }1), (M2; {, }2) be two Poisson manifolds.

9



1. A differentiable map φ :M1 →M2 is a Poisson map if

φ∗{f, g}2 = {φ∗f, φ∗g}1, ∀ f, g ∈ C∞(M2).

If φ is also a diffeomorphism (resp., local diffeomorphism) then φ is a
Poisson diffeomorphism (resp., local Poisson diffeomorphism).

2. Suppose that M1 = M2 = M. An infinitesimal automorphism in
(M; {, }) is a vector field X of M whose flow σt has the following
property: Given t ∈ R,

σt : Dt → D−t

is a Poisson diffeomorphism, where Dt is the subset (eventually empty)
ofM where the flow σt is defined.

We remark that if φ is a Poisson diffeomorphism inM, then so is its inverse.
Moreover, the set of all Poisson diffeomorphisms in M equipped with map
composition has a group structure. Poisson diffeomorphisms also preserve
the rank of the Poisson structures, i.e., if

φ :M1 →M2

is a Poisson diffeomorphism, then

rank(P1)x = rank(P2)φ(x), ∀x ∈M1.

We will now take a closer look at infinitesimal automorphisms and clarify
their role in a Poisson structure.

Theorem 17 (Libermann, Marle [8]) Let (M; {, }) be a Poisson mani-
fold and X ∈ X(M). The following statements are equivalent:

1. X is a derivation of the algebra (C∞(M); {, }), i.e.,

∀ f, g ∈ C∞(M) : X({f, g}) = {X(f), g}+ {f, X(g)};

2. X is an infinitesimal automorphism.

We refer the reader to [8] for a proof of this result. Any hamiltonian vector
field Xf is therefore an infinitesimal automorphism, because for any g, h
smooth functions inM,

Xf ({g, h}) = {Xf (g), h}+ {g, Xf (h)}.

Hence, the flow of an hamiltonian field is a (local) Poisson diffeomorphism.
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Definition 18 Given a Poisson manifold (M; {, }), a submanifold N is a
Poisson submanifold if there is a Poisson bracket {, }N in N such that the
inclusion

i : N →M

is a Poisson map, i.e.,
i∗{f, g} = {i∗f, i∗g}N .

In other words, the function {f, g}|N depends only on the restrictions of f
and g to N .

Let us now see another characterization of Poisson submanifolds, due to
Weinstein.

Theorem 19 (Weinstein [18]) Given a Poisson manifold (M; {, }), a sub-
manifold N ⊂M is a Poisson submanifold if and only if the following holds,
for every point y of N :

P#
y (T∗yM) ⊂ TyN ,

i.e., if and only if all hamiltonian vector fields inM are tangent to N .

We recall that given α ∈ T∗yM, there is a smooth function f such that
α = dfy. Then, the statement

P#
y (T∗yM) ⊂ TyN

is the same as
(Xf )y ∈ TyN , ∀f ∈ C∞(M).

Proposition 20 (Weinstein [18]) Given a Poisson manifold (M; {, }), we
may define the following relation inM :

x ∼ y if there is a curve γ : [−ε, ε]→M such that

(i) γ(0) = x, γ(ε) = y;

(ii) γ is piecewise smooth;

(iii) Every smooth piece of γ is an integral curve of an hamiltonian field in
M.

Then ∼ is an equivalence relation and the equivalence class [x] of each point
x is a Poisson submanifold ofM. Moreover,

dim([x]) = rank Px.
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As a consequence of Proposition 20, the structure {, }|[x] is non-degenerate
or symplectic. The symplectic form is given by

ω(X, Y ) =
〈(
P#
)−1

(X), Y
〉
,

where X and Y are vector fields tangent to [x].

Definition 21 The Poisson submanifold [x] of M is called the symplectic
leaf of (M; {, }) through x and is denoted by Sx or simply S. The partition
of M by these equivalence classes is called the symplectic foliation of the
Poisson manifoldM.

The simplest example of a symplectic foliation is the case of a connected
symplectic manifold (Example 10), where the only symplectic leaf is the
entire manifold.

In fact, we can characterize the symplectic foliation of a Poisson manifold
in terms of distribution theory. First we define a generalized distribution D
inM as follows:

Dx = Im(P#
x ).

This distribution is differentiable because it is generated by the hamiltonian
vector fields, which are differentiable sections defined inM. It can be shown
that this distribution is completely integrable, and its induced foliation is the
symplectic foliation (see [8]).

In some cases, the notion of Casimir function is important to determine
the symplectic foliation.

Definition 22 A function c in C∞(M) is a Casimir function of M if it
satisfies any of the following three (equivalent) conditions:

1. {c, f} = 0, ∀f ∈ C∞(M);

2. c is constant along the flows of all hamiltonian vector fields;

3. Xc ≡ 0.

Notice that Casimir functions are constant on any symplectic leaf. There-
fore, in a connected symplectic manifold, the only Casimirs are the constant
functions. Now we will see some more interesting examples of symplectic
foliations.

12



Example 23 Consider R3, with the same Poisson bracket as in Example
12. We have already established that all points have rank two and hence
are regular. Then Proposition 20 implies that all symplectic leaves are two-
dimensional. Now we remark that the linear function c = −x + y + z is a
(global) Casimir, because

{−x+ y + z, f} = −
(
∂f

∂y
− ∂f

∂z

)
+

(
∂f

∂x
− ∂f

∂z

)
+

(
∂f

∂y
− ∂f

∂x

)
= 0,

for all f in R3. Hence, all symplectic leaves are contained in planes of the
form

Ak = {(x, y, z) : −x+ y + z = k},

which are the level sets of the Casimir function f. TheAk’s are two-dimensional
and form a partition of R3.We will now check that these planes are indeed the
symplectic foliation by proving that each one of them is a single symplectic
leaf.

y z+ x 0.5−=
y z+ x=
y z+ x 0.5+=
y z+ x 0.5+=

Figure 1.1: symplectic foliation by planes

We consider, for example, the following hamiltonian vector fields and
respective integral curves through an arbitrary point (x0, y0, z0): We consider,
for example, the following hamiltonian field:

Xx(·) = {x, ·} ⇔ Xx =
∂

∂y
− ∂

∂z
.

13



Let γ1(t) = (x, y, z) be its integral curve through the point (x0, y0, z0) of R3.
We know it satisfies 

ẋ(t) = 0
ẏ(t) = 1
ż(t) = −1

,

so
γ1(t) = (x0, y0 + t, z0 − t).

Analogously, the hamiltonian vector field of y is

Xy = − ∂

∂x
− ∂

∂z

and its integral curve through the same point is

γ2(t) = (x0 − t, y0 − t, z0).

It is easy to see that any point of the plane Ak0 containing (x0, y0, z0) can be
reached using combinations of the flows of Xx and Xy. Therefore, the Ak’s
are the symplectic foliation of this Poisson structure.

Example 24 Consider sl(2,R)∗ endowed with the Lie-Poisson bracket {, }L,
described in Section 1.3. We consider the basis {X1, X2, X3} of sl(2,R), where

X1 =

(
1 0
0 −1

)
, X2 =

(
0 0
1 0

)
, X3 =

(
0 1
0 0

)
.

In the linear coordinates x1, x2, x3 (see section 1.3), the Poisson matrix is

P =

 . −2x2 2x3
2x2 . −x1
−2x3 x1 .

 .

Now we investigate the existence of Casimirs. These funtions are exactly the
ones whose differentials are in the kernel of the bundle morphism P#. We
have that

kerP# = span{x1dx1 + 2x3dx2 + 2x2dx3},
and a simple integration shows that the following function is a Casimir:

c(x) = x21 + 4x2x3, a ∈ R.

The symplectic leaves are contained in its level sets, which are a cone, one-leaf
hyperboloids or two-leaves hyperboloids.

14



x2 4yz 6+=
x2 4yz 4−=
x2 4yz=
x2 y2 z2+ + 0.005=

Figure 1.2: symplectic foliation of sl(2,R)∗

The origin is itself a symplectic leaf, since it is a point of rank zero.
Therefore, the cone of equation

x21 = −4x2x3

encloses three symplectic leaves: the origin, the component x1 > 0 and the
component x1 < 0. The other symplectic leaves are:

1. one-leaf hyperboloids,

x21 = −4x2x3 + k, k > 0;

2. each of the connected components of two-leaves hyperboloids,

x21 = −4x2x3 − k, k > 0.

In some well-behaved cases, one can determine the symplectic foliation with-
out using Casimir functions.

Example 25 Consider the Poisson manifold (R4, P), with coordinates x, y, z, w,
where

P =


. y . .
−y . . .
. . . 1
. . −1 .

 ,

where dots stand for zeros. In this case, there are no Casimir functions,
because almost every point inM has rank 4, equal to the dimension ofM.
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In order to find out which kind of sets are the symplectic leaves for this
Poisson manifold, we compute the hamiltonian vector fields associated with
the coordinate functions and their corresponding flows. We have

Xx = y
∂

∂y
.

Let γ1(t) = (x, y, z, w) be its integral curve through the point (x0, y0, z0, w0)
of R4, i.e. γ1(t) = (x0, y0e

t, z0, w0).
Analogously we obtain the following hamiltonian vector fields and respec-

tive integral curves through the point (x0, y0, z0, w0):

Xy = −y ∂
∂x

−→ γ2(t) = (x0 − y0t, y0, z0, w0)

Xz = − ∂

∂w
−→ γ3(t) = (x0, y0, z0, w0 − t)

Xw =
∂

∂z
−→ γ4(t) = (x0, y0, z0 + t, w0)

First we consider the case y0 = 0 (notice that these points have rank 2). From
(x0, 0, z0, w0), the flows of Xx and Xy take us nowhere. However, piecewise
smooth combinations of the flows of Xz and Xt take us to any point in the
two-dimensional subspace

Ax0 = {(x0, 0, z, w) : z ∈ R, w ∈ R},

which is therefore contained in a symplectic leaf.
If y0 > 0, any point in the set

B = {(x, y, z, w) : x ∈ R, y > 0, z ∈ R, w ∈ R}

can be reached using combinations of the flows of Xx, Xy, Xz and Xw. If
y0 < 0 we reach in the same way any point in

C = {(x, y, z, w) : x ∈ R, y < 0, z ∈ R, w ∈ R}.

Therefore, we conclude that each of the sets B, C and Ax0 , for all real values
of x0, is contained in a different symplectic leaf. Since they form a partition
of R4, we know that each one of them is indeed a symplectic leaf.

Now we present a result which gives a general description of the symplectic
leaves of a Lie-Poisson structure:
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Lemma 26 (Libermann & Marle [8]) Let g be the Lie algebra of a con-
nected Lie group G and X an element of g. Then the fundamental vector field
of X for the coadjoint action Ad∗ is the hamiltonian vector field of X with
respect to the Lie-Poisson structure on g∗ (we regard X as a linear function
in g∗).

As a consequence we obtain the following:

Corollary 27 (Libermann & Marle [8]) The symplectic leaf of the Lie-
Poisson structure through µ in g∗ is the coadjoint orbit of µ for the action of
G in g∗.

1.5 Weinstein’s Splitting Theorem
Theorem 28 (Weinstein [18]) Let (M1, {, }1), (M2, {, }2) be two Pois-
son manifolds. Then

M1 ×M2

admits a Poisson bracket {, } such that:

1. πi :M→Mi (canonic projection on the i-th factor) is a Poisson map
for i = 1, 2;

2. {f1 ◦ π1, f2 ◦ π2} = 0, ∀ fi ∈ C∞(Mi).

Definition 29 The structure defined in the previous theorem is called the
Poisson product of (M1, {, }1) and (M2, {, }2).

Theorem 30 (Weinstein [18]) Let (M, P) be an m-dimensional Poisson
manifold and x0 ∈ M such that rankPx0 = 2l. Then there exist a 2l-
dimensional symplectic manifold S ⊂ M, a Poisson manifold (N ,PN ), of
dimension m− 2l, and a neighborhood U of x0 inM where we can define a
Poisson diffeomorphism

ϕ : U → S ×N
x 7→ (ϕS(x), ϕN (x)).

Moreover,
rank (PN )ϕN (x0)

= 0.
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We note that S ×N is equipped with the Poisson product structure. On the
other hand, Darboux-Weinstein’s theorem implies that if S, N and S ′, N ′
are two pairs of submanifolds of M in the conditions of Splitting Theo-
rem, then S is locally symplectomorphic (and consequently, locally Poisson-
diffeomorphic) to S ′ (see [8]). Therefore we can choose, as a representative
of S, the symplectic leaf through x.

Definition 31 The Poisson manifold (N , PN ) of the Splitting Theorem is
called a transverse Poisson manifold (or a transverse Poisson structure) to
the symplectic leaf S at x0.

Remark 32 Another way to state this theorem is to say that there are
local coordinates p1, . . . , pl, q1, . . . , ql, z1, . . . , zm−2l around x0 such that
the Poisson matrix is block diagonal:(

J0 02l×m
0m×2l Q

)
,

where the submatrix Q, which depends only on the coordinates z1, . . . , zm−2l,
is zero at x0 (although possibly not identically zero on any neighborhood of
x0).

If x is a regular point of (M, P) then the rank of P is constant in a neigh-
borhood of x. Since the rank at x is 2l, the submatrix Q must be zero in the
same neighborhood. Thus, we have just proved the next Corollary:

Corollary 33 (Weinstein [18]) If x is a regular point, then (M; {, }) is
locally Poisson-diffeomorphic to

(
Rm; {, }m−2l

)
, the Poisson manifold de-

scribed in Example 11.

In other words, if x is regular, the Poisson structure has m−2l local Casimir
functions, which would be the zi’s. Consider the application

c : U → Rm−2l

y → (z1(y), . . . , zm−2l(y))
,

where U is a neighborhood of x and z1, . . . , zm−2l are independent Casimir
functions defined in U , i.e.

{dz1, . . . , dzm−2l}
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is a free set. It is possible to prove that, around x, the distribution generated
by the hamiltonian vector fields is

Dy = ker(dcy).

Therefore, the level sets of c (or their connected components) are integral
manifolds of D, and hence open subsets of symplectic leaves.

Notice that Corollary 33 completely characterizes the Poisson structure
on a neighborhood of any of its regular points. Therefore, in the next chapters
we will restrict our study to the case in which x is singular.
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Chapter 2

The Transverse Poisson Structure
to a Symplectic Leaf

2.1 The General Case
Following [18] and [3], we now describe the construction of the transverse
Poisson structure to a symplectic leaf at a point x. Let (M; {, }) be a
finite-dimensional Poisson manifold, P# : T∗M → TM the bundle map
corresponding to the bracket {, }, x a point inM and S the symplectic leaf
through x. Then

TxS = Im(P#
x ).

Definition 34 Consider a submanifold N ⊂ M which intersects the sym-
plectic leaf at x transversally, i.e. such that

TxM = TxN ⊕ TxS. (2.1)

Such an N will be called a transverse submanifold to S (at x).

We note that 2.1 is equivalent to

T∗xM = T◦xN ⊕ T◦xS. (2.2)

Weinstein established in [18] that we can define a Poisson structure P#
N

in this submanifold N , in such a way that the symplectic leaves in N are
the intersections of the symplectic leaves of M with N . Hence, P#

N is said
to be naturally induced from P#. It is the transverse Poisson structure to S
referred to in the Splitting Theorem. We remark that this structure is not
obtained by restricting to N the Poisson structure onM, as in Definition 18,
because N , unlike S, is not a Poisson submanifold ofM. In the remainder of
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this chapter we will detail the construction of this kind of Poisson manifolds,
following the work of Weinstein [18] and Cushman & Roberts [3].

In order to define this Poisson structure on N , one must find a some-
how ”natural” way to project vectors of TyM onto TyN . Unfortunately, we
cannot use decomposition 2.1 for that purpose, because it is only valid at
the ”splitting” point x. Each point y 6= x of N belongs to a symplectic leaf
[y], which may be quite different from S. For example, the dimension of the
leaf could change. The following lemma will be useful to define a splitting of
TyM which is valid for all points in a neighborhood of x in N .

Lemma 35 Let (M; {, }) be a Poisson manifold and x ∈M. Then

kerP#
x = T◦xS.

Proof. We already know that

Im(P#
x ) = TxS.

Combined with the skew-symmetry of the Poisson structure, that justifies
the following:

α ∈ kerP#
x ⇔

〈
β, P#

x (α)
〉

= 0, ∀β ∈ T∗xM
⇔

〈
α, P#

x (β)
〉

= 0, ∀β ∈ T∗xM
⇔ 〈α, v〉 = 0, ∀v ∈ TxS,

which concludes the proof.

Proposition 36 (Cushman & Roberts [3]) Let (M; {, }) be a Poisson
manifold, x ∈ M, S the symplectic leaf through x and N a transverse sub-
manifold to S. Then there is a neighborhood U of x in N where the following
condition is satisfied:

TyM = TyN ⊕P#
y (T◦yN ), ∀y ∈ U. (2.3)

Proof. First we will check that P#
x maps T◦xN onto TxS. Given v ∈ TxS,

let α ∈ T∗xM be such that
P#
x (α) = v.

According to condition 2.2, there is a unique way to write

α = α1 + α2,
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with
α1 ∈ T◦xN , α2 ∈ T◦xS.

Hence

v = P#
x (α)

= P#
x (α1),

because α2 ∈ ker(P#
x ), by Lemma 35. Therefore TxS ⊂ P#

x (T◦xN ) . In
adition, the two vector spaces have the same dimension, thus

TxS = P#
x (T◦xN ) .

Therefore, at x, decomposition 2.3 is just decomposition 2.1, and hence valid.
Now we prove that decomposition 2.3 is also valid in a neighborhood of

x in N . We have that P#
x

∣∣
T◦xN

is a bijection onto its image. In addition,

P#
x

∣∣
T◦xN

: T◦xN −→ TxM

has maximum possible rank. On the other hand, the rank of a Poisson
structure is a lower semicontinuous function and hence a continuity argument
shows that there is a neighborhood of x (in N ) in which the rank of P#

y

∣∣
T◦yN

is constant and maximal. Therefore, a dimensional argument shows that
condition 2.3 holds in a neighborhood of x if and only if

TyN ∩ P#
y (T◦yN ) = {0} (2.4)

holds in the same neighborhood. We know that condition 2.4 holds at x, and
it indeed holds in a neighborhood of x by transversality. In fact, suppose
that there is no such neighborhood. Then there is a differentiable section X
of the vector subbundle P# (T◦N ) ⊂ TNM and a curve

α :]− ε, ε[−→ N

such that:

1. α(0) = x,

2. X ◦ α(0) /∈ Tα(0)N (because 2.4 holds at x);

3. X ◦ α(t) ∈ Tα(t)N , ∀ t 6= 0.
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But then the differential section X is not continuous, which is absurd.
Thus, the sum in condition 2.3 is indeed a direct sum, and the proof is

concluded.

The following Lemma from Linear Algebra will be useful in the subsequent
construction of the transverse Poisson structure to a symplectic leaf:

Lemma 37 Let S and T be vector subspaces of a vector space V. Then

(S ∩ T)◦ = S◦ + T◦.

In particular,
S ∩ T = {0} ⇒ S◦ + T◦ = V ∗.

Theorem 38 (Weinstein [18]) Let (M, P) be a Poisson manifold, x a
point inM, S the symplectic leaf through x and N a transverse submanifold
to S at x. Then there is a naturally induced Poisson structure defined in N .

Proof. First we will establish that, at every point y in a neighborhood of x
in N , we have

T◦yN ∩ kerP#
y = {0} . (2.5)

Let α ∈ T◦yN ∩ kerP#
y . Given v ∈ TyM, condition 36 assures that we can

write
v = v1 + v2,

with
v1 ∈ TyN , v2 ∈ P#

y (T◦yN ).

Then

〈α, v〉 = 〈α, v1 + v2〉
= 〈α, v2〉 (α ∈ T◦yN , v1 ∈ TyN )

=
〈
α, P#

y (β)
〉
, β ∈ T◦yN

=
〈
−β, P#

y (α)
〉

= 0 (α ∈ kerP#
y ).

Because v is an arbitrary element of TyM, we have α = 0 and condition
2.5 holds at y. Now we apply Lemma 35 and Lemma 37 to this condition,
obtaining

TyN + ImP#
y = TyM.
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In other words, N intersects each symplectic leaf ofM transversally. There-
fore N is a union of manifolds,

N =
⋃
y∈N

Ny,

each of which is a submanifold of a symplectic leaf ofM:

Ny = N ∩ [y].

We have to check that each Ny is a symplectic submanifold. With that
purpose in mind, we fix y and consider the symplectic form ω in [y] (see
Section 1.4). Given a point z in Ny, we must restrict ωz to TzNy and verify
that its null space is only the zero vector. First we note that this null space
is exactly

(TzNy)ωz ∩ TzNy,
where (TzNy)ωz stands for the symplectic complement of TzNy in Tz[y].
Now, we will prove that

(TzNy)ωz = P#
z (T◦zN ) . (2.6)

Consider any vector tangent at z to the symplectic leaf [y]. We may express
it as P#

z (α). We have that

P#
z (α) ∈ (TzNy)ωz ⇔ ωz

(
u,P#

z (α)
)

= 0 ∀u ∈ TzNy
⇔

〈(
P#
z

)−1 (P#
z (α)

)
, u
〉

= 0 ∀u ∈ TzNy
⇔ 〈α, u〉 = 0 ∀u ∈ TzNy
⇔ α ∈ T◦zNy

and thus
(TzNy)ωz = P#

z (T◦zNy) .
We remark that, by transversality,

TzNy = TzN ∩ Tz[y].

Together with Lemmas 35 and 37, this is all we need to establish the following:

P#
z (T◦zNy) = P#

z (T◦zN ) + P#
z (T◦z[y])

= P#
z (T◦zN ) .

Then, (2.6) is proved and the null space of ωz|TzNy is

P#
z (T◦zN ) ∩ TzNy,
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or, because Tz[y] is the image of the linear map P#
z ,

P#
z (T◦zN ) ∩ TzN .

Hence, Proposition 36 implies that the null space above reduces to the zero
vector and, indeed, the intersection manifolds which constitute N are sym-
plectic. We turn this set of symplectic submanifolds into a symplectic folia-
tion simply by gluing the Poisson brackets of each one of them, forming one
global Poisson bracket on N . In order to do that, we must guarantee that
this naturally induced Poisson structure on N is smooth.

We remark that decomposition 2.3 gives a smooth bundle projection

π : TNM−→ TN ,

given by
πy : TyM−→ TyN , ∀y ∈ U ⊂ N .

with
kerπy = P#

y (T◦yN ).

This allows us to define the bundle map P#
N as follows (the diagram com-

mutes):

T∗yN TyN

T∗yM TyM
?

π∗y

-
(P#
N )

y

-
P#
y

6

πy

or, equivalently, (
P#
N

)
y

= πy ◦ P#
y ◦ π∗y.

Remark 39 We remark that for each y in N , given α ∈ T∗yN , we have
simply

π∗yα = α ◦ πy.

Given a Poisson manifold (M; {, }), x a point in M, S the symplectic
leaf through x and N a transverse submanifold to S, a transverse Poisson
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structure to S at x (as in Definition 31) may be represented by
(
N , P#

N

)
,

where P#
N is the bundle map given above.

The transverse Poisson structure to a symplectic leaf is unique up to
Poisson diffeomorphisms, in the sense of the following Lemma:

Lemma 40 (Weinstein [18]) Suppose N1 and N2 are two submanifolds
having dimension complementary to the symplectic leaf S. Suppose also that
each of them intersects S at a single point, transversally. Then there is an
automorphism of M which maps a neighborhood of N1 ∩ S in N1 onto a
neighborhood of N2 ∩ S in N2. This automorphism induces an isomorphism
of the induced Poisson structures in the neighborhoods.

This Lemma provides meaning to the expression ”transverse Poisson struc-
ture to a symplectic leaf ”, widely used in the literature. Again we remark
that, if x is a regular point, then the transverse Poisson structure to S at x
will be trivial (see Corollary 33), therefore we will restrict our attention to
singular points.

