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Resumo

Estudamos a seguinte propriedade de finitude de um anel Noetheriano esquerdo R:

(⋄) Os envolucros injectivos de R-módulos simples são localmente Artinianos.

A propriedade (⋄) é estudada em duas classes de anéis. Motivados pelo resultado de

Musson: nenhuma álgebra envolvente duma álgebra de Lie de dimensão finita solúvel mas

não nilpotent sobre um corpo algebricamente fechado satisfaz a propriedade (⋄), começamos

por considerar as super álgebras de Lie nilpotentes e descrevemos as de dimensão finita

cuja álgebra envolvente satisfaz a propriedade (⋄).

A segunda classe de anéis que estudamos são os anéis de operadores diferenciais

sobre um anel de polinómios com coeficientes num corpo, S = k[x][y;δ]. Para esta

classe de anéis obtemos condições suficientes para a existência de extensões essenci-

ais de módulos simples que não são Artinianos. Combinando os obtidos com resulta-

dos de Awami, Van den Bergh, e van Oystaeyen e de Alev e Dumas relativamente a

classificação das extensões de Ore obtemos a caracterização completa de extensões de

Ore S = k[x][y;σ,δ] que satisfazem a propriedade (⋄).

Consideramos ainda a relaço entre teorias de torção estáveis e a propriedade (⋄) em

anéis Noetherianos. Em particular, mostramos que um anel Noetheriano R tem a pro-

priedade (⋄) se e só se a teoria de torção de Dickson em R-Mod é estável. Em seguida,

usamos esta interpretação para obter condições suficientes para um anel Noetheri-

ano satisfazer a propriedade (⋄). Assim obtemos novos exemplos de anéis com a pro-

priedade acima.
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Abstract

We study the following finiteness property of a left Noetherian ring R:

(⋄) The injective hulls of simple left R-modules are locally Artinian.

We consider the (⋄) property for two main classes of rings. First we consider the

nilpotent Lie superalgebras, motivated partly by a result of Musson on the enveloping

algebras of finite dimensional solvable-but-not-nilpotent Lie algebras, which says that

such an enveloping algebra does not have the (⋄) property. We address the question

of which nilpotent Lie algebras have the (⋄) property, and give an answer in a slightly

more general context of Lie superalgebras. We obtain a complete characterization of

finite dimensional nilpotent Lie superalgebras over algebraically closed fields of char-

acteristic zero, whose enveloping algebras have the (⋄) property.

Next we study the (⋄) property of differential operator rings S = k[x][y;δ]. We give

sufficient conditions for some simple left S-modules to have non-Artinian cyclic essen-

tial extensions. This is then combined with results of Awami, Van den Bergh, and van

Oystaeyen, and of Alev and Dumas on the classification of skew polynomial rings to

obtain a full characterization of skew polynomial rings S = k[x][y;σ,δ] which have the

(⋄) property.

We also consider the stable torsion theories in connection with the (⋄) property of

Noetherian rings. In particular, we show that a Noetherian ring R has the (⋄) property

if and only if the Dickson torsion theory on R-Mod is stable. We then use this connec-

tion to obtain sufficient conditions for a Noetherian ring to have the (⋄) property, and

therefore obtain new examples of rings with the (⋄) property.
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Notation

N The set of natural numbers.

Q The set of rational numbers.

Z The set of integers.

R An associative ring with unit.

R-Mod The category of left R-modules.

HomR(M,N ) The set of R-homomorphisms from M to N .

ker f The kernel of a map f .

End(M) The ring of endomorphisms of M .

M ⊆e E An essential extension of M .

SpecR The prime spectrum of the ring R.

lgl.dim(R) The left global dimension of R.

E(M) The injective hull ofM .

soc(M) The socle of the moduleM .

J(R) The Jacobson radical of the ring R.

I(R) The set of isomorphism classes of the indecomposable injective left R-modules.

GrS The associated graded ring of a filtered ring S .

R[x;σ,δ] The skew polynomial ring defined by R,σ , and δ.

An(k) The nth Weyl algebra over the field k.

g A fintie dimensional Lie (super)algebra.

U(g) The universal enveloping algebra of the Lie (super)algebra g.

Tτ The class of torsion modules with respect to the torsion theory τ.
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Fτ The class of torsionfree modules with respect to the torsion theory τ.

D The Dickson torsion theory.

G The Goldie torsion theory.
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Introduction

Injective modules, introduced by Baer, Eckmann, and Schopf, are the building blocks

in the theory of Noetherian rings. They are important tools in generalizing results on

commutative algebra to noncommutative case and a starting point in this direction was

the work of Matlis on injective modules over Noetherian rings [45]. Matlis showed in

this paper by associating with each prime ideal P of R the injective hull E(R/P) that for

a commutative Noetherian ring R, indecomposable injective R-modules are in one-to-

one correspondence with the prime ideals of R.

Our purpose in this work is to study a particular finiteness property on the injective

hulls of simple modules over some Noetherian rings. Namely, we study Noetherian

rings R such that injective hulls of simple R-modules are locally Artinian. We will

denote this finiteness property by (⋄) throughout the text. This finiteness property has

its roots in Jategaonkar’s work on Jacobson’s conjecture, and it has been studied over

the years for many rings, including some stronger versions of it.

We will start with a preliminary first chapter in which we provide some background

material and set some notation. We will include some facts from theory of rings and

modules and of Lie algebras which will be needed in later portions of this work. Chap-

ter 2 is devoted to remarks on the finiteness property under consideration. There we

will provide the motivation for this property, and we will also list some similar proper-

ties which have appeared in the literature. This chapter also considers some examples

of rings which do or do not have this finiteness property. The core material are the last

three chapters. In Chapter 3 we consider the (⋄) property of some Noetherian super-
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algebras, with a view towards injective hulls of simple modules over nilpotent Lie su-

peralgebras. There we show that finite dimensional nilpotent Lie superalgebras g over

an algebraically closed field of characteristic zero whose injective hulls of simple U(g)-

modules are locally Artinian are precisely those whose even part g0 is isomorphic to a

nilpotent Lie algebra with an abelian ideal of codimension one, or to a direct product of

an abelian Lie algebra and a certain 5-dimensional or a certain 6-dimensional nilpotent

Lie algebra. In Chapter 4, we consider the (⋄) property of differential operator rings.

We provide sufficient conditions for a differential operator ring to have a simple mod-

ule with a non-Artinian cyclic essential extension. As a consequence we characterize

Ore extensions S = K[x][y;σ,δ] such that injective hulls of simple S-modules are locally

Artinian. Chapter 5 considers the (⋄) property from the view point of torsion theories.

We provide a link between the (⋄) property and stable torsion theories which allows us

to carry the study of the (⋄) property of Noetherian rings to the area of torsion theories.

We use the methods of stable torsion theories, in particular the Goldie and Dickson

torsion theories, to obtain sufficient conditions which guarantee the (⋄) property and

to obtain new examples of Noetherian rings having the (⋄) property.

The contents of Chapter 3 consists of the results from a paper by the author and

Christian Lomp which appeared in the Journal of Algebra [24], and the contents of

Chapter 4 consists of results from a paper by the author, Paula A.A.B. Carvalho, and

Christian Lomp [11], which has been submitted for publication.
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Chapter 1

Preliminaries

This introductory chapter is a collection of definitions and results which will be re-

ferred to in the later portions of the text. For all the things that are not defined here,

we refer to [48], [42], and [14].

1.1 Elementary notions

All the rings considered in this text will be associative with unit element and all mod-

ules will be unital left modules. Let R be a ring. If there exists nonzero elements a,b ∈ R

such that ab = 0, then a is said to be a left zero divisor and b is said to be a right zero

divisor. A zero divisor of a ring is an element which is both a left and a right zero

divisor. A ring without any left or right zero divisors is called a domain.

R is called a division ring if every nonzero element of R has amultiplicative inverse.

A commutative division ring is called a field. The characteristic of a field R, denoted

char(R), is the smallest positive integer p such that p1R = 0. If no such integer exists we

set the characteristic to be zero. Note that if the characteristic of a field is positive then

it is necessarily a prime number.

By an ideal of a ring we will always mean a two sided ideal. A ring is called simple

if it does not have any two sided ideal except the zero ideal and itself. A ring is called

a principal left (resp. right) ideal ring if every left (resp. right) ideal of it can be

3



generated by one element.

An element c of a ring R is called a central element if cr = rc for all r ∈ R. The

collection Z(R) of all central elements of a ring is called the center of R.

A prime ideal of R is an ideal P such that for two ideals I and J of R, IJ ⊆ P implies

either I ⊆ P or J ⊆ P . The collection of all prime ideals of a ring R is called the prime

spectrum of R and is denoted by SpecR. A maximal (resp. left, right) ideal of a ring

is an ideal I , R which is a maximal member of the lattice of ideals (resp. left, right

ideals) of R. The Jacobson radical of a ring R is defined as the intersection of all left

maximal ideals of R and is denoted as J(R). A simple module is a nonzero R-module

M which does not have any submodules other than itself and the zero submodule. The

socle of amoduleM is defined as the sum of all simple submodules ofM andwe denote

it by soc(M). R is called a local ring if it has a unique maximal left (right) ideal m. We

denote a local ring with unique maximal left ideal m by (R,m). A semisimple module

is a module which is a direct sum of simple modules. A ring R is called semisimple if

it is semisimple as a left module over itself. The annihilator of an R-module M is the

set AnnR(M) = {r ∈ R | rM = 0}. A primitive ideal of a ring R is the annihilator of a

simple R-module.

An algebra over a commutative ring R (or simply an R-algebra) is a ring A which is

also an R-module such that r(ab) = (ra)b = a(rb) for all r ∈ R and a,b ∈ A. An ideal of an

R-algebra is both an ideal of the ring A and also an R-submodule of A.

A collection C of subsets of a set S is said to satisfy the ascending chain condition

if every strictly ascending chain

C1 ⊂ C2 ⊂ C3 ⊂ . . .

of subsets from C terminates after finitely many steps. A module M is called Noethe-

rian if its lattice of submodules satisfies the ascending chain condition. If we use

descending chains of subsets instead, we get the descending chain condition, and a

module whose lattice of submodules satisfies the descending chain condition is called

Artinian. Recall that for a collection C of sets, a set A is said to be a maximal element
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of C if there is no member of C which strictly contains A. On the other hand, aminimal

element of such a collection is an element which does not properly contain another ele-

ment of the collection. A left R-moduleM is Noetherian if and only if every submodule

ofM is finitely generated, if and only if every nonempty collection of submodules ofM

has a maximal element [48, (0.1.5)]. A ring R is called left Noetherian if it is Noethe-

rian as a left module over itself. A right Noetherian ring is defined similarly. R is

called Noetherian if it is both left and right Noetherian. It is easy to see that ifM is an

arbitrary module and N is a submodule of M , then M is Noetherian (resp. Artinian)

if and only if N and M/N are Noetherian (resp. Artinian) [23, (1.2)]. Using this it

can be showed that a finite direct sum of Noetherian modules is Noetherian [23, (1.3)].

Moreover, if R is a left Noetherian (resp. Artinian) ring, then any finitely generated left

R-module is Noetherian (resp. Artinian).

In particular, when the above arguments are applied to RRwe get the corresponding

equivalent conditions on the left ideals of R which characterize left Noetherian rings.

For example, Z is a Noetherian ring since every ideal of it is finitely generated. Also,

the set of 2 × 2 matrices of the form



















Z Q

0 Q



















is a ring which is right Noetherian but

not left Noetherian [48, (1.1.7), (1.1.9)].

A composition series for a moduleM is a chain

0 =M0 <M1 <M2 < . . . < Mn =M

of submodules of M such that the factors Mi /Mi−1 are simple modules, for i = 1, . . . ,n.

The number of inclusions, which in the above chain is n, is called the length of the

composition series and the factors Mi/Mi−1 are called the composition factors. A mod-

ule which has a composition series of finite length is called a module of finite length.

Proposition 1.1.1 [48, (1.3)] A module has finite length if and only if it is both Noetherian

and Artinian.
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1.2 Injective modules

In this section we record the definition and some basic properties of injective modules.

Main references for this section are [42] and [64].

1.2.1 Injective modules

We say that a left R-module I is injective if for every R-monomorphism g : A→ B and

every R-homomorphism f : A→ I of left R-modules, there exists an R-homomorphism

h : B → I such that f = h ◦ g . In terms of diagrams, this is to say that the following

diagram

I

0 A B

∃h

g

f

can be completed to a commutative triangle. We also express this property by saying

that “any R-homomorphism f : A→ I can be lifted to B”. Alternative characterizations

of injectivity is provided by the following.

Proposition 1.2.1 [64, (2.1)] The following statements are equivalent for a left R-module

E.

(a) E is injective,

(b) given any diagram

E

0 I R

∃ h

i

f

where I is a left ideal of R and i : I → R is the canonical injection, there exists an

R-homomorphism h : R→ E such that f = h ◦ i,

6



(c) given any exact sequence

0→ A→ B→ C→ 0

of R-modules, the sequence

0→HomR(C,E)→HomR(B,E)→ HomR(A,E)→ 0

is exact. In other words, HomR(−,E) is an exact functor.

The item (b) above is known as Baer’s criterion.

If I is an injective left R-module andM is an R-module containing I as a submodule,

then the identity map I → I can be lifted to an R-homomorphism f :M → I . From this

it follows that we can decompose M as a direct sum M = I ⊕ ker f . Hence an injective

module is a direct summand in every module that contains it. We record this fact along

with the direct product of injective modules in the following.

Proposition 1.2.2 [42, (3.4)] (1) A direct product I =
∏

α Iα of left R-modules is injective if

and only if each Iα is injective. (2) A left R-module I is injective if and only if any monomor-

phism I →M of left R-modules splits in R-mod.

It follows from the above results that a finite direct sum of injective modules is

again injective. However, in general an arbitrary direct sum of injective modules is not

injective. This feature actually characterizes Noetherian rings, by the following result

which is due to Bass and Papp:

Theorem 1.2.3 [42, (3.46)] For any ring R, the following statements are equivalent:

(a) Any direct limit of injective left R-modules is injective.

(b) Any direct sum of injective left R-modules is injective.

(c) Any countable direct sum of injective left R-modules is injective.

(d) R is a left Noetherian ring.

7



Example 1.2.4 A division ring has only two left ideals, zero and itself, hence any module

over a division ring automatically satisfies the Baer’s criterion. Therefore every left module

over a division ring is injective. In particular, every vector space is injective. Rings over

which every left module is injective are precisely the semisimple rings [41, (2.9)]. For exam-

ple, as a module over itself, the ring of integers Z is not injective since the map f : 2Z→ Z

given by f (2n) = n cannot be lifted to a homomorphism f ′ :Z→Z.

1.2.2 Injective hulls

An extension M ⊆ E of left R-modules is said to be an essential extension of M if for

every nonzero submodule N of E we have M ∩N , 0. We write M ⊆e E to indicate

that E is an essential extension of M and also say that M is an essential submodule

of E. Observe that this is equivalent to say that for every nonzero element e of E, the

intersection Re∩M is nonzero.

For example, if R is a commutative domain with field of fractionsQ, then R ⊆e Q as

R-modules. Also, essential extensions satisfy the “transitivity” property so thatM ⊆e E

and E ⊆e E
′ imply M ⊆e E

′.

An R-module E is said to be a maximal essential extension of an R-module M if

E is an essential extension of M and M is not essential in any proper extension of E.

An R-module I is said to be a minimal injective extension of an R-module M if I is

injective and no proper submodule of I which contains M is injective. The following

result is due to Eckman, Schöpf and Baer.

Proposition 1.2.5 Let M be an R-module and E be an R-module extension of M . Then the

following statements are equivalent.

(a) E is injective and is an essential extension of M .

(b) E is a maximal essential extension of M .

(c) E is a minimal injective extension of M .

8



A proof of this can be found in [64, (2.20)] or [42, (3.30)]. For an R-module M , an

R-module E which satisfies the equivalent conditions of Proposition 1.2.5 is called an

injective hull (or injective envelope) ofM . We denote an injective hull of an R-module

M by E(M).

The immediate question whether every module has an injective hull has an affirma-

tive answer. We show this by giving an outline of the construction of an injective hull

of a given module M .

We start with divisible modules. A left R-module D is said to be divisible if rD =D

for every element r of R which is not a zero divisor. Every injective module is divisible

[64, (2.6)]. The converse is true if R is a principal ideal domain [64, (2.8)]. In particular,

viewed as modules over the integers, an abelian group is divisible if and only if it is

injective.

Example 1.2.6 Q is injective as a Z-module since it is divisible. Moreover Z ⊆e Q and it

follows that E(Z) = Q as Z-modules. More generally, if R is a commutative domain with

quotient field Q then E(R) =Q as R-modules.

We begin by recording that every module can be embedded in an injective module.

First we recall the following result from abelian group theory:

Lemma 1.2.7 [64, (2.12)] Every abelian group can be embedded in an injective abelian

group.

Hence M can be embedded as an abelian group in an injective abelian group, say

I . Then, since the HomZ(R,−) is left exact, it follows that there is an embedding (as

abelian groups) HomZ(R,M) →֒HomZ (R,I ).

For an arbitrary abelian group G, the abelian group HomZ(R,G) can be given the

structure of a left R-module as follows: for r ∈ R and f ∈HomZ(R,G), let rf be defined

by (rf )(s) = f (sr). Moreover, with this R-module structure, the above embedding of

hom sets is actually an R-homomorphism.

We can embedM in theR-module HomZ(R,M) by definingφ :M→HomZ(R,M) by

9



φ(m)(r) = rm [64, (2.14)]. Hence we arrive at a sequence of embeddings of R-modules

M →֒HomZ(R,M) →֒HomZ(R,I ).

We make the final comment by noting that if G is an injective abelian group then with

the above R-module structure HomZ(R,G) is injective (for a proof see [64, (2.13)]).

Hence HomZ(R,I ) is the desired injective R-module for M . We note this as a separate

theorem. A detailed proof of this construction can be found in [64, §2.3]:

Lemma 1.2.8 Every module can be embedded in an injective module.

Now that we know every R-module can be embedded in an injective R-module, we

apply Zorn’s Lemma to reach our desired conclusion.

Lemma 1.2.9 Every R-module has a maximal essential extension. In other words, every

R-module has an injective hull.

Proof: Embed M in an injective module I . Consider the collection {E ∈ R-Mod |M ⊆e

E ≤ I} of submodules of I . This is nonempty since it contains M . For any chain of

modules from this collection, the union of the chain is also an essential extension of

M . By Zorn’s Lemma, there exists a submodule E of I which is maximal with respect

to the property that M ⊆e E ⊆ I . We claim that E is a maximal essential extension of

M . If it is not, we have an embedding E ( E′ such that M ⊆e E
′. Since I is injective, the

embedding E →֒ I can be lifted to a homomorphism g : E′→ I . Since kerg ∩M = 0, the

essentiality of M in E′ implies that kerg = 0. Hence E′ can be identified with its image

g(E). But this meansM ⊆e E
′, contradicting the maximality of E. �

The following is a collection of some basic properties of injective hulls.

Lemma 1.2.10 [42, (3.32) & (3.33)] (1) Any two injective hulls E and E′ of a module M

are isomorphic. (2) If I is an injective module containingM , then I contains a copy of E(M).

(3) Any essential extension M ⊆e N can be enlarged into a copy of E(M). Indeed, if M ⊆e N

then E(M) = E(N ).
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Since two injective hulls of a module M are isomorphic by the above result, we can

refer to E(M) as the injective hull of M . Another result concerning injective modules

over Noetherian rings is the following. We call a moduleM indecomposable if it is not

a direct sum of two nonzero submodules.

Theorem 1.2.11 For any ring R, the following are equivalent:

(a) R is left Noetherian.

(b) Any injective left R-module is a direct sum of indecomposable (injective) submodules.

(c) There exists a cardinal number α such that any injective left R-module M is a direct

sum of (injective) submodules of cardinality ≤ α.

For a proof we refer to [42, (3.48)] where the equivalence (1) ⇔ (2) is attributed to

Matlis and Papp while the equivalence (1) ⇔ (3) is attributed to Faith. When work-

ing with finitely generated modules over Noetherian rings the following result is often

handy. Its proof follows easily from (1)⇒ (2) of Theorem 1.2.11.

Corollary 1.2.12 Let N be a finitely generated left module over a left Noetherian ring R.

Then E(N ) is a finite direct sum of indecomposable injective modules.

An important result in the study of injective modules over Noetherian rings is the work

of Matlis , who gave a complete list of indecomposable injective modules over commu-

tative Noetherian rings. For a ring R, we denote by I(R) the set of isomorphism classes

of indecomposable injective left R-modules.

Theorem 1.2.13 [45, (3.1)] Let R be a commutative Noetherian ring. There is a one to one

correspondence between the prime ideals of R and the set I(R) given by P 7→ E(R/P) for every

prime ideal P of R.

We close this section by a characterization of indecomposable injective modules. A

nonzero left R-module U is called uniform if any two nonzero submodules of U have

a nonzero intersection. This is equivalent to say that nonzero submodules of U are
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indecomposable, or that any nonzero submodule of U is essential in U . A left ideal I of

a ring R is called meet irreducible if R/I is a uniform left R-module.

Then, for an injective module, being indecomposable, being uniform, and being the

injective hull of a cyclic uniform module are all the same [42, (3.52)].

1.3 Filtered and graded algebraic structures

Some of the rings we will deal with are filtered and/or graded rings and in this section

we gather some facts about them. Our main reference for this section is [48, (1.6)].

