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Euclidean domains

Definition

A commutative domain R is an euclidean domain if there exists a
map δ : R \ 0 −→ N such that for any a, b ∈ R with b 6= 0, there
exist q, r ∈ Rwith a = bq + r and either r = 0 or δ(r) < δ(b)

Examples

(a) Z (δ(n) = |n|) , Z[i ] (δ(a + bi) = a2 + b2), Z[ω] where
ω = e2iπ/3 (δ(a + bw) = a2 − ab + b2), k[x ] where k is a field
(δ is the degree)

(b) Sometimes δ is multiplicative, the ring R is then said to be
normed Euclidean. The norm of the quadratic field restricts
sometimes to a norm for the ring of integers of that field.
Even if this is not the case this ring can still be Euclidean.
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Examples

1 the rings of integers of number fields may be divided in several
classes:

Those that are not principal and therefore not Euclidean:
Integers of Q(

√
−5).

Those that are principal and not Euclidean, such as the
integers of Q(

√
−19).

Those that are Euclidean and not norm-Euclidean, such as the
integers of Q(

√
69).

Those that are norm-Euclidean, such as Gaussian integers .

2 The norm-Euclidean quadratic fields have been fully classified,
they are Q(

√
d) where d takes the values

−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, . . . , 73 .

3 Every Euclidean imaginary quadratic field is norm-Euclidean
and is one of the five first fields in the preceding list.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings
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Definition: An element u in a domain R is a universal side divisor if
u is not a unit and, for every x ∈ R, either u|x or there is a unit
y ∈ R such that u|(x + y).

Theorem

1 Every Euclidean Domain is a PID and hence a UFD.

2 If R is a Euclidean domain but not a field, then R has a
universal side divisor.

The last property was used by Motzkin to show that the ring
Z(α) where α = 1

2 (1 +
√
−19) is a PID but not a Euclidean

domain.

The ring R[X ,Y ]/(X 2 + Y 2 + 1) is also a principal ideal
domain that is not Euclidean.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings
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The transfinite Euclidean Rings

Definition

A commutative domain R such that the Euclidean function ϕ
takes its value in the class of ordinals. The Euclidean order type of
such a Euclidean domain R is minϕ{α | ϕ(R \ {0}) ⊆ α}, where ϕ
ranges among all possible Euclidean norms on R.

Finitely valued Euclidean domains have type 1 or ω1 = ω. Hublot
and Nagata constructed domain with order types ω2, hence the
transfinite euclidean domains form a larger class.

Theorem {Conidis, Nielsen and Tombs}
For every ordinal α, there exists a Euclidean domain whose
Euclidean order type is ωα. Moreover, these are the only possible
Euclidean order types for Euclidean domains.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Euclidean domains, P.I.D., UFD
Transfinite Euclidean.
The k-stage euclidean rings.

Continuous fractions and matrices

The transfinite Euclidean Rings

Definition

A commutative domain R such that the Euclidean function ϕ
takes its value in the class of ordinals. The Euclidean order type of
such a Euclidean domain R is minϕ{α | ϕ(R \ {0}) ⊆ α}, where ϕ
ranges among all possible Euclidean norms on R.

Finitely valued Euclidean domains have type 1 or ω1 = ω. Hublot
and Nagata constructed domain with order types ω2, hence the
transfinite euclidean domains form a larger class.

Theorem {Conidis, Nielsen and Tombs}
For every ordinal α, there exists a Euclidean domain whose
Euclidean order type is ωα. Moreover, these are the only possible
Euclidean order types for Euclidean domains.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Euclidean domains, P.I.D., UFD
Transfinite Euclidean.
The k-stage euclidean rings.

Continuous fractions and matrices

The transfinite Euclidean Rings

Definition

A commutative domain R such that the Euclidean function ϕ
takes its value in the class of ordinals. The Euclidean order type of
such a Euclidean domain R is minϕ{α | ϕ(R \ {0}) ⊆ α}, where ϕ
ranges among all possible Euclidean norms on R.

Finitely valued Euclidean domains have type 1 or ω1 = ω. Hublot
and Nagata constructed domain with order types ω2, hence the
transfinite euclidean domains form a larger class.

Theorem {Conidis, Nielsen and Tombs}
For every ordinal α, there exists a Euclidean domain whose
Euclidean order type is ωα. Moreover, these are the only possible
Euclidean order types for Euclidean domains.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Euclidean domains, P.I.D., UFD
Transfinite Euclidean.
The k-stage euclidean rings.

Continuous fractions and matrices

Layout
1 Plan
2 Classical commutative Euclidean rings

Euclidean domains, P.I.D., UFD
Transfinite Euclidean.
The k-stage euclidean rings.