The transverse Poisson structure just built uses a decomposition (and
projection) different from the one considered by Cushman & Roberts [3].
We find this construction easier to work with and, in the particular case of
a Lie-Poisson structure, the formula we arrive at is simpler to use.

2.2 A Simple Formula for the Transverse Pois-
son Structure to a Coadjoint Orbit

Given a Lie algebra g, we have already established in Section 1.3 that g∗ is
endowed with a natural Poisson structure, which can be characterized by the
bundle map P# defined by

P#
µ : g → g∗

X 7→ ad∗Xµ
,

where µ ∈ g∗ and ad∗ stands for the coadjoint action of g on g∗.
The tangent space (at µ) to the symplectic leaf [µ] is the image of P#

µ ,
i.e., the orbit of µ for ad∗. Furthermore, Corollary 27 establishes that [µ] is
precisely the orbit Oµ for the coadjoint action

Ad∗ : G→ g∗,

(here G is the connected and simply-connected Lie group with Lie algebra
g)
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We will now apply the construction given in the last section in order to
build a transverse Poisson structure to the coadjoint orbit Oµ. The first
step is to find a suitable submanifold of g∗, i.e., one which intersects Oµ
transversally. We remark that the isotropy subalgebra

gµ = {X ∈ g : ad∗Xµ = 0}

is nothing but the kernel of P#
µ . In the next Lemma, the direct sum ⊕ refers

to gµ and h as vector spaces, not as Lie algebras (h is not necessarily a Lie
algebra).

Lemma 41 (Weinstein [18], Cushman & Roberts [3]) Let (g∗, {, }L) be
the dual of a Lie algebra equipped with the Lie-Poisson bracket and µ in g∗.
Let h a supplement of gµ in g, i.e.,

g = gµ ⊕ h. (2.7)

Then the affine subspace
N = µ+ h◦

is a submanifold which is transversal to the coadjoint orbit Oµ at µ.

Proof. In this case, we haveM = g∗ and TµN = h◦. On the other hand,

TµS = TµOµ = ad∗g(µ).

By Lemma 35,
T◦µS = ker(P#

µ ) = gµ.

If we dualize (2.7), we obtain

g∗ = g◦µ ⊕ h◦,

which is just decomposition 2.1 of Definition 34,

TxM = TxN ⊕ TxS,

meaning that the submanifold µ+h◦ and the coadjoing orbit intersect transver-
sally at µ.

Before we go any further, we take a closer look at some useful identifica-
tions. First, we have that h◦ is naturally identified with g∗µ. Second, if N is
the transverse submanifold µ + h◦ and ν belongs to a neighborhood of 0 in
h◦, then

Tµ+νN ∼= h◦
(∼= g∗µ

)
.
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Finally,

P#
µ+ν(T

◦
µ+νN ) ∼= P#

µ+ν(h)

= ad∗h(µ+ ν).

Thus, decomposition 2.3 defined earlier may be written as

g∗ = h◦ ⊕ ad∗h(µ+ ν) (2.8)

and the projection π is, in this specific case,

πν : g∗ → h◦(∼= g∗µ),

with kernel ad∗h(µ+ ν).
The following result provides a new formula for the transverse Poisson

structure to Oµ, which is simpler to use than the one in [3].

Theorem 42 (Formula for the transverse Poisson structure) Let µ ∈
g∗ be such that h is a supplement of gµ in g, i.e.,

g = gµ ⊕ h.

Then the transverse Poisson structure to the coadjoint orbit Oµ, defined in
the transverse submanifold

N = µ+ h◦,

is given by the bundle map P#
N : gµ → g∗µ defined by(

P#
N

)
µ+ν

(X ) = πν ◦ ad∗X ν, (2.9)

where X ∈ gµ, ν ∈ h◦ and πν : g∗ → h◦ is the projection such that

ker(πν) = ad∗h(µ+ ν).

Proof. Let X ∈ gµ. Then, according to what is stated in section 2.1, we
may express P#

N as follows:(
P#
N

)
µ+ν

(X ) = πν ◦ P#
µ+ν ◦ π∗ν(X ),

where πν : g∗ → h◦ is the projection associated to decomposition 2.8. But
noticing that

π∗ν(X ) ∈ g,
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we know from decomposition 2.7 (see Lemma 41) that π∗ν(X ) can be written
in an unique manner as

π∗ν(X ) = Y + Z ,

with Y ∈ gµ, Z ∈ h. Also, we know that

P#
µ+ν(π

∗
ν(X )) = ad∗π∗ν(X )(µ+ ν),

and therefore we are able to compute
(
P#
N

)
µ+ν

(X ) :(
P#
N

)
µ+ν

(X ) = πν

(
P#
µ+ν(π

∗
ν(X ))

)
= πν

(
ad∗Y+Z (µ+ ν)

)
= πν (ad∗Y (µ+ ν)) + πν (ad∗Z (µ+ ν))
Z∈h
= πν (ad∗Y (µ+ ν))

= πν (ad∗Y (µ) + ad∗Y (ν))
Y∈gµ

= πν (ad∗Y (ν)) .

We will now prove that Y = X , which completes the proof. By definition,

π∗ν(X ) ∈ g

is the only vector satisfying

∀µ′ ∈ g∗, 〈µ′, π∗ν(X )〉 = 〈πν(µ′), X 〉 ,

i.e.,
∀µ′ ∈ g∗ 〈µ′, Y + Z 〉 = 〈πν(µ′), X 〉 .

In particular, if µ′ ∈ h◦, we obtain

〈µ′, Y 〉 = 〈πν(µ′), X 〉 .
= 〈µ′, X 〉 .

We have just concluded that Y − X belongs to (h◦)◦, i.e., belongs to h. On
the other hand, Y − X is also in gµ. Since

g = gµ ⊕ h,

we have Y = X .

The most useful feature of this result is that, given µ and once a com-
plement h to gµ has been chosen, the computation of the transverse Poisson
structure to the coadjoint orbit Oµ reduces to the simple computation of the
projection πν .

As a corollary, we obtain the following result of P. Molino [12].
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Corollary 43 If h is a supplement of gµ in g such that

[gµ, h] ⊆ h,

then P#
N is the Lie-Poisson structure on g∗µ and is thus linear in ν.

Remark 44 We remark that linear Poisson structures are defined only on
vector spaces. That is not the case for N = µ + h◦ (unless µ equals zero).
Nevertheless, it is common to define as linear any Poisson structure on N
whose expression is linear on a system of affine coordinates on N .

Proof. Suppose that X belongs to gµ and µ+ ν is a point in the transverse
submanifold µ+ h◦. Then the following equivalences take place:

ad∗X ν ∈ h◦ ⇔ 〈ad∗X ν, Y 〉 = 0, ∀Y ∈ h

⇔ 〈ν, [X , Y ]〉 = 0, ∀Y ∈ h.

Now suppose that [gµ, h] ⊆ h. Then [X , Y ] belongs to h. In addition, ν
belongs to h◦, so

〈ν, [X , Y ]〉 = 0, ∀Y ∈ h,

i.e.
ad∗X ν ∈ h◦.

Now we recall that πν projects vectors of g∗ onto h◦. Thus

πν (ad∗X ν) = ad∗X ν.

The linearity of the Poisson bracket follows from the properties of the coad-
joint action.

Remark 45 It is clear from the proof that, whenever the condition

[gµ, h] ⊂ h

holds, there is no need to compute the projection π, since it will be the iden-
tity. Nevertheless we have included the computation of π in the appendices,
for control.
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2.3 Some Historical Notes on the Transverse
Poisson Structure to a Coadjoint Orbit

One may ask if the transverse Poisson structure to a coadjoint orbit is al-
ways the Lie-Poisson structure on g∗µ, and thus a linear Poisson structure as
described in Section 1.3. In fact, Weinstein stated it as a theorem when he
first introduced the concept of transverse Poisson manifold to the symplectic
leaf at a point (see [18]). As a consequence of that theorem we would have,
for every element X in gµ,(

P#
N

)
µ+ν

(X ) = ad∗X ν, (2.10)

where ν ∈ g∗µ
∼= h◦.

That is not the case in general. However, as we have seen, the additional
hypothesis of Corollary 43, known as Molino Condition ([12], [19]), guaran-
tees that the transverse Poisson structure will indeed be given by 2.10.

There were further attempts to establish necessary and/or sufficient con-
ditions for linearity (or at least ”polynomiality”) of the transverse Poisson
structure to a coadjoint orbit. In 1986, Oh proved [13] that the transverse
Poisson structure to a coadjoint orbit Oµ is at most quadratic if there is a
supplement h of gµ in g which is a subalgebra. In order to do that, he used
Dirac’s constraint bracket formula, following a result due to Courant and
Montgomery:

Proposition 46 (Dirac Constraint Bracket Formula) Let (M; {, }) be
a Poisson manifold, x a point in M, S the symplectic leaf through x, N a
transverse submanifold to S at x, U neighborhood of x as in the setting of
Theorem 30 (Weinstein’s Splitting Theorem) and y ∈ U . Consider functions
ψ1, . . . , ψ2l such that

N = {y ∈ U : ψ1(y) = 0, . . . , ψ2l(y) = 0}

and denote by C the (non-singular) matrix such that

Cij(y) = {ψi, ψj}(y).

Then the transverse Poisson structure to S is given by

{f, h}N = {F̃ , H̃} −
2l∑

i,j=1

{F̃ , ψi}(C−1)ij{ψj, H̃}, (2.11)

where f, h ∈ C∞(N ) and F̃ , H̃ are arbitrary extensions to U of f, h.
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Marsden & Ratiu [9] obtained the same formula (2.11) in a special case
of Poisson reduction. They considered the Poisson structure on the reduced
manifold associated with the triplet (M, N , E), where the vector subundle
E ⊂ TM|N is given by

E = P# (T◦N )

and
P# (T◦N ) ∩ TN = {0}.

In such case, the leaves of the induced foliation are just points and the re-
duced submanifold is N itself. We observe that the fact that the same
formula applies to both situations (transverse and reduction), implies that
the transverse Poisson structure to the symplectic leaf S can be regarded as
the result of Poisson reduction. Since Marsden and Ratiu have not proved
the formula above in the reduction situation, we will do so below.

Consider
ψi :M→ R, i = 1, . . . , 2l

so that
N = {y ∈ U : ψ1(y) = 0, . . . , ψ2l(y) = 0} .

We need the following two lemmas:

Lemma 47 Let f be a real-valued function on N . Consider F and F̃ exten-
sions of f to U such that:

• F̃ is arbitrary;

• dF (E) = 0.

Then, we have
d(F̃ − F ) ∈ T◦N ,

i.e.,

dF̃ = dF +
2l∑
i=1

aidψi,

where each ai is a real function on U .

Proof. Consider y ∈ N . We have

(F̃ − F )(y) = 0, y ∈ N ,

therefore the restriction of its differential to TN is zero. Hence,

d(F̃ − F ) ∈ T◦N .
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Since
T◦N = span{dψ1, . . . , dψ2l},

we have

d(F̃ − F ) =
2l∑
i=1

aidψi,

for some real valued functions ai.

Lemma 48 If F is an extension of f ∈ C∞(N ) to U such that dF (E) = 0,
then

{ψi, F} = 0, ∀i,

where {, } is the Poisson bracket onM.

Proof. We have that

dF (E) = 0 ⇔ dF
(
P#(dψi)

)
= 0 ∀i

⇔ {ψi, F} = 0 ∀i,

and the lemma is proved.

Now let F and H be, as before, extensions to U of real-valued functions
f, h on N such that

dF (E) = dH(E) = 0.

If we apply Poisson reduction to (M, N , E), we obtain

{f, h}N = {F, H} ◦ i, (2.12)

where i : N →M is the inclusion. But in order to take F̃ and H̃ arbitrary
extensions of f and h, one cannot use the reduction formula 2.12 directly.
We have to find out what is the relation between {F̃ , H̃}(y) and {F, H}(y),
at each point y of N . This turns out to be a corrective term to be added to
the reduction formula 2.12. By Lemma 47,

d(F̃ − F ) =
2l∑
i=1

aidψi, d(H̃ −H) =
2l∑
i=1

bidψi,
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(where ai, bi ∈ C∞(N )). Using Lemma 48 and Lemma 47 consecutively, we
have

{ψi, F̃} = {ψi, F̃ − F}

=
〈

d(F̃ − F ), P#(dψi)
〉

=
∑
j

aj
〈
dψj, P#(dψi)

〉
=

∑
j

aj{ψi, ψj},

=
∑
j

ajCij,

= [C a]i ,

or, in vector notation,
{ψ, F̃} = C a.

After left multiplication by C−1 on both sides, we obtain

ai =
∑
j

[
C−1

]
ij
{ψj, F̃} ∀i ∈ {1, . . . , 2l}.

Analogousy,
bi =

∑
j

[
C−1

]
ij
{ψj, H̃} ∀i ∈ {1, . . . , 2l}.

Now using Lemma 47 and Lemma 48 successively, we have

{F̃ , H̃} =
〈

dH̃,P#
(

dF̃
)〉

=
〈
dH,P#(dF )

〉
+
∑
j

bj {F, ψj}

+
∑
i

ai {ψi, H}+
∑
i,j

aibj{ψi, ψj}

= {F, H}+
∑
i,j

aibjCij,

and a straightforward computation - based on substituting ai and bj by the
expressions deduced above - proves formula 2.11. Please note that the pre-
vious computations make sense only for points of N .

We remark that Falceto and Zambon [6] have later argued that the
assumptions of the Marsden-Ratiu theorem for Poisson reduction are too
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strong, and they have weakened these hypothesis in order to be able to re-
cover a greater amount of Poisson structures (on quotients of M). However,
to perform reduction in the case we described above, there was no need to
apply this extended result.

Later, Saint-Germain [15] derived a formula for the computation of the
transverse Poisson structure to a coadjoint orbit from Dirac’s constraint
bracket formula. Saint Germain used natural identifications typical of the
Lie-Poisson case, as described below (we use the notations and definitions of
Sections 1.3 and 2.2). Let

{X1, . . . , Xm−2l}

be a basis for gµ and
{Y1, . . . , Y2l}

be a basis for h. Together they form a basis for g. Consider µ in g∗, ν in h◦

and the matrices

A(ν) = ([Xk, Xn](ν)) , B(ν) = ([Xk, Yi](ν)) , C(µ+ν) = ([Yi, Yj](µ+ ν)) ,

where
i, j ∈ {1, . . . , 2l}, k, n ∈ {1, . . . ,m− 2l}.

Then Dirac’s constraint bracket formula translates to Saint Germain’s For-
mula,

PN (µ+ ν) = A(ν) + B(ν)C−1(µ+ ν)BT (ν). (2.13)

In 1996, Damianou [4] formulated the following conjecture:

Conjecture 49 Let g be a semisimple Lie algebra. Then the transverse
Poisson structure to any coadjoint orbit in g∗ is polynomial.

In 2002, Cushman & Roberts [3] proved Damianou’s conjecture using
their own formula for the transverse Poisson structure to a coadjoint orbit.
Cushman and Roberts started from a decomposition of the cotangent space
of the Poisson manifold,

T∗xM = T◦xN ⊕ (P#
x (T◦xN ))◦,

which is the dual decomposition of 2.3. When takingM = g∗, and x = µ+ν
they considered the projection associated to the dual decomposition of 2.7:

πg◦µ : g∗ → g◦µ,
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with kernel h◦ and verified that

(P#
x (T◦xN ))◦ =

{
X ∈ g : πg◦µ(ad∗X (µ+ ν)) = 0

}
.

We remark that this projection, πg◦µ , does not vary with the point µ + ν in
the transverse submanifold µ+ h◦. Then, they considered U a neighborhood
of the origin in h◦ and proceeded to define a map

Y : (µ+ U)× gµ → h

in the following way: Y is the solution (which is proven unique) of the
equation

πg◦µ(ad∗X+Y (µ+ ν)) = 0. (2.14)

Therefore, Y depends on X ∈ gµ and ν ∈ U ⊂ h◦. Roberts and Cushman
eventually obtained the following formula for {, }N , the transverse Poisson
structure to the coadjoint orbit at µ :

{X1, X2}N (µ+ ν) = 〈µ+ ν, [X1 + Yν(X1), X2 + Yν(X2)]g〉

or equivalently

{X1, X2}N (µ+ ν) =
〈
ν, [X1, X2]gµ

〉
− 〈µ+ ν, [Yν(X1), Yν(X2)]h〉 .

Thus, computing the transverse Poisson structure is basically to determine
Yν(X ), i.e., to solve equation 2.14 for Y .

In 2005, Sabourin [14] studied the semisimple complex case. In the case
of nilpotent adjoint orbits which are subregular or have dimension 2, a wide
class of supplements h was given where the transverse Poisson structure is
quadratic.

In 2006, Damianou, Sabourin and Vanhaecke [5] introduced the notion
of quasi-degree of a Poisson structure on quasi-homogeneous coordinates.
Considering the Lie-Poisson structure on complex semisimple Lie algebras,
they proved that, in suitable coordinates, the quasi-degree of the tranverse
Poisson structures is −2.

Remark 50 None of the results we have referred to above implies that, for
arbitrary h, the transverse Poisson structure on N = µ + h◦ will be lin-
ear (affine) nor quadratic/polynomial. When said that a transverse Poisson
structure is linear (resp. polynomial), it is meant that there is one of such
choices of h which results in a linear (resp. polynomial) transverse Poisson
structure.
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2.4 Examples
In order to simplify the consultation of the appendices, in this first example
we specify the notations of the Maple files, even though they sometimes seem
to be too heavy.

Example 51 We take the semisimple Lie algebra

g = so(4) = {A ∈M4×4 : A = −At}.

A basis for g is, for example

X1 = E1,2 − E2,1,

X2 = E1,3 − E3,1,

X3 = E1,4 − E4,1,

X4 = E2,3 − E3,2,

X5 = E2,4 − E4,2,

X6 = E3,4 − E4,3,

where Ei,j is an elementary matrix whose unit entry (i, j) is the only non-
zero entry. We denote its dual basis in g∗ by (X1, . . . , X6) and consider, the
Lie-Poisson structure on g∗.

As described in Section 1.3, we identify Xi in g with xi in g∗∗ when
computing the Lie-Poisson bracket. We remark that if µ ∈ g∗, we have

{xi, xj}L (µ) ∼=
∑
k

ckijxk(µ)

where the ckij are the structure constants of the Lie algebra so(4) in the basis
above. Hence, the Poisson matrix is, in these coordinates,

P =


. −x4 −x5 x2 x3 .
x4 . −x6 −x1 . x3
x5 x6 . . −x1 −x2
−x2 x1 . . −x6 x5
−x3 . x1 x6 . −x4
. −x3 x2 −x5 x4 .


(dots stand for zeros). Its determinant is zero, so there are no 6-rank points
in g∗. Therefore, points of rank 4 (which do exist) are of maximum rank.
Again we point out that linear Poisson structures are analytical and hence,
by Lemma 9, these points of maximum rank are exactly the regular ones. The
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transverse Poisson structure on these points will be trivial and the remaining
points ofM will be singular. The eigenvalues of the Poisson matrix are

λ1 = 0,

λ2 = 0,

λ3 = −λ4 = i
√

(x5 − x2)2 + (x1 + x6)2 + (x4 + x3)2,

λ5 = −λ6 = i
√

(x5 + x2)2 + (x1 − x6)2 + (x4 − x3)2.

Hence, the points of rank 2 have the following form:

(a, b, c, −c, b, −a) or (a, b, c, c, −b, a),

with (a, b, c) 6= (0, 0, 0). We choose

µ = (a, b, c, −c, b, −a).

Then

gµ = {X ∈ g : ad∗Xµ ≡ 0}
= ker P(µ)

= span {F1, F2, F3, F4} ,

where

F1 = X1 +X6,

F2 = X2 −X5,

F3 = X3 +X4,

F4 = cX4 − bX5 + aX6.

Now we must choose a supplement h of gµ in g. Consider

h = span {G1 = X1, G2 = X2} .

Then

h◦ = span{H1 = X3, H2 = X4, H3 = X5, H4 = X6}.
= {(0, 0, y1, y2, y3, y4) : yi ∈ R}

and
N = {(a, b, c+ y1, −c+ y2, b+ y3, −a+ y4) : yi ∈ R}.
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Taking into account formula 2.9 of Theorem 42, we want to find an ex-
pression for the projection

πν : g∗ → h◦,

with kernel ad∗h(µ + ν). We start by finding a basis for the kernel. It is
necessary to compute

ad∗Gi(µ+ ν), i = 1, 2,

and for that purpose we use the Lie-Poisson matrix at point µ+ν.We remark
that the i-th row of the matrix P (µ+ ν) is exactly the vector

ad∗Xi(µ+ ν).

Then, the following two vectors define a basis for ad∗h(µ+ ν) :

W 1 = ad∗G1
(µ+ ν)

= (0, c− y2, −b− y3, b, c− y1, 0);
W 2 = ad∗G2

(µ+ ν)
= (−c+ y2, 0, a− y4, −a, 0, c+ y1).

We consider the matrix

M = ([H1][H2][H3][H4][W 1][W 2]),

obtained by concatenation of the vectors. Finding πν(u) is the same as solving
the system of linear equations

Mλ = u, (2.15)

for λ and choosing

πν(u) = λ1H
1 + λ2H

2 + λ3H
3 + λ4H

4.

Consider the basis for gµ defined earlier. In order to find the Poisson matrix
for the transverse structure, we now compute πν(ad∗F1

ν). Through the close
connection between ad∗ and the Poisson matrix, we know that

ad∗F1
ν = (0, y1 + y2, y3, y3, −y1 − y2, 0).

We solve equation 2.15 for u = ad∗F1
ν, i.e.,

λ1
λ2
λ3
λ4
λ5
λ6

 = M−1


0

y1 + y2
y3
y3

−y1 − y2
0

 .
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Then

πν(ad∗F1
ν) =

4∑
i=1

λiFi

= (0, 0, y3 + (b+ y3)z, y3 − bz, −y1 − y2 − (c+ y1)z, 0),

where
z =

(y1 + y2)

c− y2
.

Finally, we can compute the first row of the transverse Poisson matrix:

(PN )11 (µ+ ν) =
〈
πν(ad∗F1

ν), F1

〉
= 0

(PN )12 (µ+ ν) =
〈
πν(ad∗F1

ν), F2

〉
= − (2c+y1−y2)(y1+y2)

c−y2
(PN )13 (µ+ ν) =

〈
πν(ad∗F1

ν), F3

〉
= −y3(2c+y1−y2)

c−y2
(PN )14 (µ+ ν) =

〈
πν(ad∗F1

ν), F4

〉
= − c(by2+cy3+by1−y2y3)+b(y21−y22)

c−y2

In the same way, starting with

πν(ad∗Fiν), i = 2, 3, 4

we obtain the remaining entries of the Poisson matrix:

(PN )23 (µ+ ν) = −y4(2c+y1−y2)
c−y2

(PN )24 (µ+ ν) =
c(ay2−cy4+y2y4+ay1)+a(y21−y22)

c−y2
(PN )34 (µ+ ν) = a(y3y1−y3y2+cy3)+b(y4y1−y4y2+cy4)

c−y2 .

We have obtained non-polynomial entries after computing a transverse Pois-
son structure to the dual of a semisimple Lie algebra. And yet, as we have
seen, this example does not contradict Damianou’s conjecture. There may
be another affine subspace µ+h◦, transversal to the coadjoint orbit, in which
the transverse Poisson structure is polynomial. We refer the reader to Ap-
pendix A for further details on the computation of this transverse Poisson
structure.

Example 52 We will now consider the Lie algebra

g = se(3) = so(3) nR3

of the euclidean group
SE(3) = SO(3) nR3,

considering the usual action of SO(3) in R3.
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We must determine which points µ in g∗ are singular with respect to the
Lie-Poisson structure. We consider the basis of so(3) n R3 formed by the
following elements:

X1
∼=

 . . .
. . −1
. 1 .