Let S be a ring. A family {Fi}i∈N of additive subgroups of S is said to be a filtration

of S if it satisfies the following properties:

(i) for each i, j we have FiFj ⊆ Fi+j ,

(ii) for i < j, Fi ⊆ Fj and

(iii) ∪Fi = S .

When S has such a filtration, it is called a filtered ring. An N-graded ring is a ring T

with a family {Ti}i∈N of additive subgroups of T satisfying

(i) TiTj ⊆ Ti+j , and

(ii) T =
⊕∞

i=0Ti , as an abelian group.

When this is the case, the family {Ti} is called an N-grading of the ring T . A nonzero

element of T which belongs to Tn for some n is called a homogeneous element of degree

n.

Any graded ring T has a natural filtration {Fn}with Fn = T0⊕ . . .⊕Tn. If S is a filtered

ring, then we can construct a graded ring from S in the following way. For any n, we

set Tn = Fn/Fn−1 and T =
⊕

Tn. We define a multiplication on T as follows. For any

homogeneous element a ∈ Fn\Fn−1, we define the degree of a to be n and the element

a = a + Fn−1 is called the leading term of a. Let c be another homogeneous element of

degree m. Then the multiplication ac is defined to be ac + Fm+n−1. This is well-defined

12



andmakes T into a graded ring which we denote by GrS and call the associated graded

ring.

Associated graded rings are useful in the sense that some properties can be trans-

ferred from grS to S . For example:

Proposition 1.3.1 Let S be a filtered ring. Then

(a) If GrS is an integral domain then S is an integral domain-

(b) If GrS is prime then S is prime.

(c) If GrS is left Noetherian then S is left Noetherian.

A proof of the above properties can be found in [48, (1.6.6) and (1.6.9)].

Let k be a field and G be a group. A G-graded vector space V is a k-vector space

together with a family {Vg }g∈G of subspaces such that V =
⊕

GVg . An element v of

a G-graded vector space V is said to be homogeneous of degree g if v ∈ Vg for some

g ∈ G. We denote the degree of a homogeneous element v by |v |. Every element v of

a G-graded vector space V has a unique decomposition of the form v =
∑

g∈G vg where

the element vg is called the homogeneous component of v of degree g .

A subspace U of a G-graded vector space V is said to be G-graded if it contains

the homogeneous components of each of its elements, in other words, if U =
⊕

G(U ∩

Vg ). For two G-graded vector spaces V and W , a linear map α : V → W is called

homogeneous of degree g , g ∈ G, if α(Vh) ⊂Wg+h for all h ∈ G. The mapping g : V →W

is called a homomorphism of the G-graded vector spaces if g is homogeneous of degree

0.

A G-graded algebra is a k-algebra A whose underlying k-vector space is G-graded,

i.e. A =
⊕

GAg and such that AgAh ⊆ Ag+h for all g,h ∈ G. When there is no danger

of confusion, we will shortly say graded algebra instead of G-graded algebra. It fol-

lows from the definition that if A is a graded algebra then A0 is a subalgebra of A. A

homomorphism of G-graded algebras is an algebra homomorphism as well as a homo-

morphism of G-graded vector spaces. This means in particular that a homomorphism

is homogeneous of degree 0.
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For any additive subgroup X of a graded algebra A, we set Xg = X ∩Ag and we say

that X is graded when X =
⊕

GXg . We say that a left ideal I of a graded algebra A is a

graded left ideal if the underlying additive group of I is graded. That is, an ideal I is

graded if it contains the homogeneous components of each of its elements. One defines

similarly the notions of graded right or two sided ideals and of a graded subring. Note

that whenever I is a graded ideal of a graded algebra A, then A/I is also graded with

the grading given by (A/I )g = (Ag + I )/I .

For a graded algebra A, a left A-module M is said to be a graded module if M is

graded as a vector space and moreover AgMh ⊂Mg+h for all g,h ∈ G. A homomorphism

of graded A-modules is both a homomorphism of A-modules and also of graded vector

spaces. This means that it must be homogeneous of degree 0 and it is A-linear.

1.4 Some Noetherian rings

In this section we define and give some basic properties of some algebraic structures

and classes of Noetherian rings.

1.4.1 Lie algebras

In this section we introduce the necessary ingredients from the theory of Lie algebras.

For more information we refer to [14] and [29].

Let k be a field. A Lie algebra over k is a k-vector space g together with a bilinear

map [ , ] : g× g→ g, called the Lie bracket, which satisfies the following properties:

(i) [x,x] = 0 for all x ∈ g.

(ii) [x, [y,z]] + [y, [z,x]] + [z, [x,y]] = 0 for all x,y,z ∈ g.

The identity in (ii) of the above definition is called the Jacobi identity. Observe that

bilinearity of the bracket and (i) above imply together the anticommutativity property:

for all x,y ∈ g we have [x,y] = −[y,x]. Moreover, if the characteristic of the field k is not

equal to 2, anticommutativity also implies (i).
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It is easy to see from the definition that in a Lie algebra g we have [0,x] = 0 for all

x ∈ g and if x,y ∈ g satisfy [x,y] , 0 then it follows that x and y are linearly independent.

A Lie algebra g is called abelian if [x,y] = 0 for all x,y ∈ g. The dimension of the

Lie algebra g is the vector space dimension of g. A Lie algebra homomorphism from

g to h is a vector space homomorphism f : g→ h which satisfies f ([x,y]) = [f (x), f (y)]

for all x,y ∈ g. Lie algebras g and h are called isomorphic if there exists a Lie algebra

homomorphism which is an isomorphism of vector spaces. A Lie subalgebra of a Lie

algebra g is a subspace h of g such that [x,y] ∈ h for all x,y ∈ h. We define an ideal to

be a subspace I of g for which [x,y] ∈ I for all x ∈ g and y ∈ I . If I is an ideal of g, then

the quotient space g/I becomes a Lie algebra by defining the bracket of two elements

as [x + I ,y + I ] = [x,y] + I for all x,y ∈ g.

Any algebra A becomes a Lie algebra if we define the bracket of two elements x,y of

A to be [x,y] = xy − yx. The element xy − yx is called the commutator of x and y. For

example, ifV is a finite dimensional vector space, then the Lie algebra structure defined

on End(V ) is called the general linear algebra and we denote it by gl(V ) or gl(n,k) to

distinguish it from the ring End(V ). Note that the sets of all upper triangular matrices,

strictly upper triangular matrices, and all diagonal matrices are all subalgebras of gl(n).

A derivation of a not necessarily associative k-algebra A is a k-linear map d : A→ A

which satisfies d(xy) = xd(y) + d(x)y for all x,y ∈ A. The set D(A) of all derivations

of A is a subspace of End(A). Moreover, the commutator of two derivations is also a

derivation, hence D(A) is a Lie subalgebra of gl(A).

In particular, one can define the notion of the derivation of a Lie algebra, since a Lie

algebra is an algebra in the above sense. If g is a Lie algebra, for any element x of g we

define the adjoint action of x on g by adx(y) = [x,y] for all y ∈ g. With the help of the

Jacobi identity, one can show that for every element x of g, the map adx is a derivation of

g. Derivations of g arising in this way are called the inner derivations while others are

called outer. The map g→ D(g) given by x 7→ adx is called the adjoint representation

of g.
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1.4.1.1 Solvable and nilpotent Lie algebras

Let g be a Lie algebra. The derived algebra of g is the algebra [g,g] which is the span

of all elements of the form [x,y] with x,y ∈ g. We define a sequence of ideals of g in the

following way. Let g(0) = g and g(1) = [g,g], and inductively we define g(i) = [g(i−1),g(i−1)].

This is called the derived series of g. We say that g is solvable if g(n) = 0 for some n.

We define another sequence of ideals by first letting g0 = g and g1 = [g,g], g2 = [g,g1]

and gn = [g,gn−1]. The sequence of ideals we just defined is called the descending

central series or lower central series. g is called nilpotent if gn = 0 for some n. If

g is a nilpotent Lie algebra, the least positive integer r such that gr = 0 is called the

nilpotency degree of g.

Obviously, for every i we have g(i) ⊂ gi and so nilpotent Lie algebras are solvable.

Moreover, a Lie algebra g is solvable if and only if there exists a chain of subalgebras

g = g0 ⊃ g1 ⊃ g2 ⊃ . . . ⊃ gk = 0

such that gi+1 is an ideal of gi and such that each quotient gi /gi+1 is abelian.

1.4.1.2 Universal enveloping algebra of a Lie algebra

Let V be a finite dimensional vector space over a field k. Let T 0(V ) = k, T 1(V ) = V ,

T 2(V ) = V ⊗ V and generally Tm(V ) = V ⊗ . . . ⊗ V (m copies). Let T (V ) = ⊕∞i=0T
i(V ).

Then the multiplication defined on the homogeneous generators on T (V ) by

(v1 ⊗ . . .⊗ vn)(w1 ⊗ . . .⊗wm) = v1 ⊗ . . .⊗ vn ⊗w1 ⊗ . . .⊗wm ∈ T
m+n(V )

makes T (V ) an associative algebra. This algebra is called the tensor algebra on V .

Now let I be the two sided ideal in T (V ) generated by all elements x ⊗ y − y ⊗ x,

x,y ∈ V . The factor algebra S(V ) = T (V )/I is called the symmetric algebra on V .

The abstract definition of the universal enveloping algebra of a Lie algebra is as

follows. A universal enveloping algebra of a Lie algebra g is a pair (U,i) where U is

an associative algebra with unit over k, and i : g→U is a linear map satisfying

i([x,y]) = i(x)i(y)− i(y)i(x) (1.1)
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for all x,y ∈ g and with the following universal property: for any associative k algebra

A with unit and any linear map j : g→ A satisfying Equation 1.1, there exists a unique

algebra homomorphism φ : U → A such that φ ◦ i = j. It follows from this universal

property that such a pair is unique if it exists.

The existence of a universal enveloping algebra is guaranteed by the following con-

struction. Let g be a Lie algebra. Let T (g) be the tensor algebra on g and let I be the

ideal generated by the elements x⊗ y − y ⊗ x − [x,y] , x,y ∈ g. Define U(g) = T (g)/I . Let

π : T (g)→U(g) be the canonical homomorphism. Then if i : g→U(g) is the restriction

of π to g, then the pair (i,U(g)) is a universal enveloping algebra of g.

The following result is known as the Poincaré-Birkhoff-Witt Theorem. Its proof

can be found in [29, (17.3)].

Theorem 1.4.1 Let g be a Lie algebra with an ordered basis {x1,x2, . . .}. Then the elements

xi(1) . . . xi(m) = π(xi(1)⊗ . . .⊗xi(m)),m ∈Z
+, i(1) ≤ i(2) ≤ . . . ≤ i(m), along with 1, form a basis

for U(g).

We will shortly refer to a basis of U(g) constructed in the above sense as a PBW-

basis.

Let g be a Lie algebra and let U(g) be its enveloping algebra. For any integer n, let

Un(g) denote the vector subspace of U(g) generated by the products x1x2 . . . xp where

x1,x2, . . . ,xp ∈ g and p ≤ n. Then {Un(g)} is an increasing sequence whose union is U(g)

and it satisfies

U0(g) = k, U1(g) = k · 1⊕ g, Un(g)Um(g) ⊂Um+n(g).

Hence the sequence {Un(g)} is a filtration of U(g) which is called the canonical filtra-

tion.

If {xi | i ∈ I} is a basis for the Lie algebra g, then the associated graded ring GrU(g)

obtained from the canonical filtration is a commutative k-algebra generated by {xi | i ∈

I}. Since any finitely generated commutative k-algebra is Noetherian, it follows that the

associated graded ring of U(g) is Noetherian whenever g is finite dimensional. Hence
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the universal enveloping algebra of a finite dimensional Lie algebra is Noetherian by

Proposition 1.3.1(3) (see [48, 1.7.4]).

1.4.2 Lie superalgebras

We continue with the fundamental notions of Lie superalgebras. Our main references

for this subsection is [63] and [4].

A Z/2Z-graded algebra of the form A = A0 ⊕A1 is called a superalgebra. We apply

the general definitions given for general graded algebraic structures for the case of

a superalgebra without any change, except in a superalgebra A, the elements of the

subalgebra A0 will be called even while the elements of the subspace A1 will be called

odd. If A is a superalgebra, then the map a = a0 + a1 7→ a0 − a1 is an involution of A.

Likewise, we call a Z/2Z-graded vector space a super vector space.

A Lie superalgebra over a field k is a super vector space g = g0⊕ g1 provided with a

multiplication [ , ] : g⊗ g→ g, called the Lie bracket, such that

(i) The bracket is superantisymmetric (or graded skew symmetric), i.e., [x,y] = −(−1)|x||y|[y,x]

for all nonzero homogeneous elements x,y ∈ g.

(ii) The bracket satisfies the super Jacobi identity, i.e.,

(−1)|x||z|[x, [y,z]] + (−1)|y||x|[y, [z,x]] + (−1)|z||y|[z, [x,y]] = 0.

The adjoint action of an element x of a Lie superalgebra g is defined similar to the case

of a Lie algebra, by defining adx : g→ g as adx(a) = [x,a] for all a ∈ g. It follows from the

definition that in a Lie superalgebra g, the subalgebra g0 is itself a Lie algebra and the

odd part g1 is a module over g0. The definitions of a graded subalgebra, a graded ideal,

a graded quotient algebra of g are easily adopted from the respective definitions given

above for general graded algebras.

1.4.2.1 Solvable and nilpotent Lie superalgebras

As in the “nonsuper” case, we define the solvable and nilpotent Lie superalgebras by

means of the vanishing of the lower central and derived series. The lower central series
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is defined to be the sequence of ideals g defined by g0 = g, g1 = [g,g] and generally

gi = [g,gi−1]. Also the derived series of g is defined as g(0) = g, g(1) = [g,g] and generally

g(i) = [g(i−1),g(i−1)]. g is called solvable if its derived series vanishes for some n. It is

called nilpotent if its lower central series vanishes for some n. As in the nonsuper case,

nilpotent Lie superalgebras are solvable.

The solvability of a Lie superalgebra is determined by its even part:

Proposition 1.4.2 [63, Proposition 2(a), p. 236] A Lie superalgebra g is solvable if and only

if its Lie algebra g0 is solvable.

A similar result for nilpotency is also available.

Proposition 1.4.3 [26, Corollary 2] A Lie superalgebra g is nilpotent if and only if adx is

a nilpotent operator for every homogeneous element x ∈ g. Consequently, a Lie superalgebra

g is nilpotent if and only if g0 is a nilpotent Lie algebra and the action of g0 on g1 is by

nilpotent operators.

1.4.2.2 Enveloping algebra of a Lie superalgebra

The definition of a universal enveloping algebra of a Lie superalgebra is similar to the

standard case. Let g be a Lie superalgebra over a field k. An associative k-algebra U

with unit and with a linear map σ : g→ U is called a universal enveloping algebra of

g if

(i) for any x ∈ gi , y ∈ gj , with i, j ∈ {0,1},

σ([x,y]) = σ(x)σ(y)− (−1)|x||y|σ(y)σ(x)

and

(ii) for any associative k-algebra A with unit and a k-linear map σ ′ : g → A which

satisfies (i), there is a unique algebra homomorphism r :U → A such that r(1) = 1

and r ◦σ = σ ′.
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We briefly give the construction of an enveloping algebra of a Lie superalgebra. For

the details we refer to [63, §2]. Let g = g0 ⊕ g1 be a Lie superalgebra and let T (g) be the

tensor algebra of the vector space g. We let J be the ideal of the tensor algebra generated

by the elements of the form

x⊗ y − (−1)|x||y|y ⊗ x − [x,y]

for x,y ∈ g. These elements are homogeneous of degree |x|+ |y| and so J is a graded ideal.

We let

U(g) = T (g)/J .

U(g) is an associative superalgebra which satisfies the necessary conditions of the above

definition and hence it is the universal enveloping algebra of g. In particular, the nat-

ural mapping g → U(g) is injective and we can identify g with a graded subspace of

U(g).

Let g and g′ be two Lie superalgebras and let σ (resp. σ ′) be the natural mapping

of g into its enveloping algebra U(g) (resp. U(g′)). If f : g→ g′ is a Lie algebra homo-

morphism, then the universal property of the enveloping algebra of a Lie superalgebra

implies that there exists a unique homomorphism f : U(g) → U(g′) of superalgebras

such that σ ′ ◦ f = f ◦σ , f (1) = 1 [63, Corollary 2, p. 20].

Let g be a finite dimensional Lie superalgebra. We identify the elements of g with

their images in its enveloping algebra U = U(g). The enveloping algebra U = U(g)

has the following filtration: U0 = k, U1 = k + g, and generally we define Un to be the

subspace of U generated by all monomials of degree less than or equal to n. This is

actually a filtration of U and the associated graded algebra of U is the tensor product

GrU = k[x1, . . . ,xm]⊗k ∧(y1, . . . ,yn)

where m and n are the vector space dimensions of the even and odd parts of g, re-

spectively and ∧(y1, . . . ,yn) is the exterior algebra on n letters which is defined as the

quotient T (V )/I where V is an n-dimensional vector space and I is the ideal of the
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tensor algebra generated by all elements of the form x⊗ x where x ∈ V . Hence the en-

veloping algebra of a finite dimensional Lie superalgebra is Noetherian (see [63, §2.3,

p. 25].

Finally, we have the super version of the Poincaré-Birkhoff-Witt theorem:

Theorem 1.4.4 [63, Theorem 1, p.26] Let g be a Lie superalgebra with an ordered basis

{x1, . . . ,xn} consisting of homogeneous elements. Then the set of all products of the form

x
p1
1 · · ·x

pn
n , where x0i = 1,pi ≥ 0 and pi ≤ 1 whenever xi is odd, is a basis of U(g).

1.4.3 Skew polynomial rings

Let R be a ring and let σ be an automorphism of R. An additive endomorphism δ of R

is said to be a σ-derivation of R if it satisfies

δ(ab) = δ(a)σ(b) + aδ(b)

for all a,b ∈ R. If σ is the identity map, a σ-derivation is simply referred to as a deriva-

tion. Note the definition of a derivation we give here for a ring is different than the one

we gave for algebras over fields. While we required a derivation for a k-algebra to be

k-linear, we only require a derivation of a ring to be Z-linear.

For a ring R, with an automorphism σ and a σ-derivation δ of R, we define the skew

polynomial ring attached to this data to be the free left R-module with basis 1,x,x2, . . .

whose multiplication is defined by the rules xr = σ(r)x+δ(r) and xixj = xi+j . We denote

this ring by R[x;σ,δ]. If δ = 0 we write R[x;σ] and if σ is the identity map we write

R[x;δ].

Some properties of the ringR are reflected in the skew polynomial ring S = R[x;σ,δ].

For example, if R is a domain, a prime ring, or left (or right) Noetherian then so is S .

The proof of these facts and also the detailed skew polynomial ring construction can

be found in [48, §1.2].
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1.4.4 Weyl algebras

Let k be a field. Let An(k) be the k-algebra generated by x1,x2, . . . ,xn,y1,y2, . . . ,yn subject

to the relations

xiyj − yjxi = δij

and

xixj − xjxi = yiyj − yjyi = 0.

We call An(k) the nth Weyl algebra over k.

Alternatively, An(k) can be realized as an iterated skew polynomial ring in the fol-

lowing way. Let R = k[x1,x2, . . . ,xn] be the commutative polynomial ring. We define the

rings

R0 = R, Ri+1 = Ri[yi+1;∂/∂xi].

Then the k-algebra Rn has the generators which satisfy the relations of theWeyl algebra

and conversely, the generators of the Weyl algebra An(k) satisfy the relations for Ri

[48, §1.3]. Moreover, if the characteristic of the field k is zero, then An(k) is a simple

Noetherian integral domain [48, Theorem 1.3.5]. This is not true anymore in positive

characteristic, since in that case if the characteristic of the field is m, then the element

xmi is central and generates a nonzero ideal.

1.5 Krull and global dimension of rings

In this sectionwe define two ring theoretical dimensionswhich will appear in our work.

1.5.1 Krull dimension

For a commutative ring R its Krull dimension is defined to be the maximum possible

length of a chain P0 ⊂ P1 ⊂ . . . ⊂ Pn of distinct prime ideals of R. We say that the ring R

has infinite Krull dimension if it has arbitrarily long chains of distinct prime ideals.

In the noncommutative case, the Krull dimension is defined in terms of deviation

of a poset. Let A be a poset and for a,b ∈ A let a/b = {x ∈ A | a ≥ x ≥ b}. This is a subposet
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of A and is called the factor of a by b. We say that the poset A satisfies the descending

chain condition if every descending chain in A becomes stationary.

The deviation devA of a poset A is defined as follows. If A is trivial (i.e. a partially

ordered set which has no two distinct, comparable elements), we let devA = −∞ and

if A is a nontrivial poset which satisfies the descending chain condition then we let

devA = 0. For an ordinal α we define the deviation of A to be α if

(i) devA , β < α,

(ii) in any descending chain a1 > a2 > a3 > . . . of elements of A all but finitely many

factors of ai by ai+1 have deviation less than α.

Let M be a module and let L(M) be the lattice of submodules of M . The Krull

dimension ofM , denoted by K.dimM , is the deviation of the poset L(M) when it exists.

The left Krull dimension of a ring R is the Krull dimension of R as a left module over

itself, denoted lK.dimR. In particular, M is Artinian if and only if its Krull dimension

is zero.

If M is a Noetherian module then its Krull dimension exists. Also if R is a left

Noetherian ring, its left Krull dimension exists [48, 6.2.3].