Continuous fractions and matrices
3 Quasi Euclidean rings

Euclidean pairs and rings
Some examples
Continuant polynomials
Properties of Continuant polynomials
Characterizations of Euclidean rings
More properties

4 Euclidean modules
Definitions

5 Morita context
Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Euclidean domains, P.I.D., UFD
Transfinite Euclidean.
The k-stage euclidean rings.

Continuous fractions and matrices

The k-stage euclidean rings.

Definition

A commutative domain R is 2 stage Euclidean if there exists a
map N : R \ {0} −→ N such that for any pair (a, b)∈ R2, (b 6= 0) ,
there exist q, q′, r , r ′ ∈ R such that a = bq + r , b = rq′ + r ′ and
N(r ′) < N(b).

Remark

Since, if r ′ 6= 0, we can use the same process for the couple (r , r ′),
getting a r ′′ with N(r ′′) < N(r ′), hence the process will stop.

With respect to the usual norms other fields have been shown to
be 2-stage Euclidean. For instance if d ∈ {14, 22, 23, 31, 38, . . . }.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings
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Continuous fractions

Besides finding the GCD of two elements this is one of the most
well-known application of the Euclidean algorithm.

If we have a sequence of divisions
a = bq1 + r1; b = r1q2 + r2, . . . , rn−1 = rnqn+1 we obtain

when the ri ’s are invertible,
b−1a = q1 + (q2 + (q3 + · · ·+ (qn+1)−1 . . . )−1)−1 pause

The continuous fractions are usually used for approximations
of real numbers. The successive approximations of a real
number by the sequences of rational numbers obtained by
stopping the division process are usualy much quicker than the
successive decimal approximations.

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings
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Definitions

1 A pair (a, b) ∈ R2 is a right Euclidean pair if there exist
elements (q1, r1), ... , (qn+1, rn+1) ∈ R2 (for some n ≥ 0)
such that a = bq1 + r1, b = r1q2 + r2, and

(∗) ri−1 = riqi+1 + ri+1 for 1 < i ≤ n, with rn+1 = 0.

The notion of a left Euclidean pair is defined similarly. A ring
R is right quasi-euclidean if every pair (a, b) is a right
Euclidean pair.

2 A ring R is of stable range 1 if for any (a, b) ∈ R2 such that
aR + bR = R there exists x ∈ R such that a + bx is invertible.

Let us now give some examples;
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Examples

1 For a, b, q in any ring R, both (bq, b) and (a, 0) are
Euclidean pairs as bq = b · q + 0, and a = 0 · 1 + a along
with 0 = a · 0 + 0. If b has a right inverse c, then (a, b) is a
Euclidean pair for all a ∈ R since a = b (ca) + 0.

2 If (a, b) is a Euclidean pair and q ∈ R, we see easily that
(b, a), (a + bq, b), and (b + aq, a) are also Euclidean pairs.
Over a right chain ring R, all pairs in R2 are Euclidean, so
R is a right quasi-Euclidean ring.

3 If a, b ∈ R are such that a + bq is right-invertible for some
q, then (a, b) is a Euclidean pair. In particular, if R is any
ring of stable range one then every pair (a, b) with
aR + bR = R is Euclidean.
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Examples

1 In a regular ring every pair (e, b) where e2 = e is a Euclidean
pair.

2 If e = e2 is such that eR = eRe then for any r ∈ R (e, r) is
an Euclidean pair.
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Suppose (a, b) is a Euclidean pair with a = bq1 + r1,
b = r1q2 + r2, and

(∗) ri−1 = riqi+1 + ri+1 for 1 < i ≤ n, with rn+1 = 0.

In matrix form we get the following

(a, b) = (rn, 0)P(qn+1) · · ·P(q1).

where P(q) is the invertible matrix

(
q 1
1 0

)
.

Let us develop the right handside product of matrices:(
q1 1
1 0

)(
q2 1
1 0

)
=

(
q1q2 + 1 q1

q2 1

)
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Definition

Let X = {x1, x2, . . . } be a countable set of noncommuting
variables, and let Z 〈X 〉 be the free Z-algebra generated by X .
We define the n -th right continuant polynomials

pn(x1, . . . , xn) ∈ Z 〈x1, . . . , xn〉 ⊆ Z 〈X 〉

by p0 ≡ 1, p1(x1) = x1, and inductively for i ≥ 2 by

pi (x1, . . . , xi ) = pi−1(x1, . . . , xi−1) xi + pi−2(x1, . . . , xi−2).