 , (0, 0, 0)

 ,

X2
∼=

 . . 1
. . .
−1 . .

 , (0, 0, 0)

 ,

X3
∼=

 . −1 .
1 . .
. . .

 , (0, 0, 0)

 ,

X4
∼= ((0), (1, 0, 0)) ,

X5
∼= ((0), (0, 1, 0)) ,

X6
∼= ((0), (0, 0, 1)) ·

In this basis, the Poisson matrix is

P =


· x3 −x2 · x6 −x5
−x3 · x1 −x6 · x4
x2 −x1 · x5 −x4 ·
· x6 −x5 · · ·
−x6 · x4 · · ·
x5 −x4 · · · ·

 .

We have
det P(µ) ≡ 0, ∀µ ∈ g∗,

and again there are no 6-rank points. As in the previous example, we are
in presence of an analytical Poisson structure and therefore the points of
maximal rank are the regular ones. All points such that xi 6= 0, for some
i = 4, 5, 6 have rank 4, which is maximal. At these points the transverse
Poisson structure is trivial, and again we turn our attention to the points of
rank 2. They are all points of the form

µ = (a, b, c, 0, 0, 0),

with a2 + b2 + c2 6= 0.
We will now compute the transverse Poisson structure to the coadjoint

orbit of any of these points. We have

gµ = ker P(µ)

= span{aX1 + bX2 + cX3, X4, X5, X6},
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For instance, a possible choice for the supplement of gµ in g is

h = span{X1, X2},

and we obtain (as in the previous example, {X1, X2, X3, X4, X5, X6} is the
dual basis of the basis of g above)

h◦ = span{X3, X4, X5, X6}

Considering an arbitrary element in

N = {(a, b, c+ y1, y2, y3, y4), yi ∈ R}

and doing all the computations as in the previous example, we obtain the
following matrix for the transverse Poisson structure (due to lack of space,
we present only the upper-diagonal part of the matrix):

1

c+ y1


. −c(by4 − cy3 − y3y1) c(ay4 − cy2 − y2y1) c(by2 − ay3)
∗ . −y24 y3y4
∗ ∗ . −y2y4
∗ ∗ ∗ .

 ,

The entries of this Poisson matrix are rational functions in the variables yi,
as in Example 51. However, this does not imply that all other transverse
Poisson structures to the same coadjoint orbits will also be non-polynomial.
For all we know, there could even be a linear one amongst them.

In fact, the transverse Poisson structures of examples 51 and 52 are sub-
stantially different in nature. Those differences will become more evident in
Chapter 4.
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Chapter 3

On Sufficient Conditions for
Linearity of the Transverse
Poisson Structure

Examples 51 and 52 illustrate the fundamental question:

Given a certain singular point µ of a Lie-Poisson structure, how sim-
ple can a transverse Poisson structure to its orbit be? For example, under
which conditions can we guarantee the existence of a linear transverse Pois-
son structure to the coadjoint orbit Oµ?

First we point out that, in order to adress the second question properly,
we must prove that the notion of linear transverse Poisson structure to a
coadjoint orbit is well defined. There is an infinity of transverse manifolds to
Oµ, each one endowed with its own transverse Poisson structure. Although
we know that they are all Poisson-diffeomorphic (see Lemma 40), the linear-
ity of a specific transverse Poisson structure to Oµ does not guarantee the
linearity of all others. We present an example of this (Example 62) in Section
3.2 below.

By ”linear transverse Poisson structure to Oµ at µ” we mean that there
is at least one transverse Poisson structure through µ which is linear. We
will now verify that this implies the existence, at any other point in Oµ, of
at least one transverse Poisson structure which is linear, giving meaning to
the expression ” linear transverse Poisson structure to a coadjoint orbit”. The
following lemma will be useful for that purpose.

Lemma 53 Let V be a vector space. Consider U1, U2, V1, V2 vector sub-
spaces of V such that

V = Ui ⊕ Vi, i = 1, 2,
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the projections
πi : V → Ui, i = 1, 2,

with kerπi = Vi, and an isomorphism I such that

I(U1) = U2, I(V1) = V2.

Then
π2 ◦ I = I ◦ π1.

Proof. Let v be a vector in V . Then there are vectors u1 in U1 and v1 in V1
such that

v = v1 + u1.

We have

π2 ◦ I(v) = π2 (I(u1) + I(v1))

= π2 (I(u1))

= I(u1).

(notice that I(v1) ∈ kerπ2). On the other hand, we have

I ◦ π1(v) = I ◦ π1(u1 + v1)

= I(u1),

because v1 ∈ kerπ1.

Theorem 54 Let µ1 be a singular point of a Lie-Poisson manifold (g∗, {, }L)
and let O denote the coadjoint orbit through µ1. Suppose that there is a linear
transverse Poisson structure to O at µ1. Then, given µ2 in O, there is a linear
transverse Poisson structure to O at µ2.

Proof. First we show how the isotropy subalgebras of µ1 and µ2 are related.
Let g be an element of G such that µ2 = Ad∗gµ1. Let X be an element of gµ1 .
For all Y in g, we have

〈ad∗Xµ2, Y 〉 =
〈
Ad∗gµ1, adXY

〉
= 〈µ1, Adg−1 [X , Y ]〉
= 〈µ1, [Adg−1X , Adg−1Y ]〉

=
〈
µ1, adAdg−1X (Adg−1Y )

〉
=

〈
ad∗Adg−1X

(µ1), Adg−1Y
〉
.
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Since Adg−1 is an automorphism of g, having

〈ad∗Xµ2, Y 〉 = 0, ∀Y ∈ g

is the same as having〈
ad∗Adg−1X

(µ1), Y
〉

= 0, ∀Y ∈ g,

i.e., Adg−1X ∈ gµ1 . We have hence proved that

gµ2 = Adg(gµ1). (3.1)

Now, suppose that the linear transverse Poisson structure to O through µ1

(which exists by hypothesis) is defined on the affine subspace

N1 = µ1 + h◦1,

where h1 is a supplement of gµ1 in g. Such linear Poisson structure shall be
denoted by {, }1. Then, we have that

h2 = Adgh1 (3.2)

is a supplement of gµ2 in g (again, because Adg is an automorphism of g)
and we may define the transverse Poisson structure to O through µ2 on the
submanifold

N2 = µ2 + h◦2.

We will show that this Poisson structure, which we will denote by {, }2, is
linear. Straightforward computations using (3.2) and the properties of Adg
used above show that

h◦2 = Ad∗gh
◦
1, (3.3)

and that

ad∗AdgY

(
Ad∗gν

)
= Ad∗g (ad∗Y ν) , ∀Y ∈ g,∀ν ∈ g∗. (3.4)

Let X2, Y2 be in gµ2 , ν2, τ2 be in h◦2 and α, β be real numbers. We will now
show that

{X2, Y2}2 (µ2 + αν2 + βτ2) = α {X2, Y2}2 (µ2 + ν2) + β {X2, Y2}2 (µ2 + τ2).

Because of relations 3.1, 3.2 and 3.3, there are X1, Y1, ν1, τ1 such that

X2 = AdgX1, Y2 = AdgY1
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and
ν2 = Ad∗gν1 τ2 = Ad∗gτ1.

Using Theorem 42, equation 3.4 and Lemma 53 consecutively, we have that

{X2, Y2}2 (µ2 + αν2 + βτ2) =
〈
παν2+βτ2(ad∗Y2

(αν2 + βτ2)),X2

〉
=

〈
παν2+βτ2

(
Ad∗gad∗Y1

(αν1 + βτ1)
)
,X2

〉
=

〈
Ad∗g(παν1+βτ1(ad∗Y1

(αν1 + βτ1))),AdgX1

〉
=

〈
παν1+βτ1(ad∗Y1

(αν1 + βτ1)),X1

〉
= {X1, Y1}1 (µ1 + αν1 + βτ1).

By hypothesis, the Poisson bracket {, }1 is linear, i.e.,

{X1, Y1}1 (µ1 + αν1 + βτ1) = α {X1, Y1}1 (µ1 + ν1) + β {X1, Y1}1 (µ1 + τ1).

A straightforward computation (basically, reversing the previous process)
shows that also {, }2 is linear.

We already know a sufficient condition (on the supplement h) for linearity
of the transverse Poisson structure, which is Molino condition (Corollary 43).
Still, Molino condition gives us no indication about how to find such an h, if
it exists.

In this chapter we will establish a new sufficient condition for the existence
of such an h, which in addition explicites which h to consider in order to
obtain a linear transverse Poisson structure. Some properties of symmetric
bilinear forms in Lie algebras will be useful for that purpose.

3.1 Symmetric Bilinear Forms on a Lie algebra
Definition 55 Let B be a symmetric bilinear form on g and g0 a subalgebra
of g. B is said to be:

1. Non-degenerate if

B(X ,Y ) = 0, ∀Y ∈ g⇔ X =
→
0;

2. Ad-invariant if

B(Adg(X ),Adg(Y )) = B(X ,Y ) ∀X ,Y ∈ g,∀g ∈ G,

where G is the connected and simply connected Lie group whose Lie
algebra is g;
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3. ad-invariant if

B(X , [Y ,Z ]) + B([X ,Z ],Y ) = 0, ∀X , Y , Z ∈ g;

4. adg0-invariant if

B(X , [Y ,Z ]) + B([X ,Z ],Y ) = 0, ∀X , Y ∈ g, Z ∈ g0.

The third condition can be derived from the second by taking time deriva-
tives, and is usually referred to as its infinitesimal version. Both obviously
imply condition 4, for any Lie subalgebra g0 of g. For instance, the Killing
form of a Lie algebra g,

K : g× g → R
(X ,Y ) 7→ tr(adX ◦ adY )

is an Ad-invariant symmetric bilinear form. Also, g is semisimple if and only
if K is non-degenerate.

Lemma 56 Let g0 ⊂ g be a subalgebra and let B be an adg0-invariant, sym-
metric and bilinear form. Let

g⊥0 = {X ∈ g : B(X ,Y ) = 0,∀Y ∈ g0}

be the orthogonal of g0 with respect to B. Then

[g0, g
⊥
0 ] ⊂ g⊥0 .

If, furthermore, B|g0×g0 is non-degenerate, then

g = g0 ⊕ g⊥0 .

Proof. First, we prove that [g0, g
⊥
0 ] ⊂ g⊥0 . Let X ∈ g0, Y ∈ g⊥0 . We have

B([Z , X ],Y ) = 0, ∀Z ∈ g0,

because
[X ,Z ] ∈ g0, Y ∈ g⊥0 .

Because B is an adg0-invariant bilinear form (Definition 55), we have

B(Z , [X ,Y ]) = 0, ∀Z ∈ g0,
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i.e.
[X ,Y ] ∈ g⊥0 .

Now we prove that g = g0 ⊕ g⊥0 . Because the restriction of B to g0 is
non-degenerate, g0 and g⊥0 intersect only at zero, so we only need to prove
that g = g0 + g⊥0 . This is a consequence of the Orthogonal Splitting Lemma
[11], which we will now prove.

The non-degeneracy of B|g0×g0 implies that the following map is a linear
isomorphism:

B : g0 → g∗0
X 7→ B(X ),

where
〈B(X ),Y 〉 = B(X ,Y ), ∀X ∈ g0. (3.5)

For each X ∈ g, we consider

BX : g0 → R
Y 7→ B(X ,Y ).

BX is an element of g∗0, so there is one and only one X0 in g0 such that

BX = B(X0).

Hence,
B(X ,Y ) = B(X0,Y ), ∀Y ∈ g0,

or, in other words, X − X0 is an element of g⊥0 . Therefore we may write

X = X0 + Z ,

where X0 ∈ g0 and Z ∈ g⊥0 .

3.2 Our Sufficient Condition for Linearity of
the Transverse Poisson Structure

If g0 is a subalgebra of g in the conditions of Lemma 56 then g⊥0 satisfies
both

[g0, g
⊥
0 ] ⊂ g⊥0

and
g = g0 ⊕ g⊥0 .
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Suppose that the two conditions of Lemma 56 are valid for an isotropy
subalgebra gµ. Then

h = g⊥µ

satisfies Molino condition and Corollary 43 shows that the transverse Poisson
structure to Oµ, on

N = µ+
(
g⊥µ
)◦
,

is linear. This argument proves the following theorem.

Theorem 57 Let g be a Lie algebra and consider µ in g∗. Let B be a sym-
metric bilinear form in g such that

1. B is adgµ-invariant;

2. B|gµ×gµ is non-degenerate.

Then the transverse Poisson structure on

N = µ+
(
g⊥µ
)◦

is linear (g⊥µ being the orthogonal with respect to B).

This sufficient condition has a fundamental advantage in relation with
Molino condition. Having found the bilinear form B, the transverse manifold
on which the transverse Poisson structure is linear is already determined:

N = µ+
(
g⊥µ
)◦
.

Based on some known bilinear forms in suitable Lie algebras, several cases of
linear transverse Poisson structures to coadjoint orbits immediately emerge.
For example, the Killing form K always satisfies condition 1 of Theorem 57.
One only has to verify the second condition. If g is a semisimple Lie algebra of
compact type, the Killing form in g is negative definite and, consequently, its
restriction to any subalgebra is non-degenerate (see Corollary 58), satisfying
condition 2 of Theorem 57. Hence, in this case there will be a linear transverse
Poisson structure to every coadjoint orbit. However, a more general result
can be derived:

Corollary 58 Let g be a compact type Lie algebra (i.e., there is a compact
Lie group whose Lie algebra is g). Then, for any µ in g, there is a linear
transverse Poisson structure to the coadjoint orbit Oµ.
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Proof. If g is a compact type Lie algebra, we may define a symmetric
bilinear form B which is also positive definite and ad-invariant (see [11]). In
particular, B is adgµ invariant for every µ in g∗ . We will establish that its
restriction to any subalgebra gµ is non-degenerate. Indeed, considering Y in
gµ and supposing that

B|gµ×gµ(X ,Y ) = 0, ∀X ∈ gµ,

we get, in particular,
B(Y ,Y ) = 0.

But then Y = 0 (because B is positive definite). Theorem 57 completes the
proof.

Now suppose g is a semisimple Lie algebra. The Killing form K, being
non-degenerate in semisimple Lie algebras, provides an isomorphism, K, be-
tween g and g∗ (see 3.5 in the proof of Lemma 56). Then it makes sense
to say that an element of g∗ is semisimple or nilpotent. We recall that an
element X in g is a semisimple (resp. nilpotent) element of g if

adX : g→ g

is a semisimple (resp. nilpotent) linear operator. We refer the reader to [7]
and [17] for further details.

Corollary 59 Let g be a semisimple Lie algebra and µ a semisimple element
of g∗ (meaning that µ is identified through K with a semisimple element X
in g). Then there is a linear transverse Poisson structure to Oµ.

Proof. Consider the semisimple element X in g which corresponds to µ.
First we point out that

gµ = z(X),

where z(X) is the centralizer of X in g. Indeed, considering Y in gµ, we have

ad∗Y µ = 0 ⇔ 〈ad∗Yµ, Z 〉 = 0, ∀Z ∈ g

⇔ 〈µ, [Z ,Y ]〉 = 0, ∀Z ∈ g

⇔ K(X , [Z ,Y ]) = 0, ∀Z ∈ g

⇔ K([X ,Y ],Z ) = 0, ∀Z ∈ g (3.6)
⇔ [X ,Y ] = 0,

where in 3.6 we have used the symmetry and ad-invariance of K and the last
identity follows from the non-degeneracy of K.
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Together with Theorem 4.1.6 of [17], this implies that K|gµ×gµ is non-
degenerate and that

g = gµ ⊕ g⊥µ .

Theorem 57 completes the proof.

In the next corollary, G will denote any Lie group with Lie algebra g and
Gµ will stand for the isotropy subgroup of µ ∈ g∗, i.e.,

Gµ = {g ∈ G : Ad∗gµ = µ}.

Corollary 60 If µ ∈ g∗ is such that gµ is semisimple or Gµ is compact, then
there is a linear transverse Poisson structure to the coadjoint orbit Oµ.

Proof. In the first situation, the adjoint representation of gµ on g is faithful.
Then K, the Killing form of g, is non-degenerate when restricted to gµ and
Theorem 57 can again be used (with B = K).

In the second case, every representation of Gµ on a finite-dimensional
vector space V is completely reducible. Consider the adjoint representation
of Gµ on g :

Adµ : Gµ → Hom(g)
g 7→ d(Lg ◦Rg−1)e

where Lg and Rg are left product and right product by g, respectively. Clearly
gµ is an Adµ-invariant subspace. By complete reducibility of Adµ, there is
an Adµ-invariant supplement, say h, to gµ. This means that

Adµ(g)(h) ⊂ h, ∀g ∈ Gµ,

which in turn implies that
[gµ, h] ⊂ h

and Molino condition may be used.

Remark 61 In the last theorem, the condition ”Gµ compact” cannot be
weakened to ”gµ of compact type.” The tools to give a counter-example will
be given in Chapter 4 (see Example 77). The Gµ compact situation, with the
necessary adaptations, was suggested to us by R. Loja Fernandes for Poisson
manifolds in general.
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Example 62 Again we consider the Lie algebra

so(4) = {A ∈M4×4 : A = −AT}.

This is a compact type Lie algebra, hence Corollary 58 assures that there will
be a linear transverse Poisson structure to any coadjoint orbit. We will find
that specific transverse submanifold N . First, we compute its Killing form
K. We already know it is negative definite, because so(4) is semisimple.

The matrix of K on the basis {X1, . . . , X6} (see Example 51) is
−4 · . . . ·
. −4 . . . .
. . −4 . . .
. . . −4 . .
. . . . −4 .
. . . . . −4

 .

Therefore, Theorem 57 guarantees that taking µ in so(4)∗ and choosing

N = µ+
(
g⊥µ
)◦

(ortogonal with respect toK), we obtain a linear transverse Poisson structure
to Oµ. For example, taking the same point as in Example 51,

µ = (a, b, c, −c, b, −a),

then

g⊥µ = span{c(X1 −X6)− a(X3 −X4), −b(X1 −X6) + a(X2 +X5)}.

Then the formula of Theorem 42 on the submanifold

{(a+ y1, b+ y2, c+ y3, (y4 − 1)c+ y3, (1− y4)b− y2, (y4 − 1)a+ y1); yi ∈ R}

produces the following Poisson matrix for the transverse Poisson structure:

PN =


. −4y3 − 2cy4 4y2 + 2by4 2cy2 − 2by3

4y3 + 2cy4 . −4y1 − 2ay4 2ay3 − 2cy1
−4y2 − 2by4 4y1 + 2ay4 . 2by1 − 2ay2
2by3 − 2cy2 2cy1 − 2ay3 2ay2 − 2by1 .

 .

The entries are linear in the yi’s (coordinates of the points in the transverse
manifold).

Again we remark that, if another subspace h was chosen (and conse-
quently another transverse manifold), we could obtain non-linear transverse
Poisson structures, like in Example 51.
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Example 63 Now we consider the Lie algebra

sp(4) =

{(
A1 A2

A3 −AT1

)
: Ai ∈M2×2, A2 = AT2 , A3 = AT3

}
,

which is semisimple but not of compact type. We choose the basis of sp(4)
as follows:

X1 = E1,1 − E3,3

X2 = E1,2 − E4,3

X3 = E2,1 − E3,4

X4 = E2,2 − E4,4

X5 = E1,3

X6 = E1,4 + E2,3

X7 = E2,4

X8 = E3,1

X9 = E3,2 + E4,1

X10 = E4,2

The Lie-Poisson matrix is

. x2 −x3 . 2x5 x6 . −2x8 −x9 .
∗ . x1 − x4 x2 . 2x5 x6 −x9 −2x10 .
∗ ∗ . −x3 x6 2x7 . . −2x8 −x9
∗ ∗ ∗ . . x6 2x7 . −x9 −2x10
∗ ∗ ∗ ∗ . . . x1 x2 .
∗ ∗ ∗ ∗ ∗ . . x3 x1 + x4 x2
∗ ∗ ∗ ∗ ∗ ∗ . . x3 x4
∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . .
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ .


.

There are no points of rank 10, therefore points of rank 8 (which do exist)
are regular. We choose a 6-rank point, for example

µ = X1 +X4

= (1, 0, 0, 1, 0, . . . , 0).

The isotropy subalgebra is

gµ = span {X1, X2, X3, X4} .

Taking the same basis X1, . . . , X10, the Killing form of sp(4) is represented
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by the matrix

K =



12 . . . . . . . . ·
· . 12 . . . . . . .
· 12 . . . . . . . .
· . . 12 . . . . . ·
· . . . . . . 6 . .
· . . . . . . . 12 .
· . . . . . . . . 6
· . . . 6 . . . . ·
· . . . . 12 . . . .
· . . . . . 6 . . .


.

The non-degeneracy of K|gµ×gµ is obvious, so choosing

h = g⊥µ = span{X5, X6, X7, X8, X9, X10},

Theorem 57 assures that on the submanifold

N = µ+ h◦ = {(1 + y1, y2, y3, 1 + y4, 0, . . . , 0) : y1, . . . , y4 ∈ R},

the transverse Poisson structure is linear. Indeed, the computations in Ap-
pendix D produce:

PN =


· y2 −y3 ·
−y2 · y1 − y4 y2
y3 y4 − y1 · −y3
· −y2 y3 ·

 .

In the previous example, we could have used Corollary 59 to establish
the linearity of the transverse Poisson structure instead of using Theorem 57
directly. The element X corresponding to µ through the Killing form is

X =
1

12


1 · · ·
· 1 · ·
· · −1 ·
· · · −1

 ,

which is a semisimple element of sp(4).
We proceed to give an example that illustrates Corollary 60.
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Example 64 Let g be generated by the vectors X1, . . . , X5, with the Lie
bracket given by:

[X1, X2] = −2X2 +X4 + 2X5 [X1, X3] = 2X3 [X2, X3] = −X1 +X4,

[X1, X5] = [X4, X5] = −[X2, X4] = X4,

all other being zero. The matrix for the Lie-Poisson structure on g∗ is

P =


. −2x2 + x4 + 2x5 2x3 · x4

2x2 − x4 − 2x5 · x4 − x1 −x4 ·
−2x3 x1 − x4 · · ·
· x4 · · x4
−x4 · · −x4 ·

 .

If we take µ = (1, 0, 0, 1, 0), then

gµ = span {X3, X2 −X5, X1 −X4} .

We have

[X3, X2 −X5] = X1 −X4, [X3, X1 −X4] = −2X3

and
[X2 −X5, X1 −X4] = 2X2 − 2X5,

so this is sl(2), a simple Lie algebra. Hence Corollary 60 guarantees that
there is a transverse Poisson structure which is linear. Indeed, choosing

h = span{X4, X5},

we obtain the transverse Poisson structure given by

P =

 . y1 −2y3
−y1 · 2y2
−2y3 −2y2 ·

 .

We remark that the h above is the orthogonal of gµ with respect to the Killing
form of g (see Theorem 57), which is given by

8 · · · ·
· 1 4 · 1
· 4 · · ·
· · · · ·
· 1 · · 1

 .
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3.3 On the Relation between Two Sufficient Con-
ditions for Linearity

We now know two sufficient conditions for the existence of a linear transverse
Poisson structure to a coadjoint orbit. The one provided by Molino (Corollary
43) and the conditions of Theorem 57. We start our comparison between
the two by noticing that if the conditions of Theorem 57 are satisfied, then
Molino condition holds with h the B-orthogonal of gµ. The first assertion of
the theorem below is then proved. Moreover, there are important classes of
Lie algebras where the two conditions are equivalent.

Theorem 65 Let g be a Lie algebra and consider the Lie-Poisson structure
on g∗.

1. If there is a point µ ∈ g∗ and a symmetric bilinear form B satisfy-
ing conditions 1 and 2 of Theorem 57, then h = g⊥µ satisfies Molino
condition.