We list three results which we will need later in the text when dealing with Krull

dimension.

Lemma 1.5.1 [23, 15.1] Let M be a module and N be a submodule of M . Then K.dim(M)

is defined if and only if k.dim(N ) and K.dim(M/N ) are both defined in which case

K.dim(M) = max{K.dim(N ), K.dim(M/N )}.

Lemma 1.5.2 [48, 6.2.8] If the module M has Krull dimension then

K.dimM ≤ sup{k.dim(M/E) + 1 | E is an essential submodule of M}.

Lemma 1.5.3 [23, 15.6] LetM be a nonzero module with Krull dimension and and f :M→

M an injective endomorphism. Then

K.dim(M) ≥ K.dim(M/f (M)) + 1.
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1.5.2 Global dimension

Let M be a module. An injective resolution of M is an exact sequence of modules and

homomorphisms

0→M→ I0→ I1→ ·· · → In→ ·· ·

such that each Ii is injective. Injective resolutions exist since every module can be

embedded in an injective module. The injective dimension of M is defined to be the

shortest length of an injective resolution

0→M→ I0→ I1→ ·· · → In→ In→ 0

of M . If no such n exists, we define the injective dimension of M to be ∞. By the

injective version of Schanuel’s Lemma [42, 5.40], the injective dimension of a module

M is well defined.

The left global dimension of a ring R is defined to be the supremum of the injective

dimensions of left R-modules. We denote the left global dimension of a ring R by

lgl.dim(R). Right global dimension of a ring is defined similarly. Rings with global

dimension zero are semisimple rings, that is rings R such that every left R-module is

injective [41, 2.9]. If R has left global dimension one then it is called left hereditary.

24



Chapter 2

Injective hulls of simple modules

2.1 Motivation

The finiteness property which is at the core of this work has its roots in Krull’s inter-

section theorem, which dates back to 1928. In [40], W. Krull proved the following:

Theorem 2.1.1 Let (R,m) be a commutative local ring. Then
⋂∞

i=1m
i = 0.

Indeed, this means that the ring R is a Hausdorff space in the m-adic topology.

As a generalization of the Krull’s intersection theorem, we have the famous Jacob-

son’s conjecture. Jacobson asked in his book “Structure of Rings” [30], which is dated

1956, whether for a right Noetherian ring R with Jacobson radical J(R) it is true that
⋂∞

i=1 J
i(R) = 0.

In 1965, Herstein answered the Jacobson conjecture in the negative by providing

the following example in [27]: Let D be a commutative Noetherian domain with field

of fractions Q and suppose that the Jacobson radical J(D) of D is nonzero. Then we

form the ring of 2× 2 triangular matrices of the form

R =





































d a

0 b



















| d ∈D, a,b ∈Q



















.
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Then R is right Noetherian and its Jacobson radical J(R) satisfies

J(R)n ⊃





































0 a

0 0



















| a ∈Q



















and so
⋂∞

i=1 J(R)
i cannot be zero and R does not satisfy the Jacobson’s conjecture.

This showed that if one assumes the ring R to be one sidedNoetherian only, then the

Jacobson’s conjecture fails. Herstein then reformulated Jacobson’s conjecture, asking

the same question for two sided Noetherian rings.

Some classes of rings have been tested whether they satisfy Jacobson’s conjecture.

Among these classes there is the class of fully bounded Noetherian rings. A right

Noetherian ring is said to be right bounded if every essential right ideal of it con-

tains a two sided ideal. A ring R is called right fully bounded right Noetherian (right

FBN-ring for short) if it is a right Noetherian ring whose prime factors R/P are right

bounded for every prime ideal P . Left FBN rings are defined in the similar way. A fully

bounded Noetherian ring (FBN ring for short) is a Noetherian ring which is both left

and right fully bounded.

Jategaonkar showed in 1974 that FBN rings satisfy Jacobson’s conjecture [33]. A key

step in his proof is the following:

Proposition 2.1.2 [33, Corollary 3.6] Over a FBN ring, any finitely generated module with

essential socle has a composition series.

We call a module M locally Artinian if all of its finitely generated submodules are

Artinian. Observe that the above conclusion is equivalent to the property that injective

hulls of simple modules over FBN rings are locally Artinian. Henceforth we will say

that a ring R has the (⋄) property if the injective hulls of simple R-modules are locally

Artinian.

Jategaonkar then moves on to prove the Jacobson conjecture for FBN rings in [33,

Theorem 3.7] in the following way. If {Si | i ∈ I} is a set of representatives of the iso-

morphism classes of simple R-modules, then the direct sum of the injective hulls E(Si),

i ∈ I , is a faithful R-module. The crux of the proof is that the above observation for FBN
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rings implies that
⋂

{Jn(R) | n ∈N} annihilates each E(Si), i ∈ I . Hence the intersection
⋂

{Jn(R) | n ∈N}must be zero.

The natural question is then whether arbitrary Noetherian rings have the (⋄) prop-

erty. However, this was shown not to be true by Musson (see [50] or [52]). In [52,

Theorem 1], Musson constructed, for every positive integer n, a Noetherian prime ring

R of Krull dimension n + 1 with a finitely generated essential extension W of a simple

R-module V such that

(i) W has Krull dimension n (hence it is not Artinian), and

(ii) W/V is n-critical and cannot be embedded in any of its proper submodules.

It should be noted that if R is a Noetherian ring which has the (⋄) property, then R

satisfies the Jacobson’s conjecture by the following argument.

Proposition 2.1.3 If R is a Noetherian ring which has the (⋄) property then R satisfies the

Jacobson’s conjecture.

Proof: For all 0 , a ∈ R, we can choose by Zorn’s lemma a left ideal Ia of R maximal

with respect to a < Ia. Then
⋂

0,a∈R Ia = 0 and (Ra+Ia)/Ia ≤ R/Ia is an essential extension

of the simple left R-module (Ra + Ia)/Ia for all 0 , a ∈ R. By the (⋄) property R/Ia has

finite length and so there exists ia ≥ 0 such that J ia(R/Ia) = 0, i.e. J ia(R) ⊆ Ia, where J

denotes the Jacobson radical of R. From this it follows that
⋂∞

i=1 J
i ⊆

⋂

a∈R J
ia ⊆

⋂

Ia = 0.

�

This makes the (⋄) property interesting on its own and some Noetherian rings have

been tested whether they have this property or not. We consider in the following two

sections the (⋄) property for some Noetherian rings.
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2.2 Positive examples

2.2.1 Commutative Noetherian rings

Commutative Noetherian rings have the (⋄) property, as Matlis showed in 1960 that if R

is a commutative Noetherian ring and A is an R-module, then the property that A being

an essential extension of its socle is equivalent to, among other things, the property that

every finitely generated submodule of A has finite length [46, Theorem 1].

2.2.2 FBN Rings, PI rings, and module finite algebras

More general than commutative Noetherian rings, as we mentioned above, FBN rings

have the (⋄) property. Some large classes of rings are indeed FBN rings. A polyno-

mial identity on a ring R is a polynomial p(x1,x2, . . . ,xn) in noncommuting variables

x1,x2, . . . ,xn with coefficients from Z such that p(r1, r2, . . . , rn) = 0 for all r1, r1, . . . , rn ∈ R.

A polynomial identity ring or a PI ring for short, is a ringRwhich satisfies somemonic

polynomial identity. For example, a commutative ring is a PI ring since it satisfies the

polynomial identity p(x,y) = xy − yx. Also, the Amitsur-Levitzki Theorem states that

if A is a commutative ring then the matrix ring Mn(A) is a PI ring [48, 13.3.3]. It is

known that a Noetherian PI ring is a FBN ring and so Noetherian PI rings have the (⋄)

property.

More specifically, letR be an algebra over a commutative ring S . Thenwe can view R

as an S-module. We say that R is amodule finite S-algebra if R is a finitely generated S-

module. Since R � EndR(RR) ⊆ EndS (R) as rings, then any polynomial identity satisfied

in EndS(R) will also be satisfied in R. By the Amitsur-Levitzki Theorem, every matrix

ring over a commutative ring is a PI ring, and so is every factor ring of a subring of such

a ring. In particular, EndS(R) is a PI ring. From this one can conclude that a module

finite algebra over a commutative ring is a PI ring and thus has the (⋄) property.

In particular, the following two algebras are PI rings and they have the (⋄) property.

Let k be a field. The coordinate ring of the quantum plane is the k-algebra generated

by the elements a,b subject to the relation ab = qab is a PI ring when the parameter
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q ∈ k is an nth root of unity. This is because in this case kq[a,b] is finitely generated over

its center k[an,bn]. Also, the quantized Weyl algebra, which is the k-algebra generated

by the elements a,b subject to the relation ab− qba = 1 is also a PI ring when q is an nth

root of unity, again being finitely generated over its center k[an,bn].

2.2.3 Dahlberg’s U (sl2(C)) example and down-up algebras

Among other, noncommutative examples, Dahlberg [13] showed that the universal en-

veloping algebra U(sl(2,C)) has the (⋄) property. This algebra is indeed a member of

a larger class of algebras known as the down-up algebras, introduced by Benkart and

Roby in [6].

Let k be a field. For fixed but arbitrary parameters α,β,γ ∈ k one defines the down-

up algebra A = A(α,β,γ ) as the k-algebra generated by the elements u and d subject to

the relations

d2u = αudu + βud2 +γd,

du2 = αudu + βu2d +γu.

By [37], A is Noetherian if and only if it is a domain, if and only if β , 0. Recently,

the full characterization of down-up algebras which have the (⋄) property has been

obtained by Carvalho, Lomp, and Pusat-Yilmaz [10], Carvalho and Musson [9], and

Musson [51].

Proposition 2.2.1 [10, 9, 51] Let A = A(α,β,γ ) be a Noetherian down-up algebra over a

field k of characteristic zero. Then A has the (⋄) property if and only if the roots ofX2−αX−β

are roots of unity.

In the general case of a noncommutative Noetherian ring, Carvalho, Lomp, and Pusat-

Yilmaz proved the following using a Krull dimension argument.

Lemma 2.2.2 [10, (1.4)] A semiprime Noetherian ring of Krull dimension one has the (⋄)

property.
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This result in particular means that the first Weyl algebra A1(C) = C[x][y;∂/∂x] has the

(⋄) property. On the other hand, they also obtained a reduction of the problem when a

Noetherian algebra A has a nontrivial centre.

Proposition 2.2.3 [10, (1.6)] The following statements are equivalent for a countably gen-

erated Noetherian algebra A with Noetherian center over an algebraically closed uncountable

field K .

(a) Injective hulls of simple left A-modules are locally Artinian;

(b) Injective hulls of simple left A/mA-modules are locally Artinian for all maximal ideals

m of the center Z(A) of A.

The above result applies to the three dimensional Heisenberg Lie algebra h over C

which is generated by x,y,z with the Lie algebra structure is given by [x,y] = z and

[x,z] = 0 = [y,z]. Let A = U(h) be the universal enveloping algebra of h. The center

of A is C[z] and the maximal ideals of the center are of the form 〈z − λ〉 where λ ∈ C.

Then for a maximal ideal m of the centre Z(A), the factor A/mA is either C[x,y], which

is a commutative Noetherian domain, or is the first Weyl algebra. In both cases these

factors have the (⋄) property and so does the Heisenberg Lie algebra [10, (1.7)].

The results of Carvalho, Lomp, and Pusat-Yilmaz also apply to certain quantum

groups, as we show in the following examples.

2.2.3.1 The quantized enveloping algebraUq(sl2)

We fix a ground field k and an element q ∈ k with q , 0 and q2 , 1. The quantized

enveloping algebra U = Uq(sl2) is the k-algebra generated by E,F,K,K−1 subject to the

relations

KK−1 = 1 = K−1K, KEK−1 = q2E, KFK−1 = q−2F, EF − FE = K−K−1

q−q−1

First assume that q is not a root of unity. The element C = EF + (q−1K + qK−1)/(q− q−1)2
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is a central element of Uq(sl2). Indeed, the center of Uq(sl2) is the subalgebra k[C] (see

[32, Proposition 2.18])

We will use Proposition 2.2.3 to conclude thatUq(sl2) has the (⋄) property. Consider

the maximal ideals of the center k[C], which are of the form 〈C − λ〉 for λ ∈ k. By [55,

Theorem 1], the ideal 〈C −λ〉 is a completely prime ideal of U for every λ ∈ k (although

it is proved over the complex numbers, the proof works for an arbitrary algebraically

closed field k of characteristic zero). Also, Jordan shows in [35] that Uq(sl2) has Krull

dimension 2, provided q is not a root of unity. Hence the factor Uq(sl2)/〈C −λ〉Uq(sl2)

is a primitive ring of Krull dimension 1. Then by Lemma 2.2.2, each such factor has

property (⋄). This implies in turn that U has the (⋄) property by the above proposition.

In the case q is a root of unity, then Uq(sl2) is a PI ring ([8, III.6.2.]) and has the (⋄)

property.

2.2.3.2 The algebra U+
q (sln)

We first consider the algebra U = U+
q (sl3), which is the k-algebra with generators e1, e2

subject to the Serre relations (see [8, I.6.2.])

E2
1E2 − (q + q−1)E1E2E1 +E2E

2
1 = 0

E2
2E1 − (q + q−1)E2E1E2 +E1E

2
2 = 0

Thus U+
q (sl3) can be realized as the down-up algebra A = A(q + q−1,−1,0). By Propo-

sition 2.2.1, A has the (⋄) property if and only if the roots of the polynomial X2 − (q +

q−1)X + 1 are roots of unity. It is easy to see that the roots of this polynomial are q,q−1.

Hence it follows that the algebra U+
q (sl3) has the (⋄) property if and only if q is a root

of unity.

Now we consider the general case. Let U = U+
q (sln) be the algebra with generators

E1, . . . ,En−1 and relations

EiEj = EjEi , |i − j | ≥ 2,

E2
i Ej − (q + q−1)EiEjEi +EjE

2
i = 0, |i − j | = 1.

It is easy to see that U+
q (sl3) is the homomorphic image of U : the map which is

defined by Ei 7→ Ei for i = 1,2 and Ei 7→ 0 for i = 3, . . . ,n−1 gives rise to an epimorphism
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U+
q (sln)։U+

q (sl3). Since the (⋄) property is inherited by factor rings, we conclude that

U has the (⋄) property if and only if q is a root of unity.

2.2.3.3 Quantum affine n-space

Let k be a field and q be an element of k. Let A = kq〈x,y〉 denote the coordinate ring of

the quantum plane. If q is a root of unity, then A is a PI ring and has the (⋄) property.

Carvalho and Musson showed in [9] that if q is not a root of unity then A does not have

the (⋄) property.

Quantum affine n-space is the algebra Oq(k
n) with generators x1, . . . ,xn and rela-

tions

xixj = qxjxi

for all i < j. For any 1 ≤ i < j ≤ n, the assignment which sends xl to xl if l = i, j and

to zero otherwise gives rise to an epimorphism from Oq(k
n) to the coordinate ring of

the quantum plane A. Hence Oq(k
n) does not have the (⋄) property if q is not a root of

unity.

Indeed, this argument also works for the multiparameter quantum affine space. If

q ∈Mn(k
×) is a multiplicatively antisymmetric matrix, the correspondingmultiparam-

eter quantum affine space is the k-algebra Oq(k
n) with generators x1, . . . ,xn and subject

to the relations

xixj = qijxjxi

for all i, j. Then, in the same way, there is an epimorphism from Oq(k
n) to any of the

algebras with generators xi ,xj and relation xixj = qijxjxi . Hence the multiparameter

quantum affine space does not have the (⋄) property if the entries of the matrix q are

not all roots of unity.

2.2.4 Group rings

In the case of group rings, it has been shown thatZG and kG where k is a field which is

algebraic over a finite field and G is polycyclic-by-finite both have the (⋄) property by

32



the works of Jategaonkar [34] and Roseblade [60].

2.3 Negative examples

The list of rings which do not have the (⋄) property includes the following rings.

We already noted that the coordinate ring of the quantum plane and the quantized

Weyl algebra do not have the (⋄) property when the parameter q ∈ k is not a root of unity

[9]. In the case of group rings, Musson showed that if k is a field which is not algebraic

over a finite field and G is polycyclic-by-finite which is not nilpotent-by-finite, then kG

does not have the (⋄) property [50].

2.3.1 Goodearl and Schofield’s example

Goodearl and Schofield [21] showed that there exists a nonprime Noetherian ring of

Krull dimension one which does not have the (⋄) property. They start with a skew field

extension F ⊂ E such that dimF E <∞ while EF is transcendental. Then the ring

R =



















E[x] 0

E[x] F[x]



















of triangular matrices is a nonprime Noetherian ring of Krull dimension one which has

a simple module with a non-Artinian cyclic essential extension.

2.3.2 Musson’s example

We already mentioned Musson’s example in § 2.1. Here we consider his construction

in more detail. Let k be a field of characteristic zero and L be a vector space over k with

basis y,x0,x1, . . . ,xn−1. We define a Lie bracket on L in the following way:

[xi ,xj ] = 0, [x0,y] = x0

[xi ,y] = xi + xi−1 for i = 1,2, . . . ,n− 1.

Then we let R to be the enveloping algebra of L. Then R is a prime Noetherian ring of

Krull dimension n + 1 which does not have the (⋄) property. In the particular case of
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n = 1, L has the form

L = kx0 ⊕ ky, where [x0,y] = x0.

In this case, if k is algebraically closed then it follows from [7, p. 71] that L is an

epimorphic image of any finite dimensional solvable Lie algebra which is not nilpotent.

Hence, the enveloping algebra of a finite dimensional solvable but not nilpotent Lie

algebra over an algebraically closed field does not have the (⋄) property [52, Theorem

2].

2.3.3 Stafford’s result

One of the corner stones of our work on both Lie superalgebras and on differential oper-

ator rings is Stafford’s result on Weyl algebras. Let An be the nth Weyl algebra over the

complex numbers. In general, a simple module M over a Noetherian ring R with finite

Gelfand-Kirillov dimension is called holonomic if GK dimM = 1
2GK dim(R/AnnM).

Stafford studies nonholonomic modules over Weyl algebras and enveloping algebras in

[66] and in particular he answers a question of Björk in the negative which asks whether

every simple An-module is holonomic. This is done by constructing explicitly a simple

An-module which has Gelfand-Kirillov dimension 2n − 1 in the following main result

of his paper.

Theorem 2.3.1 [66, Theorem 1.1] For 2 ≤ i ≤ n pick λi ∈ C that are linearly independent

over Q. Then the element

α = x1 + y1















n
∑

2

λixiyi















+
n

∑

2

(xi + yi )

generates a maximal right ideal of An. In particular, the simple An-module An/αAn has

Gelfand-Kirillov dimension 2n− 1 and projective dimension one.

As a corollary of the above theorem Stafford gives the following.

Corollary 2.3.2 [66, Corollary 1.4] Let α ∈ An be as in the theorem. Then An/x1αAn is

an essential extension of the simple An-module An/αAn by the module An/x1An, which has

Krull dimension n− 1.
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This means that for all n ≥ 2, the Weyl algebra An has a simple module which has a

cyclic essential extension of Krull dimension n − 1. Since the Artinian modules are

exactly the ones with Krull dimension zero, this means that the Weyl algebra An does

not have the (⋄) property for n ≥ 2. This result will be central when we study the (⋄)

property of nilpotent Lie superalgebras and differential operator rings.

2.4 Related works in the literature

2.4.1 V -rings and injective hulls of modules of finite length

Michler and Vilamayor studied in [49] rings over which every simple left module is

injective. Such rings are called left V-rings after Vilamayor. Right V-rings are defined

similarly. Of course, V-rings have the (⋄) property. In the commutative case, a result of

Kaplansky states that a commutative ring R is von Neumann regular if and only if R is

a V -ring. In particular, V -rings have zero Jacobson radical.

2.4.2 The works of Hirano, Jans, Vámos, and Rosenberg and Zelinsky

Rosenberg and Zelinsky considered in [61] the rings R with the property that every

simple module has an injective hull of finite length. Obviously these rings have the (⋄)

property. The main problem of their work was to study the question whether a module

of finite length has an injective hull of finite length.

In Section 3 of their paper, they drop any finiteness condition on the ring R and

they assume that simple left R-modules have an injective hull of finite length. They

show in [61, Theorem 4] that such a ring satisfies the Jacobson’s conjecture. In [61,

Theorem 5] they show that for a commutative ring R with unit, the injective hull of a

simple R-module R/M has finite length if and only if the localization RM is a ring with

minimum condition.

Another similar finiteness property is the so called co-Noetherian property. Seeking

a dual notion of finitely generated, Vámos introduced the notion of finitely embedded

in [69]. There, an R-module M is called finitely embedded (f.e.) if its injective hull
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E(M) is a finite direct sum of injective hulls of simple modules. He then showed that

this is equivalent to saying that M has a finitely generated essential socle [69, Lemma

1]. Vámos obtained the duals of a number of results on finitely generated modules. In

particular, in connection with the characterization of Noetherian modules as the ones

having every submodule finitely generated, he showed that a module M is Artinian if

and only if every factor module ofM is finitely embedded [69, Proposition 2*]. Another

remarkable result from the same paper is the following:

Theorem 2.4.1 [69, Theorem 2] For a commutative ring R the following conditions are

equivalent:

(i) Every injective hull of a simple module is Artinian;

(ii) The localization RM is Noetherian for every maximal ideal M of R.