Thus, p2(x1, x2) = x1x2 + 1, p3(x1, x2, x3) = x1x2x3 + x3 + x1, etc.
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Proposition

Let a, b be elements in a ring R. The following are equivalent :

(1) (a, b) is a Euclidean pair.

(2) For some n ≥ 0 ∃ q1, . . . , qn+1 ∈ R and rn ∈ R with
(a, b) = (rn, 0)P(qn+1) · · ·P(q1).

(3) ∃(Q, r) ∈ E2(R)× R such that (a, b) = (r , 0)Q

(4) For some n ≥ 0 ∃ q1, . . . , qn+1 ∈ R and ∃ rn ∈ R with
a = rnpn+1 (qn+1, . . . , q1) and b = rnpn (qn+1, . . . , q2).

Statement (2) above shows, in particular, that every right
quasi-Euclidean ring is right K-Hermite (cf. later).
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It is possible to see the continuant polynomials as particular cases
of other more general polynomials called Fibonacci polynomials.
These ones are defined by the following relations:

f−1 = 0, f0 = 1,
fn(x1, . . . , xn, y1, . . . , yn) = fn−1(x1, . . . , xn−1, y1, . . . , yn−1)xn+

+fn−2(x1, . . . , xn−2, y1, . . . , yn−2)yn.
(1)

Putting yi = 1 we get back the relations used to define the
contnuant polynomials. These Fibonacci polynomials are related to
paving 1× n rectangles with black and white squares.
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Definitions

1 R is von Neumann regular if ∀a ∈ R, ∃x ∈ R such tat
a = axa. If x can be chosen in U(R), we say R is unit regular.

2 A ring is right K -Hermite if for every pair (a, b) ∈ R2

∃(P, c) ∈ GL2(R)× R such that (a, b)P = (c , 0)

Lemma

Every semisimple ring is unit regular.

Unit regular rings are exactly the regular rings with stable
range 1.

Every semilocal ring is of stable range 1 (Bass’s theorem).

If a pair (a, b) is Euclidean the ideal aR + bR is principal.

Let R be of stable range 1. Then (a, b) ∈ R2 is a Euclidean
pair if and only if aR + bR is principal.
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Definition

GEn(R) is the subgroup of GLn(R) generated by En(R) and
invertible diagonal matrices. R is a GEn-ring if
GLn(R) = GEn(R). If R is a GEn-ring ∀n ≥ 2, then R is a
GE-ring. Rings with stable range one (e.g. semilocal rings,
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More properties

Theorem

(a) Any unit regular ring is quasi-Euclidean.

(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.

(c) For any ideal I if R is Euclidean then R/I is Euclidean.

(d) Let R be a right Bézout ring and I be any ideal contained in
the Jacobson radical J(R). R/I is right quasi Euclidean iff R
is right quasi Euclidean.

There exist right Euclidean ring which are not left Euclidean.
There exist right Euclidean rings which are not Dedekind finite i.e.
ab = 1 but ba 6= 1 (Bergmann example).

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Euclidean pairs and rings
Some examples
Continuant polynomials
Properties of Continuant polynomials
Characterizations of Euclidean rings
More properties

More properties

Theorem

(a) Any unit regular ring is quasi-Euclidean.

(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.

(c) For any ideal I if R is Euclidean then R/I is Euclidean.
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(d) Let R be a right Bézout ring and I be any ideal contained in
the Jacobson radical J(R). R/I is right quasi Euclidean iff R
is right quasi Euclidean.

There exist right Euclidean ring which are not left Euclidean.

There exist right Euclidean rings which are not Dedekind finite i.e.
ab = 1 but ba 6= 1 (Bergmann example).

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Euclidean pairs and rings
Some examples
Continuant polynomials
Properties of Continuant polynomials
Characterizations of Euclidean rings
More properties

More properties

Theorem

(a) Any unit regular ring is quasi-Euclidean.

(b) A matrix ring over a right quasi-Euclidean ring is right
quasi-Euclidean.

(c) For any ideal I if R is Euclidean then R/I is Euclidean.
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Definitions

1 An ordered pair (x , y) over a module MR is said to be a right
Euclidean pair if there exists elements
(q1, p1) . . . (qn+1, pn+1) ∈ R ×M (for some n ≥ 0) such that
x = yq1 + p1, y = p1q2 + p2 and pi−1 = piqi + pi+1 for
1 < i ≤ n with pn+1 = 0. If all pairs (x , y) ∈ M2 are
Euclidean then M is called right quasi-Euclidean module. (e.g
rational number Q as a Z module)

2 A right R-module M is said to be a right K -Hermite if for any
pair (x , y) ∈ M2 there exists an invertible matrix P ∈ M2(R)
and c ∈ M such that (x , y) = (c, 0)P.
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Lemma