2. If an element µ of g∗ is such that gµ is semisimple or of compact type,
then any supplement h satisfying Molino condition may be regarded as
g⊥µ , with respect to an adgµ-invariant symmetric bilinear form B which
satisfies the conditions of Theorem 57.

Proof. To check the second assertion, we will construct a symmetric bilinear
form

B : g× g→ R

that satisfies the conditions of Theorem 57. First we note that, if gµ is
semisimple or of compact type, there is a symmetric bilinear form on gµ,

Bµ : gµ × gµ → R

which is also ad-invariant and non-degenerate. If gµ is semisimple, take Bµ

to be its Killing form. If gµ is of compact type take a positive definite ad-
invariant symmetric bilinear form. We use the splitting

g = gµ ⊕ h (3.7)

to define B:
B (X , Y ) = Bµ (π(X), π(Y ))

where π : g→ gµ is the projection with kernel ker(π) = h. Note that

B(X , Y2) = 0, ∀Y2 ∈ h. (3.8)
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Since Bµ is non-degenerate, then so is B|gµ×gµ . We will show that B is also
adgµ-invariant, i.e.,

B (X , [Y ,Z ]) + B ([X ,Z ] ,Y ) = 0 ∀X , Y ∈ g, ∀Z ∈ gµ.

Indeed, with X1, Y1 ∈ gµ, X2, Y2 ∈ h coming from decomposition 3.7,

B (X , [Y ,Z ]) + B ([X ,Z ] ,Y ) = B (X1 +X2, [Y1 + Y2,Z ])

+ B ([X1 +X2,Z ] , Y1 + Y2)

= B (X1, [Y1 + Y2,Z ]) + B ([X1 +X2,Z ] , Y1)

= B (X1, [Y1,Z ]) + B (X1, [Y2,Z ])

+ B ([X1,Z ] , Y1) + B ([X2,Z ] , Y2)

= B (X1, [Y2,Z ]) + B ([X2,Z ] , Y1)

= 0

(we have used 3.8, ad-invariance of Bµ = B|gµ×gµ and Molino condition).

The next example will make clear that neither of these two conditions are
necessary for linearity of the transverse Poisson structure. We will find a Lie
algebra g and an element µ of g∗ such that there is no h satisfying Molino
condition but still there is an h such that the transverse Poisson structure on

N = µ+ h◦

is linear. In addition, this shows that the converse of Damianou’s conjec-
ture is not valid. Semisimplicity is not necessary for ”polynomiality” of the
transverse Poisson structure.

Example 66 Take g to be the direct sum of the open book algebra (R acting
on R3 by the identity matrix) with the 2-dimensional non-abelian Lie algebra
A2. On the natural basis

{T, X1, X2, X3, Y1, Y2}

for g, the non-zero brackets are

[T, Xi] = Xi, [Y1, Y2] = Y1.

As usually, we identify the above basis with linear coordinates {t, x1, x2, x3, y1, y2}
in g∗ and we obtain the following Poisson matrix for the Lie-Poisson struc-
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ture:

P =


· x1 x2 x3 · ·
−x1 · · · · ·
−x2 · · · · ·
−x3 · · · · ·
· · · · · y1
· · · · −y1 ·


Its determinant is zero, therefore the 4-rank points are of maximum rank.
We consider the following point of rank 2 (and hence singular) in g∗ :

µ = (0, 1, 0, 0, 0, 0).

Its isotropy subalgebra gµ is generated by the vectors

X2, X3, Y1, Y2.

For any choice of the supplement h of gµ in g one has

span{X2, X3} ⊂ [h, gµ]

so h does not satisfy Molino condition. Let us compute the transverse Poisson
structure to Oµ for the following choice for the supplement of gµ :

h0 = span{T,X1}.

We have
h◦0 = span{X2, X3, Y 1, Y 2},

so the transverse submanifold is given by

N = {(0, 1, z1, z2, z3, z4) : z1, . . . , z4 ∈ R}.

The usual computations produce the following Poisson matrix for the trans-
verse Poisson structure:

PN =


· · · ·
· · · ·
· · · z3
· · −z3 ·


This Poisson structure is linear in the affine z-coordinates for Nh0 . We there-
fore conclude that Molino condition is not necessary for linearity (and con-
sequently, neither are the conditions of Theorem 57). Moreover, this is also
an example of a linear transverse Poisson structure to a coadjoint orbit in a
Lie algebra which is not semisimple.
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We have said above that the condition of Theorem 57 is stronger than
Molino condition, because Molino condition comes as its direct consequence
for all Lie algebras. Nevertheless, for all we know until now, the two condi-
tions could even be equivalent. The following example will clarify this point,
showing that this is not the case.

Example 67 Consider the Lie algebra

g = A2 ⊕ A2.

We choose the basis {X , Y } of A2 such that

[X , Y ] = X .

As before, we consider {x1, y1, x2, y2} , ”natural” linear coordinates in g∗. The
Lie-Poisson structure on g∗ is given by the following block-diagonal matrix:

P =


(

. x1
−x1 .

)
(

. x2
−x2 .

)


Choose a singular point in g∗, for example one such that x1 = 0 and x2 6= 0.
Then its isotropy subalgebra is

gµ = span{X1, Y1}.

Taking
h = span{X2, Y2} = A2,

we have a supplement of gµ in g such that Molino condition is satisfied, and
thus there is a transverse Poisson structure to Oµ which is linear. Neverthe-
less, Theorem 57 is not applicable, because there is no invariant symmetric
bilinear form on A2 which is also non-degenerate.
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Chapter 4

A Necessary Condition for
Linearity of the Transverse
Poisson Structure

In the previous chapter, we were able to use the two sufficient conditions
at our disposal to establish the linearity of the transverse Poisson structure
to the coadjoint orbits in several classes of Lie-Poisson manifolds. However,
it would be desirable to assess the existence of a linear transverse Poisson
structure to a coadjoint orbit without having to exhibit it. If such a transverse
submanifold is not found, one remains in doubt. Is it or is it not possible
to find another supplement h such that the Poisson structure on µ + h◦ is
linear?

Moreover, at this point we still haven’t clarified the situation in se(3)∗(see
Example 52). That is why we will now turn our attention to find a necessary
condition for linearity of the transverse Poisson structure to a coadjoint orbit.
Later on, this necessary condition will be used to rule out linearity in specific
cases.

We begin by introducing the notion of linear approximation to a Poisson
structure at a zero rank point.

4.1 The Linear Approximation at a Zero Rank
Point

In this section we follow Weinstein’s approach in [18].
Let (M, P) be a Poisson manifold. Consider the following subsets of
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C∞(M) :

mx0 = {f ∈ C∞(M); f(x0) = 0},
m2

x0
= {f ∈ C∞(M); f(x0) = 0, df(x0) = 0}.

Lemma 68 Let x0 be a zero rank point in M. Then mx0 and m2
x0

are
subalgebras of (C∞(M); {, }). In addition, m2

x0
is an ideal.

Proof. We want to prove that

{mx0 , mx0} ⊆mx0

and that
{m2

x0
, C∞(M)} ⊆m2

x0
.

Because x0 is a zero rank point, we have {f, g}(x0) = 0 for any f and g, i.e.,

{C∞(M), C∞(M)} ⊂mx0 .

In particular, mx0 is a subalgebra in C∞(M). Now we will prove that m2
x0

is an ideal in C∞(M). Let f in m2
x0

and g in C∞(M). Then

dfx0 = 0⇒ ∂f

∂xi
(x0) = 0, ∀i (4.1)

Now we compute d ({f, g})x0 to check that {f, g} ∈m2
x0

:

d ({f, g})x0 = d

[∑
i<j

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
Pij

]
x0

=
∑
i<j

d

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
x0

Pij(x0)

+
∑
i<j

(
∂f

∂xi
(x0)

∂g

∂xj
(x0)−

∂f

∂xj
(x0)

∂g

∂xi
(x0)

)
d (Pij)x0

= 0.

In the last identity we used condition 4.1 and the fact that P(x0) = 0. We
conclude that {f, g} belongs to m2

x0
, and consequently m2

x0
is an ideal in

C∞(M).
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Theorem 69 (Weinstein [18]) Let x0 be a zero rank point in (M, P).Then
the tangent space Tx0M inherits a linear Poisson structure from (M, P), de-
noted (Tx0M, P0). In local coordinates, that structure is the first order Taylor
expansion of the original Poisson structure (in M) at x0.

Proof. Consider the isomorphism

I : T∗x0M −→ mx0

/
m2

x0

α 7→ [f ]
,

where f is any function such that f(x0) = 0, dfx0 = α.
We will define a Lie algebra structure in mx0

/
m2

x0
, starting with the

Poisson bracket on mx0 (⊂ C∞(M)) :

{[f ], [g]}′ def= [{f, g}]

We must verify that this bracket is well-defined. By hypothesis,

f ∼ f ′ ⇔ dfx0 = df ′x0 ,

g ∼ g′ ⇔ dgx0 = dg′x0 .

and, on the other hand,

d ({f, g}) (x0) = d

[(
∂f

∂xi

∂g

∂xj
− ∂g

∂xi

∂f

∂xj

)
Pij(x)

]
x0

=
∑
i<j

d

(
∂f

∂xi

∂g

∂xj
− ∂g

∂xi

∂f

∂xj

)
x0

Pij(x0)︸ ︷︷ ︸
=0

+
∑
i<j

(
∂f

∂xi

∂g

∂xj
− ∂g

∂xi

∂f

∂xj

)
d(Pij)x0

=
∑
i<j

(
∂f ′

∂xi

∂g′

∂xj
− ∂g′

∂xi

∂f ′

∂xj

)
d(Pij)x0

= d ({f ′, g′}) (x0). (4.2)

Hence,
[{f, g}] = [{f ′, g′}] ,

and this bracket on mx0

/
m2

x0
is well defined. Skew-symmetry follows from

the skew-symmetry of the original Poisson structure. As for the Jacobi iden-
tity, we observe that

{{[f ], [g]}′, [h]}′ = {[{f, g}], [h]}′ = [{{f, g}}′, h}]
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and it also follows from the properties of the Poisson structure onM.
We have thus defined a Lie algebra structure in mx0

/
m2

x0
given by

{[f ], [g]}′ = [{f, g}].

The isomorphism I allows us to define a Lie algebra structure in T∗x0(M),
given by

[α, β] = I−1 ({I(α), I(β)}′) .
Consequently, there is a Lie-Poisson structure on

(T∗x0M)∗ ∼= Tx0M, (4.3)

which we will call P0.
Now we take x1, . . . , xn local coordinates in the manifoldM, with

xi(x0) = 0 ∀i,

and X1, . . . , Xn, (linear) coordinates in Tx0M, given by

Xi = (dxi)x0 .

Having identification 4.3 in mind, we conclude that

P0
ij = {Xi, Xj}0

= I−1 ({I(Xi), I(Xj)}′)

= I−1
({

I (dxi)x0 , I (dxj)x0
}′)

= I−1 ({[xi], [xj]}′)
= I−1 ([{xi, xj}])
= I−1 ([Pij(x)])

A possible representative for the class [Pij(x)] is

fij = Pij(x0)︸ ︷︷ ︸
=0

+
m∑
k=1

∂Pij
∂xk

(x0)xk,

the linear component of the Taylor series of Pij(x). Indeed, we have

dfx0 = c1ij(dx1)x0 + . . .+ cmij (dxm)x0

= c1ijX1 + . . .+ cmijXm

where
ckij =

∂Pij
∂xk

(x0).
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Therefore,

{Xi, Xj}0 =
m∑
k=1

ckijXk

and the proof is concluded.

Definition 70 (Tx0M, P0) is known as the linear approximation to (M, P)
at x0.

Definition 71 Let (M, P) be a Poisson manifold and x0 a zero rank point.
(M, P) is said to be linearizable at x0 if it is locally Poisson-diffeomorphic
to (Tx0M, P0) (around x0).

4.2 A Necessary Condition for Linearity

Now we adress the following problem: Let (M, P) be a Poisson manifold and
x0 a zero rank point. Suppose that P is Poisson-diffeomorphic to a linear
Poisson structure Q. What can be said about the linear approximation P0?

We start with the following Lemma:

Lemma 72 Let (M; {, }) be a Poisson manifold and x0 a zero rank point.
Then

{dfx0 , dgx0}
0 = d ({f, g})x0 , ∀f, g ∈ C∞(M).

Proof. As in the previous section, we define {X1, . . . , Xn} linear coordinates
on Tx0M such that

Xk = (dxk)x0 .
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We have that

(d{f, g})x0 =
∑
k

∂{f, g}
∂xk

∣∣∣∣
x0

·Xk

=
∑
k

∂

∂xk

(∑
i,j

∂f

∂xi

∂g

∂xj
{xi, xj}

)∣∣∣∣∣
x0

·Xk

=
∑
k

(∑
i,j

∂f

∂xi
(x0)

∂g

∂xj
(x0)

∂{xi, xj}
∂xk

∣∣∣∣
x0

)
·Xk

=
∑
i,j

∂f

∂xi
(x0)

∂g

∂xj
(x0)

∑
k

∂{xi, xj}
∂xk

∣∣∣∣
x0

·Xk

=
∑
i,j

∂f

∂xi
(x0)

∂g

∂xj
(x0) {Xi, Xj}0

=

{∑
i

∂f

∂xi
(x0) ·Xi,

∑
j

∂g

∂xj
(x0) ·Xj

}0

= {dfx0 , dgx0}
0 ,

concluding the proof.

Theorem 73 Let (M1, P1) and (M2, P2) be Poisson manifolds which are
locally Poisson-diffeomorphic, x0 a zero rank point of M1 and y0 the corre-
sponding zero rank point of M2. Then (Tx0M1, P0

1 ) and (Ty0M2, P0
2 ) are

also Poisson-diffeomorphic.

Proof. Let x1, . . . , xn be coordinates inM1 and ψ :M1 →M2 the diffeo-
morphism mentioned above. Then ψ induces coordinates y1, . . . , yn in M2

such that
{yi ◦ ψ, yj ◦ ψ}1 = {yi, yj}2 ◦ ψ.

Now let us define coordinates X1, . . . , Xn in Tx0M1, coordinates Y1, . . . , Yn
in Ty0M2 and

Ψ : Tx0M1 → Ty0M2

in the following way:

Xi = (dxi)x0 , Yi = (dyi)y0 , Ψ = (dψ)x0 .

First we note that

Yk ◦Ψ = (dyk)y0 ◦ (dψ)x0
= d (yk ◦ ψ)x0
= (dψk)x0 .
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Also, Ψ is a linear isomorphism because ψ is a diffeomorphism. Now we
prove that Ψ is a Poisson map, which completes the proof:

{Yi ◦Ψ, Yj ◦Ψ}01 =
{

(dψi)x0 , (dψj)x0
}0
1

= d
(
{ψi, ψj}1

)
x0

(4.4)

= d
(
{yi, yj}2

)
y0
◦ (dψ)x0 (4.5)

=
{

(dyi)y0 , (dyj)y0

}0

2
◦ (dψ)x0 (4.6)

= {Yi, Yj}02 ◦Ψ.

We have used Lemma 72 in 4.4 and 4.6. In 4.5 we used the hypothesis of ψ
being a Poisson map and the chain rule.

Remark 74 Taking in account Theorem 73, we remark that (M, P) is
linearizable at x0 if it is locally Poisson-diffeomorphic to some linear Pois-
son structure. The linear approximation (Tx0M, P0) may be taken as a
representative of the linear structures which are Poisson-diffeomorphic to P ,
provided that they exist.

Then we can formulate the following necessary condition for linearity:

If (M, P) is locally Poisson-diffeomorphic to a linear Poisson structure,
then (M, P) must be locally Poisson-diffeomorphic to (Tx0M, P0).

4.3 Examples in Transverse Poisson Structures

In particular cases, namely in transverse Poisson structures, we can use the
necessary condition for linearity above to infer the existence of a linear trans-
verse Poisson structure to a coadjoint orbit O. We know by Lemma 40
that any two transverse Poisson structures PN1 and PN to O are Poisson-
diffeomorphic. Suppose PN is linear. Then, by the necessary condition
above, PN1 is Poisson-diffeomorphic to its linear approximation P0

N1
. As a

consequence:

If a transverse Poisson structure to a coadjoint orbit is not Poisson-
diffeomorphic to its first order Taylor expansion, then there is no linear
transverse Poisson structure to that orbit.
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In the following examples we will consider singular points in the dual of
some Lie algebras which admit no linear transverse Poisson structure to its
coadjoint orbit. In each case, we will use Theorem 73 to prove this.

Example 75 We consider again sp(4)∗, the dual of the same Lie algebra of
example 63, but we study the transverse Poisson structure to the coadjoint
orbit through a different point µ :

µ = (0, 1, 0, . . . , 0).

This is a 6-rank point. We note that µ is identified through K with

X =
1

12


· · · ·
1 · · ·
· · · −1
· · · ·

 ,

which is a nilpotent element of sp(4). Therefore, Corollary 59 cannot be used.
In fact, none of the sufficient conditions for linearity of Chapter 3 holds at
this coadjoint orbit, because the transverse Poisson structure to the coadjoint
orbit through µ is non-linearizable. We proceed to prove this fact. We have

gµ = span{X1 +X4, X3, X7, X8}

and we choose a random h, for example

h = span{X1, X2, X5, X6, X9, X10},

and we compute the transverse Poisson structure. A basis for h◦ is, for
example,

{X3, X4, X7, X8}
and we have

µ+ ν = (0, 1, y1, y2, 0, 0, y3, y4, 0, 0) .

Through the usual computations, we obtain the matrix of the transverse
Poisson structure:

PN =


. . 2y3 −2y4
. . −2y2y3 2y4y2
−2y3 2y2y3 . −y2y1
2y4 −2y4y2 y2y1 ·

 .

Now we will prove that this transverse Poisson structure is non-linearizable.
The first step is to notice that the set of all its zero rank points is the union
of two one-dimensional manifolds:

{(y1, 0, 0, 0) : y1 ∈ R} ∪ {(0, y2, 0, 0, 0) : y2 ∈ R}
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However, its linear approximation P0
N at µ (i.e., at y = 0) has a different

behaviour. We have that

P0
N =


· · 2y3 −2y4
· · · ·
−2y3 · · ·
2y4 · · ·

 .

The set of zero rank points of this Poisson structure is a 2-dimensional hy-
perplane:

{(y1, y2, 0, 0) : y1 ∈ R, y2 ∈ R}.

Therefore, PN and P0
N cannot be locally Poisson-diffeomorphic and hence

PN is not Poisson-diffeomorphic to any linear Poisson structure.
We remark that any other choice of h would produce a nonlinearizable

transverse Poisson structure.

Remark 76 This example also shows that semisimplicity of the Lie algebra
is not sufficient to guarantee linearity of the transverse Poisson structure
(although it is sufficient to guarantee ”polynomiality”, as proved by Cushman
& Roberts [3]).

Example 77 In order to give the counter-example referred to in Remark
61, we have constructed a Lie algebra g and chosen a point µ ∈ g∗ with
a compact-type isotropy subalgebra. Let g be the real 4-dimensional Lie
algebra with basis {T1, T2, X1, X2} and brackets given by:

[T1, T2] = 0, [T1, X1] = T2, [T1, X2] = kX1,
[T2, X1] = 0, [T2, X2] = T2,

[X1, X2] = T1 +X1,

where k is an arbitrary real number. Then, the Poisson matrix for the Lie-
Poisson structure on g∗ is given by (dots stand for zeros)

P =


. . t2 kx1
. . . t2
−t2 . . t1 + x1
−kx1 −t2 −t1 − x1 .


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We take µ = (1, 0, 0, 1) ∈ g∗. Then:

gµ = span{T1, T2},

which is obviously of compact type (for example, this gµ is the Lie algebra
of the 2-torus).

Now take the following supplement of gµ :

h = span{X1, X2}.

Then
N = µ+ h◦ = {(1 + y1, y2, 0, 1) : y1, y2 ∈ R}

and the usual computations produce:

PN =

(
0 − y22

1+y1
y22

1+y1
0

)

Again there are obstructions to linearizability, since

P0
N =

(
0 0
0 0

)
.

Example 78 Again we consider the Lie algebra

g = se(3) = so(3) nR3,

described in example 52. In that example, we have computed the transverse
Poisson structure to the coadjoint orbit through points of rank 2 of the
Poisson structure. Such points have the form

µ = (a, b, c, 0, 0, 0),

with a2 + b2 + c2 6= 0. The transverse Poisson structure, as computed in
Example 52, is given by:

1

c+ y1


. −c(by4 − cy3 − y3y1) c(ay4 − cy2 − y2y1) c(by2 − ay3)
∗ . −y24 y3y4
∗ ∗ . −y2y4
∗ ∗ ∗ .

 ,
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clearly non-linear. But until now, doubt remains. Is it linear for a different
choice of h? To give an answer, we take a closer look at its linear approxi-
mation at µ :

P0
N = −c


. by4 − cy3 −ay4 + cy2 ay3 − by2

−by4 + cy3 . . .
ay4 − cy2 . . .
−ay3 + by2 . . .

 .

The set of zero rank points in PN is then the 1-dimensional submanifold

{(y1, 0, 0, 0) : y1 ∈ R}.

On the other hand, the set of zero rank points in P0
N is a 2-dimensional

submanifold:
{(y1, ay2, by2, cy2) : y1, y2 ∈ R}.

Therefore, PN is not Poisson-diffeomorphic to its linear approximation and
hence is not linearizable.
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Chapter 5

On the Polynomiality of the
Transverse Poisson Structure

Theorem 73 allowed us to conclude that no linear transverse Poisson struc-
tures could exist, in the examples of the last section of the previous chapter.
At this point, a logical step would be to investigate if, in such cases, there
were obstructions to the existence of quadratic, or even polynomial of higher
degree transverse Poisson structures.

Unfortunately, it is not possible to obtain an analogous of Theorem 73
for quadratic Poisson structures using Taylor approximations of degree two.
This is due to the fact that, in general, the quadratic Taylor approximation
of a Poisson tensor P is not a Poisson tensor. We recall that P is Poisson if
and only if

[P , P ]S = 0.

Using coordinates (see for example [16]), it can be proved that only the first
non vanishing term of the Taylor series of P is guaranteed to satisfy this
requirement (and also the last non vanishing term, if P is polynomial).

Therefore, a possible generalization of Theorem 73 could only produce
obstructions to the existence of homogeneous polynomial Poisson structures
of the particular degree of the referred first non vanishing term of the Taylor
series of P . In spite of this difficulty, we were able to draw conclusions in the
case of se(3)∗.

5.1 Obstructions to Polynomiality in se(3)∗

Example 79 Consider again the Lie-Poisson structure on se(3)∗. In this
specific Lie algebra, one can find obstructions to the polynomiality of the

71



transverse Poisson structure. We will show that, on any transverse subman-
ifold to a coadjoint orbit, a polynomial transverse Poisson structure would
have to be linear and hence (see Example 78), does not exist.

In order to do this we will parametrize all possible supplements to gµ and
compute explicitly the transverse Poisson structure on an arbitrary trans-
verse submanifold. We will then analyse the possible degree of an eventual
polynomial structure.

We start with a change of basis that makes computations less cumber-
some. Our new basis differs from the one we used in Examples 52 and 78 by
replacing X3 by aX1 + bX2 + cX3 (we recall that c 6= 0 so that indeed this
defines a new basis for se(3)). In this new basis, the Lie-Poisson structure
for se(3)∗ is given by the skew-symmetric matrix with lower-triangular part
as follows:

. ∗ ∗ ∗ ∗ ∗
ax1+bx2−x3

c
. ∗ ∗ ∗ ∗

abx1+(b2+c2)x2−bx3
c

ax3−(a2+c2)x1−abx2
c

. ∗ ∗ ∗
. x6 bx6 − cx5 . ∗ ∗
−x6 . cx4 − ax6 . . ∗
x5 −x4 cx5 − bx4 . . .