In [31] rings over which injective hulls of simplemodules are Artinian are called left co-

Noetherian. Jans also shows that if a ring R is left Noetherian and left co-Noetherian

then it satisfies the Jacobson’s conjecture [31, Theorem 2.1], which also follows from

Proposition 2.1.3 in the more relaxed case.

Observe that rings with the property that every simple module has an injective

module of finite length are co-Noetherian, but there are co-Noetherian rings which fail

to have this property. Jans provides an example of such a ring: the ring of integers is co-

Noetherian and although the injective hulls for simpleZ-modules satisfy the minimum

condition, they do not have composition series.

A characterization of the rings considered by Rosenberg and Zelinsky is given by

Hirano in [28]. Hirano shows for a ring R, that the injective hulls of simple left R-

modules have finite length if and only if for every left R-module M , the intersection

of all submodules N with M/N has finite length is zero [28, Theorem 1.1]. He also

shows that if the injective hulls of simple left R-modules have finite length or if R is

co-Noetherian, then any finite normalizing extension of R has the same property [28,

Theorem 1.8, Theorem 2.2].

36



In the noncommutative case, Hirano conjectures that if R is left co-Noetherian such

that every primitive factor of R[x] is Artinian, then R[x] is also a left co-Noetherian.

2.4.3 Donkin’s work

In [16], Donkin considers locally finite dimensional modules over group rings. If G is a

polycyclic-by-finite group and k is a field of characteristic zero, for a finite dimensional

kG-module V he proves that (i) any essential extension of V is Artinian, and (ii) the

endomorphism ring of the injective hull E(V ) is Noetherian. In positive characteristic

this has been shown by Musson in [50].

In the general case of a Hopf algebra over a field k of characteristic zero, Donkin

proves two results corresponding to (i) and (ii) above. Namely, he proves the following:

(i) Let H be an affine Hopf algebra over a field k of characteristic zero. For any finite

dimensionalH-comodule V , the endomorphism ring EndH (E(V )) of the injective

hull (as a comodule) E(V ) of V is Noetherian [17, theorem A].

(ii) Let H be an affine Hopf algebra over a field k of characteristic zero. Then any

essential H-comodule extension of a finite dimensional H-comodule is Artinian

[17, Theorem B].

He also shows in the last section of [17] that the Noetherian rings EndH(E(V )) of (i)

satisfy the Jacobson’s conjecture.

Applications of these results can be found in representation theory of algebraic

groups, of polycyclic groups and of Lie algebras. In particular, an application to alge-

braic groups is given in [17, Corollary 6.4]. In [18], Donkin considers the applications

of the above results to enveloping algebras.

2.4.4 Injective hulls of Iwasawa algebras

Let G be a compact p-adic Lie group. The Iwasawa algebra with coefficients in some

finite integral ring extension O of Zp is defined to be

OG := lim
←−−
O[G/U ]
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where the inverse limit is taken over all the open normal subgroups U of G. We write

KG for the tensor product K ⊗O OG, where K is the field of fractions of O.

Nelson explicitly computes and makes use of the injective hull of the trivial module

in his paper [54] to prove the following result:

Theorem 2.4.2 Let G be a uniform nilpotent pro-p group and K a finite extension of Qp.

Then any primitive ideal P of KG such that KG/P is finite dimensional is localisable.

Note that the primitive ideals of the above theorem can be thought of as kernels of

finite dimensional irreducible representations of KG. More precisely, Nelson uses the

injective hulls E(KG/P) of KG-modules first when KG/P � K is the trivial module and

then when KG/P is a general finite dimensionalmodule. The injective hull of the trivial

module is computed to be a form of polynomial ring [54, Theorem 3.6] which in the

general case also acts as a base for the computation of the injective hull of a finite

dimensional module [54, Theorem 4.2].
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Chapter 3

Modules over nilpotent Lie

superalgebras

3.1 Introduction

Let k be an algebraically closed field of characteristic zero and let g be a finite dimen-

sional Lie algebra over k which is solvable but not nilpotent. Musson’s result which we

have presented in § 2.3.2 shows that the enveloping algebra U(g) of g does not have

the (⋄)-property. Then it is natural to ask for which finite dimensional nilpotent Lie

algebras g over k the enveloping algebra U(g) has the (⋄)-property. We address this

question in this chapter, and give a complete answer in a slightly more general context

of Lie superalgebras. Namely we prove the followingmain result of this chapter. Recall

that a central abelian direct factor of a Lie algebra g is an abelian Lie subalgebra a of g

such that g = h× a for some Lie subalgebra h of g.

Main Theorem 3.1.1 Let k be an algebraically closed field of characteristic zero. The follow-

ing statements are equivalent for a finite dimensional nilpotent Lie superalgebra g = g0 ⊕ g1

over k.

(a) Finitely generated essential extensions of simple U(g)-modules are Artinian.

(b) Finitely generated essential extensions of simple U(g0)-modules are Artinian.
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(c) ind(g0) ≥ dim(g0)− 2 , where ind(g0) denotes the index of g0.

(d) Up to a central abelian direct factor g0 is isomorphic to one of the following

(i) a nilpotent Lie algebra with abelian ideal of codimension 1;

(ii) the 5-dimensional Lie algebra h5 with basis {e1, e2, e3, e4, e5} and nonzero brackets

given by

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5;

(iii) the 6-dimensional Lie algebra h6 with basis {e1, e2, e3, e4, e5, e6} and nonzero brack-

ets given by

[e1, e3] = e4, [e2, e3] = e5, [e1, e2] = e6.

This together with Musson’s example gives a characterization of finite dimensional

solvable Lie algebras g whose enveloping algebra U(g) has the (⋄) property.

Corollary 3.1.2 Let g be a finite dimensional solvable Lie algebra over an algebraically

closed field of characteristic zero. The enveloping algebra U(g) of g has the (⋄) property if

and only if g is nilpotent and is isomorphic up to an abelian direct factor to a Lie algebra

with an abelian ideal of codimension 1 or to h5 or to h6.

The proof of the main theorem will consist of several steps. Stafford’s result plays

a central role in our work and we first reformulate and prove his theorem on Weyl

algebras for more general fields. Also we depend on a kind of Artin-Rees property for

finitely generated essential extensions of simple modules and on the primitive factors

to have the (⋄) property. More specifically, we first show that, Noetherian rings whose

primitive ideals contain nonzero ideals with a normalizing sequence of generators have

the (⋄) property, provided that their primitive factors have the (⋄) property.

The next step is to examine the primitive ideals of the enveloping algebra of a finite

dimensional nilpotent Lie superalgebra. We show that for such a Lie superalgebra g,

the ideals of the universal enveloping algebra U(g) contain supercentralizing sequence

of generators. This result together with the first step shifts our problem to a study of

the primitive factors of U(g).

40



The primitive factors of the enveloping algebra U(g) are given by Bell and Musson

as tensor products of the form Cliffq(k)⊗Ap(k). Clifford algebras are finite dimensional

algebras and hence they have the (⋄) property. We show that if A is a k-algebra, then

the tensor product Cliffq(k) ⊗A has the (⋄) property for all (for some) q if and only if

A has the (⋄) property. So that in our case it is enough to consider the Weyl algebras.

Since we already know that the only Weyl algebra having the (⋄) property is the first

Weyl algebra, it remains to knowwhat controls the order of theWeyl algebra appearing

in the primitive factors. A result by Herscovich shows that this is controlled by the so

called index of the underlying even part g0 of g. In our case this imposes the condition

ind(g0) ≥ dim(g0)− 2.

In the last step we list all finite dimensional nilpotent Lie algebras g which satisfies

the formula ind(g) ≥ dim(g)− 2.

3.2 Stafford’s result over algebraically closed fields of charac-

teristic zero

We have seen Stafford’s result in Section 2.3.3, which says that the only complex Weyl

algebra which has the (⋄) property is the first Weyl algebra. While Stafford proved

his result over the field of complex numbers, we show in this section that Stafford’s

results for the nth Weyl algebra are valid for an arbitrary field k which is at least n − 1

dimensional over the rationals.

We first prove some general observations which will be required in the proof of the

main result.

Lemma 3.2.1 Let A1(k) be the first Weyl algebra over a field k with generators x and y. Then

for any m,n ≥ 0 we have

[xy,xnym] = (m− n)xnym

Proof: First note that the equations yxn = xn−nxn−1 and ymx = xym−mym−1 hold in A1.
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By direct computation we see that

[xy,xnym] = xyxnym − xnymxy

= x(xny − nxn−1)ym − xn(xym −mym−1)y

= (m− n)xnym.

�

Lemma 3.2.2 Let k be a field which is at least n − 1-dimensional over Q, An be the nth

Weyl algebra over k with generators x1, . . . ,xn,y1, . . . ,yn and let S = k[x2, . . . ,xn,y2, . . . ,yn].

Given s ∈ S and λ2, . . . ,λn ∈ k which are linearly independent over Q, we define θ(s) =
∑n

i=2λi[xiyi , s] − ps where p =
∑n

i=2λiui for some ui ∈ Z. If s = x
v2
2 . . . x

vn
n y

w2

2 . . . y
wn
n , then

θ(s) = µs for some µ ∈ k. Furthermore, θ(s) = 0 if and only if wi − vi = ui for 2 ≤ i ≤ n.

Proof: By Lemma 3.2.1, it follows that

θ(s) =

n
∑

i=2

λi[xiyi , s]−
n

∑

2

λiuis =

n
∑

i=2

λi(wi − vi)s −
n

∑

i=2

λiuis

=
n

∑

2

λi(wi − vi − ui)s

Since the λi are linearly independent overQwe have θ(s) = 0 if and only ifwi−vi−ui = 0

for each i, and this completes the proof. �

The proof of our next result is rather long, we therefore divide it into several steps in

order to make it easier to follow. A proof of the case n = 2 can also be found in [39,

Proposition 8.8].

Theorem 3.2.3 Let k and An be as in the preceding lemma. For 2 ≤ i ≤ n pick λi ∈ k that

are linearly independent over Q. Then the element

α = x1 + y1















n
∑

i=2

λixiyi















+
n

∑

i=2

(xi + yi )

generates a maximal right ideal of An.
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Proof: The monomials of the form γ = x
a1
1 . . . x

an
n y

b2
2 . . . y

bn
n y

b1
1 ∈ An, where ai ,bi ≥ 0, form

a basis for An as a k-vector space. We define the degree of a monomial γ to be the

2n-tuple (a1, . . . ,an,b2, . . . ,bn,b1). We order these 2n-tuples lexicographically, meaning

that (a1, . . . ,a2n) < (b1, . . . ,b2n) if and only if there exists 1 ≤ j ≤ 2n such that aj < bj and

ai = bi for all i < j. Suppose that our claim is false and there exists β ∈ An\αAn such that

αAn+βAn , An. For the rest of the proof we fix an element β satisfying these properties

but of the smallest possible degree.

Step 1. Wefirst note that β < k[y1]. Otherwise, suppose that β ∈ k[y1], say β = p(y1) ∈

k[y1]. First note that [α,β] < αAn, simply because while [α,β] =
∂p(y1)
∂y1

has x1-degree

zero, every nonzero element of αAn has positive x1-degree. Thus, [α,β] is certainly

an element which is of smaller degree than that of β satisfying αAn + (αβ − βα)An ⊂

αAn + βAn , An, contradicting the minimality assumption on β.

We now proceed to show that the above observation places strong restraints on the

commutator [α,β]. Let us write R = An−1[y1], where An−1 is the Weyl algebra of order

n− 1 with generators xi ,yi with 2 ≤ i ≤ n.

Step 2. Now we show that β ∈ R. Note that α is monic of degree 1 as a polynomial

in x1, with coefficients in R. Hence, if we write β = x1β1 + β2 for some 0 , β1 ∈ An and

β2 ∈ R, then γ = β − αβ1 still satisfies the same properties with β but it has smaller

degree. The minimality of degβ implies β1 = 0 and hence β ∈ R.

Thus, we know that β ∈ R, with degree, say, (0, r2, . . . , rn, s2, . . . , sn, s1). Write β =

β1 + β2 where β1 = x
r2
2 . . . x

rn
n y

s2
2 . . . y

sn
n f for some f ∈ k[y1] and β2 has degree less than

(0, r2, . . . , rn, s2, . . . , sn,0). Since β < k[y1] as we showed above, it follows that there exists

at least one 2 ≤ i ≤ n for which ri or si is nonzero, and therefore β1 , 0.

Step 3. We claim that [α,β] = βy1
∑n

i=2λiui for some ui ∈Z. Consider the element

γ = αβ − βα + βy1

n
∑

i=2

λi(r − s).

We show that γ is zero and prove our claim. We substitute β = β1+β2 in the expression

for γ and write γ = γ1 + γ2 where γj = αβj − βjα + βjy1
∑n

i=2λi(ri − si ). We claim that

degγ < degβ. Since for i ≥ 2, the generators xi ,yi commute with x1 and y1, it follows
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from Lemma 3.2.1 that

[y1xiyi ,x
a
i y

b
i ] = (b − a)y1x

a
i y

b
i . (3.1)

Further, for any r ∈ R, we have [xi , r] =
∂
∂yi

(r) for 1 ≤ i ≤ n and [yi , r] = −
∂
∂xi

(r) for

2 ≤ i ≤ n. Combining these observations shows that for any r ∈ R,

αr − rα = (x1 + y1















n
∑

i=2

λixiyi















+
n

∑

i=2

(xi + yi ))r − r(x1 + y1















n
∑

i=2

λixiyi















+
n

∑

i=2

(xi + yi))

= [x1, r] +
n

∑

i=2

[λiy1xiyi , r] +
n

∑

i=2

[xi + yi , r]

where each summand is of degree less than or equal to degy1r, and so deg(αr − rα) ≤

degy1r. In particular,

degγ2 ≤ degy1β2 < (0, r2, . . . , sn,0) ≤ degβ. (3.2)

We now consider γ1. By Equation 3.1 we have

[y1

n
∑

i=2

λixiyi ,β1] = y1β1

n
∑

i=2

λi(si − ri)

and this cancels with the last term in the expression for γ . Thus,

γ1 = αβ1 − β1α + β1y1

n
∑

i=2

λi(ri − si) = [x1,β1] +
n

∑

i=2

[xi + yi ,β1].

and so degγ1 < degβ1. Combined with Equation 3.2, this gives degγ < degβ. Since

γAn + αAn ⊆ βAn + αAn , An, the minimality of degβ forces γ ∈ αAn. However, γ ∈ R

yet αAn∩R = 0; and so γ = 0. This completes the proof of the claim, and hence we have

αβ − βα = βy1
∑n

i=2λiui for some ui ∈Z.

Now set S = k[x2, . . . ,xn,y2, . . . ,yn]. We will sometimes write the monomial

x
c2
2 . . . x

cn
n y

d2
2 . . . y

dn
n ∈ S as zγ for γ = (c2, . . . ,dn). Again, we define a degree function on S ,

so that the monomial zγ has degree (c2, . . . ,dn) where these (2n − 2)-tuples are ordered

lexicographically.

Set p =
∑n

i=2λiui where the ui are as defined in Step 3. Then we have the equation

αβ − βα − pβy1 = 0. (3.3)
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Write β =
∑t

i=0 y
i
1bi for bi ∈ S with bt , 0. The following steps show that this equation

leads to a contradiction. We do this by computing the first few bi .

Step 4. We first expand Equation 3.3 by substituting β =
∑t

i=0 y
i
1bi and by comput-

ing first

αβ = x1

t
∑

i=0

yi1bi + y1















n
∑

i=2

λixiyi















t
∑

i=0

yi1bi +
n

∑

i=2

(xi + yi)
t

∑

i=0

yi1bi

=
t

∑

i=0

x1y
i
1bi +

t
∑

i=0

n
∑

j=2

yi+11 λjxjyjbi +
t

∑

i=0

n
∑

j=2

yi1(xj + yj )bi

and then

βα =
t

∑

0

yi1x1bi +
t

∑

i=0

n
∑

j=2

yi+11 biλjxjyj +
t

∑

i=0

n
∑

j=2

yi1bi(xj + yj )

and hence, Equation 3.3 in expanded form is

t
∑

i=2

iyi−11 bi +
t

∑

i=0

n
∑

j=2

yi+11 λj [xjyj ,bi ] +
t

∑

i=0

n
∑

j=2

yi1[xj + yj ,bi ]− p
t

∑

i=0

yi+11 bi = 0. (3.4)

Equating the coefficients of yt+11 gives

0 =
n

∑

j=2

λj [xjyj ,bt]− pbt . (3.5)

Step 5. In the notation of Lemma 3.2.2, it follows from Step 4 that θ(bt) = 0. Hence, if

we write bt =
∑

btγ z
γ for γ = (c2, . . . , cn,d2, . . . ,dn) then it follows from Lemma 3.2.2 that

bt =
∑

btγx
c2
2 . . . x

cn
n y

c2+u2
2 . . . y

cn+un
n

for some btγ ∈ k. We claim that this implies t > 0. Suppose t = 0. Then the coefficient of

y01 in Equation 3.4 gives 0 =
∑n

j=2[xj + yj ,bt]. Equivalently,

0 = −
∑

γ

∑

i

btγ cix
c2
2 . . . x

ci−1
i . . . x

cn
n y

c2+u2
2 . . . y

cn+un
n +

∑

γ

∑

i

btγ (ci+ui)x
c2
2 . . . y

ci+ui−1
i . . . y

cn+un
n .

(3.6)

We show that this forces bt ∈ k. If btγ , 0 for some γ , (0), then for Equation 3.6 to still

hold, two or more terms in Equation 3.6 must cancel and so these terms will certainly

have the same degree. This implies either

(c2, . . . , ci−1, . . . , cn, c2 +u2, . . . , cn +un) = (c′2, . . . , c
′
n, c
′
2 +u2, . . . , c

′
j +uj − 1, . . . , c

′
n +un)
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for some i and j, or one of two other similar equations should hold. It is clear that no

such equation is possible, and this implies that btγ = 0 whenever (c2, . . . , ci−1, . . . , cn, c2 +

u2, . . . , cn + un) , (0) or (c2, . . . , ci + ui − 1, . . . , cn + un) , (0). Hence bt = bto ∈ k. But this

implies in turn that β ∈ k, contradicting the initial assumption that αAn + βAn , An.

Thus, t ≥ 1 and we complete the proof by computing bt−1 and bt−2. From the coeffi-

cient of yt1 in Equation 3.4 we get

0 =
n

∑

j=2

λj [xjyj ,bt−1]− pbt−1 +
n

∑

j=2

[xj + yj ,bt]. (3.7)

We solve this for bt−1. Recall that by Lemma 3.2.2 θ(s) has the same degree with s. First,

as deg(
∑

[xi + yi ,bt]) < degbt , by Lemma 3.2.2 there exists f ∈ S with deg f < degbt ,

such that 0 = θ(f )+
∑

[xj +yj ,bt]. This means that θ(bt−1−f ) = 0 and so by Lemma 3.2.2

we have bt−1 = f + g where

g =
∑

gγ ′x
c′2
2 . . . x

c′n
n y

c′2+u2
2 . . . y

c′n+un
n

for some gγ ′ ∈ k.

Finally, we consider the coefficient of yt−11 in Equation 3.4 which is

0 = tbt +
n

∑

j=2

λj [xjyj ,bt−2]− pbt−2 +
n

∑

j=2

[xj + yj ,bt−1] (3.8)

where bt−2 is defined to be zero if t = 1. Suppose that degbt = γ = (c2, . . . , cn, c2 +

u2, . . . , cn+un) and consider the coefficient of zγ in Equation 3.8. By Lemma 3.2.2 again,
∑

j [xjyj ,bt−2] − pbt−2 = θ(bt−2) has no term of degree γ (because the terms of degree γ

becomes zero by the property of θ). As can be seen from Equation 3.6,
∑

[xj +yj , g] also

has no term in this degree, while deg
∑

[xj + yj , f ] < deg f < degbt . In other words, the

coefficient of zγ in Equation 3.8 is just 0 = tbt−1. Since t > 0 this is impossible. Thus,

αAn indeed is a maximal right ideal of An. �

Let α be as above. Let M = An/x1αAn and S = An/αAn be the simple right An-module

of Theorem 3.2.3.
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Lemma 3.2.4 M is an essential extension of the simple right An-module S which has Krull

dimension n− 1.

Proof: There is an injectivemap f : An/αAn→ An/x1αAn given by r+αAn 7→ x1r+x1αAn

and we identify S with its image x1An/x1αAn.

Let R = An−1(k), with generators x2, . . . ,xn and y2, . . . ,yn subject to the relations

xiyj = yjxi + δij ∀ 2 ≤ i, j ≤ n.

Set S = R[y] and T = S[x; ∂
∂y
]. Then T ≃ An(k). By Theorem 3.2.3, the element

α = x + yu + v ∈ T

generates a maximal right ideal where u,v ∈ R are u =
∑n

i=2λixiyi and v =
∑n

i=2 xi + yi ,

with λ2, . . . ,λn ∈ k are linearly independent over Q.

Each element in T can be written uniquely as a polynomial in x with coefficients

in S . Hence we can talk about the x-degree of an element f of T , which we denote by

degx(f ).

Write α = x+f where f = yu+v ∈ R[y]. Note that R[y]∩αT = 0 and that any element

in T /αT can be uniquely represented by a polynomial in R[y]: let γ =
∑m

i=0 x
igi ∈ T with

gi ∈ R[y]. Then

γ +αT =
m
∑

i=0

(−f )xi−1gi +αT

and by using f xi−1 = xi−1f −(i−1)xi−2∂y(f ), we can represent γ+αT through an element

with lower x-degrees. Hence repeating these substitutionsm times leads to a represen-

tation of γ +αT by a polynomial in R[y]. This means that the simple module T /αT of

Theorem 3.2.3 has a basis consisting of the classes represented by a basis of R[y]. In

particular, any element of xT /xαT can be represented as xh+ xαT with h ∈ R[y].