1 Any submodule of a right quasi-Euclidean module is right
quasi-Euclidean.

2 If MR is finitely generated and quasi-Euclidean module then
M is cyclic.

3 If any R module M is quasi-Euclidean then R is clearly
quasi-Euclidean but the converse does not hold (e.g. any ideal
of a quasi-Euclidean non Noetherian ring )

4 A simple right module M over a right quasi-Euclidean ring R
is right quasi-Euclidean

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Definitions

Some properties

Lemma

1 Any submodule of a right quasi-Euclidean module is right
quasi-Euclidean.

2 If MR is finitely generated and quasi-Euclidean module then
M is cyclic.

3 If any R module M is quasi-Euclidean then R is clearly
quasi-Euclidean but the converse does not hold (e.g. any ideal
of a quasi-Euclidean non Noetherian ring )

4 A simple right module M over a right quasi-Euclidean ring R
is right quasi-Euclidean

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Definitions

Some properties

Lemma

1 Any submodule of a right quasi-Euclidean module is right
quasi-Euclidean.

2 If MR is finitely generated and quasi-Euclidean module then
M is cyclic.

3 If any R module M is quasi-Euclidean then R is clearly
quasi-Euclidean but the converse does not hold (e.g. any ideal
of a quasi-Euclidean non Noetherian ring )

4 A simple right module M over a right quasi-Euclidean ring R
is right quasi-Euclidean

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Definitions

Some properties

Lemma

1 Any submodule of a right quasi-Euclidean module is right
quasi-Euclidean.

2 If MR is finitely generated and quasi-Euclidean module then
M is cyclic.

3 If any R module M is quasi-Euclidean then R is clearly
quasi-Euclidean but the converse does not hold (e.g. any ideal
of a quasi-Euclidean non Noetherian ring )

4 A simple right module M over a right quasi-Euclidean ring R
is right quasi-Euclidean

Andre Leroy (Joint work with A. Alahmadi, S.K. Jain, T.Y. Lam and A. Kor)Quasi Euclidean rings



Plan
Classical commutative Euclidean rings

Quasi Euclidean rings
Euclidean modules

Morita context

Definitions

Proposition

Let x , y be elements in a module M. Then the following are
equivalent:

1 (x , y) is a Euclidean pair.

2 For some n ≥ 0 there exists q1, . . . qn+1 ∈ R and pn ∈ M such
that (x , y) = (pn, 0)P(qn+1) . . .P(q1) where

P(qi ) =

(
qi 1
1 0

)
where i = 1, . . . , n + 1. In particular it

shows every right quasi-Euclidean module is right K-Hermite.
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Theorem

Suppose that the ring R has stable range one. Then for a module
MR , the following are equivalent;

1 The module MR is right quasi-Euclidean.

2 The module MR is right K-Hermite.

3 The module MR is right Bézout.
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Morita context

Definition

A Morita context is a 4-tuple

(
R M
N S

)
, where R, S are rings,

RMS and SNR are bimodules, and there exist context products
M × N −→ R and N ×M −→ S written multiplicatively as

(m, n) 7→ mn and (n,m) 7→ nm, such that

(
R M
N S

)
is an

associative ring with the obvious matrix operations.
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Definition {Chen, W.K.Nicholson, Stable modules and a theorem
of Camillo and Yu, J. Pure and App. Algebra (2014)}

If C =

(
R M
N S

)
is a Morita context, an element m ∈ M is called

regular if mnm = m for some n ∈ N. Similarly, n ∈ N is called
regular if nmn = n for some m ∈ M.

Theorem

Let C =

(
R M
N S

)
be a Morita context. Then C is right (left)

Bézout if and only if RR and (M ⊕ S)S (SS and R(R ⊕M) ) are
right (left) Bézout.
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Theorem

Let C =

(
R M
N S

)
be a Morita context. Then C has stable range

1 if and only if R and S have stable range 1.

Theorem{fG. Tang, C. Li, Y. Zhou, Study of Morita Contexts,
Comm. Algebra (2014)}

Let C =

(
R M
N S

)
be a Morita context.

(i) C is regular if and only if R,S are regular and x ∈ xNx ,
y ∈ yMy for all x ∈ M and y ∈ N.

(ii) C is unit-regular if and only if R, S are unit-regular and
x ∈ xNx , y ∈ yMy for all x ∈ M and y ∈ N.
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Corollary

Let C =

(
R M
N S

)
be a Morita context. If C is right Bézout and

both R and S have stable range 1 then C is a right
quasi-Euclidean ring.
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THANK YOU
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