 .

The arbitrary singular point µ now writes as

µ = (a, b, a2 + b2 + c2, 0, 0, 0).

The advantage of the new basis is that now we have

gµ = span{X3, X4, X5, X6}

and standard linear algebra can be used to show that any supplement h to
gµ has the form:

hA,B = span{X1 + A2X2 + . . .+ A6X6, X2 +B3X3 + . . .+B6X6},

for some real numbers Ai, i = 2, . . . , 6 and Bj, j = 3, . . . , 6.
Proceeding with the computations, we arrived at the transverse Poisson

structure on NA,B = µ+ h◦A,B, from which we highlight the following facts:

• Each entry (i, j) in the transverse Poisson structure is of the form:

Qi,j

D
,

where Qi,j is an homogeneous quadratic polynomial in the y-variables
and D is the common denominator to all entries;
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• D is of the form:
D = c2 + λ1y1 + . . .+ λ4y4,

where each λi depends on a complicated way on a, b, c and on the
parameters Ai and Bj;

• the expression for λ1 can be put in the form:

λ1 = (1 +B3b+ A3a− A2B3a)2 + (A3c− A2B3c)
2 +B2

3b
2;

From these facts we conclude that:

1. any nonzero entry Qij/D is polynomial (of degree ni,j) if and only if:

λ1 = . . . = λ4 = 0 ∨ ni,j = 1;

2. for any Ai, Bj and µk we have λ1 6= 0 (recall that c 6= 0).

Summing up, the transverse Poisson structure on any affine transverse
manifold NA,B is polynomial if and only if it is trivial or of degree 1, but
Example 78 rules out both possibilities. The transverse Poisson structure on
NA,B cannot be linear and also is not trivial (because its linear approxima-
tion is not trivial). We can therefore conclude that there is no polynomial
transverse Poisson structure to any singular coadjoint orbit of se(3)∗.

5.2 Polynomializable Poisson Structures

We now know that there are no polynomial transverse Poisson structures in
se(3)∗ apart from the trivial ones. However, the conclusions of Example 79
leave open the possibility of ”polynomializing” any (non trivial) transverse
Poisson structure to a coadjoint orbit of se(3)∗ through a non-affine Poisson
diffeomorphism.

In fact, we confirm this in the next example. The referee of [2] mentioned
in his report that, although he had not proved it, he felt that the transverse
Poisson structure computed in Example 52 was diffeomorphic to a specific
polynomial Poisson structure. We were not able to confirm nor deny his
conjecture, but our efforts to prove it have lead us to a polynomial (although
of higher degree) Poisson structure.
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Example 80 Again we take the Lie-Poisson structure on se(3)∗. For sim-
plicity, we consider

µ = (0, 0, 1, 0, 0, 0),

in the same basis as in examples 52 and 78. We will find a polynomial Poisson
structure which is diffeomorphic to

PN =


. y3 −y2 .

∗ .
−y24
1+y1

y3y4
1+y1

∗ ∗ . −y2y4
1+y1

∗ ∗ ∗ .

 ,

the transverse Poisson structure to the coadjoint orbit through µ, where

N = {(0, 0, 1 + y1, y2, y3, y4) : yi ∈ R} .

According to the referee of [2], the Poisson structure given by

Q =


. z3 −z2 .
∗ . −z24 .
∗ ∗ . .
∗ ∗ ∗ .

 ,

is Poisson diffeomorphic to PN . Since the maximum rank of both structures is
two and Poisson diffeomorphisms send symplectic leaves to symplectic leaves,
a possible way to check the referee’s claim is to take Casimir functions of both
Poisson structures and then try to relate them through diffeomorphisms.
More precisely, if

ψ : (N , PN )→ (M, Q)

is a Poisson diffeomorphism, then

ci = ki ◦ ψ, i ∈ {1, 2}, (5.1)

where ci and ki are Casimir functions of PN and Q, respectively.
First we consider the case of PN . Since its symplectic leaves are the

intersections of N with the simplectic leaves of the Lie-Poisson structure
P on se(3)∗, two independent Casimirs ci of PN are easily obtained from
two independent Casimir functions fi of P. One can easily check, using the
notations of examples 52 and 78, that

f1 = x1x4 + x2x5 + x3x6, f2 = x24 + x25 + x26

are Casimirs of P, from which we obtain

c1 = (1 + y1)y4, c2 = y22 + y23 + y24.
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On the other hand,

k1 = z4, k2 = z22 + z23 − 2z1z
2
4

are two independent Casimirs of Q. Now suppose ψ is a diffeomorphism which
satisfies conditions 5.1 above, for example

ψ : N → M
(y1, y2, y3, y4) 7→

(
−1

2
(1 + y1)

−2, y2, y3, y4(1 + y1)
)
.

It turns out that this diffeomorphism does not transform PN into Q. More-
over, it doesn’t even polynomialize the transverse Poisson structure. Instead,
we obtain

R = ψ∗PN =


· (2z1)

3
2 z3 − (2z1)

3
2 z2 ·

∗ · − (2z1)
3
2 z24 ·

∗ ∗ ·
∗ ∗ ∗ ·

 .

However, this Poisson structure is easily polynomializable. It suffices to
consider

ψ′ : M → M′

(z1, z2, z3, z4) 7→ (
√
z1, z2, z3, z4),

obtaining

R′ = ψ′∗R =


·
√

2w2
1w3 −

√
2w2

1w2 ·
∗ · −2

√
2w3

1w
2
4 ·

∗ ∗ · ·
∗ ∗ ∗ ·

 .

We have hence found a transverse Poisson structure to a coadjoint orbit of
se(3)∗ which is not linear nor linearizable (by Example 78) but, nevertheless,
is polynomializable of degree 5. We were able to lower the degree to 4 by
using the following diffeomorphism instead of ψ′ ◦ ψ :

ϕ : N → M
(y1, y2, y3, y4) 7→

(
1
2
(1 + y1)

−1, y2, y3, y4
√

1 + y1
)
.

The resulting Poisson structure is

T = ϕ∗PN =


· −2z21z3 2z21z2 ·
∗ · 4z21z

2
4 z1z3z4

∗ ∗ · −z1z2z4
∗ ∗ ∗ ·

 .
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We have then showed that:

1. there is no polynomial transverse Poisson Structure to any coadjoint
orbit of se(3)∗;

2. nevertheless, any transverse Poisson Structure to the coadjoint orbit of
µ = (0, 0, 1, 0, 0, 0) is locally polynomializable.

This shows the difference between the concepts of "polynomial" and "poly-
nomializable".

Unfortunately we could not succeed in finding a similar example to show
that there is a difference between "linear" and "linearizable", i.e., an example
such that:

1. there is no linear transverse Poisson Structure to a certain coadjoint
orbit;

2. there is a linearizable transverse Poisson Structure to the same coad-
joint orbit.
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Conclusion

All in all, we were able to accomplish many of the objectives we had set our-
selves. We proved a sufficient condition for linearity of the transverse Poisson
structure to a coadjoint orbit which is, in a certain sense, complementary to
the condition obtained by Molino in 1984. Our condition is equivalent to
Molino’s in important classes of Lie-Poisson manifolds, and in general it is
stronger. Therefore, it applies to a stricter set of Lie-Poisson manifolds than
Molino condition, but in spite of that it proved to have straightforward ap-
plications in a variety of cases, where the validity of the condition by Molino
was not at all evident. In addition, we used our own formula for computing
examples of transverse Poisson structures which illustrate the applications
referred above.

We were also able to clarify the situation in se(3)∗. We proved that, in
the se(3) case:

1. there are no linearizable transverse Poisson structures to its orbits (and
therefore there are no linear transverse Poisson structures);

2. there are also no polynomial transverse Poisson structures to its coad-
joint orbits;

3. nevertheless, there are coadjoint orbits whose transverse Poisson struc-
tures are Poisson-diffeomorphic to polynomial Poisson structures.

Although 2 and 3 are particular results (meaning that they may only apply
to se(3)∗), 1 involves a necessary condition for linearity which can be checked
for any Lie-Poisson manifold.

The defiance of finding a geometric characterization of linear transverse
Poisson structures or, more precisely, a condition for linearity which was both
sufficient and necessary, was not achieved. That would be our ultimate goal
regarding linearity on the transverse Poisson structure, but we were always
aware that it was a very difficult task. In our opinion, it is improbable that
there is such a condition to be found.
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Appendix A

Maple file for Example 51 - so(4)∗

78



O 

O 

(1)

O 

O 

O 

(3)

O 

O 

(4)

O 

(2)

O 

O 

O 
restart: with(LinearAlgebra):

#Dimension of the Lie algebra g;
dimgd 6;

dimg := 6

#The Lie-Poisson matrix is the following:
Poisson:=Matrix([[0,-x[4],-x[5],x[2],x[3],0], [x[4],0,-x[6],-
x[1],0,x[3]], [x[5],x[6],0,0,-x[1],-x[2]], [-x[2],x[1],0,0,-x
[6],x[5]], [-x[3],0,x[1],x[6],0,-x[4]], [0,-x[3],x[2],-x[5],x
[4],0]]); Determinant(Poisson);

Poisson :=

0 Kx4 Kx5 x2 x3 0

x4 0 Kx6 Kx1 0 x3
x5 x6 0 0 Kx1 Kx2
Kx2 x1 0 0 Kx6 x5
Kx3 0 x1 x6 0 Kx4
0 Kx3 x2 Kx5 x4 0

0

mu:=<a,b,c,-c,b,-a>;

µ :=

a
b
c
Kc
b
Ka

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 4; codimtransd 2;

dimtrans := 4

codimtrans := 2

#Computing g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
subs(x[i]=mu[i],Poisson_mu) end do: Poisson_mu;

0 c Kb b c 0

Kc 0 a Ka 0 c
b Ka 0 0 Ka Kb
Kb a 0 0 a b
Kc 0 a Ka 0 c
0 Kc b Kb Kc 0

NullSpace(Poisson_mu);



O 

O 

O 

O 

O 

(4)

O 

a
c
b
c
1

0

0

0

,

1

0

0

0

0

1

,

0

K1

0

0

1

0

,

K
a
c

K
b
c

0

1

0

0

#MAPLE generates a random basis for g_mu each time the worksheet is computed. For 
coherence, we choose our own set of generators:
F 1 d 1, 0, 0, 0, 0, 1 : F 2 d 0, 1, 0, 0,K1, 0 : F 3 d 0, 0, 1,

1, 0, 0 : F 4 d 0, 0, 0, c,Kb, a :
Basis for h: 

G[1]:=<1,0,0,0,0,0>: G[2]:=<0,1,0,0,0,0>:
Basis for hº:

H[1]:=<0,0,1,0,0,0>: H[2]:=<0,0,0,1,0,0>: H[3]:=<0,0,0,0,1,
0>: H[4]:=<0,0,0,0,0,1>:

Consider nu arbitrary element of hº:
for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],y
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);

n :=

0

0

y1
y2
y3
y4

munu :=

a
b

cC y1
KcC y2
bC y3
KaC y4

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(x[i]=munu[i],Poisson_munu) end do: Poisson_munu;



O 

O 

(4)

(5)

O 

O 

O 

0 cK y2 KbK y3 b cC y1 0

KcC y2 0 aK y4 Ka 0 cC y1
bC y3 KaC y4 0 0 Ka Kb

Kb a 0 0 aK y4 bC y3
KcK y1 0 a KaC y4 0 cK y2

0 KcK y1 b KbK y3 KcC y2 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):
for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:= ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do:
for j from 1 to codimtrans do W[j]:= eval(sum(k[j,l],l=1..
dimg)) end do;

W1 := 0 cK y2 KbK y3 b cC y1 0

W2 := KcC y2 0 aK y4 Ka 0 cC y1

Computation of Pi(ad*_Fi(nu)):
M:= Matrix([H[1], H[2], H[3], H[4], Transpose(W[1]), 
Transpose(W[2])]); Mi:=MatrixInverse(M):

M :=

0 0 0 0 0 KcC y2
0 0 0 0 cK y2 0

1 0 0 0 KbK y3 aK y4
0 1 0 0 b Ka
0 0 1 0 cC y1 0

0 0 0 1 0 cC y1

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:= 
subs(x[i]=nu[i],Poisson_nu) end do: Poisson_nu;

0 Ky2 Ky3 0 y1 0

y2 0 Ky4 0 0 y1
y3 y4 0 0 0 0

0 0 0 0 Ky4 y3
Ky1 0 0 y4 0 Ky2
0 Ky1 0 Ky3 y2 0

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:= 
ScalarMultiply(Row(Poisson_nu,i), F[j][i]) end do end do: for
j from 1 to dimtrans do Z[j]:= eval(sum(k[j,l], l=1..dimg)) 
end do;

Z1 := 0 Ky2K y1 Ky3 Ky3 y1C y2 0



(4)

O 

O 

Z2 := y1C y2 0 Ky4 Ky4 0 y1C y2

Z3 := y3 y4 0 0 Ky4 y3

Z4 := b y1 Ka y1 0 Kb y4K a y3 Kc y4C a y2 c y3C b y2

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:
for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:= ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1
to dimtrans do Pi_nu[i]:= eval(sum(k[i,o], o=1..dimtrans)) 
end do;

pnu1 :=

0

0

bC y3  Ky2K y1
cK y2

K y3

K
b Ky2K y1
cK y2

K y3

K
cC y1  Ky2K y1

cK y2
C y1C y2

0

pnu2 :=

0

0

aK y4  y1C y2
cK y2

K y4

K
a y1C y2
cK y2

K y4

0

cC y1  y1C y2
cK y2

C y1C y2



O 

(4)

pnu3 :=

0

0

aK y4  y3
cK y2

C
bC y3  y4
cK y2

K
a y3
cK y2

K
b y4
cK y2

K
cC y1  y4
cK y2

K y4

cC y1  y3
cK y2

C y3

pnu4 :=

0

0

aK y4  b y1
cK y2

K
bC y3  a y1
cK y2

Kb y4K a y3
cC y1  a y1
cK y2

K c y4C a y2

cC y1  b y1
cK y2

C c y3C b y2

Finally, the entries of the Poisson matrix:
printlevel:=2; for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:= simplify(DotProduct(Transpose(Pi_nu
[i]), F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := 0

trans1, 2 := K
2 c y1C 2 c y2C y1

2K y2
2

cK y2

trans1, 3 := K
y3 2 cC y1K y2

cK y2

trans1, 4 := K
c b y1C c b y2C c2 y3K c y3 y2C b y1

2K b y2
2

cK y2
trans2, 2 := 0

trans2, 3 := K
y4 2 cC y1K y2

cK y2



O 

(4)

trans2, 4 :=
c a y1C c a y2K c2 y4C c y4 y2C a y1

2K a y2
2

cK y2
trans3, 3 := 0

trans3, 4 :=
c b y4C c a y3C b y4 y1K b y4 y2C a y3 y1K a y3 y2

cK y2
trans4, 4 := 0



Appendix B

Maple file for Example 52 - se(3)∗
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O 

O 
O 

O 

O 

O 

(1)

(4)

O 

O 

O 

(2)

O 

O 

(3)

restart:with(LinearAlgebra):
#Dimension of the Lie algebra g;
dimgd 6;

dimg := 6

#The Lie-Poisson matrix is the following:
Poisson:=Matrix([[0,x[3],-x[2],0,x[6],-x[5]],[-x[3],0,x[1],-x
[6],0,x[4]],[x[2],-x[1],0,x[5],-x[4],0],[0,x[6],-x[5],0,0,0],
[-x[6],0,x[4],0,0,0],[x[5],-x[4],0,0,0,0]]); Determinant
(Poisson);

Poisson :=

0 x3 Kx2 0 x6 Kx5
Kx3 0 x1 Kx6 0 x4
x2 Kx1 0 x5 Kx4 0

0 x6 Kx5 0 0 0

Kx6 0 x4 0 0 0

x5 Kx4 0 0 0 0

0

mu:=<a,b,c,0,0,0>;

µ :=

a
b
c
0

0

0

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 4; codimtransd 2;

dimtrans := 4

codimtrans := 2

#Basis for g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
subs(x[i]=mu[i],Poisson_mu) end do: Poisson_mu;

0 c Kb 0 0 0

Kc 0 a 0 0 0

b Ka 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

NullSpace(Poisson_mu);



O 

O 

O 

O 

(4)

O 

O 

a
c
b
c
1

0

0

0

,

0

0

0

0

0

1

,

0

0

0

0

1

0

,

0

0

0

1

0

0

#MAPLE generates a random basis for g_mu each time the worksheet is computed. For 
coherence, we choose our own set of generators:
F 1 d a, b, c, 0, 0, 0 : F 2 d 0, 0, 0, 1, 0, 0 : F 3 d 0, 0, 0,

0, 1, 0 : F 4 d 0, 0, 0, 0, 0, 1 :
Basis for h: 

G[1]:=<1,0,0,0,0,0>: G[2]:=<0,1,0,0,0,0>:
Basis for hº:

H[1]:=<0,0,1,0,0,0>: H[2]:=<0,0,0,1,0,0>: H[3]:=<0,0,0,0,1,
0>: H[4]:=<0,0,0,0,0,1>:

Consider nu arbitrary element of hº:
for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],y
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);

n :=

0

0

y1
y2
y3
y4

munu :=

a
b

cC y1
y2
y3
y4

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(x[i]=munu[i],Poisson_munu) end do: Poisson_munu;



O 

O 

O 

O 

(4)

O 

0 cC y1 Kb 0 y4 Ky3
KcK y1 0 a Ky4 0 y2
b Ka 0 y3 Ky2 0

0 y4 Ky3 0 0 0

Ky4 0 y2 0 0 0

y3 Ky2 0 0 0 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):
for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:=ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do: 
for j from 1 to codimtrans do W[j]:=eval(sum(k[j,l],l=1..
dimg)) end do;

W1 := 0 cC y1 Kb 0 y4 Ky3

W2 := KcK y1 0 a Ky4 0 y2

Computation of Pi(ad*_Fi(nu)):
M:=Matrix([H[1],H[2],H[3],H[4],Transpose(W[1]),Transpose(W[2]
)]); Mi:=MatrixInverse(M):

M :=

0 0 0 0 0 KcK y1
0 0 0 0 cC y1 0

1 0 0 0 Kb a
0 1 0 0 0 Ky4
0 0 1 0 y4 0

0 0 0 1 Ky3 y2

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:=subs
(x[i]=nu[i],Poisson_nu) end do: Poisson_nu;

0 y1 0 0 y4 Ky3
Ky1 0 0 Ky4 0 y2
0 0 0 y3 Ky2 0

0 y4 Ky3 0 0 0

Ky4 0 y2 0 0 0

y3 Ky2 0 0 0 0

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:=
ScalarMultiply(Row(Poisson_nu,i),F[j][i]) end do end do: for 
j from 1 to dimtrans do Z[j]:=eval(sum(k[j,l],l=1..dimg)) end
do;

Z1 := Kb y1 a y1 0 Kb y4C c y3 a y4K c y2 Ka y3C b y2



O 

(4)

O 

Z2 := 0 y4 Ky3 0 0 0

Z3 := Ky4 0 y2 0 0 0

Z4 := y3 Ky2 0 0 0 0

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:
for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:=ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1 
to dimtrans do Pi_nu[i]:=eval(sum(k[i,o],o=1..dimtrans)) end 
do;

pnu1 :=

0

0

0

y4 b y1
cC y1

K b y4C c y3

K
y4 a y1
cC y1

C a y4K c y2

K
y2 b y1
cC y1

C
y3 a y1
cC y1

K a y3C b y2

pnu2 :=

0

0

b y4
cC y1

K y3

0

K
y4

2

cC y1
y3 y4
cC y1



(4)

O 

pnu3 :=

0

0

K
a y4
cC y1

C y2

y4
2

cC y1
0

K
y2 y4
cC y1

pnu4 :=

0

0

a y3
cC y1

K
b y2
cC y1

K
y3 y4
cC y1
y2 y4
cC y1

0

Finally, the entries of the Poisson matrix:
printlevel:=2;for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:=simplify(DotProduct(Transpose(Pi_nu
[i]),F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := 0

trans1, 2 :=
c Kb y4C c y3C y3 y1

cC y1

trans1, 3 :=
c a y4K c y2K y2 y1

cC y1

trans1, 4 := K
c a y3K b y2

cC y1
trans2, 2 := 0

trans2, 3 := K
y4

2

cC y1



O 

(4)

O 

trans2, 4 :=
y3 y4
cC y1

trans3, 3 := 0

trans3, 4 := K
y2 y4
cC y1

trans4, 4 := 0

TRANS:=Matrix(dimtrans,dimtrans,symbol=alpha,shape=
antisymmetric): for i from 1 to dimtrans do for j from i+1 to
dimtrans do TRANS:=subs(alpha[i,j]=trans[i,j],TRANS) od od: 
TRANS;

0, 
c Kb y4C c y3C y3 y1

cC y1
, 
c a y4K c y2K y2 y1

cC y1
, K
c a y3K b y2

cC y1
, 

K
c Kb y4C c y3C y3 y1

cC y1
, 0, K

y4
2

cC y1
, 
y3 y4
cC y1

, 

K
c a y4K c y2K y2 y1

cC y1
, 

y4
2

cC y1
, 0, K

y2 y4
cC y1

, 

c a y3K b y2
cC y1

, K
y3 y4
cC y1

, 
y2 y4
cC y1

, 0



Appendix C

Maple file for Example 62 - so(4)∗
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O 

(1)

O 

O 

O 

O 

O 

O 

O 

(4)

(3)

(2)

O 

O 

O 

restart:with(LinearAlgebra):
#Dimension of the Lie algebra g;
dimgd 6;

dimg := 6

#The Lie-Poisson matrix is the following:
Poisson:=Matrix([[0,-x[4],-x[5],x[2],x[3],0],[x[4],0,-x[6],-x
[1],0,x[3]],[x[5],x[6],0,0,-x[1],-x[2]],[-x[2],x[1],0,0,-x[6]
,x[5]],[-x[3],0,x[1],x[6],0,-x[4]],[0,-x[3],x[2],-x[5],x[4],
0]]); Determinant(Poisson);

Poisson :=

0 Kx4 Kx5 x2 x3 0

x4 0 Kx6 Kx1 0 x3
x5 x6 0 0 Kx1 Kx2
Kx2 x1 0 0 Kx6 x5
Kx3 0 x1 x6 0 Kx4
0 Kx3 x2 Kx5 x4 0

0

mu:=<a,b,c,-c,b,-a>;

µ :=

a
b
c
Kc
b
Ka

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 4; codimtransd 2;

dimtrans := 4

codimtrans := 2

#Basis for g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
subs(x[i]=mu[i],Poisson_mu) end do: Poisson_mu;

0 c Kb b c 0

Kc 0 a Ka 0 c
b Ka 0 0 Ka Kb
Kb a 0 0 a b
Kc 0 a Ka 0 c
0 Kc b Kb Kc 0

NullSpace(Poisson_mu);



O 

O 

O 

(4)

O 

O 

O 

1

0

0

0

0

1

,

0

K1

0

0

1

0

,

K
a
c

K
b
c

0

1

0

0

,

a
c
b
c
1

0

0

0

#MAPLE generates a random basis for g_mu each time the worksheet is computed. For 
coherence, we choose our own set of generators:
F 1 d 1, 0, 0, 0, 0, 1 : F 2 d 0, 1, 0, 0,K1, 0 : F 3 d 0, 0, 1,

1, 0, 0 : F 4 d 0, 0, 0, c,Kb, a :
Basis for h: 

G[1]:=<c,0,-a,a,0,-c>:G[2]:=<-b,a,0,0,a,b>:
Basis for hº:

H[1]:=<1,0,0,0,0,1>: H[2]:=<0,1,0,0,-1,0>: H[3]:=<0,0,1,1,0,
0>: H[4]:=<0,0,0,c,-b,a>:

Consider nu arbitrary element of hº:
for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],y
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);

n :=

y1
y2
y3

y3C y4 c

Ky2K y4 b

y1C y4 a

munu :=

aC y1
bC y2
cC y3

KcC y3C y4 c

bK y2K y4 b

KaC y1C y4 a

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(x[i]=munu[i],Poisson_munu) end do: Poisson_munu;

0, cK y3K y4 c, KbC y2C y4 b, bC y2, cC y3, 0 , 

KcC y3C y4 c, 0, aK y1K y4 a, KaK y1, 0, cC y3 , 

bK y2K y4 b, KaC y1C y4 a, 0, 0, KaK y1, KbK y2 , 
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O 

KbK y2, aC y1, 0, 0, aK y1K y4 a, bK y2K y4 b , 

KcK y3, 0, aC y1, KaC y1C y4 a, 0, cK y3K y4 c , 

0, KcK y3, bC y2, KbC y2C y4 b, KcC y3C y4 c, 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):
for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:=ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do: 
for j from 1 to codimtrans do W[j]:=eval(sum(k[j,l],l=1..
dimg)) end do;

W1 := Ka bK y2K y4 b C a KbK y2 , c cK y3K y4 c K a KaC y1C y4 a C a a

C y1 K c KcK y3 , c KbC y2C y4 b K c bC y2 , c bC y2 K c KbC y2
C y4 b , c cC y3 K a KaK y1 C a aK y1K y4 a K c KcC y3C y4 c , Ka 

KbK y2 C a bK y2K y4 b

W2 := a KcC y3C y4 c C a KcK y3 , Kb cK y3K y4 c C b KcK y3 , Kb KbC y2
C y4 b C a aK y1K y4 a C a aC y1 C b bC y2 , Kb bC y2 C a Ka

K y1 C a KaC y1C y4 a C b KbC y2C y4 b , Kb cC y3 C b KcC y3
C y4 c , a cC y3 C a cK y3K y4 c

Computation of Pi(ad*_Fi(nu)):
M:=Matrix([H[1],H[2],H[3],H[4],Transpose(W[1]),Transpose(W[2]
)]); Mi:=MatrixInverse(M):

M := 1, 0, 0, 0, Ka bK y2K y4 b C a KbK y2 , a KcC y3C y4 c C a KcK y3 , 

0, 1, 0, 0, c cK y3K y4 c K a KaC y1C y4 a C a aC y1 K c KcK y3 , 

Kb cK y3K y4 c C b KcK y3 , 

0, 0, 1, 0, c KbC y2C y4 b K c bC y2 , Kb KbC y2C y4 b C a aK y1
K y4 a C a aC y1 C b bC y2 , 

0, 0, 1, c, c bC y2 K c KbC y2C y4 b , Kb bC y2 C a KaK y1 C a Ka

C y1C y4 a C b KbC y2C y4 b , 

0, K1, 0, Kb, c cC y3 K a KaK y1 C a aK y1K y4 a K c KcC y3C y4 c , 

Kb cC y3 C b KcC y3C y4 c , 

1, 0, 0, a , Ka KbK y2 C a bK y2K y4 b , a cC y3 C a cK y3K y4 c

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:=subs
(x[i]=nu[i],Poisson_nu) end do: Poisson_nu;
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0 Ky3K y4 c y2C y4 b y2 y3 0

y3C y4 c 0 Ky1K y4 a Ky1 0 y3
Ky2K y4 b y1C y4 a 0 0 Ky1 Ky2

Ky2 y1 0 0 Ky1K y4 a Ky2K y4 b

Ky3 0 y1 y1C y4 a 0 Ky3K y4 c

0 Ky3 y2 y2C y4 b y3C y4 c 0

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:=
ScalarMultiply(Row(Poisson_nu,i),F[j][i]) end do end do: for 
j from 1 to dimtrans do Z[j]:=eval(sum(k[j,l],l=1..dimg)) end
do;

Z1 := 0 K2 y3K y4 c 2 y2C y4 b 2 y2C y4 b 2 y3C y4 c 0

Z2 := 2 y3C y4 c 0 K2 y1K y4 a K2 y1K y4 a 0 2 y3C y4 c

Z3 := K2 y2K y4 b 2 y1C y4 a 0 0 K2 y1K y4 a K2 y2K y4 b

Z4 := Kc y2C b y3, c y1K a y3, Kb y1C a y2, Kb y1C y4 a C a y2C y4 b , c Ky1
K y4 a C a y3C y4 c , c Ky2K y4 b K b Ky3K y4 c

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:
for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:=ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1 
to dimtrans do Pi_nu[i]:=eval(sum(k[i,o],o=1..dimtrans)) end 
do;

pnu1 :=
1
2

 
a b K2 y3K y4 c

c2C a2C b2 C
1
2

 
a b 2 y3C y4 c

c2C a2C b2 , 

1
2

 
c2C a2C 2 b2  K2 y3K y4 c

c2C a2C b2 K
1
2

 
c2C a2  2 y3C y4 c

c2C a2C b2 , 

1
2

 
b c K2 y3K y4 c

c2C a2C b2 C
1
2

 
2 c2C a2C b2  2 y2C y4 b

c2C a2C b2

C
1
2

 
a2C b2  2 y2C y4 b

c2C a2C b2 C
1
2

 
b c 2 y3C y4 c

c2C a2C b2 , 

1
2

 
b c K2 y3K y4 c

c2C a2C b2 C
1
2

 
2 c2C a2C b2  2 y2C y4 b

c2C a2C b2

C
1
2

 
a2C b2  2 y2C y4 b

c2C a2C b2 C
1
2

 
b c 2 y3C y4 c

c2C a2C b2 C K
b K2 y3K y4 c

c2C a2C b2



(4)

K
b 2 y3C y4 c

c2C a2C b2  c , 

K
1
2

 
c2C a2C 2 b2  K2 y3K y4 c

c2C a2C b2 C
1
2

 
c2C a2  2 y3C y4 c

c2C a2C b2 K

K
b K2 y3K y4 c

c2C a2C b2 K
b 2 y3C y4 c

c2C a2C b2  b , 

1
2

 
a b K2 y3K y4 c

c2C a2C b2 C
1
2

 
a b 2 y3C y4 c

c2C a2C b2 C K
b K2 y3K y4 c

c2C a2C b2

K
b 2 y3C y4 c

c2C a2C b2  a

pnu2 :=

1
2

 
c2C 2 a2C b2  2 y3C y4 c

c2C a2C b2 C
1
2

 
b2C c2  2 y3C y4 c

c2C a2C b2

0

1
2

 
2 c2C a2C b2  K2 y1K y4 a

c2C a2C b2 C
1
2

 
a2C b2  K2 y1K y4 a

c2C a2C b2

1
2

 
2 c2C a2C b2  K2 y1K y4 a

c2C a2C b2 C
1
2

 
a2C b2  K2 y1K y4 a

c2C a2C b2

0

1
2

 
c2C 2 a2C b2  2 y3C y4 c

c2C a2C b2 C
1
2

 
b2C c2  2 y3C y4 c

c2C a2C b2

pnu3 :=
1
2

 
c2C 2 a2C b2  K2 y2K y4 b

c2C a2C b2 C
1
2

 
a b 2 y1C y4 a

c2C a2C b2

C
1
2

 
a b K2 y1K y4 a

c2C a2C b2 C
1
2

 
b2C c2  K2 y2K y4 b

c2C a2C b2 , 

1
2

 
c2C a2C 2 b2  2 y1C y4 a

c2C a2C b2 K
1
2

 
c2C a2  K2 y1K y4 a

c2C a2C b2 , 

1
2

 
b c 2 y1C y4 a

c2C a2C b2 C
1
2

 
b c K2 y1K y4 a

c2C a2C b2 , 

1
2

 
b c 2 y1C y4 a

c2C a2C b2 C
1
2

 
b c K2 y1K y4 a

c2C a2C b2 C K
b 2 y1C y4 a

c2C a2C b2

K
b K2 y1K y4 a

c2C a2C b2  c , 



(4)

K
1
2

 
c2C a2C 2 b2  2 y1C y4 a

c2C a2C b2 C
1
2

 
c2C a2  K2 y1K y4 a

c2C a2C b2 K

K
b 2 y1C y4 a

c2C a2C b2 K
b K2 y1K y4 a

c2C a2C b2  b , 

1
2

 
c2C 2 a2C b2  K2 y2K y4 b

c2C a2C b2 C
1
2

 
a b 2 y1C y4 a

c2C a2C b2

C
1
2

 
a b K2 y1K y4 a

c2C a2C b2 C
1
2

 
b2C c2  K2 y2K y4 b

c2C a2C b2 C K
b 2 y1C y4 a

c2C a2C b2

K
b K2 y1K y4 a

c2C a2C b2  a

pnu4 :=
1
2

 
c2C 2 a2C b2  Kc y2C b y3

c2C a2C b2 C
1
2

 
a b c y1K a y3
c2C a2C b2

C
1
2

 
a c Kb y1C a y2
c2C a2C b2 K

1
2

 
a c Kb y1C y4 a C a y2C y4 b

c2C a2C b2

C
1
2

 
a b c Ky1K y4 a C a y3C y4 c

c2C a2C b2

C
1
2

 
b2C c2  c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2 , 

1
2

 
a b Kc y2C b y3
c2C a2C b2 C

1
2

 
c2C a2C 2 b2  c y1K a y3

c2C a2C b2

C
1
2

 
b c Kb y1C a y2
c2C a2C b2 K

1
2

 
b c Kb y1C y4 a C a y2C y4 b

c2C a2C b2

K
1
2

 
c2C a2  c Ky1K y4 a C a y3C y4 c

c2C a2C b2

K
1
2

 
a b c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2 , 

1
2

 
a c Kc y2C b y3
c2C a2C b2 C

1
2

 
b c c y1K a y3
c2C a2C b2

C
1
2

 
2 c2C a2C b2  Kb y1C a y2

c2C a2C b2
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C
1
2

 
a2C b2  Kb y1C y4 a C a y2C y4 b

c2C a2C b2

C
1
2

 
b c c Ky1K y4 a C a y3C y4 c

c2C a2C b2

K
1
2

 
a c c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2 , 

1
2

 
a c Kc y2C b y3
c2C a2C b2 C

1
2

 
b c c y1K a y3
c2C a2C b2

C
1
2

 
2 c2C a2C b2  Kb y1C a y2

c2C a2C b2

C
1
2

 
a2C b2  Kb y1C y4 a C a y2C y4 b

c2C a2C b2

C
1
2

 
b c c Ky1K y4 a C a y3C y4 c

c2C a2C b2

K
1
2

 
a c c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2 C K
a Kc y2C b y3
c2C a2C b2

K
b c y1K a y3
c2C a2C b2 K

c Kb y1C a y2
c2C a2C b2 C

c Kb y1C y4 a C a y2C y4 b

c2C a2C b2

K
b c Ky1K y4 a C a y3C y4 c

c2C a2C b2 C
a c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2

 c , 

K
1
2

 
a b Kc y2C b y3
c2C a2C b2 K

1
2

 
c2C a2C 2 b2  c y1K a y3

c2C a2C b2

K
1
2

 
b c Kb y1C a y2
c2C a2C b2 C

1
2

 
b c Kb y1C y4 a C a y2C y4 b

c2C a2C b2

C
1
2

 
c2C a2  c Ky1K y4 a C a y3C y4 c

c2C a2C b2

C
1
2

 
a b c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2 K K
a Kc y2C b y3
c2C a2C b2

K
b c y1K a y3
c2C a2C b2 K

c Kb y1C a y2
c2C a2C b2 C

c Kb y1C y4 a C a y2C y4 b

c2C a2C b2
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K
b c Ky1K y4 a C a y3C y4 c

c2C a2C b2 C
a c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2

 b , 

1
2

 
c2C 2 a2C b2  Kc y2C b y3

c2C a2C b2 C
1
2

 
a b c y1K a y3
c2C a2C b2

C
1
2

 
a c Kb y1C a y2
c2C a2C b2 K

1
2

 
a c Kb y1C y4 a C a y2C y4 b

c2C a2C b2

C
1
2

 
a b c Ky1K y4 a C a y3C y4 c

c2C a2C b2

C
1
2

 
b2C c2  c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2 C K
a Kc y2C b y3
c2C a2C b2

K
b c y1K a y3
c2C a2C b2 K

c Kb y1C a y2
c2C a2C b2 C

c Kb y1C y4 a C a y2C y4 b

c2C a2C b2

K
b c Ky1K y4 a C a y3C y4 c

c2C a2C b2 C
a c Ky2K y4 b K b Ky3K y4 c

c2C a2C b2

 a

Finally, the entries of the Poisson matrix:
printlevel:=2;for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:=simplify(DotProduct(Transpose(Pi_nu
[i]),F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := 0

trans1, 2 := K4 y3K 2 y4 c

trans1, 3 := 4 y2C 2 y4 b

trans1, 4 := 2 c y2K 2 b y3
trans2, 2 := 0

trans2, 3 := K4 y1K 2 y4 a

trans2, 4 := K2 c y1C 2 a y3
trans3, 3 := 0

trans3, 4 := 2 b y1K 2 a y2
trans4, 4 := 0



O 

(4)

O TRANS:=Matrix(dimtrans,dimtrans,symbol=alpha,shape=
antisymmetric): for i from 1 to dimtrans do for j from i+1 to
dimtrans do TRANS:=subs(alpha[i,j]=trans[i,j],TRANS) od od: 
TRANS;

0 K4 y3K 2 y4 c 4 y2C 2 y4 b 2 c y2K 2 b y3
4 y3C 2 y4 c 0 K4 y1K 2 y4 a K2 c y1C 2 a y3
K4 y2K 2 y4 b 4 y1C 2 y4 a 0 2 b y1K 2 a y2
K2 c y2C 2 b y3 2 c y1K 2 a y3 K2 b y1C 2 a y2 0
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restart:with(LinearAlgebra):
#Dimension of the Lie algebra g;
dimgd 10;

dimg := 10

#The Lie-Poisson matrix is the following:
Poisson:=Matrix([[0,x[2],-x[3],0,2*x[5],x[6],0,-2*x[8],-x[9],
0],[-x[2],0,x[1]-x[4],x[2],0,2*x[5],x[6],-x[9],-2*x[10],0],[x
[3],x[4]-x[1],0,-x[3],x[6],2*x[7],0,0,-2*x[8],-x[9]],[0,-x[2]
,x[3],0,0,x[6],2*x[7],0,-x[9],-2*x[10]],[-2*x[5],0,-x[6],0,0,
0,0,x[1],x[2],0],[-x[6],-2*x[5],-2*x[7],-x[6],0,0,0,x[3],x[1]
+x[4],x[2]],[0,-x[6],0,-2*x[7],0,0,0,0,x[3],x[4]],[2*x[8],x
[9],0,0,-x[1],-x[3],0,0,0,0],[x[9],2*x[10],2*x[8],x[9],-x[2],
-x[1]-x[4],-x[3],0,0,0],[0,0,x[9],2*x[10],0,-x[2],-x[4],0,0,
0]]); Determinant(Poisson);

Poisson :=

0 x2 Kx3 0 2 x5 x6 0 K2 x8 Kx9 0

Kx2 0 x1K x4 x2 0 2 x5 x6 Kx9 K2 x10 0

x3 x4K x1 0 Kx3 x6 2 x7 0 0 K2 x8 Kx9
0 Kx2 x3 0 0 x6 2 x7 0 Kx9 K2 x10

K2 x5 0 Kx6 0 0 0 0 x1 x2 0

Kx6 K2 x5 K2 x7 Kx6 0 0 0 x3 x1C x4 x2
0 Kx6 0 K2 x7 0 0 0 0 x3 x4

2 x8 x9 0 0 Kx1 Kx3 0 0 0 0

x9 2 x10 2 x8 x9 Kx2 Kx1K x4 Kx3 0 0 0

0 0 x9 2 x10 0 Kx2 Kx4 0 0 0

0

mu:=<1,0,0,1,0,0,0,0,0,0>;

µ :=

1

0

0

1

0

0

0

0

0

0

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 4; codimtransd 6;

dimtrans := 4
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O 

O 

codimtrans := 6

#Basis for g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
subs(x[i]=mu[i],Poisson_mu) end do: Poisson_mu;

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 K1 0 0 0 0 0

0 0 0 0 0 K2 0 0 0 0

0 0 0 0 0 0 K1 0 0 0

F 1 d 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 : F 2 d 0, 1, 0, 0, 0, 0, 0, 0, 0,
0 : F 3 d 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 : F 4 d 0, 0, 0, 1, 0, 0,
0, 0, 0, 0 :

Basis for h: 
G[1]:=<0,0,0,0,1,0,0,0,0,0>: G[2]:=<0,0,0,0,0,1,0,0,0,0>: G
[3]:=<0,0,0,0,0,0,1,0,0,0>: G[4]:=<0,0,0,0,0,0,0,1,0,0>: G[5]
:=<0,0,0,0,0,0,0,0,1,0>: G[6]:=<0,0,0,0,0,0,0,0,0,1>:

Basis for hº:
H[1]:=<1,0,0,0,0,0,0,0,0,0>: H[2]:=<0,1,0,0,0,0,0,0,0,0>: H
[3]:=<0,0,1,0,0,0,0,0,0,0>: H[4]:=<0,0,0,1,0,0,0,0,0,0>:

Consider nu arbitrary element of hº:
for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],y
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);

n :=

y1
y2
y3
y4
0

0

0

0

0

0



O 

O 

(2)

munu :=

1C y1
y2
y3

1C y4
0

0

0

0

0

0

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(x[i]=munu[i],Poisson_munu) end do: Poisson_munu;

0, y2, Ky3, 0, 0, 0, 0, 0, 0, 0 , 

Ky2, 0, y1K y4, y2, 0, 0, 0, 0, 0, 0 , 

y3, y4K y1, 0, Ky3, 0, 0, 0, 0, 0, 0 , 

0, Ky2, y3, 0, 0, 0, 0, 0, 0, 0 , 

0, 0, 0, 0, 0, 0, 0, 1C y1, y2, 0 , 

0, 0, 0, 0, 0, 0, 0, y3, 2C y1C y4, y2 , 

0, 0, 0, 0, 0, 0, 0, 0, y3, 1C y4 , 

0, 0, 0, 0, K1K y1, Ky3, 0, 0, 0, 0 , 

0, 0, 0, 0, Ky2, K2K y1K y4, Ky3, 0, 0, 0 , 

0, 0, 0, 0, 0, Ky2, K1K y4, 0, 0, 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):
for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:=ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do: 
for j from 1 to codimtrans do W[j]:=eval(sum(k[j,l],l=1..
dimg)) end do;

W1 := 0 0 0 0 0 0 0 1C y1 y2 0

W2 := 0 0 0 0 0 0 0 y3 2C y1C y4 y2

W3 := 0 0 0 0 0 0 0 0 y3 1C y4

W4 := 0 0 0 0 K1K y1 Ky3 0 0 0 0

W5 := 0 0 0 0 Ky2 K2K y1K y4 Ky3 0 0 0
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O 

W6 := 0 0 0 0 0 Ky2 K1K y4 0 0 0

Computation of Pi(ad*_Fi(nu)):
for i from 1 to 6 do W i d Transpose W i  end do:
M:=Matrix([H[1],H[2],H[3],H[4],W[1],W[2],W[3],W[4],W[5],W[6]]
); Mi:=MatrixInverse(M):

M :=

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 K1K y1 Ky2 0

0 0 0 0 0 0 0 Ky3 K2K y1K y4 Ky2
0 0 0 0 0 0 0 0 Ky3 K1K y4
0 0 0 0 1C y1 y3 0 0 0 0

0 0 0 0 y2 2C y1C y4 y3 0 0 0

0 0 0 0 0 y2 1C y4 0 0 0

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:=subs
(x[i]=nu[i],Poisson_nu) end do: Poisson_nu;

0 y2 Ky3 0 0 0 0 0 0 0

Ky2 0 y1K y4 y2 0 0 0 0 0 0

y3 y4K y1 0 Ky3 0 0 0 0 0 0

0 Ky2 y3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 y1 y2 0

0 0 0 0 0 0 0 y3 y1C y4 y2
0 0 0 0 0 0 0 0 y3 y4
0 0 0 0 Ky1 Ky3 0 0 0 0

0 0 0 0 Ky2 Ky1K y4 Ky3 0 0 0

0 0 0 0 0 Ky2 Ky4 0 0 0

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:=
ScalarMultiply(Row(Poisson_nu,i),F[j][i]) end do end do: for 
j from 1 to dimtrans do Z[j]:=eval(sum(k[j,l],l=1..dimg)) end
do;

Z1 := 0 y2 Ky3 0 0 0 0 0 0 0

Z2 := Ky2 0 y1K y4 y2 0 0 0 0 0 0



O 

O 

(2)

O 

O 

O 

Z3 := y3 y4K y1 0 Ky3 0 0 0 0 0 0

Z4 := 0 Ky2 y3 0 0 0 0 0 0 0

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:
for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:=ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1 
to dimtrans do Pi_nu[i]:=eval(sum(k[i,o],o=1..dimtrans)) end 
do:

Finally, the entries of the Poisson matrix:
printlevel:=2;for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:=simplify(DotProduct(Transpose(Pi_nu
[i]),F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := 0

trans1, 2 := y2
trans1, 3 := Ky3
trans1, 4 := 0

trans2, 2 := 0

trans2, 3 := y1K y4
trans2, 4 := y2
trans3, 3 := 0

trans3, 4 := Ky3
trans4, 4 := 0

TRANS:=Matrix(dimtrans,dimtrans,symbol=alpha,shape=
antisymmetric): for i from 1 to dimtrans do for j from i+1 to
dimtrans do TRANS:=subs(alpha[i,j]=trans[i,j],TRANS) od od: 
TRANS;

0 y2 Ky3 0

Ky2 0 y1K y4 y2
y3 y4K y1 0 Ky3
0 Ky2 y3 0
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O 

(4)

(2)

O 
O 

O 
(1)

O 

O 

O 

(3)

O 

O 

O 

O restart: with(LinearAlgebra):
#Dimension of the Lie algebra g;
dimgd 5;

dimg := 5

#The Lie-Poisson matrix is the following:
Poisson:=Matrix([[0,-2*x[2]+x[4]+2*x[5],2*x[3],0,x[4]],[2*x
[2]-x[4]-2*x[5],0,x[4]-x[1],-x[4],0],[-2*x[3],x[1]-x[4],0,0,
0],[0,x[4],0,0,x[4]],[-x[4],0,0,-x[4],0]]); Determinant
(Poisson);

Poisson :=

0 K2 x2C x4C 2 x5 2 x3 0 x4
2 x2K x4K 2 x5 0 x4K x1 Kx4 0

K2 x3 x1K x4 0 0 0

0 x4 0 0 x4
Kx4 0 0 Kx4 0

0

mu:=<1,0,0,1,0>;

µ :=

1

0

0

1

0

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 3; codimtransd 2;

dimtrans := 3

codimtrans := 2

#Computing g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
subs(x[i]=mu[i],Poisson_mu) end do: Poisson_mu;

0 1 0 0 1

K1 0 0 K1 0

0 0 0 0 0

0 1 0 0 1

K1 0 0 K1 0

NullSpace(Poisson_mu);



(4)

O 

O 

O 

O 

O 

O 

O 

0

K1

0

0

1

,

K1

0

0

1

0

,

0

0

1

0

0

#MAPLE generates a random basis for g_mu each time the worksheet is computed. For 
coherence, we choose our own set of generators:
F 1 d 0, 0, 1, 0, 0 : F 2 d 0, 1, 0, 0,K1 : F 3 d 1, 0, 0,K1,

0 : 
Basis for h: 

G[1]:=<0,0,0,1,0>: G[2]:=<0,0,0,0,1>:
Basis for hº:

H[1]:=<1,0,0,0,0>: H[2]:=<0,1,0,0,0>: H[3]:=<0,0,1,0,0>:
Consider nu arbitrary element of hº:

for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],y
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);

n :=

y1
y2
y3
0

0

munu :=

1C y1
y2
y3
1

0

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(x[i]=munu[i],Poisson_munu) end do: Poisson_munu;

0 K2 y2C 1 2 y3 0 1

2 y2K 1 0 Ky1 K1 0

K2 y3 y1 0 0 0

0 1 0 0 1

K1 0 0 K1 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):
for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:= ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do:
for j from 1 to codimtrans do W[j]:= eval(sum(k[j,l],l=1..
dimg)) end do;



O 

(4)

O 

O 

O 

(5)

O 

O 

W1 := 0 1 0 0 1

W2 := K1 0 0 K1 0

Computation of Pi(ad*_Fi(nu)):
M:= Matrix([H[1], H[2], H[3], Transpose(W[1]), Transpose(W[2]
)]); Mi:=MatrixInverse(M):

M :=

1 0 0 0 K1

0 1 0 1 0

0 0 1 0 0

0 0 0 0 K1

0 0 0 1 0

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:= 
subs(x[i]=nu[i],Poisson_nu) end do: Poisson_nu;

0 K2 y2 2 y3 0 0

2 y2 0 Ky1 0 0

K2 y3 y1 0 0 0

0 0 0 0 0

0 0 0 0 0

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:= 
ScalarMultiply(Row(Poisson_nu,i), F[j][i]) end do end do: for
j from 1 to dimtrans do Z[j]:= eval(sum(k[j,l], l=1..dimg)) 
end do;

Z1 := K2 y3 y1 0 0 0

Z2 := 2 y2 0 Ky1 0 0

Z3 := 0 K2 y2 2 y3 0 0

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:
for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:= ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1
to dimtrans do Pi_nu[i]:= eval(sum(k[i,o], o=1..dimtrans)) 
end do;

pnu1 :=

K2 y3
y1
0

0

0



O 

(4)

O 

O 

pnu2 :=

2 y2
0

Ky1
0

0

pnu3 :=

0

K2 y2
2 y3

0

0

Finally, the entries of the Poisson matrix:
printlevel:=2; for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:= simplify(DotProduct(Transpose(Pi_nu
[i]), F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := 0

trans1, 2 := y1
trans1, 3 := K2 y3
trans2, 2 := 0

trans2, 3 := 2 y2
trans3, 3 := 0

TRANS:=Matrix(dimtrans,dimtrans,symbol=alpha,shape=
antisymmetric): for i from 1 to dimtrans do for j from i+1 to
dimtrans do TRANS:=subs(alpha[i,j]=trans[i,j],TRANS) od od: 
TRANS;

0 y1 K2 y3
Ky1 0 2 y2
2 y3 K2 y2 0
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O 

O 

O 

(2)

O 

(3)

O 

O 

O 

(1)

O 

O 

O 

O 

(4)

restart:with(LinearAlgebra):
#Dimension of the Lie algebra g;
dimgd 6;

dimg := 6

#For the sake of simplicity of this worksheet, the names of the coordinates on g* were 
changed. The Lie-Poisson matrix in the "new" coordinates is the following:
Poisson:=Matrix([[0,x[2],x[3],x[4],0,0],[-x[2],0,0,0,0,0],[-x
[3],0,0,0,0,0],[-x[4],0,0,0,0,0],[0,0,0,0,0,x[5]],[0,0,0,0,-x
[5],0]]); Determinant(Poisson);

Poisson :=

0 x2 x3 x4 0 0

Kx2 0 0 0 0 0

Kx3 0 0 0 0 0

Kx4 0 0 0 0 0

0 0 0 0 0 x5
0 0 0 0 Kx5 0

0

mud 0, 1, 0, 0, 0, 0 ;

µ :=

0

1

0

0

0

0

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 4; codimtransd 2;

dimtrans := 4

codimtrans := 2

#Basis for g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
subs(x[i]=mu[i],Poisson_mu) end do: Poisson_mu;

0 1 0 0 0 0

K1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

F 1 d 0, 0, 1, 0, 0, 0 : F 2 d 0, 0, 0, 1, 0, 0 : F 3 d 0, 0, 0,
0, 1, 0 : F 4 d 0, 0, 0, 0, 0, 1 :



O 

O 

O 

O 

O 

O 
O 

Basis for h: 
G[1]:=<1,0,0,0,0,0>: G[2]:=<0,1,0,0,0,0>:

Basis for hº:
H[1]:=<0,0,1,0,0,0>: H[2]:=<0,0,0,1,0,0>: H[3]:=<0,0,0,0,1,
0>: H[4]:=<0,0,0,0,0,1>:

Consider nu arbitrary element of hº:
for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],z
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);

n :=

0

0

z1
z2
z3
z4

munu :=

0

1

z1
z2
z3
z4

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(x[i]=munu[i],Poisson_munu) end do: Poisson_munu;

0 1 z1 z2 0 0

K1 0 0 0 0 0

Kz1 0 0 0 0 0

Kz2 0 0 0 0 0

0 0 0 0 0 z3
0 0 0 0 Kz3 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):
for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:=ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do: 
for j from 1 to codimtrans do W[j]:=eval(sum(k[j,l],l=1..
dimg)) end do;

W1 := 0 1 z1 z2 0 0

W2 := K1 0 0 0 0 0

Computation of Pi(ad*_Fi(nu)):
M:=Matrix([H[1],H[2],H[3],H[4],Transpose(W[1]),Transpose(W[2]



O 

O 

O 

O 

O 

)]); Mi:=MatrixInverse(M):

M :=

0 0 0 0 0 K1

0 0 0 0 1 0

1 0 0 0 z1 0

0 1 0 0 z2 0

0 0 1 0 0 0

0 0 0 1 0 0

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:=subs
(x[i]=nu[i],Poisson_nu) end do: Poisson_nu;

0 0 z1 z2 0 0

0 0 0 0 0 0

Kz1 0 0 0 0 0

Kz2 0 0 0 0 0

0 0 0 0 0 z3
0 0 0 0 Kz3 0

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:=
ScalarMultiply(Row(Poisson_nu,i),F[j][i]) end do end do: for 
j from 1 to dimtrans do Z[j]:=eval(sum(k[j,l],l=1..dimg)) end
do;

Z1 := Kz1 0 0 0 0 0

Z2 := Kz2 0 0 0 0 0

Z3 := 0 0 0 0 0 z3

Z4 := 0 0 0 0 Kz3 0

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:
for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:=ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1 
to dimtrans do Pi_nu[i]:=eval(sum(k[i,o],o=1..dimtrans)) end 
do;

pnu1 :=

0

0

0

0

0

0



O 

O 

O 

pnu2 :=

0

0

0

0

0

0

pnu3 :=

0

0

0

0

0

z3

pnu4 :=

0

0

0

0

Kz3
0

Finally, the entries of the Poisson matrix:
printlevel:=2;for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:=simplify(DotProduct(Transpose(Pi_nu
[i]),F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := 0

trans1, 2 := 0

trans1, 3 := 0

trans1, 4 := 0

trans2, 2 := 0

trans2, 3 := 0

trans2, 4 := 0

trans3, 3 := 0

trans3, 4 := z3
trans4, 4 := 0

TRANS:=Matrix(dimtrans,dimtrans,symbol=alpha,shape=



O 

O 

O 
antisymmetric): for i from 1 to dimtrans do for j from i+1 to
dimtrans do TRANS:=subs(alpha[i,j]=trans[i,j],TRANS) od od: 
TRANS;

0 0 0 0

0 0 0 0

0 0 0 z3
0 0 Kz3 0
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O 

O 

O 

O 
O 

(2)

O 
O 

(1)

O 

restart:with(LinearAlgebra):
#Dimension of the Lie algebra g;
dimgd 10;

dimg := 10

#The Lie-Poisson matrix is the following:
Poisson:=Matrix([[0,x[2],-x[3],0,2*x[5],x[6],0,-2*x[8],-x[9],
0],[-x[2],0,x[1]-x[4],x[2],0,2*x[5],x[6],-x[9],-2*x[10],0],[x
[3],x[4]-x[1],0,-x[3],x[6],2*x[7],0,0,-2*x[8],-x[9]],[0,-x[2]
,x[3],0,0,x[6],2*x[7],0,-x[9],-2*x[10]],[-2*x[5],0,-x[6],0,0,
0,0,x[1],x[2],0],[-x[6],-2*x[5],-2*x[7],-x[6],0,0,0,x[3],x[1]
+x[4],x[2]],[0,-x[6],0,-2*x[7],0,0,0,0,x[3],x[4]],[2*x[8],x
[9],0,0,-x[1],-x[3],0,0,0,0],[x[9],2*x[10],2*x[8],x[9],-x[2],
-x[1]-x[4],-x[3],0,0,0],[0,0,x[9],2*x[10],0,-x[2],-x[4],0,0,
0]]); Determinant(Poisson);

Poisson :=

0 x2 Kx3 0 2 x5 x6 0 K2 x8 Kx9 0

Kx2 0 x1K x4 x2 0 2 x5 x6 Kx9 K2 x10 0

x3 x4K x1 0 Kx3 x6 2 x7 0 0 K2 x8 Kx9
0 Kx2 x3 0 0 x6 2 x7 0 Kx9 K2 x10

K2 x5 0 Kx6 0 0 0 0 x1 x2 0

Kx6 K2 x5 K2 x7 Kx6 0 0 0 x3 x1C x4 x2
0 Kx6 0 K2 x7 0 0 0 0 x3 x4

2 x8 x9 0 0 Kx1 Kx3 0 0 0 0

x9 2 x10 2 x8 x9 Kx2 Kx1K x4 Kx3 0 0 0

0 0 x9 2 x10 0 Kx2 Kx4 0 0 0

0

mu:=<0,1,0,0,0,0,0,0,0,0>;

µ :=

0

1

0

0

0

0

0

0

0

0

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 4; codimtransd 6;

dimtrans := 4



O 

(3)

(4)

O 

(2)

O 

O 
O 

O 

O 

O 

codimtrans := 6

#Basis for g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
subs(x[i]=mu[i],Poisson_mu) end do: Poisson_mu;

0 1 0 0 0 0 0 0 0 0

K1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 K1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 K1 0 0 0 0 0

0 0 0 0 0 K1 0 0 0 0

NullSpace(Poisson_mu);
0

0

0

0

0

0

0

1

0

0

,

0

0

0

0

0

0

1

0

0

0

,

1

0

0

1

0

0

0

0

0

0

,

0

0

1

0

0

0

0

0

0

0

#MAPLE generates a random basis for g_mu each time the worksheet is computed. For 
coherence, we choose our own set of generators:
F 1 d 1, 0, 0, 1, 0, 0, 0, 0, 0, 0 : F 2 d 0, 0, 1, 0, 0, 0, 0, 0, 0,

0 : F 3 d 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 : F 4 d 0, 0, 0, 0, 0, 0,
0, 1, 0, 0 :

Basis for h: 
G[1]:=<1,0,0,0,0,0,0,0,0,0>: G[2]:=<0,1,0,0,0,0,0,0,0,0>: G
[3]:=<0,0,0,0,1,0,0,0,0,0>: G[4]:=<0,0,0,0,0,1,0,0,0,0>: G[5]
:=<0,0,0,0,0,0,0,0,1,0>: G[6]:=<0,0,0,0,0,0,0,0,0,1>:

Basis for hº:
H[1]:=<0,0,1,0,0,0,0,0,0,0>: H[2]:=<0,0,0,1,0,0,0,0,0,0>: H
[3]:=<0,0,0,0,0,0,1,0,0,0>: H[4]:=<0,0,0,0,0,0,0,1,0,0>:

Consider nu arbitrary element of hº:
for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],y
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);



O 

(2)

n :=

0

0

y1
y2
0

0

y3
y4
0

0

munu :=

0

1

y1
y2
0

0

y3
y4
0

0

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(x[i]=munu[i],Poisson_munu) end do: Poisson_munu;

0 1 Ky1 0 0 0 0 K2 y4 0 0

K1 0 Ky2 1 0 0 0 0 0 0

y1 y2 0 Ky1 0 2 y3 0 0 K2 y4 0

0 K1 y1 0 0 0 2 y3 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 K2 y3 0 0 0 0 y1 y2 1

0 0 0 K2 y3 0 0 0 0 y1 y2
2 y4 0 0 0 0 Ky1 0 0 0 0

0 0 2 y4 0 K1 Ky2 Ky1 0 0 0

0 0 0 0 0 K1 Ky2 0 0 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):



O 

O 

(2)

O 
O 

O 

for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:=ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do: 
for j from 1 to codimtrans do W[j]:=eval(sum(k[j,l],l=1..
dimg)) end do;

W1 := 0 1 Ky1 0 0 0 0 K2 y4 0 0

W2 := K1 0 Ky2 1 0 0 0 0 0 0

W3 := 0 0 0 0 0 0 0 0 1 0

W4 := 0 0 K2 y3 0 0 0 0 y1 y2 1

W5 := 0 0 2 y4 0 K1 Ky2 Ky1 0 0 0

W6 := 0 0 0 0 0 K1 Ky2 0 0 0

Computation of Pi(ad*_Fi(nu)):
for i from 1 to 6 do W i d Transpose W i  end do:
M:=Matrix([H[1],H[2],H[3],H[4],W[1],W[2],W[3],W[4],W[5],W[6]]
); Mi:=MatrixInverse(M):

M :=

0 0 0 0 0 K1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

1 0 0 0 Ky1 Ky2 0 K2 y3 2 y4 0

0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 K1 0

0 0 0 0 0 0 0 0 Ky2 K1

0 0 1 0 0 0 0 0 Ky1 Ky2
0 0 0 1 K2 y4 0 0 y1 0 0

0 0 0 0 0 0 1 y2 0 0

0 0 0 0 0 0 0 1 0 0

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:=subs
(x[i]=nu[i],Poisson_nu) end do: Poisson_nu;



O 

(2)

O 

O 

O 

O 

0 0 Ky1 0 0 0 0 K2 y4 0 0

0 0 Ky2 0 0 0 0 0 0 0

y1 y2 0 Ky1 0 2 y3 0 0 K2 y4 0

0 0 y1 0 0 0 2 y3 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 K2 y3 0 0 0 0 y1 y2 0

0 0 0 K2 y3 0 0 0 0 y1 y2
2 y4 0 0 0 0 Ky1 0 0 0 0

0 0 2 y4 0 0 Ky2 Ky1 0 0 0

0 0 0 0 0 0 Ky2 0 0 0

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:=
ScalarMultiply(Row(Poisson_nu,i),F[j][i]) end do end do: for 
j from 1 to dimtrans do Z[j]:=eval(sum(k[j,l],l=1..dimg)) end
do;

Z1 := 0 0 0 0 0 0 2 y3 K2 y4 0 0

Z2 := y1 y2 0 Ky1 0 2 y3 0 0 K2 y4 0

Z3 := 0 0 0 K2 y3 0 0 0 0 y1 y2

Z4 := 2 y4 0 0 0 0 Ky1 0 0 0 0

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:
for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:=ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1 
to dimtrans do Pi_nu[i]:=eval(sum(k[i,o],o=1..dimtrans)) end 
do:

Finally, the entries of the Poisson matrix:
printlevel:=2;for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:=simplify(DotProduct(Transpose(Pi_nu
[i]),F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := 0

trans1, 2 := 0

trans1, 3 := 2 y3
trans1, 4 := K2 y4
trans2, 2 := 0

trans2, 3 := K2 y2 y3



O 

(2)

O 

O 

trans2, 4 := 2 y4 y2
trans3, 3 := 0

trans3, 4 := Ky2 y1
trans4, 4 := 0

TRANS:=Matrix(dimtrans,dimtrans,symbol=alpha,shape=
antisymmetric): for i from 1 to dimtrans do for j from i+1 to
dimtrans do TRANS:=subs(alpha[i,j]=trans[i,j],TRANS) od od: 
TRANS;

0 0 2 y3 K2 y4
0 0 K2 y2 y3 2 y4 y2

K2 y3 2 y2 y3 0 Ky2 y1
2 y4 K2 y4 y2 y2 y1 0
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O 

O 

(3)

O 

O 

O 

O 

(1)

(2)

O 

O 

O 

O 

O 

O 

O 

O 

(4)

restart:with(LinearAlgebra):
#Dimension of the Lie algebra g;
dimgd 4;

dimg := 4

#For the sake of simplicity of this worksheet, the names of the coordinates on g* were 
changed (x[1] -> t[3], x[2] -> t[4]). The Lie-Poisson matrix in the "new" coordinates is the 
following:
Poisson:=Matrix([[0,0,t[2],k*t[3]],[0,0,0,t[2]],[-t[2],0,0,t
[1]+t[3]],[-k*t[3],-t[2],-t[1]-t[3],0]]); Determinant
(Poisson);

Poisson :=

0 0 t2 k t3
0 0 0 t2
Kt2 0 0 t1C t3
Kk t3 Kt2 Kt1K t3 0

t2
4

mud 1, 0, 0, 1 ;

µ :=

1

0

0

1

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 2; codimtransd 2;

dimtrans := 2

codimtrans := 2

#Basis for g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
subs(t[i]=mu[i],Poisson_mu) end do: Poisson_mu;

0 0 0 0

0 0 0 0

0 0 0 1

0 0 K1 0

F 1 d 1, 0, 0, 0 : F 2 d 0, 1, 0, 0 :
Basis for h: 

G[1]:=<0,0,1,0>: G[2]:=<0,0,0,1>:
Basis for hº:

H[1]:=<1,0,0,0>: H[2]:=<0,1,0,0>:
Consider nu arbitrary element of hº:

for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],y
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);



O 

O 

O 

O 

O 

n :=

y1
y2
0

0

munu :=

1C y1
y2
0

1

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(t[i]=munu[i],Poisson_munu) end do: Poisson_munu;

0 0 y2 0

0 0 0 y2
Ky2 0 0 1C y1
0 Ky2 K1K y1 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):
for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:=ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do: 
for j from 1 to codimtrans do W[j]:=eval(sum(k[j,l],l=1..
dimg)) end do;

W1 := Ky2 0 0 1C y1

W2 := 0 Ky2 K1K y1 0

Computation of Pi(ad*_Fi(nu)):
M:=Matrix([H[1],H[2],Transpose(W[1]),Transpose(W[2])]); Mi:=
MatrixInverse(M):

M :=

1 0 Ky2 0

0 1 0 Ky2
0 0 0 K1K y1
0 0 1C y1 0

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:=subs
(t[i]=nu[i],Poisson_nu) end do: Poisson_nu;

0 0 y2 0

0 0 0 y2
Ky2 0 0 y1
0 Ky2 Ky1 0



O 

O 

O 

O 

O 

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:=
ScalarMultiply(Row(Poisson_nu,i),F[j][i]) end do end do: for 
j from 1 to dimtrans do Z[j]:=eval(sum(k[j,l],l=1..dimg)) end
do;

Z1 := 0 0 y2 0

Z2 := 0 0 0 y2

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:
for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:=ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1 
to dimtrans do Pi_nu[i]:=eval(sum(k[i,o],o=1..dimtrans)) end 
do;

pnu1 :=

0

K
y2

2

1C y1
0

0

pnu2 :=

y2
2

1C y1
0

0

0

Finally, the entries of the Poisson matrix:
printlevel:=2;for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:=simplify(DotProduct(Transpose(Pi_nu
[i]),F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := 0

trans1, 2 := K
y2

2

1C y1
trans2, 2 := 0

TRANS:=Matrix(dimtrans,dimtrans,symbol=alpha,shape=
antisymmetric): for i from 1 to dimtrans do for j from i+1 to
dimtrans do TRANS:=subs(alpha[i,j]=trans[i,j],TRANS) od od: 
TRANS;

0 K
y2

2

1C y1

y2
2

1C y1
0



O 

O 
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O 

O 

O 

O 

O 

O 

(2)

(1)

O 

O 

restart:with(LinearAlgebra):
#Dimension of the Lie algebra g;
dimgd 6;

dimg := 6

#The Lie-Poisson matrix is the following:
Poisson:=Matrix(6,6,shape=antisymmetric): Poisson[1,2]:=-
(a/c)*x[1]-(b/c)*x[2]+(1/c)*x[3]: Poisson[1,3]:=-(a*b/c)*x[1]
-((b^2+c^2)/c)*x[2]+(b/c)*x[3]: Poisson[1,5]:=x[6]: Poisson
[1,6]:=-x[5]: Poisson[2,3]:=((a^2+c^2)/c)*x[1]+(a*b/c)*x[2]-
(a/c)*x[3]: Poisson[2,4]:=-x[6]: Poisson[2,6]:=x[4]: Poisson
[3,4]:=-b*x[6]+c*x[5]: Poisson[3,5]:=a*x[6]-c*x[4]: Poisson
[3,6]:=-a*x[5]+b*x[4]: Poisson; Determinant(Poisson);

0, K
a x1
c K

b x2
c C

x3
c , K

a b x1
c K

b2C c2  x2
c C

b x3
c , 0, x6, Kx5 , 

a x1
c C

b x2
c K

x3
c , 0, 

a2C c2  x1
c C

a b x2
c K

a x3
c , Kx6, 0, x4 , 

a b x1
c C

b2C c2  x2
c K

b x3
c , K

a2C c2  x1
c K

a b x2
c C

a x3
c , 0, Kb x6

C c x5, a x6K c x4, Ka x5C b x4 , 

0, x6, b x6K c x5, 0, 0, 0 , 

Kx6, 0, Ka x6C c x4, 0, 0, 0 , 

x5, Kx4, a x5K b x4, 0, 0, 0

0

mu:=<a,b,a^2+b^2+c^2,0,0,0>;

µ :=

a
b

a2C b2C c2

0

0

0

#Dimension and codimension of the isotropy subalgebra g_mu (which is also the dimension 
of the transverse Poisson structure);
dimtransd 4; codimtransd 2;

dimtrans := 4

codimtrans := 2



O 

(3)

O 

O 

O 

O 

O 

O 
#Basis for g_mu (= ker P(mu)):
Poisson_mu:=Poisson: for i from 1 to dimg do Poisson_mu:= 
simplify((subs(x[i]=mu[i],Poisson_mu))) end do: Poisson_mu;

0 c 0 0 0 0

Kc 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

F 1 d 0, 0, 1, 0, 0, 0 : F 2 d 0, 0, 0, 1, 0, 0 : F 3 d 0, 0, 0,
0, 1, 0 : F 4 d 0, 0, 0, 0, 0, 1 :

Basis for h: 
G[1]:=<1,A[2],A[3],A[4],A[5],A[6]>: G[2]:=<0,1,B[3],B[4],B[5]
,B[6]>:

Basis for hº:
H[1]:=<0,0,1,0,0,0>: H[2]:=<0,0,0,1,0,0>: H[3]:=<0,0,0,0,1,
0>: H[4]:=<0,0,0,0,0,1>:

Consider nu arbitrary element of hº:
for i from 1 to dimtrans do k[i]:=VectorScalarMultiply(H[i],y
[i]) end do: nu:=sum(k[j],j=1..dimtrans); munu:=VectorAdd(mu,
nu);

n :=

0

0

y1
y2
y3
y4

munu :=

a
b

a2C b2C c2C y1
y2
y3
y4

Poisson_munu:=Poisson: for i from 1 to dimg do Poisson_munu:=
subs(x[i]=munu[i],Poisson_munu) end do: Poisson_munu;