Sublemma 3.2.5 Any element γ of T /xαT can be represented by g +xh+xαT where g,h ∈

R[y]. If γ is a nonzero element of T /xαT , then γx is also nonzero. Concretely, if γ is

represented by g + xh, then γx is represented by

γx = −∂y(g) + x(g + f h−∂y(h)) + xαT .
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Proof: By going to the factor T /xαT → T /xT and using the fact that (R[y] + xT )/xT =

T /xT , there exist g ∈ R[y] and r ∈ xT such that γ = g+r+xαT . Write r = xhwith h ∈ R[y]

as noted in the paragraph preceding the sublemma. Note that

xhx = x2h− x∂y(h) ≡ x(f h−∂y(h)) (mod xαT ).

Then

γx = xg −∂y(g) + x(f h−∂y(h)) + xαT = −∂y(g) + x(f h−∂y(h) + g) + xαT .

If γx were zero, then ∂y(g) = 0 and f h − ∂y(h) + g = 0. The first condition implies that

g ∈ R while the second condition leads to a contradiction since f h has higher y-degree

than −∂y(h) + g which means that f h = 0 as R is a domain. Thus h = 0 and also g = 0,

contradicting that γ is nonzero. �

We now prove that any nonzero right submodule of T /xαT contains a nonzero element

of xT /xαT . By the above sublemma, any nonzero element γ ∈ U of a nonzero sub-

module U of T /xαT is represented by γ = g + xh with g,h ∈ R[y]. Multiplying by x on

the right leads to an element γx = −∂y(g) + xh′ + xαT ∈ U . Multiplying γ by x on the

right degy(g) + 1 times leads to a nonzero element in xT /xαT . Hence, M is an essential

extension of S .

We now show thatM has Krull dimension n−1. Note that K.dim(M) = K.dim(M/S) =

K.dim(An/x1An). Every element of An/x1An can be written as a polynomial in y1 with

coefficients inAn−1. LetU be anAn-submodule ofAn/x1An. Then the set V =U∩An−1 =

{f ∈ An−1 | f + x1An ∈ U } is a right ideal of An−1 and V [y1] ⊆ U . On the other hand, for

any p =
∑m

0 fiy
i + x1An, we have pxm = cmfm + x1An ∈ U for some cm ∈ k and so fm ∈ V .

This implies that fmy
m+x1An ∈U too, which gives in turn that p′ =

∑m−1
0 fiy

i+x1An ∈U .

From this we get upon multiplying on the right by xm−1 that fm−1 ∈ V . Going on this

way we get fi ∈ V for all i = 0, . . . ,m and hence U ⊆ V [y1]. Hence U = V [y1].

Consider the mapping V 7→ V [y1] between the lattice of right ideals of An−1 and

the lattice of right An-submodules of An/x1An. The above paragraph shows that this is

onto. Moreover, for two right ideals I and J of An−1, the equality I [y1] = J[y1] implies
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that I = J . In the case I ⊆ J it is easy to check that I [y1] ⊆ J[y1] and this mapping is

indeed a lattice isomorphism. Hence, the Krull dimension of An/x1An as a right An-

module is equal to the Krull dimension of An−1 as a right module over itself, which is

n− 1. �

Hence we showed that Stafford’s result holds in a more general setting and we record

the following corollary.

Corollary 3.2.6 Let k be a field which is at least n − 1-dimensional over Q. Then the Weyl

algebra An(k) has the (⋄) property if and only if n = 1.

3.3 Noetherian rings with enough normal elements

As indicated in the introduction, we examine the role played by the normal elements

on the (⋄) property of a Noetherian ring.

A module M is a subdirect product of a family of modules {Fλ}Λ if there exists

an embedding ι : M →
∏

Λ Fλ into a product of the modules Fλ such that for each

projection πµ :
∏

Fλ→ Fµ the composition πµι is surjective. Consequently, a module N

is isomorphic to a subdirect product of the family {Mλ}Λ if and only if there is a family

of epimorphisms fλ :N →Mλ such that ∩Λ ker fλ = 0. The following is a standart result

in module theory.

Lemma 3.3.1 Any nonzero module is isomorphic to a subdirect product of factor modules

that are essential extensions of a simple module.

Proof: For a proof of this fact see for instance [70, (14.9)]. �

The modules which are essential extensions of a simple module are known in the

literature as subdirectly irreducible, cocyclic, colocal, or monolithic. If R is a ring

with the (⋄) property andM is a subdirectly irreducible left R-module with an essential

simple module S , then E(M) = E(S) is locally Artinian and hence M is locally Artinian

as well. Conversely, if all the subdirectly irreducible R-modules are locally Artinian,
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then in particular the injective hulls of simple modules are locally Artinian and hence

R has the (⋄) property. We just proved:

Lemma 3.3.2 A ring R has the (⋄) property if and only if subdirectly irreducible R-modules

are locally Artinian.

As we mentioned before, Hirano considered in [28] the stronger property that every

left R-module M of finite length has an injective hull of finite length. In particular, he

proved in [28, Theorem 1.1] that injective hulls of simple left R-modules have finite

length if and only if every left R-module is a subdirect product of the family {N ≤M |

M/N has finite length}. This should be compared with our next result.

Lemma 3.3.3 A ring R has the (⋄) property if and only if every left R-module is a subdirect

product of locally Artinian modules.

Proof: Since, by the above lemma, the (⋄) property is equivalent to subdirectly irre-

ducible modules to be locally Artinian, the result follows by using Lemma 3.3.1. �

An element a of a ring R is called a normal element if aR = Ra. For instance, any

central element is normal. A ring extension R ⊆ S is said to be a finite normalizing

extension if there exists a finite set {a1,a2, . . . ,ak} of elements of S such that S =
∑k

i=1 aiR

and aiR = Rai .

Let R ⊆ S be a finite normalizing extensionwith {a1,a2, . . . ,ak} being a set of elements

of S which normalize R. Let M be a left S-module. M is also a left R-module by

restriction. For an R-submodule N of M , let us denote by a−1i N the set {m ∈M | aim ∈

N }. Note that since ai is normalizing, each a−1i N is an R-submodule of M . Moreover,

there is a largest S-submodule ofM contained in N . This is called the bound of N and

denoted by b(N ). In fact, b(N ) =
⋂t

i=1 a
−1
i N , see [48, 10.1.7].

Lemma 3.3.4 [48, 10.1.6]With the notation of the preceding paragraph, the mapM/a−1i N →

M/N given by m+ a−1i N 7→ aim +N is a group monomorphism. It induces a lattice embed-

ding L(M/a−1i N )R→L(M/N )R under which finitely generated submodules are carried over

to finitely generated submodules. If ai centralizes R the map is an R-homomorphism.
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Wementioned that Hirano showed that the properties of being a co-Noetherian ring

and having all injective hulls of simple modules finite length are carried to finite nor-

malizing extensions. In this direction we prove the following result, which is actually

an adaptation of Hirano’s result [28, Theorem 1.8]:

Proposition 3.3.5 Let S be a finite normalizing extension of a ring R. If R has the (⋄)

property then so does S .

Proof: Let M be a nonzero left S-module. By Lemma 3.3.3, there exists a finite family

{Nλ} of R-submodules ofM such that M/Nλ is locally Artinian for all λ and
⋂

λNλ = 0.

Since b(Nλ) ⊆ Nλ, we certainly have
⋂

λ b(Nλ) = 0. By Lemma 3.3.4, there is a lattice

embedding of R-modules L(M/b(Nλ))→ L(M/Nλ) which implies also that M/b(Nλ) is

locally Artinian. HenceM is a subdirect product of locally Artinian S-modules and the

result follows from Lemma 3.3.3. �

What we have proved up to now enables us to prove the following, which says that

tensoring with finite dimensional algebras preserves the (⋄) property.

Corollary 3.3.6 Let C be a finite dimensional algebra over some field k andA be any algebra.

If A has the (⋄) property then C ⊗A has the (⋄) property too.

Proof: Let {x1,x2, . . . ,xn} be a basis of C. Then we have C⊗A =
∑n

i=1(xi ⊗1)Awhere each

xi ⊗ 1 is a normal element and so C ⊗A is a finite normalizing extension of A. Hence

C ⊗A has the (⋄) property by Proposition 3.3.5. �

A sequence x1, . . . ,xn of elements of a ring R is called a normalizing (resp. central-

izing) sequence if for each j = 0, . . . ,n − 1 the image of xj+1 in R/
∑j

i=1 xiR is a normal

(resp. central) element. McConnell showed in [47] that every ideal in the envelop-

ing algebra of a finite dimensional nilpotent Lie algebra has a centralizing sequence of

generators. In the next section we will show a super version of his result.

Theorem 3.3.7 [48, 4.2.2] The following conditions on an ideal A of a left Noetherian ring

R are equivalent:

51



(a) If I ≤ R is a left ideal of R, then I ∩An ⊆ AI for some n.

(b) If RM is finitely generated and N ≤M is a submodule of M , then N ∩AnM ⊆ AN for

some n.

(c) If RM is finitely generated and N ≤e M with AN = 0 then AnM = 0 for some n.

An ideal A of a left Noetherian ring is said to satisfy the left Artin-Rees property if

it satisfies one of the equivalent conditions of the above theorem. If every ideal A of a

ring R has the Artin-Rees property, then R is called an Artin-Rees ring.

Normal elements and ideals generated by such elements are important for our study

because if R is a left Noetherian ring and A is an ideal of R generated by normal ele-

ments, then A has the left Artin-Rees property [48, 4.2.6].

The Artin-Rees property plays a central role in the following result, which is the

first step towards the main result of this section.

Lemma 3.3.8 Let A be a Noetherian algebra, E be a simple left A-module and E ⊆e M

be an essential extension of left A-modules. Let Q ⊆ AnnA(E) be an ideal of A that has a

normalizing sequence of generators. Then M is Artinian if and only if M ′ = AnnM (Q) is

Artinian.

Proof: The proof is by induction on the number of elements of the generating set of Q.

First suppose that Q = 〈x1〉 where x1 is a normal element. Define a map f : M → M

by f (m) = x1m. This map is Z(A)-linear and preserves A-submodules of M , because if

U ≤ M is an A-submodule of M , then A · f (U ) = Ax1U = x1AU = x1U = f (U ) and so

f (U ) is an A-submodule of M . Since Q is generated by a normal element, it satisfies

the Artin-Rees property and so there exists a natural number n > 0 such that QnM =

xn1M = 0. In other words, ker(f n) =M . Hence we have a finite filtration

0 ⊆ ker(f ) = AnnM (Q) ⊆ ker(f 2) ⊆ · · · ⊆ ker(f n−1) ⊆ ker(f n) =M

whose subfactors are left A/Q-modules and f induces a submodule preserving chain of

embeddings

M/ ker(f n−1) →֒ ker(f n−1)/ ker(f n−2) →֒ · · · →֒ ker(f 2)/ ker(f ) →֒ ker(f ).
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Hence M is Artinian if and only if M ′ = ker(f ) = AnnM(Q) is Artinian.

Now let n > 0 and suppose that the assertion holds for all Noetherian algebras and

finitely generated essential extensions E ≤e M of simple left A-modules E such that

AnnA(E) contains an ideal Q which has a normalizing sequence of generators with less

than n elements. Let E ≤e M be a finitely generated essential extension of a simple left

A-module such that Q ⊆ AnnA(E) has a normalizing sequence of generators {x1, . . . ,xn}

of n elements. Consider the submodule M ′ = AnnM (x1). Since x1 is a normal element,

we can apply the same procedure to conclude that M is Artinian if and only if M ′ is

Artinian. Let A′ = A/Ax1 and Q′ = Q/Ax1. Then Q′ ⊆ AnnA′ (E) is generated by the set

{x2, . . . ,xn} of normalizing elements, where xi is the image of xi inA′ for i = 2, . . . ,n. Now,

E ≤M ′ is an essential extension of A′-modules such that Q′E = 0. SinceQ′ is generated

by a normalizing sequence of n− 1 elements, by the induction hypotheses we conclude

that M is Artinian if and only if AnnM ′ (Q)′ = AnnM (Q) is Artinian as A′-modules and

hence also as A-modules. �

Lemma 3.3.9 Suppose that A is a Noetherian algebra such that every primitive ideal P of A

contains an idealQ ⊆ P which has a normalizing sequence of generators and A/Q has the (⋄)

property. Then A has the (⋄) property.

Proof: Let E be a simple left A-module, P = AnnA(E) and let E ⊆e M be a finitely

generated essential extension of E. Let M ′ = AnnM (Q), where Q ⊆ P is an ideal that

has a normalizing sequence of generators and with A/Q having the (⋄) property. Then

E ≤M ′ is a finitely generated essential extension of A/Q-modules and soM ′ is Artinian

because A/Q has the (⋄) property. Since by Lemma 3.3.8 M ′ is Artinian if and only if

M is Artinian, it follows that M is Artinian and A has the (⋄) property. �

Let A = A0 ⊕A1 be an associative superalgebra. A graded primitive ideal P of A is

the annihilator of a graded simpleA-module, while a gradedmaximal ideal is a proper

graded ideal that is a maximal element in the lattice of proper graded ideals. Given any
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ideal P of A, the set Q = P ∩σ(P) is a graded ideal where σ denotes the involution

σ : A→ A, a0 + a1 7→ a0 − a1 ∀a0 ∈ A0,a1 ∈ A1.

We remark that if A is a superalgebra over a field k of characteristic zero and I is a

graded ideal of A, then Bell and Musson prove that I is graded maximal if and only if

I = σ(P)∩ P for a maximal ideal P of A [3, Lemma 1.2]. This fact will be used in the

proof of the main result of this section.

We are ready to prove the result of this section. It states that for certain associative

Noetherian superalgebras, to decide whether they have the (⋄) property it is enough

to look at the primitive factors. This way we obtain a reduction of the problem to the

primitive factors.

Theorem 3.3.10 Let A be a Noetherian associative superalgebra over a field k of charac-

teristic zero such that every primitive ideal is maximal and every graded maximal ideal is

generated by a normalizing sequence of generators. Then the following statements are equiv-

alent:

(a) A has the (⋄) property.

(b) Every primitive factor of A has the (⋄) property.

(c) Every graded primitive factor of A has the (⋄) property.

Proof: The part (a)⇒ (b) is clear since the (⋄) property is inherited by factor rings.

(b) ⇒ (c) Suppose that Q is a graded primitive ideal of A. By Bell and Musson’s

result, there exists a maximal ideal P of A such that Q = P ∩ σ(P). If Q is graded, then

Q = P and A/Q has the (⋄) property by hypothesis. Otherwise, by the maximality of

P , σ(P) + P = A holds. In this case the map A/Q → A/P × A/σ(P) given by a + Q 7→

(a+P, a+ σ(P)) for a ∈ A is an isomorphism and so A/Q ≃ A/P ×A/σ(P). Since A/P has

the (⋄) property, so does A/σ(P) and then also the direct product of both has the (⋄)

property.

(c)⇒ (a) Suppose that every graded primitive factor of A has the (⋄) property. Let

E be a simple A-module, P = AnnA(E), and let E ≤ M be an essential extension of E.
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P is maximal by assumption. The ideal Q = P ∩ σ(P) is graded maximal by Bell and

Musson’s result and has a normalizing sequence of generators by assumption. A/Q has

the (⋄) property by the hypothesis and by Lemma 3.3.9 we conclude that A has the (⋄)

property. �

3.4 Ideals in enveloping algebras of nilpotent Lie superalge-

bras

In the previous section we obtained a possible reduction of the problem to the study of

primitive factors under certain assumptions for Noetherian associative superalgebras.

In this section we prove that the universal enveloping algebra of a finite dimensional

nilpotent Lie superalgebra satisfies these assumptions. We will start with the previ-

ously announced analogue of McConnell’s result which says that every ideal of the

enveloping algebra of a finite dimensional nilpotent Lie algebra has a centralizing se-

quence of generators. To arrive at the conclusions of this section we will study some

aspects of locally nilpotent derivations of superalgebras.

Let A be an associative superalgebra. We define the supercommutator of two ho-

mogeneous elements a,b of A as the element

Ja,bK := ab − (−1)|a||b|ba

which is extended bilinearly to a form J−,−K : A⊗2 → A. The supercenter of A is the

set Z(A)s = {a ∈ A | ∀ b ∈ A : Ja,bK = 0} and its elements are called supercentral. Super-

central elements are clearly normal. A superderivation of a superalgebra A is a graded

linear map f : A→ A of degree |f | such that

f (ab) = f (a)b + (−1)|a||f |af (b)

for all homogeneous a,b ∈ A. The supercommutator Jx,−K for a homogeneous element

x ∈ A is an example of a superderivation. Such derivations are called inner derivation.

If |a| = 0, then Ja,−K is a derivation of A.

55



Proposition 3.4.1 Let A be a superalgebra and f be a superderivation of A. For every n ∈

N and homogeneous elements a,b of A, there exist integers c0, . . . , cn such that f n(ab) =
∑n

i=0 cif
i(a)f n−i (b).

Proof: Let a and b be homogeneous elements of A. We use induction on n. The case

n = 1 follows from the definition of a superderivation with c0 = (−1)|a||b| and c1 = 1.

Suppose that the assertion holds for n ≥ 1. We compute f n+1(ab):

f n+1(ab) = f
(

∑n
i=0 cif

i(a)f n−i(b)
)

=
∑n

i=0 ci(f
i+1(a)f n−i (b) + (−1)|f

i (a||f |f i(a)f n−i+1(b))

=
∑n+1

i=1 ci−1f
i(a)f n+1−i(b) +

∑n
i=0(−1)

|f i (a)||f |cif
i(a)f n−i+1(b)

= (−1)|a||f |c0af
n+1(b) +

∑n
i=1((ci−1 + (−1)|f

i (a)||f |ci)f
i(a)f n+1−i(b)) + cnf

n+1(a)b

=
∑n+1

i=0 c
′
if

i(a)f n+1−i(b)

where c′0 = (−1)|a||f |c0, c
′
n+1 = cn and c′i = ci−1 + (−1)|f

i (a)||f |ci for all i = 1, . . . ,n. �

Let g = g0 ⊕ g1 be a Lie superalgebra and choose a basis {x1, . . . ,xn} of g0 and a basis

{y1, . . . ,ym} of g1, and let A = U(g) be the enveloping algebra of g. By the PBW theorem

for Lie superalgebras, the monomials x
α1

1 . . . x
αn
n y

β1
1 . . . y

βm
m with αi , βj ∈ N0 and βi ≤ 1

form a basis for the enveloping algebra A [4, Theorem 1].

If we let

Ai = span{x
α1

1 · · ·x
αn
n y

β1
1 · · ·y

βm
m | β1 + · · ·+ βm = i (mod 2)}

for i = 0,1, then A = A0 ⊕ A1 is an associative superalgebra such that the degree of a

homogeneous element of g equals its degree in A.

The adjoint action of an element x of g on A is defined by

adx : A→ A, adx(a) = Jx,aK ∀a ∈ A.

By the definition of the enveloping algebra, we have for all x,y ∈ g:

adx(y) = Jx,yK = [x,y].

A map f : A → A is called locally nilpotent if for every a ∈ A there exists a number

n(a) ≥ 0 such that f n(a)(a) = 0. Recall that we defined in § 1.4.1.1 the nilpotency degree
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of a nilpotent Lie algebra to be the least positive integer r such that gr = 0. We will show

that if g is a finite dimensional nilpotent Lie superalgebra, then the adjoint action of

each homogeneous element x ∈ g is a locally nilpotent superderivation. In this direction

we first prove the following result which follows from a direct computation.

Lemma 3.4.2 For any x,y ∈ g one has

adx ◦ady −(−1)
|x||y|ady ◦adx = ad[x,y] . (3.9)

Proof: Let a be a homogeneous element of A and let x,y ∈ g.

Jx,Jy,aKK− (−1)|x||y|Jy,Jx,aKK = x(ya− (−1)|y||a|ay)− (−1)|x|(|y|+|a|)(ya− (−1)|y||a|tay)x

− (−1)|x||y|
[

y(xa− (−1)|x||a|ax) − (−1)|y|(|x|+|a|)(xa− (−1)|x||a|ax)y
]

= xya+ (−1)|x||y|+|x||a|+|y||a|ayx − (−1)|x||y|yxa− (−1)|a||y|+|x||a|axy

= [x,y]a+ (−1)|a|(|x|+|y|)a[x,y] = J[x,y],aK.

�

Proposition 3.4.3 Let g be a finite dimensional nilpotent Lie superalgebra. Then adx is a

locally nilpotent superderivation of A =U(g), for every homogeneous element x ∈ g.

Proof: Let r be the nilpotency degree of g, i.e. gr = 0. Then for any a ∈ g we have

adrx(a) = 0. We proceed by induction on the length of the monomials. For monomials

of length 1 the result is already true since g is nilpotent. Let m ≥ 0. Suppose that for

every monomial a ∈ A of length m there exists n(a) ≥ 0 such that ad
n(a)
x (a) = 0. Let y ∈ g.

Then there exist integers c0, c1, . . . , cn(a)+r such that

ad
n(a)+r
x (ay) =

n(a)+r
∑

i=0

ci ad
i
x(a)ad

n(a)+r−i
x (y) = 0.