0, K
a2

c K
b2

c C
a2C b2C c2C y1

c , K
a2 b
c K

b2C c2  b
c

C
b a2C b2C c2C y1

c , 0, y4, Ky3 , 



O 

O 
O 

O 

a2

c C
b2

c K
a2C b2C c2C y1

c , 0, 
a2C c2  a

c C
a b2

c

K
a a2C b2C c2C y1

c , Ky4, 0, y2 , 

a2 b
c C

b2C c2  b
c K

b a2C b2C c2C y1
c , K

a2C c2  a
c K

a b2

c

C
a a2C b2C c2C y1

c , 0, Kb y4C c y3, a y4K c y2, Ka y3C b y2 , 

0, y4, b y4K c y3, 0, 0, 0 , 

Ky4, 0, Ka y4C c y2, 0, 0, 0 , 

y3, Ky2, a y3K b y2, 0, 0, 0

Computation of ad*_G1(mu + nu) and ad*_G2(mu + nu):
for i from 1 to dimg do for j from 1 to codimtrans do k[j,i]
:=ScalarMultiply(Row(Poisson_munu,i),G[j][i]) end do end do: 
for j from 1 to codimtrans do W[j]:=eval(sum(k[j,l],l=1..
dimg)) end do:

Computation of Pi(ad*_Fi(nu)):
M:=Matrix([H[1],H[2],H[3],H[4],Transpose(W[1]),Transpose(W[2]
)]); Mi:=MatrixInverse(M):

M := 0, 0, 0, 0, A2 
a2

c C
b2

c K
a2C b2C c2C y1

c CA3 
a2 b
c C

b2C c2  b
c

K
b a2C b2C c2C y1

c KA5 y4CA6 y3, 
a2

c C
b2

c K
a2C b2C c2C y1

c

CB3 
a2 b
c C

b2C c2  b
c K

b a2C b2C c2C y1
c KB5 y4CB6 y3 , 

0, 0, 0, 0, K
a2

c K
b2

c C
a2C b2C c2C y1

c CA3 K
a2C c2  a

c K
a b2

c

C
a a2C b2C c2C y1

c CA4 y4KA6 y2, B3 K
a2C c2  a

c K
a b2

c

C
a a2C b2C c2C y1

c CB4 y4KB6 y2 , 

1, 0, 0, 0, K
a2 b
c K

b2C c2  b
c C

b a2C b2C c2C y1
c CA2 

a2C c2  a
c



O 

O 

O 

O 

C
a b2

c K
a a2C b2C c2C y1

c CA4 b y4K c y3 CA5 Ka y4C c y2

CA6 a y3K b y2 , 
a2C c2  a

c C
a b2

c K
a a2C b2C c2C y1

c CB4 b y4

K c y3 CB5 Ka y4C c y2 CB6 a y3K b y2 , 

0, 1, 0, 0, KA2 y4CA3 Kb y4C c y3 , Ky4CB3 Kb y4C c y3 , 

0, 0, 1, 0, y4CA3 a y4K c y2 , B3 a y4K c y2 , 

0, 0, 0, 1, Ky3CA2 y2CA3 Ka y3C b y2 , y2CB3 Ka y3C b y2

Computing Z[1]:=ad*_F1(nu), Z[2]:=ad*_F2(nu), Z[3]:=ad*_F3(nu), Z[4]:=ad*_F4(nu):
Poisson_nu:=Poisson: for i from 1 to dimg do Poisson_nu:=subs
(x[i]=nu[i],Poisson_nu) end do: Poisson_nu;

0
y1
c

b y1
c 0 y4 Ky3

K
y1
c 0 K

a y1
c Ky4 0 y2

K
b y1
c

a y1
c 0 Kb y4C c y3 a y4K c y2 Ka y3C b y2

0 y4 b y4K c y3 0 0 0

Ky4 0 Ka y4C c y2 0 0 0

y3 Ky2 a y3K b y2 0 0 0

for i from 1 to dimg do for j from 1 to dimtrans do k[j,i]:=
ScalarMultiply(Row(Poisson_nu,i),F[j][i]) end do end do: for 
j from 1 to dimtrans do Z[j]:=eval(sum(k[j,l],l=1..dimg)) end
do;

Z1 := K
b y1
c

a y1
c 0 Kb y4C c y3 a y4K c y2 Ka y3C b y2

Z2 := 0 y4 b y4K c y3 0 0 0

Z3 := Ky4 0 Ka y4C c y2 0 0 0

Z4 := y3 Ky2 a y3K b y2 0 0 0

Computing the projections of the previous vectors:
for j from 1 to dimtrans do v[j]:=MatrixVectorMultiply(Mi,
Transpose(Z[j])) end do:



O 

O 

O for i from 1 to dimtrans do for l from 1 to dimtrans do k[i,
l]:=ScalarMultiply(H[l],v[i][l]) end do end do: for i from 1 
to dimtrans do Pi_nu[i]:=eval(sum(k[i,o],o=1..dimtrans)) end 
do:

Finally, the entries of the Poisson matrix:
printlevel:=2;for i from 1 to dimtrans do for j from i to 
dimtrans do trans[i,j]:=simplify(DotProduct(Transpose(Pi_nu
[i]),F[j],conjugate=false)) od od;

printlevel := 2

trans1, 1 := y1 c Ka A4 y3 y1K a B5 y2 A2 y1C a A5 y2 y1C a B5 c y2 A6 y3K a A5 c y2 B6 y3

K a A6 c b y2C a B4 c
2 y3 A2C a B6 c b y2 A2C b B5 c y2 A4 y4C a A4 c y3

2 B6

KB6 c a
2 y3 A2C b A5 c y2

2 B6C a A4 c b y4K a B4 c y3
2 A6K a B5 c

2 y2 A2K b B5 c a y4

K b A5 c y2 B4 y4K b A4 c y3 B6 y2K b B5 c y2
2 A6C b B6 c a y3K b B4 y3 y1

K a A4 c y3 B5 y4C a B4 c y3 A5 y4CB5 c a
2 y4 A2C b B5 y2 y1K a B4 c b y4 A2

C b B4 c y3 A6 y2C a B4 y3 A2 y1KA5 c a
2 y4K b B4 c

2 y3CB4 c b
2 y4KB6 c b

2 y2

CA6 c a
2 y3K a A4 c

2 y3C a A5 c
2 y2C b B5 c

2 y2 KA3 a y1 B5 y4 cCB3 a y1 A2 c
2

CA3 a y1 B6 y3 cKA4 y4 c B3 b y1CA4 y4 c
2 B6 y3CB3 a y1

2 A2CB4 y4 c
3 A2CB4 

y4
2 c2 A5KB6 y2 c

3 A2K c2 B3 b y1KA3 a y1 c
2KA4 y4

2 c2 B5K y1 B5 y4 cC y1 B6 y3 c

KA4 y4 c y1CA6 y2 c y1K c3 B5 y4C c3 B6 y3KB3 b y1
2KA3 a y1

2KA4 y4 c
3CA6 y2 c

3

K 2 c2 y1K y1
2K c4CB3 a y1 A5 y4 cKB3 a y1 A6 y3 cCB4 y4 c A2 y1CB4 y4 c A3 b y1

KB4 y4 c
2 A6 y3KB6 y2 c A2 y1KB6 y2 c A3 b y1KB6 y2 c

2 A5 y4CA6 y2 c B3 b y1

CA6 y2 c
2 B5 y4

trans1, 2 := K c Kc3 y3
2 B6C c4 y3K b y4

2 A4 c
2K c y3

2 y1 B6C c3 y3 B5 y4C c3 y3 A4 y4

K c3 y3 A6 y2K b y1 y4 cK b y4
2 c2 B5C y3 y1

2C 2 c2 y3 y1K b y4 c
3K b y4 B6 y2 c

2 A2

K b y4
3 A4 c B5K b y4

2 y1 B5C b y4 y1 B6 y3C b y4 c
2 B6 y3C b y4

2 A4 c B6 y3C b 

y4
2 B4 c

2 A2C b y4
3 B4 c A5C b y4

2 A6 y2 c B5C b y4 A6 y2 c
2K b y4

2 B4 c A6 y3K b 

y4
2 B6 y2 c A5K c2 y3

2 A4 y4 B6K c3 y3 B4 y4 A2K c2 y3 B4 y4
2 A5C c3 y3 B6 y2 A2C c2 y3 A4 

y4
2 B5C c y3 y1 B5 y4C c y3 A4 y4 y1K c y3 A6 y2 y1K c y3 B4 y4 A2 y1C c2 y3

2 B4 y4 A6

C c y3 B6 y2 A2 y1C c2 y3 B6 y2 A5 y4K c2 y3 A6 y2 B5 y4K a y1 A2 y4 B6 y3C a y1 y4 A6 y3

K a y1 A5 y4
2C a y1 A2 y4

2 B5 KA3 a y1 B5 y4 cCB3 a y1 A2 c
2CA3 a y1 B6 y3 c

KA4 y4 c B3 b y1CA4 y4 c
2 B6 y3CB3 a y1

2 A2CB4 y4 c
3 A2CB4 y4

2 c2 A5KB6 y2 c
3 A2



O 

O 

K c2 B3 b y1KA3 a y1 c
2KA4 y4

2 c2 B5K y1 B5 y4 cC y1 B6 y3 cKA4 y4 c y1CA6 y2 c y1

K c3 B5 y4C c3 B6 y3KB3 b y1
2KA3 a y1

2KA4 y4 c
3CA6 y2 c

3K 2 c2 y1K y1
2K c4

CB3 a y1 A5 y4 cKB3 a y1 A6 y3 cCB4 y4 c A2 y1CB4 y4 c A3 b y1KB4 y4 c
2 A6 y3

KB6 y2 c A2 y1KB6 y2 c A3 b y1KB6 y2 c
2 A5 y4CA6 y2 c B3 b y1CA6 y2 c

2 B5 y4

trans1, 3 := K c Kc4 y2C c3 y3 B6 y2C c y3 B6 y2 y1K a y4
2 B4 c

2 A2K a y4
3 B4 c A5C a 

y4
3 A4 c B5C a y4

2 A4 y1K a y4 A6 y2 y1K a y4 c
2 B6 y3K a y4 A6 y2 c

2K a y4
2 B4 A2 y1C a 

y4
2 B4 c A6 y3C a y4 B6 y2 A2 y1C c3 y2 B4 y4 A2C a y4

2 B6 y2 c A5K a y4
2 A6 y2 c B5

C c2 y2 A4 y4 B6 y3C c2 y2 B4 y4
2 A5C b y1 B4 y4

2K b y1 y4 B6 y2K c2 y2 A4 y4
2 B5K a 

y4
2 A4 c B6 y3C a y4 B6 y2 c

2 A2C a y4 c
3C c3 y2

2 A6K 2 c2 y2 y1K c y2 y1 B5 y4

K c y2 A4 y4 y1C c y2 B4 y4 A2 y1K c2 y2 B4 y4 A6 y3K c y2
2 B6 A2 y1K c2 y2

2 B6 A5 y4C c2 

y2
2 A6 B5 y4K y2 y1

2K c3 y2
2 B6 A2C c y2

2 A6 y1K c3 y2 B5 y4K c3 y2 A4 y4C a y1 y4 cC a 

y4
2 c2 B5C a y4

2 A4 c
2 KA3 a y1 B5 y4 cCB3 a y1 A2 c

2CA3 a y1 B6 y3 c

KA4 y4 c B3 b y1CA4 y4 c
2 B6 y3CB3 a y1

2 A2CB4 y4 c
3 A2CB4 y4

2 c2 A5KB6 y2 c
3 A2

K c2 B3 b y1KA3 a y1 c
2KA4 y4

2 c2 B5K y1 B5 y4 cC y1 B6 y3 cKA4 y4 c y1CA6 y2 c y1

K c3 B5 y4C c3 B6 y3KB3 b y1
2KA3 a y1

2KA4 y4 c
3CA6 y2 c

3K 2 c2 y1K y1
2K c4

CB3 a y1 A5 y4 cKB3 a y1 A6 y3 cCB4 y4 c A2 y1CB4 y4 c A3 b y1KB4 y4 c
2 A6 y3

KB6 y2 c A2 y1KB6 y2 c A3 b y1KB6 y2 c
2 A5 y4CA6 y2 c B3 b y1CA6 y2 c

2 B5 y4

trans1, 4 := c Kb y1 y2 cC a y1 y3 cC b y2
2 A6 c

2K a y3
2 c2 B6C a y3 c

3K b y2 c
3

C b y1 y3 B4 y4C a y1 A2 y2 B5 y4K a y1 y2 A5 y4K a y3
2 A4 y4 c B6K a y3 B4 y4 c

2 A2

K a y3 B4 y4
2 c A5C a y3 B6 y2 c

2 A2C a y3 A4 y4
2 c B5C a y3 A4 y4 y1C a y3 c

2 B5 y4

C a y3 A4 y4 c
2K a y3 A6 y2 c

2K a y3 B4 y4 A2 y1C a y3
2 B4 y4 c A6C a y3 B6 y2 c A5 y4

K a y3 A6 y2 c B5 y4C b y2 A4 y4 c B6 y3C b y2 B4 y4 c
2 A2C b y2 B4 y4

2 c A5K b 

y2
2 B6 c

2 A2K b y2 A4 y4
2 c B5K b y2 y1 B5 y4K b y2 c

2 B5 y4C b y2 c
2 B6 y3K b y2 A4 y4 c

2

K b y2 B4 y4 c A6 y3K b y2
2 B6 c A5 y4C b y2

2 A6 c B5 y4 KA3 a y1 B5 y4 c

CB3 a y1 A2 c
2CA3 a y1 B6 y3 cKA4 y4 c B3 b y1CA4 y4 c

2 B6 y3CB3 a y1
2 A2

CB4 y4 c
3 A2CB4 y4

2 c2 A5KB6 y2 c
3 A2K c2 B3 b y1KA3 a y1 c

2KA4 y4
2 c2 B5



O 

O 

K y1 B5 y4 cC y1 B6 y3 cKA4 y4 c y1CA6 y2 c y1K c3 B5 y4C c3 B6 y3KB3 b y1
2KA3 a 

y1
2KA4 y4 c

3CA6 y2 c
3K 2 c2 y1K y1

2K c4CB3 a y1 A5 y4 cKB3 a y1 A6 y3 c

CB4 y4 c A2 y1CB4 y4 c A3 b y1KB4 y4 c
2 A6 y3KB6 y2 c A2 y1KB6 y2 c A3 b y1

KB6 y2 c
2 A5 y4CA6 y2 c B3 b y1CA6 y2 c

2 B5 y4

trans2, 2 := K c2 KA2 y4 B6 y3CA3 b y4
2 B5KA3 b y4 B6 y3KA3 y3 B5 y4 cKB3 b y4 A2 c

KB3 b y4
2 A5CB3 b y4 A6 y3CB3 y3 A2 y1CB3 y3 A5 y4 cKB3 y3

2 A6 cC y4 A6 y3

KA3 y3 c
2KA5 y4

2CA2 y4
2 B5CA3 b y4 cCA3 y3

2 B6 cKA3 y3 y1CB3 y3 A2 c
2  y4

KA3 a y1 B5 y4 cCB3 a y1 A2 c
2CA3 a y1 B6 y3 cKA4 y4 c B3 b y1CA4 y4 c

2 B6 y3CB3 a 

y1
2 A2CB4 y4 c

3 A2CB4 y4
2 c2 A5KB6 y2 c

3 A2K c2 B3 b y1KA3 a y1 c
2KA4 y4

2 c2 B5

K y1 B5 y4 cC y1 B6 y3 cKA4 y4 c y1CA6 y2 c y1K c3 B5 y4C c3 B6 y3KB3 b y1
2KA3 a 

y1
2KA4 y4 c

3CA6 y2 c
3K 2 c2 y1K y1

2K c4CB3 a y1 A5 y4 cKB3 a y1 A6 y3 c

CB4 y4 c A2 y1CB4 y4 c A3 b y1KB4 y4 c
2 A6 y3KB6 y2 c A2 y1KB6 y2 c A3 b y1

KB6 y2 c
2 A5 y4CA6 y2 c B3 b y1CA6 y2 c

2 B5 y4

trans2, 3 := K c B3 a y4 A2 c
2CB3 a y4 A2 y1CB3 a y4

2 A5 cKB3 a y4 A6 y3 cKB3 y2 c A2 y1

KB3 y2 c
2 A5 y4CB3 y3 c

2 A6 y2KA3 a y4 c
2K y4 B3 b y1C y4 B6 y3 cKA3 a y4 y1

CA3 c y2 y1KA3 a y4
2 B5 cCA3 a y4 B6 y3 cCA3 c

2 y2 B5 y4KA3 c
2 y2 B6 y3

KB3 y2 c
3 A2KB5 y4

2 cCA3 c
3 y2K y4 c

2K y4 y1  y4 KA3 a y1 B5 y4 c

CB3 a y1 A2 c
2CA3 a y1 B6 y3 cKA4 y4 c B3 b y1CA4 y4 c

2 B6 y3CB3 a y1
2 A2

CB4 y4 c
3 A2CB4 y4

2 c2 A5KB6 y2 c
3 A2K c2 B3 b y1KA3 a y1 c

2KA4 y4
2 c2 B5

K y1 B5 y4 cC y1 B6 y3 cKA4 y4 c y1CA6 y2 c y1K c3 B5 y4C c3 B6 y3KB3 b y1
2KA3 a 

y1
2KA4 y4 c

3CA6 y2 c
3K 2 c2 y1K y1

2K c4CB3 a y1 A5 y4 cKB3 a y1 A6 y3 c

CB4 y4 c A2 y1CB4 y4 c A3 b y1KB4 y4 c
2 A6 y3KB6 y2 c A2 y1KB6 y2 c A3 b y1

KB6 y2 c
2 A5 y4CA6 y2 c B3 b y1CA6 y2 c

2 B5 y4

trans2, 4 := c KA3 a y3 c
2CA3 b y2 c

2K y3 B3 b y1CA2 y2 B5 y4 cKA2 y2 B6 y3 c

KA3 a y3 B5 y4 cCA3 a y3
2 B6 cCA3 b y2 B5 y4 cKA3 b y2 B6 y3 cCB3 a y3 A2 c

2

CB3 a y3 A2 y1K y3 c
2K y3 y1K y3 B5 y4 cK y2 A5 y4 cC y2 A6 y3 cKA3 a y3 y1CB6 



O 

O 

y3
2 cCB3 a y3 A5 y4 cKB3 a y3

2 A6 cKB3 b y2 A2 c
2KB3 b y2 A5 y4 cCB3 b y2 A6 y3 c

 y4 KA3 a y1 B5 y4 cCB3 a y1 A2 c
2CA3 a y1 B6 y3 cKA4 y4 c B3 b y1CA4 y4 c

2 B6 y3

CB3 a y1
2 A2CB4 y4 c

3 A2CB4 y4
2 c2 A5KB6 y2 c

3 A2K c2 B3 b y1KA3 a y1 c
2KA4 

y4
2 c2 B5K y1 B5 y4 cC y1 B6 y3 cKA4 y4 c y1CA6 y2 c y1K c3 B5 y4C c3 B6 y3KB3 b y1

2

KA3 a y1
2KA4 y4 c

3CA6 y2 c
3K 2 c2 y1K y1

2K c4CB3 a y1 A5 y4 cKB3 a y1 A6 y3 c

CB4 y4 c A2 y1CB4 y4 c A3 b y1KB4 y4 c
2 A6 y3KB6 y2 c A2 y1KB6 y2 c A3 b y1

KB6 y2 c
2 A5 y4CA6 y2 c B3 b y1CA6 y2 c

2 B5 y4

trans3, 3 := c2 KB4 y4
2C y4 B6 y2KA3 a y4

2 B4CA3 a y4 B6 y2CA3 y2 c B4 y4KA3 y2
2 c B6

CB3 a y4 cCB3 a y4
2 A4KB3 a y4 A6 y2KB3 y2 c

2KB3 y2 y1KB3 y2 A4 y4 cCB3 

y2
2 A6 c  y4 KA3 a y1 B5 y4 cCB3 a y1 A2 c

2CA3 a y1 B6 y3 cKA4 y4 c B3 b y1

CA4 y4 c
2 B6 y3CB3 a y1

2 A2CB4 y4 c
3 A2CB4 y4

2 c2 A5KB6 y2 c
3 A2K c2 B3 b y1

KA3 a y1 c
2KA4 y4

2 c2 B5K y1 B5 y4 cC y1 B6 y3 cKA4 y4 c y1CA6 y2 c y1K c3 B5 y4

C c3 B6 y3KB3 b y1
2KA3 a y1

2KA4 y4 c
3CA6 y2 c

3K 2 c2 y1K y1
2K c4

CB3 a y1 A5 y4 cKB3 a y1 A6 y3 cCB4 y4 c A2 y1CB4 y4 c A3 b y1KB4 y4 c
2 A6 y3

KB6 y2 c A2 y1KB6 y2 c A3 b y1KB6 y2 c
2 A5 y4CA6 y2 c B3 b y1CA6 y2 c

2 B5 y4

trans3, 4 := K c A6 y2
2 cCB3 a y3 A4 y4 cKB3 a y3 A6 y2 cKB3 b y2 A4 y4 cCB3 b y2

2 A6 c

KB3 b y2 y1CA3 b y2 c B4 y4KA3 b y2
2 c B6CB3 a y3 c

2KB3 b y2 c
2K y2 A3 a y1

K y2 A4 y4 cKA2 y2
2 c B6C y3 c B6 y2CA2 y2 c B4 y4CA2 y2 B3 a y1KA3 a y3 c B4 y4

CA3 a y3 c B6 y2K y3 c B4 y4K y2 c
2K y2 y1  y4 KA3 a y1 B5 y4 cCB3 a y1 A2 c

2

CA3 a y1 B6 y3 cKA4 y4 c B3 b y1CA4 y4 c
2 B6 y3CB3 a y1

2 A2CB4 y4 c
3 A2CB4 

y4
2 c2 A5KB6 y2 c

3 A2K c2 B3 b y1KA3 a y1 c
2KA4 y4

2 c2 B5K y1 B5 y4 cC y1 B6 y3 c

KA4 y4 c y1CA6 y2 c y1K c3 B5 y4C c3 B6 y3KB3 b y1
2KA3 a y1

2KA4 y4 c
3CA6 y2 c

3

K 2 c2 y1K y1
2K c4CB3 a y1 A5 y4 cKB3 a y1 A6 y3 cCB4 y4 c A2 y1CB4 y4 c A3 b y1

KB4 y4 c
2 A6 y3KB6 y2 c A2 y1KB6 y2 c A3 b y1KB6 y2 c

2 A5 y4CA6 y2 c B3 b y1

CA6 y2 c
2 B5 y4

trans4, 4 := K c2 KB3 a y3
2 A4 y4CA2 y2

2 B5 y4CA3 a y3
2 B4 y4K y2

2 A5 y4CA3 b y2
2 cKB3 a 



O 

O 

O 

y3
2 cC y3

2 B4 y4C y3 B3 b y2 A4 y4K y3 A3 b y2 B4 y4C y3 B3 b y2 cC y3 y2 A4 y4

K y3 A2 y2 B4 y4CA3 b y2
2 B5 y4KB3 b y2

2 A2 cKB3 b y2
2 A5 y4K y2 A3 a y3 c

K y2 A3 a y3 B5 y4C y2 B3 a y3 A2 cK y2 y3 B5 y4C y2 B3 a y3 A5 y4 KA3 a y1 B5 y4 c

CB3 a y1 A2 c
2CA3 a y1 B6 y3 cKA4 y4 c B3 b y1CA4 y4 c

2 B6 y3CB3 a y1
2 A2

CB4 y4 c
3 A2CB4 y4

2 c2 A5KB6 y2 c
3 A2K c2 B3 b y1KA3 a y1 c

2KA4 y4
2 c2 B5

K y1 B5 y4 cC y1 B6 y3 cKA4 y4 c y1CA6 y2 c y1K c3 B5 y4C c3 B6 y3KB3 b y1
2KA3 a 

y1
2KA4 y4 c

3CA6 y2 c
3K 2 c2 y1K y1

2K c4CB3 a y1 A5 y4 cKB3 a y1 A6 y3 c

CB4 y4 c A2 y1CB4 y4 c A3 b y1KB4 y4 c
2 A6 y3KB6 y2 c A2 y1KB6 y2 c A3 b y1

KB6 y2 c
2 A5 y4CA6 y2 c B3 b y1CA6 y2 c

2 B5 y4
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