By induction adx is locally nilpotent on all basis elements of A. �

Given an l-tuple of superderivations ∂ = (∂1, . . . ,∂l ) of a superalgebra A we say that

a subset X of A is ∂-stable if ∂i(X) ⊆ X for all 1 ≤ i ≤ l. Note that if all superderivations
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∂i are inner, then any ideal I is ∂-stable. Given a homogeneous supercentral element

a ∈ A, the ideal I = Aa is graded and A/Aa is again a superalgebra, with the grading

given by Ai = (Ai + I )/I for i = 0,1. We say that a sequence {x1, . . . ,xn} of homogeneous

elements of a superalgebra is a supercentralizing sequence if for each j = 0, . . . ,n − 1

the image of xj+1 in A/
∑j

i=1 xiA is a supercentral element.

Theorem 3.4.4 Let k be a field of characteristic zero and A be a superalgebra over k with

locally nilpotent superderivations ∂1, . . . ,∂l such that
⋂l

i=1ker∂i ⊆ Z(A)s and for all i ≤ j

there exist λi,j ∈ k with

∂i ◦∂j −λi,j∂j ◦∂i ∈
i−1
∑

s=1

k∂s. (3.10)

Then any nonzero ∂-stable ideal I ofA contains a nonzero supercentral element. In particular

if I is graded and Noetherian, then it contains a supercentralizing sequence of generators

consisting of homogeneous elements.

Proof: For each 1 ≤ t ≤ l set Kt =
⋂t

i=1ker∂i . We will first show that Ki are ∂-stable

subalgebras of A. Let 1 ≤ t, j ≤ l and a ∈ Kt . If j ≤ t, then ∂j(a) = 0 ∈ Kt by definition.

Hence suppose j > t. By hypothesis for any 1 ≤ i ≤ t < j we have

∂i(∂j(a)) = λi,j∂j (∂i(a)) +
i−1
∑

s=1

µi,j ,s∂s(a) = 0

for some λi,j ,µi,j ,s ∈ k. Thus ∂j (a) ∈ Kt .

Let I be a ∂-stable ideal of A. We show that I contains a nonzero element of the

supercenter of A. Note that since ∂1 is locally nilpotent, for any 0 , a ∈ I there exists

n1 ≥ 0 such that 0 , a′ = ∂
n1
1 (a) ∈ ker∂1 = K1. Since I is ∂1-stable, a

′ ∈ I ∩K1. Suppose

1 ≤ t ≤ l and 0 , at ∈ I ∩Kt , then since ∂t+1 is locally nilpotent, there exists nt+1 ≥ 0

such that 0 , a′ = ∂
nt+1
t+1 (a) ∈ ker∂t+1. Since I and Kt are ∂-stable, we have a′ ∈ I ∩Kt+1.

Hence for t = l, we get 0 , I ∩Kl ⊆ I ∩Z(A)s.

Assume that I is graded andNoetherian and let 0 , a = a0+a1 ∈ I∩Z(A)s. Since I and

Z(A)s are graded and a graded ideal contains the homogeneous components of all of its

elements, both parts a0 and a1 belong to I ∩ Z(A)s, one of them being nonzero. Thus
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we might choose a to be homogeneous. Let J1 = Aa be the graded ideal generated by a.

Since J1 is ∂-stable, all superderivations ∂i lift to superderivations of A/J1 satisfying the

same relation (3.10) as before. Moreover I/J1 is a graded Noetherian ∂-stable ideal of

A/J1. Applying the procedure of obtaining a supercentral element to I/J1 in A/J1 yields

a supercentral homogeneous element a′ + J1 ∈ I/J1 ∩ Z(A/J1)s. Set J2 = Aa +Aa′ . Con-

tinuing in this way leads to an ascending chain of ideals J1 ⊆ J2 ⊆ · · · ⊆ I that eventually

has to stop, i.e. I = Jm for some m. By construction, the generators used to build up

J1, J2, . . . , Jm form a supercentralizing sequence of generators for I . �

We now show that the enveloping algebra of a finite dimensional nilpotent Lie superal-

gebra has a set of nilpotent superderivations which satisfy the assumptions of the pre-

vious theorem, and conclude that any graded ideal of such an enveloping algebra has a

supercentralizing sequence of generators. In order to do so we choose an appropriate

basis of homogeneous elements. If g is a finite dimensional nilpotent Lie superalgebra,

then g has a refined central series

g = g(n) ⊃ g(n− 1) ⊃ g(n− 2) ⊃ · · · ⊃ g(1) ⊃ g(0) = {0},

with [g,g(i)] ⊆ g(i − 1) and dim(g(i)/g(i − 1)) = 1 for all 1 ≤ i ≤ n. Let x1,x2, . . . ,xn be

a basis of g such that each element xi + g(i − 1) is nonzero (and hence forms a basis)

in g(i)/g(i − 1). Actually each xi is homogeneous, since if xi = xi0 + xi1 with xi j ho-

mogeneous, then as xi0 and xi1 cannot be linearly independent as g(i)/g(i − 1) is 1-

dimensional, one of them belongs to g(i − 1).

Corollary 3.4.5 Any graded ideal of the enveloping algebra of a finite dimensional nilpotent

Lie superalgebra has a supercentralizing sequence of generators consisting of homogeneous

elements.

Proof: Let g and A = U(g) be as above, as well as the chosen basis x1, . . . ,xn of g of

homogeneous elements. Set ∂i = adxi . By Proposition 3.4.3 all superderivations ∂i are

locally nilpotent. Let i < j, then [xi ,xj ] ∈ g(i − 1) shows that there are scalars µi,j ,s ∈ k
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such that

[xi ,xj ] =
i−1
∑

s=1

µi,j ,sxs

Note that ad[xi ,xj ] =
∑i−1

s=1µi,j ,s adxs . Therefore, using Lemma 3.4.2, we have

∂i ◦∂j = (−1)|xi ||xj |∂j ◦∂i +
i−1
∑

s=1

µi,j ,s∂s.

Hence the assumptions of Theorem 3.4.4 are fulfilled and our claim follows since A is

Noetherian. �

If U(g) is the enveloping algebra of a finite dimensional nilpotent Lie algebra, then

every primitive ideal of U(g) is maximal by [14, 4.7.4]. In [44, 1.6], Letzter proves

that this is carried over to finite extensions of U(g). Let g = g0 ⊕ g1 be a finite dimen-

sional nilpotent Lie superalgebra. Then g0 is a nilpotent Lie algebra. Since U(g) is a

finite extension of U(g0) [4, Proposition 2], it follows that every primitive ideal of the

enveloping algebra of a finite dimensional nilpotent Lie superalgebra is maximal.

With these remarks and Theorem 3.3.10 we are ready to prove the last result of this

section.

Corollary 3.4.6 Let g be a finite dimensional nilpotent Lie superalgebra. Then U = U(g)

has the (⋄) property if and only if every primitive factor of U does if and only if every graded

primitive factor of U does.

Proof: By Corollary 3.4.5 any graded ideal is generated by supercentral hence normal

elements. Moreover every primitive ideal ofU(g) is maximal by the preceding remarks.

Hence the result follows from Theorem 3.3.10. �

3.5 Primitive factors of nilpotent Lie superalgebras

Now that we have reduced the problem to the primitive factors, in this section we

will study such factors of nilpotent Lie superalgebras. The primitive factors of the
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enveloping algebra of a finite dimensional nilpotent Lie algebra are known to be Weyl

algebras (see for example [14, Chapter 6]).

Let g be a finite dimensional nilpotent Lie superalgebra over an algebraically closed

field k of characteristic zero. Bell and Musson showed in [3] that the graded primitive

factors of the enveloping algebra of a finite dimensional nilpotent Lie superalgebra are

of the form Cliffq(k)⊗Ap(k) where Cliffq(k) is the Clifford algebra, which is defined as

Cliff0(k) = k, Cliff1(k) = k × k, Cliff2(k) = M2(k)

and Cliffn+2(k) = Cliffn(k)⊗M2(k) for all n > 2. We have already seen in Corollary 3.3.6

that the (⋄) property is preserved under tensoring by a finite dimensional algebra. The

next result shows that the converse also holds if the finite dimensional algebra in ques-

tion is a Clifford algebra.

Lemma 3.5.1 Let k be a field. A C-algebra A has the (⋄) property if and only if Cliffq(k)⊗A

has the (⋄) property for all (for one) q.

Proof: Since Clifford algebras are finite dimensional, by Corollary 3.3.6, Cliffq(k)⊗A has

the (⋄) property if A does. On the other hand suppose that there exists q > 0 such that

Cliffq(k)⊗A has the (⋄) property. If q = 2m is even, then Cliffq(k)⊗A =M2m(A), which

is Morita equivalent to A. Since (⋄) is a Morita-invariant property as the equivalence

between module categories yields lattice isomorphisms of the lattice of submodules of

modules, we get that A has the (⋄) property. If q = 2m + 1 is odd, then Cliffq(k) ⊗A =

M2m(A) ×M2m(A). Since A is Morita equivalent to the factor M2m(A) it also has the (⋄)

property. �

Let g be a finite dimensional nilpotent Lie superalgebra and let U(g) be its envelop-

ing algebra. We know that every primitive factor ofU(g) is a tensor product of a Clifford

algebra and a Weyl algebra and that the (⋄) property of such a tensor product depends

on the (⋄) property of theWeyl algebra. In § 3.2 we have seen that the onlyWeyl algebra

which has the (⋄) property is the first Weyl algebra. This suggests that one should study

the primitive factors of U(g) to see when only the Weyl algebras of order less than or

61



equal to one appear in such factors. Although the primitive factors of U(g) have been

determined by Bell and Musson in [3], the order of the Weyl algebra appearing in such

factors has been determined by Herscovich in [26] and is related to the so-called index

of the underlying even part of the Lie superalgebra g.

Let f ∈ g∗ be a linear functional on a Lie algebra g and set

gf = {x ∈ g | f ([x,y]) = 0, ∀y ∈ g}

be the orthogonal subspace of g with respect to the bilinear form f ([−,−]). The number

ind(g) := inf
f ∈g∗

dimgf

is called the index of g. Note that any functional f ∈ g defines a symplectic form on

the space g/gf , and so the space g/gf has even dimension. Thus the index of a finite

dimensional Lie algebra g is of the form dimg − 2n for some n ∈N.

The following result relates the order of Weyl algebras appearing in the primitive

factors of U(g) with the index of the even part of g.

Theorem 3.5.2 (Proposition 16 [26], Theorem A [3]) Let g be a finite dimensional nilpo-

tent Lie superalgebra over an algebraically closed field k of characteristic zero. Then the

following hold.

(a) For f ∈ g∗0 there exists a graded primitive ideal I(f ) of U(g) such that

U(g)/I(f ) ≃ Cliffq(k)⊗Ap(k),

where 2p = dim(g0/g
f
0 ) ≤ dim(g0)− indg0 and q ≥ 0.

(b) For every graded primitive ideal P of U(g) there exists f ∈ g∗0 such that P = I(f ).

We now combine the above result with Corollary 3.4.6 and Stafford’s result to obtain

the following.

Proposition 3.5.3 Let g = g0⊕g1 be a finite dimensional nilpotent Lie superalgebra over an

algebraically closed field k of characteristic zero. Then U(g) has the (⋄) property if and only

if ind(g0) ≥ dim(g0)− 2.
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Proof: (⇒) By Theorem 3.5.2 each graded primitive factor ofU(g) is of the formCliffq(k)⊗

Ap(k) where 2p = dim(g0/g
f
0 ) = dim(g0)− dimg

f
0 . Since the property (⋄) is inherited by

factor rings this implies together with Theorem 2.3.1 and Lemma 3.5.1 that p ≤ 1, that

is dimg
f
0 ≥ dim(g0)− 2, i.e. indg0 ≥ dim(g0)− 2.

(⇐) If indg0 ≥ dim(g0) − 2 then the graded primitive factors of U(g) are either of the

form Cliffq(k) or Cliffq(k) ⊗A1(k). Thus the graded primitive factors of U(g) have the

(⋄) property by Lemma 3.5.1. This implies together with Corollary 3.4.6 that U(g) has

the (⋄) property. �

3.6 Nilpotent Lie algebras with almost maximal index

In the previous section we saw that the (⋄) property of a finite dimensional Lie super-

algebra is controlled by the index of its even part. In this last section we will classify

all finite dimensional nilpotent Lie algebras g whose index is greater than or equal to

dimg − 2 and give the proof of the Main Theorem of this chapter. It is clear that if

ind(g) = dimg, then all the brackets in g are zero and hence g is abelian. We say that a

Lie algebra g has almost maximal index if ind(g) = dimg− 2.

As a first step we show that a direct product g1 × g2 of two Lie algebras g1 and g2

has almost maximal index if and only if one of them is abelian and the other one has

almost maximal index. Recall that the Lie bracket of the direct product g = g1 × g2 is

defined as

[(x1,y1), (x2,y2)] := ([x1,x2], [y1,y2])

for all x1,x2 ∈ g1, y1,y2 ∈ g2. For the product algebra, we have the following formula.

Lemma 3.6.1 For finite dimensional Lie algebras g1,g2 the following formula holds:

ind(g1 × g2) = ind(g1) + ind(g2).

In particular g1 × g2 has almost maximal index if and only if one of the factors has almost

maximal index and the other factor is Abelian.
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Proof: Set g = g1×g2. Since g
∗ = g∗1×g

∗
2, for all f ∈ g

∗, we have dimgf = dimg
f1
1 +dimg

f2
2 ,

with fi = f ǫi ∈ g
∗
i and inclusions ǫi : gi → g. Thus ind(g) = ind(g1) + ind(g2). Recall that

in general ind(gi ) = dim(gi )− 2ni for some ni ≥ 0. Hence

ind(g) = ind(g1)+ind(g2) = dim(g1)−2n1+dim(g2)−2n2 = dim(g)−2(n1+n2) = dim(g)−2

if and only if n1 +n2 = 1 which shows our claim. �

In general it is unknown whether the (⋄) property is preserved under the formation of

polynomial rings. However, in the case of the enveloping algebra of a finite dimensional

nilpotent Lie algebra we have a positive result.

Proposition 3.6.2 Let g be a finite dimensional nilpotent Lie algebra over an algebraically

closed field k of characteristic zero. Then U(g)[x1, . . . ,xn] has the (⋄) property if and only if

U(g) has the (⋄) property.

Proof: Suppose that U(g) has the (⋄) property. We have

U(g)[x1, . . . ,xn] =U(g)⊗ k[x1, . . . ,xn] =U(g)⊗U(a) =U(g⊕ a)

for an n-dimensional abelian Lie algebra a. Since U(g) has the (⋄) property, g has index

at least dim(g) − 2. By Lemma 3.6.1, we have ind(g⊕ a) ≥ dim(g) + n − 2 = dim(g ⊕ a) −

2. Since g ⊕ a is nilpotent, it follows from Proposition 3.5.3 that U(g ⊕ a) has the (⋄)

property. Thus U(g)[x1, . . . ,xn] also has the (⋄) property. Conversely, if the polynomial

algebra U(g)[x1, . . . ,xn] has the (⋄) property, then so does U(g) since it is inherited by

factor rings. �

By Lemma 3.6.1, we can ignore the abelian direct factors in the characterization of Lie

algebras with almost maximal index. An element f ∈ g∗ is called regular if dim(gf ) =

ind(g). If f is a regular element of g∗, then the Lie algebra gf is abelian [14, Proposition

1.11.7]. Let k be a field of characteristic zero and let g be a nilpotent Lie algebra over k

of dimension n. Also assume that the maximal dimension of an abelian subalgebra is

n − 2. Burde and Ceballos show in [5, Proposition 5.1] that in this case there exists an
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algorithm to construct an abelian ideal of dimension n − 2 from an abelian subalgebra

of dimension n− 2. This will be used in the proof of the following proposition.

Proposition 3.6.3 Let g be a finite dimensional nilpotent Lie algebra over a field k of char-

acteristic zero. Then g has almost maximal index if and only if g has an abelian ideal of

codimension 1 or if g is isomorphic (up to an abelian direct factor) to h5 or h6.

Proof: Suppose that g does not have an abelian ideal of codimension one. Then there

exists a linear function f ∈ g∗ such that dim(gf ) = n − 2. Then gf is an abelian Lie

subalgebra of g. As we mentioned above, there exists in this case an abelian ideal a of g

of codimension 2. Let {e1, . . . , en} be a basis of g such that {e3, . . . , en} is a basis of a. Since

a is abelian, the matrix of brackets [ei , ej ] has the form

M =
(

[ei , ej ]
)

=



















A B

−Bt 0



















where A is 2 × 2 skew-symmetric matrix and B is a 2× (n − 2) matrix with entries in a,

and 0 is the (n − 2) × (n − 2) zero matrix. Since g is nilpotent, [e1, e2] ∈ a. Moreover B

cannot be the zero matrix since otherwise g has an abelian ideal of codimension one.

Let

Mij =



















[e1, ei ] [e1, ej ]

[e2, ei ] [e2, ej ]



















=



















a b

c d



















be any 2× 2 minor of B where i , j for i, j ≥ 3.

Our aim is to show that the only nonzero minors Mij of B are those that have pre-

cisely one nonzero column whose entries are linearly independent. Suppose that B

contains a minor Mij with a,d , 0 and c = 0 or c < span(a,d). Define a linear func-

tion f on the vector space span(a,d,c) such that f (a) = 1, f (d) , 0 and f (c) = 0. f can

be trivially extended to a linear function f ∈ g∗. Then {e1, e2, ei} are linearly indepen-

dent over gf , which implies that the index of g is less than n − 2 which contradicts our

hypothesis. The independence of those three elements can be easily checked, since if

x = αe1 + βe2 + γei ∈ g
f , then 0 = f ([x,ei]) = αf (a) + βf (c) = α implying α = 0. Analo-

gously 0 = f ([x,ej ]) = βf (d) implies β = 0 and 0 = f ([x,e1]) = γf (a) shows γ = 0. Thus B

cannot contain a minor of the given form.
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In particular if B contains any nonzero column whose entries are linearly depen-

dent, say [e2, ei ] = λ[e1, ei] for some i ≥ 3 and λ , 0, then after the base change replacing

e2 with e′2 = e2 − λe1, we obtain [e′2, ei ] = 0 and [e1, ei] , 0. If there existed any other

column j such that [e′2, ej ] is nonzero, then we would have a minorMij of an impossible

shape. Hence [e′2, ej ] = 0 for all j ≥ 3. However this means that a⊕Ce′2 is an abelian ideal

of codimension 1 which by contradicts our hypothesis. Thus we showed that the entries

of any nonzero column of B are linearly independent. Moreover if two such nonzero

columns existed, say at position i and j, then c ∈ span(a,d), for a = [e1, ei], c = [e2, ei ]

and d = [e2, ej ], otherwise Mij had an impossible shape. Since a and c are linearly in-

dependent d ∈ span(a,c) and there exist α,β ∈ C such that d = αa + βc. After the base

change replacing ej with e′j = ej − βei , we obtain [e2, e
′
j ] = d − βc = αa. Thus the minor

Mij has an impossible form, since c and a are linearly independent. We conclude that

B has precisely one nonzero column. Without loss of generality we may assume that

[e1, e3] , 0 and that we rearrange the basis of a such that [e1, e3] = e4, [e2, e3] = e5 and

[e1, ei ] = 0 and [e2, ei] = 0 for all i ≥ 4.

Since [e1, e2] ∈ a, there exist α,β,γ ∈ C such that [e1, e2] = αe3 + βe4 + γe5 + y ∈ a for

y ∈ 〈e6, . . . , en〉. We now consider the following two cases:

Case 1. Suppose that y , 0. Then {e3, e4, e5, [e1, e2]} is a linearly independent subset

of a and we can complete it to a basis {e3, e4, e5, e
′
6, . . . , e

′
n} of a where e′6 = [e1, e2]. The

nonzero brackets of g are [e1, e3] = e4, [e2, e3] = e5, [e1, e2] = e′6. Hence g is the direct

product g = h6 × a
′, where a′ = 〈e′7, . . . , e

′
n〉 is the (n− 6)-dimensional abelian Lie algebra.

Case 2. If y = 0, then first note that α , 0 because if [e1, e2] = βe4+γe5, then the base

change replacing e1 with e′1 = e1 +γe3 and e2 with e′2 = e2 − βe3 yields

[e′1, e
′
2] = [e1, e2]− β[e1, e3] +γ [e3, e2] = βe4 +γe5 − βe4 −γe5 = 0.

So g has an abelian ideal of codimension one, which contradicts our hypothesis. So α

must be nonzero and we carry out the following base change replacing e3 with e′3 =

αe3 + βe4 +γe5 as well as replacing e4 with e′4 = αe4 and e5 with e′5 = αe5. Hence

[e1, e2] = e′3, [e1, e
′
3] = e′4, [e2, e

′
3] = e′5.
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Thus g is the direct product g = h5 × a
′, where a′ = 〈e6, . . . , en〉 is the (n − 5)-dimensional

abelian Lie algebra.

(⇐) Now we prove the converse. First let g be a finite dimensional Lie algebra with

an abelian ideal a of codimension one and write g = ke ⊕ a. Take any f ∈ g∗ such that

gf , g. Then there exist x,y ∈ g such that f ([x,y]) , 0. If we write x = λe+a and y = µe+b

for some a,b ∈ a and λ,µ ∈ k, then we have 0 , f ([x,y]) = f ([e,λb − µa]). Hence e < gf

and we might assume that x = e and y ∈ a. For any other element z ∈ a\gf we have

f ([e,z]) , 0 otherwise z ∈ gf . Hence

f ([e, f ([e,y])z − f ([e,z])y]) = f ([e,y])f ([e,z])− f ([e,z])f ([e,y]) = 0

shows that f ([e,y])z − f ([e,z])y ∈ gf , i.e. z and y are linearly dependent over gf , hence

dim(g/gf ) = 2.

Now suppose that g is isomorphic to h5. Note that e4 and e5 are central and so they

belong to h
f
5 for any f . Hence ind(g) is at least 2. Since the number dim(g) − ind(g) is

always even, we must have ind(g) = 3.

Lastly we handle the case h6 in a similar way. In this case the basis elements e4, e5, e6

are central. Hence for any functional f these elements belong to the space h
f
6 . Hence

the index is at least 3. Again, since the space g/gf is even dimensional, it follows that

the index is at least 4. �

Now we are set to prove the main theorem.

Proof:[Proof of the Main Theorem 3.1.1] (a)⇔ (c) and(b)⇔ (c) follow from Proposition

3.5.3. (c)⇔ (d) follows from Proposition 3.6.3. �

3.7 Examples

Finite dimensional nilpotent Lie algebras g with an abelian ideal of codimension 1 are

in bijection with finite dimensional vector spaces V and nilpotent endomorphisms f :

V → V . For such data one defines g =Ce⊕V and [e,x] = f (x) for all x ∈ V . An example
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of this construction is given by the n-dimensional standard filiform Lie algebra, which

is the Lie algebra on the vector space Ln = span{e1, . . . , en} such that the only nonzero

brackets are given by [e1, ei] = ei+1 for all 2 ≤ i < n. Hence Ln provides an example

of a non-abelian nilpotent Lie algebra g such that U(g) has the (⋄) property. The 3-

dimensional Heisenberg Lie algebra occurs as L3.

Given an even dimensional complex vector space V = C2n and an anti-symmetric

bilinear formω : V ×V → C, one defines the 2n+1-dimensionalHeisenberg Lie algebra

associated to (V ,ω) as H2n+1 = V ⊕Ch with h being central and [x,y] = ω(x,y)h for all

x,y ∈ V . Note that indH2n+1 = 1. Thus U(H2n+1) has the property (⋄) if and only if

n = 1, i.e. for H3 = L3.

In [59] a finite dimensional Lie superalgebra g is called aHeisenberg Lie superalge-

bra if it has a 1-dimensional homogeneous center Ch = Z(g) such that [g,g] ⊆ Z(g) and

such that the associated homogeneous skew-supersymmetric bilinear formω : g×g→C

given by [x,y] = ω(x,y)h for all x,y ∈ g is non-degenerated when extended to g/Z(g).

On the other hand one can construct a Heisenberg Lie superalgebra on any finite-

dimensional supersymplectic vector superspace V with a homogeneous supersymplec-

tic form ω.

By [59, page 73] if ω is even, i.e. ω(g0,g1) = 0, then g0 is a Heisenberg Lie algebra

and if ω is odd, i.e. ω(gi ,gi ) = 0 for i ∈ {0,1}, then g0 is abelian. Hence U(g) has the (⋄)

property if and only if ω is odd or dimg0 ≤ 3.
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Chapter 4

Differential operator rings

In this chapter we consider the (⋄) property of differential operator rings. We give a

complete answer to the question when S = k[x][y;p ∂
∂x
] has the (⋄) property for a field

k of characteristic zero. We achieve this by showing that there exists a non-Artinian

finitely generated essential extension of a simple S-module if and only if d is not locally

nilpotent or equivalently if and only if S is not isomorphic to neither the polynomial

ring k[x,y] nor the first Weyl algebra A1(k). Combining this characterization with a

result of Carvalho and Musson [9] and results of Alev and Dumas we are also able to

characterize Ore extensions of k[x] which have the (⋄) property.

Among examples of Noetherian rings which do not have the (⋄) property, we have

presented Musson’s example of an enveloping algebra of a finite dimensional Lie alge-

bra in § 2.3.2. When n = 1 Musson’s example becomes the differential operator ring

k[x][y;x ∂
∂x
]. Recently, Musson extended this example and proved that the differential

operator ring R = k[x][y;xr ∂
∂x
], r ∈ N, does not have the (⋄) property [51]. He also

presented sufficient conditions for Noetherian algebras over a field for the existence of

non-Artinian essential extensions of simple modules over such algebras. We follow a

different method and show that for any nonconstant polynomial p, k[x][y;p ∂
∂x
] does not

have the (⋄) property.

We start in the first section with some general results on differential operator rings

over commutative domains and we give a method to construct non-Artinian essential
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extensions of some simple modules under certain assumptions. Next we consider Ore

extensions of the polynomial ring in one variable and obtain a characterization of such

extensionswhich have the (⋄) property. In the last part we consider differential operator

rings over commutative Noetherian domains and show that a differential operator ring

with a locally nilpotent derivation d over a commutative finitely generated algebra R

has the (⋄) property.

4.1 General results on differential operator rings over commu-

tative domains

In this section we assume that k is a field, R is a k-algebra, d is a k-linear derivation of R

and S = R[y;d] is the differential operator ring defined by d. That is, S is an overring of

R which is also free as a left R-module with basis {yn | n ≥ 0}, and whose multiplication

is subject to the relation ya = ay + d(a) for all a ∈ R. Moreover, S is also free as a right

R-module with the same basis and the following relations hold

yna =
n

∑

i=0

(

n

i

)

dn−i (a)yi and ayn =
n

∑

i=0

(

n

i

)

(−1)iyn−idi(a) ∀a ∈ R, n ≥ 0.

A subset I of R is called d-stable if d(I ) ⊆ I . An ideal of R which is d-stable is called a

d-ideal. In order to show that S does not have property (⋄) we will construct a simple

left S-module E and a cyclic essential extension M of E with M/E being non-Artinian.

A suitable construction of a simple left R-module is given by the following proposition

which also follows from a result by Goodearl and Warfield (see [22, Proposition 3.1]).

However for the sake of completeness, we will include a proof of this fact here.

Proposition 4.1.1 Let R be a commutative k-algebra with char(k) = 0 and let S = R[y;d]

for some derivation d of R. If m is a maximal ideal of R that is not d-stable, then Sm is a

maximal left ideal of S .

Proof: Since m is not d-stable, there exists a nonzero element a ∈m such that d(a) <m.

Write v = 1+ Sm for the canonical generator of E = S/Sm. We first prove by induction
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on n that the following statement holds for any n > 0

(anyn)v = cnv where cn = (n!)(−d(a))n ∈ R \m.

For n = 1 we have

ayv = yav − d(a)v = c1v

since ya ∈ Sm. Suppose that n > 0 and (anyn)v = cnv holds with cn ∈ R\m as above, then

an+1yn+1v = (yan+1 − d(an+1))ynv

= (ya− (n+1)d(a))anynv

= (ya− (n+1)d(a))cnv

= −(n+1)d(a)cnv = cn+1v.

as yacn ∈ Sm. Moreover cn+1 = −(n + 1)d(a)cn < m as d(a), cn < m and char(k) is zero.

Hence we proved our claim.

Let f ∈ Sv be a nonzero element and suppose that f is represented as f =
∑n

i=0 biy
iv,

with n being minimal. Then bn ∈ R \m. Since R/m is a field and bn, cn < m, there exists

u ∈ R such that ubncn − 1 ∈ Sm. Hence uanf = ubncnv = v shows that E is a simple left

S-module. �

Let m be a maximal ideal of R which is not d-stable. We would like to build an essen-

tial extension of the simple left S-module S/Sm which is not Artinian. We need the

following lemma in order to do this.

Lemma 4.1.2 Let R and S be as in Proposition 4.1.1. Then S = R ⊕ S(y − 1) as k-vector

spaces.

Proof: Since
(

∑n−1
i=0 y

i
)

(y − 1) = yn − 1 holds for all n > 0, we have for all a ∈ R:

ayn = a+















n−1
∑

i=0

ayi















(y − 1) ∈ R+ S(y − 1).

Moreover if a =
∑n

i=0 biy
i (y − 1) ∈ R∩ S(y − 1) with bi ∈ R, then bearing in mind that the

powers of y form a basis of S as left R-module and comparing coefficients, we see that

bi = 0 for all i, i.e. a = 0. �
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We call the ring R left d-simple if its only d-ideals are 0 and R. In the following result

we use a lattice isomorphism between the d-ideals of R and the lattice of S-submodules

of S/S(y − 1), and therefore obtain a condition to decide when the S-module S/S(y − 1)

is Artinian.

Proposition 4.1.3 Let R be a commutative Noetherian domain and S = R[y;d] for some

derivation d of R. Then S/S(y − 1) is Artinian as left S-module if and only if R is d-simple.

Proof: Let π : S → S/S(y − 1) be the canonical projection. There exists a lattice iso-

morphism between the d-ideals I of R and the left S-submodules of S/S(y −1) given as

follows: for any d-ideal I of R, π(I ) is a left S-submodule, because for any a ∈ I :

yπ(a) = π(ay + d(a)) = π(a+ d(a)) ∈ π(I ).

Moreover if U is a left S-submodule of S/S(y − 1), then I = π−1(U )∩R is a d-ideal of R

since for any a ∈ I we have

π(d(a)) = π(ya− ay) = π((y − 1)a) ∈U,

i.e. d(a) ∈ I . Because of Lemma 4.1.2 it is clear that U = π(I ).

Suppose that S/S(y − 1) is Artinian as left S-module. By the lattice theoretical cor-

respondence R satisfies the descending chain condition for d-ideals. Hence given a

proper d-ideal I of R, the chain I ⊇ I2 ⊇ · · · must stop and there exists k ≥ 1 such that

Ik = Ik+1. Therefore Ik = (Ik)2 and Ik is an idempotent ideal. Since any idempotent ideal

of a commutative Noetherian domain is trivial, Ik = 0 or Ik = R. As R is a domain, I = 0

or I = R. The converse is clear, since by the lattice theoretical isomorphism S/S(y−1) is

a simple left S-module if R is d-simple. �

Proposition 4.1.1 and Proposition 4.1.3 show that if R is a commutative Noetherian

domain which is not d-simple and has a maximal ideal m which is not d-stable, then

S/Sm(y − 1) is a cyclic left S-module which is an extension of the simple left S-module

S/Sm ≃ S(y − 1)/Sm(y − 1). The last proposition of this section gives a sufficient condi-

tion to assure the essentiality of this extension. An element a ∈ R is called a Darboux
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element with respect to d if d(a) = ba for some b ∈ R. If the context is clear we simply

refer to a as a Darboux element without mentioning the derivation d. In other words a

is a Darboux element if and only if Ra is a d-ideal of R. If R is commutative, then a ∈ R

is a Darboux element if and only if a is a normal element in S . In fact if a is a Darboux

element, then ya = ay + d(a) = a(y + b). Hence yna = a(y + b)n and also ayn = (y − b)na,

showing Sa = aS . On the other hand if a is normal in S , then ay ∈ Sa. Thus there ex-

ists g ∈ S such that ga = ay = ya − d(a). Looking at the zero component of both sides

and taking into account that S is free as right R-module, there exists b ∈ R such that

d(a) = ba. Recall that a normal element a in a domain S induces an automorphism σ of

S defined by ra = aσ(r), for all r ∈ S .

Proposition 4.1.4 Let R be a commutative Noetherian domain which is also an algebra over

a field k of characteristic zero. Let d be a derivation of R and set S = R[y;d]. Suppose that

the following conditions hold:

(1) R is not d-simple;

(2) there exists a maximal ideal m of R that does not contain any nonzero d-ideal;

(3) every nonzero d-ideal contains a nonzero Darboux element.

Then S/Sm(y − 1) is a non-Artinian essential extension of the simple left S-module S/Sm,

i.e. S does not have the (⋄) property.

Proof: For simplicity, set L = Sm(y − 1) andM = S/L. By Proposition 4.1.1

E := S(y − 1)/L ≃ S/Sm (4.1)

is a simple left S-module sincem is not d-stable. By Proposition 4.1.3 the left S-module

M/E = S/S(y − 1) is not Artinian, since S is not d-simple. We need to show that M is

an essential extension of E. Write π : S → S/L for the canonical projection. Let U be a

nonzero left S-submodule ofM and suppose that U , E. Recall that S = R⊕ S(y − 1) by

Lemma 4.1.2 and set

I = {a ∈ R | ∃g ∈ S : π(a+ g(y − 1)) ∈U } . (4.2)
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Since (y − 1)a = a(y − 1)− d(a) for any a ∈ R, we see that I is a d-ideal of R. I is nonzero

as U , E. By hypothesis I contains a nonzero Darboux element f ∈ I . Let q ∈ R such

that d(f ) = qf and let g ∈ S be such that π(f + g(y − 1)) ∈ U . In particular (y − q)f =

f y + d(f )− qf = f y. Then

(y − 1− q)π ( f + g(y − 1) ) = π ( (f + (y − 1− q)g)(y − 1) ) ∈ E ∩U (4.3)

Wewill show that π ( (f + (y − 1− q)g)(y − 1) ) , 0, in order to conclude that E is essential

inM . Thus suppose

(f + (y − 1− q)g)(y − 1) ∈ L = Sm(y − 1). (4.4)

As S is a domain, this is equivalent to

f + (y − 1− q)g ∈ Sm. (4.5)

Note that f is a normal element in S and as S is a domain, there exists an automorphism

σ of S with f r = σ(r)f for all r ∈ R. Since f y = (y − q)f we have σ(y) = y − q.

Let R = m ⊕V be a vector space decomposition of R with 1 ∈ V and denote by aV

the V -component of an element a ∈ R. Since S is a free right R-module with basis

{yi | i ≥ 0}, we have the vector space decomposition S = Sm ⊕
⊕∞

i=0 y
iV . Hence there

exist b ∈ Sm and v0, . . . ,vm ∈ V such that σ−1(g) = b +
∑m

i=0 y
ivi . Since σ(a) = a for any

a ∈ R and taking into account that σ(b) ∈ σ(Sm) = Sm, we have

fV +σ(y − 1)g −σ((y − 1)b) = σ(fV + (y − 1)(σ−1(g)− b)) = σ















fV + (y − 1)
m
∑

i=0

yivi















(4.6)

Hence the left hand side belongs to Sm = σ(Sm) while the right hand side belongs to

σ
(
⊕∞

i=0 y
iV

)

. As

σ(Sm)∩σ















∞
⊕

i=0

yiV















= σ















Sm∩
∞

⊕

i=0

yiV















= 0 (4.7)

and as σ is an automorphism we have

fV + (y − 1)
m
∑

i=0

yivi = ym+1vm +
m
∑

i=1

yi (vi−1 − vi) + fV − v0 = 0 (4.8)
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Hence vi = 0 for all i as well as fV = 0, which implies that f ∈ m, which induces a

non-trivial d-ideal in m, contradicting the hypothesis. �

Following Goodearl and Warfield [22], we call the rings R which satisfy condition (2)

of Proposition 4.1.4 d-primitive.

4.2 Ore extensions of K[x]

In this section we apply the general results of the previous section to R = k[x]. First we

remark a few facts on derivations of polynomial rings. Let d be a derivation of R and

let d(x) = p ∈ R. By definition, d(a) = 0 for every a ∈ k. Moreover, it is not difficult to see

that

d(xi ) = ixi−1d(x) = ixi−1p

for every i ≥ 1. For an arbitrary element
∑n

i=0λix
i of R we have

d















n
∑

i=0

λix
i















=

n
∑

i=0

(d(λi )x
i +λid(x

i )) =

n
∑

i=0

λi ix
i−1p = p

∂

∂x















n
∑

i=0

λix
i















.

So that d = p ∂
∂x
. Conversely, for any polynomial p ∈ R, d = p ∂

∂x
defines a derivation of

R. Hence any derivation d of R is completely determined by d(x) = p ∈ R.

Corollary 4.2.1 Let char(k) = 0, p ∈ k[x], d = p ∂
∂x

and S = k[x][y;d]. The following state-

ments are equivalent:

(a) S has the (⋄) property.

(b) p is a constant polynomial.

(c) S ≃ k[x,y] or S ≃ A1(k).

(d) S is commutative or has Krull dimension 1.

Proof: Let R = k[x]. First note that any nonzero d-ideal I of R contains a Darboux

element, because as R is a principal ideal domain, any of the generators of I is a nonzero
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Darboux element. Let α ∈ k be any element that is not a root of p (which exists as k is

infinite). Thenm = 〈x−α〉 is a maximal ideal which does not contain a nonzeroDarboux

element, because if such an element belonged to m, say f ∈ m, then there would exist

h ∈ R and n > 0 such that f = h(x −α)n and (x −α) ∤ h. Suppose that d(f ) = gf for some

g ∈ R, then

gh(x −α)n = gf = d(f ) = d(h)(x −α)n +nhp(x −α)n−1 = (d(h)(x −α)− nhp)(x−α)n−1

which would imply (gh− d(h))(x −α) = −nhp, i.e. (x −α) | h a contradiction.

(a)⇒ (b) If p is not constant, then I = Rp is a nonzero d-ideal, i.e. R is not d-simple.

By Proposition 4.1.4 S does not have the (⋄) property.

(b)⇒ (c) If p is constant, then S ≃ k[x,y] if p = 0 and S ≃ A1(K) if p , 0. It is clear

that (c)⇒ (d).

Finally, (d)⇒ (a) follows because commutative Noetherian domains and semiprime

Noetherian rings of Krull dimension one have the (⋄) property. �

A result of Awami, Van den Bergh, Van Oystaeyen and of Alev and Dumas states

that given an automorphism σ of K[x] and a σ-derivation δ, the Ore extension S =

K[x][y;σ,δ] falls, upto isomorphism, into four classes of rings, as we record in the fol-

lowing:

Proposition 4.2.2 [2, (2.1)][1, (3.2)] Let k be a field, and R = k[x] be the polynomial al-

gebra over k in the commuting variable x. If σ is an automorphism of R and if δ is a σ-

derivation of R, then the resulting Ore extension S = k[x][y;σ,δ] is isomorphic to one of the

following algebras:

(a) S = k[x,y] is commutative.

(b) S = kq[x,y] is the quantum plane for some q ∈ k.

(c) S = A
q
1(k) is the quantum Weyl algebra for some q ∈ k.

(d) S = k[x][y;δ] is a differential operator ring.
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Since any automorphism of k[x] is such that σ(x) = qx + b for some q,b ∈ k, following

the proof of [2] and [1], we have the following possibilities:

Case 1. If q , 1, then S ≃ k[x′][y;σ ′ ,δ] where x′ = x+b(q−1)−1 and σ ′(x′) = qx′. Now

if p ∈ k[x] and r ∈ k are such that δ(x′) = p(x′)(1− q)x′ + r then

(y + p(x′))x′ = qx′(y + p(x′)) + r.

If r = 0, it is easy to see that S ≃ kq[x
′,y′] = k〈x′ ,y′ | y′x′ = qx′y′〉 for a suitable change of

variables. If r , 0, taking y′′ = r−1(y + p), S ≃ A
q
1(k) = k〈x′ ,y′′ | y′′x′ = qx′y′′ +1〉.

Case 2. If q = 1 and b = 0, S is either k[x,y] or a differential operator ring, S =

k[x][y;δ].

Case 3. If q = 1 and b , 0, S ≃ R[x′][y;σ ′ ,δ] by making x′ = b−1x, σ ′(x′) = x′ + 1 and

δ′(x′) = b−1δ(x). Since

(y + δ(x))x′ = (x′ +1)(y + δ(x))

it follows that S ≃ k[y′][x′;−y′ ∂
∂y′

].

Using this characterisation we can determine precisely when k[x][y;σ,d] has the

property (⋄):

Theorem 4.2.3 Let k be a field of characteristic zero and let σ be an automorphism of k[x]

and d be a σ-derivation of k[x]. Let q,b ∈ k such that σ(x) = qx+b. The following statements

are equivalent:

(a) S = k[x][y;σ,d] has the (⋄) property.

(b) S ≃ kq[x,y] or S ≃ A
q
1(K) for q a root of unity (including q = 1).

(c) q , 1 is a root of unity or q = 1 and d(x) is a constant polynomial.

(d) σ , id has finite order or σ = id and d is locally nilpotent.

Proof: By Corollary 4.2.1 any algebra of the form k[x][y;d] having the (⋄) property has

to be isomorphic to the first Weyl algebra or to the polynomial ring, i.e. to A
q
1(k) or

to kq[x,y] for q = 1. If q is not a root of unity, then [9, Theorem 3.1] respectively [9,
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Theorem 4.2] shows that kq[x,y] respectively A
q
1(k) does not have the (⋄) property. On

the other hand if q , 1 is a root of unity, then kq[x,y] and A
q
1(k) are PI-algebras and

hence in particular FBN which have the (⋄) property by Jategaonkar’s result (see [33,

Corollary 3.6]). The case q = 1 is obtained from the fact that the first Weyl algebra is

a prime Noetherian algebra of Krull dimension 1. Together with the characterisation

above, this shows (a)⇔ (b)⇔ (c).

(c)⇔ (d) Note that for all n > 1 we have σn(x) = qnx+
qn−1
q−1 b if q , 1. Suppose σ , id,

then σ has order n if and only if q is an nth root of unity. �

4.3 Differential operator rings over commutative Noetherian

domains

Let k be an algebraically closed field of characteristic zero, let R = k[x1, . . . ,xn] be the

polynomial ring in n variables over k and let d = p1
∂
∂x1

+ . . .+pn
∂
∂xn

be a nonzero deriva-

tion of R for some polynomials p1, . . . ,pn ∈ R. Set S = R[y;d]. Following Moulin-

Ollagnier and Nowicki (see [56]) we call d irreducible if I = 〈p1, . . . ,pn〉 = R. Sup-

pose that d is not irreducible, then there exists a point α = (α1, . . . ,αn) ∈ k
n that does

not belong to the algebraic variety V (I ) defined by I . Thus we have that the ideal

m = 〈x1 − α1, . . . ,xn − αn〉 of R generated by x1 − α1, . . . ,xn − αn is a maximal ideal of

R that is not d-stable, because otherwise d(xi −αi ) = pi ∈m for all i, which implies I ⊆m

and hence α ∈ V (m) ⊆ V (I ) contradicting the choice of α. Thus S/Sm is a simple left

S-module by Proposition 4.1.1 and S/S(y −1) is not Artinian by Proposition 4.1.3. If m

does not contain any nonzero d-ideal and every nonzero d-ideal of R contains nonzero

Darboux elements, then we can conclude by Proposition 4.1.4 that S = R[y;d] does not

have the property (⋄). However neither do we know of good criteria to secure the exis-

tence of Darboux elements in d-ideals of R = k[x1, . . . ,xn] nor whether m could contain

nonzero Darboux elements.

A stronger assumption than assuming the existence of Darboux elements in nonzero

d-ideals, is to assume that any nonzero d-ideal I of R intersects non-trivially the subring
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of constants Rd = {a ∈ R | d(a) = 0}. This is the case for a locally nilpotent derivation d.

We saw in Theorem 4.2.3 that an Ore extension of k[x] by some automorphism σ and

σ-derivation d has the property (⋄) if and only if σ , id has finite order or σ = id and d

is locally nilpotent. If R is a Noetherian commutative domain, d is a σ-derivation and

σ is of finite order, then R[y;σ,d] is a PI-algebra by [43, Theorem 4], hence has the (⋄)

property.

We conclude this chapter with a general statement showing that for the case σ = id

a differential operator ring with a locally nilpotent derivation d over a commutative

finitely generated algebra R also has the (⋄) property, using our result on the enveloping

algebra of a finite dimensional nilpotent Lie algebra from the previous chapter.

Proposition 4.3.1 Let k be an algebraically closed field of characteristic zero and let R be

a commutative finitely generated k-algebra with locally nilpotent derivation d. Then all

injective hulls of simple R[y;d]-modules are locally Artinian. Moreover, if R is a domain

which is not a field, then either R[y;d] is a simple ring or any maximal ideal of R intersects

Rd non-trivially.

Proof: Let x1, . . . ,xn be the algebra generators of R and consider the set

V =
{

di (xj ) | 1 ≤ j ≤ n, i ≥ 0
}

.

Since d is locally nilpotent, V is a finite set containing all generators x1, . . . ,xn. Let h =

span(V ) be the (finite dimensional) subspace of R generated by V . Consider g = h⊕ ky,

which is a subspace of S = R[y;d]. Since [di (xj ),y] = di+1(xj ) ∈ h, the space g is closed

under the commutator bracket [, ] in S and hence is a Lie subalgebra of (S, [, ]). Since

d is locally nilpotent, g is a (finite dimensional) nilpotent Lie algebra over k with the

Abelian ideal h of codimension 1. By Theorem 3.1.1 U(g) has the (⋄) property. The Lie

algebra inclusion g→ R[y;d] induces an algebramapU(g)→ R[y;d] which is surjective,

since g contains y and all algebra generators of R. Thus R[y;d] also has the (⋄) property.

Suppose R is a Noetherian domain which is not a field. If R is d-simple, then Rd is

a field. If dimRd (R) were finite dimensional, then R would be an Artinian domain and

hence a field. Hence R has infinite dimension over Rd . By [22, Theorem 2.3] R[y;d]
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is simple. Thus if R[y;d] is not simple, then R cannot be d-simple. Since d is locally

nilpotent, it follows that every nonzero d-ideal of R intersects Rd non-trivially. Hence

if there existed a maximal ideal m of R that intersected Rd trivially, then m could not

contain a nonzero d-ideal. Thus by Proposition 4.1.4 R[y;d] would not have the (⋄)

property which is a contradiction to what we just proved. Hence any maximal ideal of

R must intersect Rd non-trivially. �

There are finitely generated noncommutative Noetherian domains that have the (⋄)

property but for which Proposition 4.3.1 fails. As an example take R = A1(C)[x], which

has the (⋄) property, because any maximal ideal m of the centre of R is of the form

m = 〈x −λ〉, with λ ∈ C; the quotient ring R/m ≃ A1(C) does have the property (⋄) and

thus by [10, Proposition 1.6], R has the (⋄) property. On the other hand S = R[y; ∂
∂x
] ≃

A2(C) does not have the property (⋄) by Stafford’s result in [66], although ∂
∂x

is a locally

nilpotent derivation of R.
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Chapter 5

Stable torsion theories

5.1 Generalities on torsion theories

Let R be an arbitrary associative ring with unity and let R-mod denote the category of

left R-modules. First defined by Dickson in [15], a torsion theory τ on R-mod is a pair

(Tτ ,Fτ) of classes of left R-modules, satisfying the following properties:

(i) Tτ ∩ Fτ = 0,

(ii) Tτ is closed under homomorphic images,

(iii) Fτ is closed under submodules,

(iv) For each M in R-mod, there exist F ∈ Fτ and T ∈ Tτ such that M/T � F.

Tτ is called the class of τ-torsion modules and Fτ is called the class of τ-torsionfree

modules. Our main references for torsion theories are [20] and [67].

Let A and B be nonempty classes of left R-modules. If A = {M | HomR(M,N ) =

0 for all N ∈ B} then A is said to be the left orthogonal complement of B. Similarly,

if B = {N | HomR(M,N ) = 0 for all M ∈ A} then B is said to be the right orthogonal

complement of A. We say that the pair (A,B) is a complementary pair whenever A is

the left orthogonal complement of B and B is the right orthogonal complement of A.
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In particular, if τ is a torsion theory then (Tτ ,Fτ) is a complementary pair and every

such pair defines a torsion theory.

An immediate consequence of the definition is that the class of torsion modules for

a torsion theory τ is closed under extension. For, if

0→ A→M→ B→ 0

is a short exact sequence of left R-modules with A,B are τ-torsion, then for any τ-

torsionfree left R-module F, the corresponding short exact sequence

0→ 0 = Hom(B,F)→Hom(M,F)→Hom(A,F) = 0

implies that M is also τ-torsion. Similarly, the class of τ-torsionfree modules is closed

under extensions too. Also, while it is not required in the definition of a torsion theory,

we will be working with torsion theories such that the class of torsionmodules is closed

under submodules. Such torsion theories are called hereditary. For the rest of this

chapter a torsion theory shall always mean a hereditary torsion theory.

Let C be a class of left R-modules. If F is a right orthogonal complement of C and T

is a left orthogonal complement of F , then the pair (T ,F ) is a torsion theory in R-mod,

called the torsion theory generated by C. If T is the left orthogonal complement of C

and F is the right orthogonal complement of T , then the pair (T ,F ) is a torsion theory,

called the torsion theory cogenerated by C.

5.1.1 The Goldie torsion theory

Let M be a left R-module. An element m ∈ M is called a singular element of M if

AnnR(m) is an essential left ideal of R. The set Sing(M) of all singular elements of

M is a submodule of M called the singular submodule of M . A module M is called

singular if Sing(M) =M and it is called nonsingular if Sing(M) = 0. The class FG of all

nonsingular left R-modules forms a torsionfree class for a hereditary torsion theory on

mod-R. We call this the Goldie torsion theory and denote it by τG .

For any right R-module M , its Goldie torsion submodule is tG(M) = {m ∈ M | m +

Sing(M) ∈ Sing(M/Sing(M))}. Hence, Goldie’s torsion class TG is precisely the class of
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modules with essential singular submodule, and corresponding torsionfree class FG is

the class of nonsingular modules.

5.1.2 The Dickson torsion theory

Let S be a representative class of nonisomorphic simple left R-modules. Then the

torsion theory D generated by S is called the Dickson torsion theory. The class of

D-torsionfree left R-modules is the right orthogonal complement of S while the class

of D-torsion left R-modules are the left orthogonal complements of the class of D-

torsionfree modules. In particular, every simple left R-module is D-torsion. Hence the

class of all D-torsionfree modules consists of all soclefree left R-modules. Moreover, if

M ∈ TD then M is an essential extension of its socle.

5.2 Stable torsion theories

A left R-module M is called semi-Artinian if for every submodule N , M , M/N has

nonzero socle. We first show that the class of D-torsion left R-modules is exactly the

class of semi-Artinian left R-modules.

Lemma 5.2.1 A left R-moduleM is D-torsion if and only if it is semi-Artinian.

Proof: (⇐) Let M be a semi-Artinian left R-module and F be a D-torsionfree left R-

module. Then soc(F) = 0 by definition. We show that Hom(M,F) = 0. Every nonzero R-

homomorphism f ∈Hom(M,F) gives rise to an injectiveR-homomorphism f ′ :M/ ker f →

F. Let S be the socle of M/ ker f . Then f ′(S) ⊆ soc(F) = 0, hence S = 0. But this implies

that M = ker f . Hence f = 0.

(⇒) Suppose thatM is aD-torsion left R-module. Since the class of torsionmodules

is closed under factor modules, any nonzero factor module of M is also D-torsion and

cannot be D-torsionfree. Hence M/N has nonzero socle for every submodule N of M

and soM is semi-Artinian. �
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Recall that a module has finite length if and only if it is both Noetherian and Artinian.

In fact, we can still have finite length if the module is Noetherian and semi-Artinian.

The following result is known in the literature, but we include a proof for completeness:

Lemma 5.2.2 A left R-module M has finite length if and only if it is Noetherian and semi-

Artinian.

Proof: We only need to show the sufficiency. Suppose that M is a left R-module which

is left Noetherian and semi-Artinian. Since it is semi-Artinian, it has nonzero socle,

and so there exists a minimal submodule say S1 of M . Similarly, the factor M/S1 has a

simple submodule S2/S1. This way we obtain an ascending chain of submodules ofM

0 ≤ S1 ≤ S2 ≤ . . . ≤ Si ≤ . . .

such that Si /Si−1 is simple. Since M is Noetherian, this chain stops after finitely many

steps at M and so it is a composition series forM . ThusM has finite length. �

We remark that a locally Artinian module M is semi-Artinian. To see this, let N ⊆ M

be a submodule of a locally Artinian moduleM and let m ∈M\N . Then Rm is Artinian

and Rm/(Rm∩N ) ≃ (Rm+N )/N ⊆M/N has a nonzero socle. HenceM is semi-Artinian.

A torsion theory τ on R-mod is called stable if its torsion class is closed under

injective hulls. One of the equivalent conditions forD to be stable is that modules with

essential socle areD-torsion [15, 4.13]. Using this characterization, for a left Noetherian

ring we obtain a connection between the stability of the Dickson torsion theory and the

(⋄)-property in the following result:

Proposition 5.2.3 Let R be a left Noetherian ring. Injective hulls of simple left R-modules

are locally Artinian if and only if the Dickson torsion theory is stable, if and only if the class

of semi-Artinian left R-modules is closed under injective hulls.

Proof: First we show that the (⋄) property implies the stability of D. Let M be a D-

torsion left R-module. ThenM has an essential socle and so that its injective hull E(M)

84



is a direct sum of injective hulls of simple left R-modules. Then E(M) is locally Artinian

by assumption. Since locally Artinian modules are semi-Artinian, it follows that E(M)

is D-torsion and D is stable.

Conversely, let S be a simple left R-module and E(S) be its injective hull. Let 0 ,

F ≤ E(S) be a finitely generated submodule of E(S). By assumption, E(S) and hence F

is D-torsion and therefore semi-Artinian. Since F is Noetherian, by Lemma 5.2.2 F has

finite length. Thus E(S) is locally Artinian.

The last equivalence follows from Lemma 5.2.1. �

Hence the stability of the Dickson torsion theory is a necessary and sufficient condi-

tion for the (⋄) property. In [15, 4.13] Dickson characterizes those rings for which the

Dickson torsion theory in the category R-Mod is stable. Indeed he considers the (⋄)

property for any abelian category with injective envelopes. Translating his results to

the language of our work, we list his characterization as follows:

Proposition 5.2.4 The following are equivalent for a ring R.

(i) The Dickson torsion theory is stable.

(ii) Any D-torsion R-module can be embedded in a D-torsion injective R-module.

(iii) Any injective R-moduleM decomposes as M =Mt ⊕F, where Mt is the torsion part of

M and F is unique up to isomorphism and has zero socle.

(iv) If M is an essential extension of its socle, then it is D-torsion.

(v) For any left R-moduleM , its torsion partMt is the unique maximal essential extension

in M of its socle soc(M).

We will be looking for cases in which the Dickson torsion theory is stable for a left

Noetherian ring R. There are two such cases which imply the stability of the Dickson

torsion theory, but first we should introduce a partial order among the torsion theories

defined on R-mod.
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For a ring R we denote the family of all hereditary torsion theories defined on R-

mod by R-tors. Note thatR-tors corresponds bijectively to a set, because each hereditary

torsion theory can be identified with its Gabriel filter, which is an element of the power

set of all left ideals of R, see for example [20, Proposition 4.6]. We define a partial order

in R-tors with the help of the following result:

Proposition 5.2.5 [20, Proposition 2.1] For torsion theories τ and σ on R-mod the follow-

ing conditions are equivalent:

(a) Every τ-torsion left R-module is σ-torsion;

(b) Every σ-torsionfree left R-module is τ-torsionfree.

In case τ and σ are torsion theories on R-modwhich satisfy the equivalent conditions of

the above proposition, we say that τ is a specialization of σ and that σ is a generaliza-

tion of τ. We denote this situation by τ ≤ σ . This defines a partial order in R-tors. For

example, with respect to this ordering, the Goldie torsion theory is the smallest torsion

theory in which every cyclic singular left R-module is torsion and the Dickson torsion

theory is the smallest torsion theory in which every simple left R-module is torsion.

5.3 Cyclic singular modules with nonzero socle

We now give a sufficient condition for a torsion theory to be stable. The following result

is implicitly stated in [68]. We record it as a lemma and give its proof for completeness.

Lemma 5.3.1 Any generalization of Goldie’s torsion theory G is stable.

Proof: Suppose that (T ,F) is a torsion theory which is a generalization of G. For all

M ∈ T , since M is essential in its injective hull E(M), E(M)/M is Goldie torsion. Since

TG ⊆ T , E(M)/M also belongs to T . Since T is closed under extensions, it follows that

E(M) also belongs to T and hence (T ,F) is stable. �

In particular, the Dickson torsion theory is stable if it is a generalization of Goldie’s

torsion theory. This can be summarized as follows:
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Corollary 5.3.2 If every cyclic singular left R-module has a nonzero socle then the Dickson

torsion theory is stable.

Proof: By assumption, every cyclic singular left R-module has the property that every

epimorphic image has nonzero socle. Thus every such module belongs to the Dickson

torsion class. Since the Goldie torsion theory is the smallest torsion theory in which

every cyclic singular module is torsion, it follows that the Dickson torsion theory is a

generalization of Goldie torsion theory, hence it is stable. �

The rings R such that every cyclic singular left R-module has a nonzero socle are called

C-rings in [57]. We will now give a list of different characterizations of C-rings, but

we first give the necessary definitions. A submodule K ≤ L of a module L is called

neat if any simple module S is projective relative to the projection L → L/K . Also, a

submodule A of a module B is called closed if A has no proper essential extensions in

B. Note that a closed submodule is always neat. Lastly, if C is a nonempty collection of

left ideals of a ring R, we say that a left R-module M is C-injective if for every I ∈ C,

every R-homomorphism I →M can be lifted to an R-homomorphism R→M .

Proposition 5.3.3 [12, 10.10][65, Lemma 4] Let R be a ring andMax be the collection of

maximal left ideals of R. The following conditions are equivalent.

(a) Every neat left ideal of R is closed.

(b) A left ideal of R is closed if and only if it is neat.

(c) For every left R-module, closed submodules are neat.

(d) R is a C-ring.

(e) Every singular module is semi-Artinian.

(f) EveryMax-injective left R-module is injective.

Example 5.3.4 Hereditary Noetherian rings are C-rings [48, 5.4.5] and hence they have the

(⋄) property. While it is true that every Noetherian C-ring has the (⋄) property, there are
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Noetherian rings which have the (⋄) property but are not C-rings. For example, the ring of

polynomials R = K[x,y] in two indeterminates over a field K is a commutative Noetherian

domain and hence has the (⋄) property. The ideal I = 〈x〉 is essential in R since R is a domain,

but the singular module M = R/I has zero socle and hence R is not a C-ring.

Another class of rings over which the cyclic singular modules have nonzero socle is

the so called class of SI-rings. A ring R is said to be a left SI-ring if every singular left

R-module is injective. SI-rings satisfy the stronger property that R/E is semisimple for

every essential left ideal E of R [19, 17.2]. Moreover, each left SI-ring is left hereditary

[19, 17.1]. The converse is true if the ring is additionally a left SC-ring, that is, if

every singular module is continuous. Recall that a module M is π-injective if it is

fully invariant in its injective hull E(M) for every endomorphism of E(M). The module

M is called direct injective if for every direct summand X of M , the monomorphism

X→M splits. Finally, the moduleM is called continuous, if it is π-injective and direct

injective (see [19, §1.2.]). See [19, 17.4] also for a list of equivalent conditions for a ring

R to be a left SI-ring.

5.4 Soclefree modules containing nonzero projective submod-

ules

As a second sufficient condition for the stability of the Dickson torsion theory, we con-

sider the following property of an arbitrary torsion theory τ:

(P) Every τ-torsionfree left R-module contains a nonzero projective submodule.

Teply considered the property (P) in [68] and he proved the following result.

Lemma 5.4.1 [68, Proposition 1] Any torsion theory τ which has the property (P) is a gen-

eralization of G.

In other words, the Goldie torsion theory is the smallest torsion theory which pos-

sibly satisfies the condition (P). In particular, the property (P) is sufficient for a torsion
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theory τ to be a generalization of the Goldie torsion theory, therefore making it stable

by Lemma 5.3.1.

Applying this new property to the Dickson torsion theory, we get:

Corollary 5.4.2 The Dickson torsion theory is stable if every soclefree left R-module con-

tains a nonzero projective submodule.

If R is a simple Noetherian C-ring, then every hereditary torsion theory in R-Mod

has the (P) property [68, Theorem 1(3)(b)]. On the other hand, if R is a ring such that

the Dickson torsion theory has the property (P), then R is a C-ring. Because, as we

noted in Lemma 5.4.1, in this case the Dickson torsion theory is the generalization of

the Goldie torsion theory and so every singular module is semi-Artinian, i.e. R is a

C-ring.

Let U be a nonempty subset of R-tors. We define the join ∨U of the set U by declar-

ing a left R-module to be ∨U-torsionfree if and only if it is τ-torsionfree for all τ ∈ U

[20, Proposition 2.6]. For a simple left R-module S , let τS be the torsion theory gener-

ated by S which is the smallest torsion theory in which S is torsion. Then the Dickson

torsion theory is the join ∨τS where the join is taken over all nonisomorphic simple left

R-modules. Hence for each simple left R-module S we have τS ≤D, and it follows that

if τS satisfies (P) for a simple left R-module S then the Dickson torsion theory is stable.
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down-up algebra, 29

element

central, 4

90



even, 18

homogeneous, 12, 13

odd, 18

enveloping algebra of a Lie algebra, 16
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general linear algebra, 15
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Jacobson’s conjecture, 25

Lie algebra, 14

abelian, 15

filiform, 68

nilpotent, 16

solvable, 16

Lie bracket, 14

Lie superalgebra, 18

nilpotent, 19

solvable, 19

locally nilpotent map, 56

lower central series, 16

lower central series (of a Lie superalgebra),

18

minimal element, 5

module

C-injective, 87

π-injective, 88

Artinian, 4

91



cocyclic, 49

colocal, 49

continuous, 88

direct injective, 88

divisible, 9

finitely embedded, 35

graded, 14

holonomic, 34

indecomposable, 11

injective, 6

locally Artinian, 26

Noetherian, 4

nonsingular, 82

of finite length, 5

semi-Artinian, 83

semisimple, 4

simple, 4

singular, 82

uniform, 11

multiparameter quantum affine space, 32

neat submodule, 87

nilpotency degree, 16

normal element, 50

normalizing sequence, 51

orthogonal complement

left, 81

right, 81

PBW-basis, 17
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France Mém. 9 1967 79 pp. 16.40.

[58] Rodrı́guez-Vallarte, M. C.; Salgado, G.; Sánchez-Valenzuela, O. A, Heisenberg Lie

superalgebras and their invariant superorthogonal and supersymplectic forms, J. Alge-

bra 332 (2011), 71-86, 17B30 (17B70 17B81).

[59] Roseblade, J. E. Group rings of polycyclic groups. J. Pure Appl. Algebra 3 (1973),

307-328. 20C05.

99



[60] Rosenberg, Alex; Zelinsky, Daniel. Finiteness of the injective hull. Math. Z. 70

1958/1959 372-380. 18.00 (16.00).

[61] Schelter, W., Essential extensions and intersection theorems, Proc. Amer. Math. Soc.

53 (1975), no. 2, 328-330, 16A46.

[62] Scheunert, Manfred. The theory of Lie superalgebras. An introduction. Lecture Notes

in Mathematics, 716. Springer, Berlin, 1979. x+271 pp. ISBN: 3-540-09256-0

17A70.
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